Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 6

Rotational motion of a stationary axisymmetric relativistic heat conducting fluid configuration

Prasad G

Retired Principal, Kamla Nehru Institute of Physical and Social Sciences, Dr. R. M. L. University, India

Correspondence: G Prasad, Kamla Nehru Institute of Physical and Social Sciences, affiliated to Dr. R . M. L. University, Faizabad (U.P.), India

Received: October 07, 2018 | Published: November 20, 2018

Citation: Prasad G. Rotational motion of a stationary axisymmetric relativistic heat conducting fluid configuration. Phys Astron Int J. 2018;2(6):527-535. DOI: 10.15406/paij.2018.02.00137

Download PDF

Abstract

The present work describes some dynamical features associated with the dissipation caused by the heat flow in the context of rotational motion of a heat conducting fluid based on Carter’s two-fluid model. A covariant solutions to a pair of Maxwell’s like equations governing the evolution of a heat conducting fluid are used to determine the heat flow vector and the matter part of fluid’s 4-velocity under the assumption that the space-time configuration representing the gravitational field of a heat conducting fluid is non-circular stationary and axisymmetric. These results are used to derive the rotational velocity in terms of gradients of the effective energy and effective angular momentum per particle. It is demonstrated that the meridional circulations of the matter part of fluid induce the rotational velocity in addition to the usual rotational velocity found in a circular space-time. It is shown that the differential rotation along the thermal –fluid vorticity causes the twist of matter part of fluid’s vortex lines in addition to the other effects .It is found that the gravitational isorotation is balanced by counter rotating thermal isorotation in the case of differentially rotating thermal-fluid surfaces in a frame of reference in which thermal –fluid helicity is conserved. The dynamic interaction between the matter part of fluid and the entropy fluid leads to the mutual exchange between the energy and angular momentum per baryon of the matter part of fluid and the flux of energy and angular momentum per entropon per unit of local temperature coupled to heat flow vector created by the entropy fluid.

Keywords: thermal-fluid vorticity, thermal-fluid helicity, heat conducting fluid, thermal isorotation.

Introduction

A qualitative understanding of thermal dynamics is of considerable interest in order to investigate the underlying physical processes during the evolution of newly born neutron stars which are far from thermodynamic equilibrium because such stars at birth are sensitive to high temperature variations.1 The structural aspects and thermal evolution of such compact stars require determination of background space-time geometry and the equation of state (EOS) of highly degenerate hot nuclear matter that composes the stars. The dissipative processes that occur involve on the one hand strong gravitational effects and on the other hand microscopic properties of dense matter exceeding nuclear densities. The behavior and composition of hot matter at large densities are still unknown. Nevertheless, the usual working hypothesis is that the hot degenerate matter can be thought of as a heat conducting fluid in a hydrodynamic approximation.

In construction of a theoretical model of a differentially rotating neutron star, it is usually assumed the background space-time geometry representing the gravitational field is stationary and axisymmetric.2 The condition of thermodynamic equilibrium asserts that the entropy current must be divergence- free.3 This condition leads to the vanishing of heat flow and Born rigidity4 of fluid flow lines.3 In this case fluid composing the star attains barotropic EOS predicted on the basis of Eckart’s theory of dissipative fluids5 because of the argument that the dissipative effects due to heat flow and viscosity die out.3 In this case , it is found that twist of fluid’s vortex lines vanishes.6

Since a newly born neutron star is in a state of differential rotation,7 the flows of hot fluid composing such star will not obey Born rigidity condition4 because the shear tensor associated with fluid flow lines is non-vanishing due to the star’s differential rotation.8,9 The presence of heat flow due to inhomogeneous high temperature distribution and differential rotation will keep the star far from thermodynamic equilibrium. As a result, the energy flux generated due to heat flow and differential rotation leads to the twisting of fluid’s vortex lines.10 This in turn suggests that the role of fluid’s vorticity cannot be ignored when a hot fluid is far from thermodynamic equilibrium. It is also important to underline that the fluid’s vorticity is a basic element when coupled to fluid’s chemical potential forms the fluid’s helicity.11

Some recent theoretical and numerical investigations12−13 indicate that the study of thermal evolution of a newly born neutron star is important for understanding physical processes of observed thermal radiation from such stars on the basis of cooling theory.14 But the way the energy balance equation is formulated12−13 for the study of rotational effects on thermal evolution of a newly born neutron star violates the causality principle because the formulation involves Fourier’s law for the description of heat conduction and an analogous construction of energy-momentum tensor based on Eckart’s theory of dissipative fluids.5 It is well known that Fourier’s law causes the causality breakdown. This in turn suggests that the predictions made in the context of thermal evolution and undergoing physical processes due to the interaction between the motion of a hot fluid and the heat flow inside a newly born neutron star on the basis of such formulation may not be physically reasonable on the ground of causality violation. Effort to better formulation for the description of thermal evolution in the case of a rotating star is still ongoing.15

The space-time configuration representing the gravitational field of a self-gravitating heat conducting fluid in a state of differential rotation is unknown because of the absence of exact analytic solutions to Einstein field equations incorporating causal theory of heat conducting fluid. In the case of Carter’s two-fluid model16 of a heat conducting fluid , it is recognized that the heat flow vector contributes to an additional thermal stress term coupled with the entropy entrainment17 that enters in the expression of energy-momentum tensor but does not appear in Israel and Stewart (I S) causal theory18 of a dissipative fluid. This additional thermal stress term is linked with gravitational potentials via components of metric tensor described by Einstein field equations. It is worthwhile to note that Carter’s model16 is not only causal and stable but also includes IS theory18 as a special case.19 The entrainment between matter part of fluid and the entropy fluid is the key ingredient for incorporating thermal relaxation time that leads to causal heat transport in a modified version of Carter’s two-fluid model.17 The dynamical features associated with the motion of such two-fluid model are unknown and deserve to be investigated in view of its applicability to a system composed of heat conducting fluid which is far from thermal equilibrium. Because of the existence of non-conserved physical quantities like thermal-fluid vorticity flux, thermal vorticty flux, thermal-fluid helicity, thermal helicity etc.10,20 describing dissipation , there is extreme difficulty encountered in finding analytic solutions to Einstein field equations. This in turn suggests that the search of some conserved physical quantity of interest might be helpful to extract useful information in order to understand the physical processes associated with the dynamics of dissipative fluid.

The central elements of Carter’s variational model16 are the existence of two distinct vorticity 2-forms corresponding to the matter part of fluid and the entropy fluid and are called, respectively, the particle vorticity 2-form and the thermal vorticity 2-form. These two distinct vorticity 2-forms comprise a pair of two distinct source-free Maxwell’s like equations16 that describe the evolution of a heat conducting fluid. This pair of equations exhibits that there is an intrinsic interdependence of matter part of fluid’s 4-velocity and the heat flow. If the space-time configuration representing the gravitational field of a heat conducting fluid is assumed to be axisymmetric and stationary, it must be non-circular because the energy-momentum tensor does not obey the circularity condition21 and the presence of meridional circulation of matter part of fluid is mandatory20 for the survival of covariant toroidal components of the heat flow vector in a modified version of Carter’s model.17 Furthermore , the vanishing of covariant toroidal components of the heat flow vector exclude the contributions to the effective energy and the effective angular momentum per particle that results in the reduction of the EOS to a function of state variables represented by particle number density and the constant entropy per baryon describable by the usual Gibbs law; while this is contrary to the fact that the EOS of a heat conducting fluid in this model is a function of three thermodynamic state variables , i.e. , the particle number density , the entropy density and their entrainment factor governed by the extended Gibbs law.17 This means that the non- circularity assumption is essential if the space-time is assumed to be stationary and axisymmetric. But the non-circularity assumption in the case of an axisymmetric and stationary space-time leads to the appearance of non-diagonal metric tensor components in Einstein field equations that make the solution intractable. Since the evolution of a heat conducting fluid is governed by a pair of source-free Maxwell’s like equations, an electromagnetic analogy based on the approach given22 for the case of the relativistic magneto hydrodynamics (RMHD)23 can be employed to seek similar solutions to the case of a heat conducting fluid. On the basis of this approach,22 it is found that there is conservation of thermal chirality associated with the non-conserved thermal helicity20 if the entropy fluid flows are axisymmetric stationary without meridional circulation but with uniform rotation. Thus it seems appropriate to continue this approach for further study of dynamic features associated with the interplay between the motion of matter part of fluid and the entropy fluid.

The present work is focused to extend our understanding of rotational motion of a system composed of a heat conducting fluid based on Carter’s two-fluid model.16,17 The paper is organized as follows. Section.2 is devoted to a brief summary of relevant results20 that are required for our present work. Section.3 is concerned with the derivation of a relation connecting the differential rotation of matter part of fluid and the thermal-fluid vorticity under the assumption that the space-time is axisymmetric stationary and non-circular. Section.4 is intended to describe the differential rotation of thermal-fluid vorticity flux surfaces in a frame of reference in which thermal-fluid helicity is conserved and to derive a Ferraro’s like law of isorotation. We deduce a relation between gravitational isorotation and thermal isorotation. Section.5 is devoted to the derivation of conservation laws of the energy and angular momentum currents associated with the motion of a heat conducting fluid by invoking space-time symmetry assumption. We show that there is mutual exchange between the energy per baryon of matter part of fluid and the flux of effective energy per entropon per unit of local temperature coupled to heat flow vector generated by the entropy fluid in the dynamic interaction. Similar result will be shown for the case of the angular momentum.

Convention: The space-time metric is of signature +2 .Small case Latin indices run from 0 to 3 . Semicolon and comma are used, respectively, to denote the covariant and partial derivatives. Constituent indices  and  are used to indicate matter and entropy part of fluid, respectively, throughout the text and not to be confused with tensor indices. Capital Latin indices are used to indicate poloidal coordinates. Square and round brackets around indices represent, respectively, skew-symmetrization and symmetrization.

Covariant Solutions to Maxwell’s like equations in stationary sxisymmetric space-time

In this section, we collect all relevant results which are required for the present work. These results can be found in10,20 but are briefly stated here for the convenience of reader. The starting point is a brief summary of Catrer’s variational model16,17 of a heat conducting fluid in which the thermal-fluid vorticity 2-form   W ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGGcGaam4va8aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaaaaa@3C3D@  and thermal vorticity 2-form Z ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B1D@ constitute a pair of source free Maxwell’s like equations that govern the evolution of a heat conducting fluid . In this model, a heat conducting fluid is composed of matter current n a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGUbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A3C@  and entropy current s a . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGZbWdamaaCaaaleqabaWdbiaadggaaaGcpaGaaiOlaaaa@3B0C@  The entropy current element is thought of as a massless fluid (e.g., phonons/entropons). In order to preserve causality in the matter frame of reference (also called Eckart’s frame),5 the notion of thermal relaxation time is incorporated via the formulation of a relativistic version of Cattaneo’s equation by invoking the entropy entrainment17. It is found that Eckart’s frame5 is not only suitable to connect the traditionally known thermodynamic variables expressing the equation of state (EOS) of a fluid but also to take accounts of the kinematic deformation of fluid flow and heat flow lines caused by gravitation via the curvature of space-time. A pair of Maxwell’s like equations describing the evolution of a heat conducting fluid are expressible as:10,16,17

W ab u b = Ε a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacaWG1bWd amaaCaaaleqabaWdbiaadkgaaaGccqGH9aqppaGaeuyLdu0aaSbaaS qaa8qacaWGHbaapaqabaaaaa@4119@ (2.1a)

Z ab s b = E a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacaWGZbWd amaaCaaaleqabaWdbiaadkgaaaGccqGH9aqpcqGHsislcaqGfbWdam aaBaaaleaapeGaamyyaaWdaeqaaaaa@4167@ (2.1b)

with

W ab =2 μ [ b;a ] , Z ab =2 ϑ [ b;a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacqGH9aqp caaIYaGaeqiVd02damaaBaaaleaapeWaamWaa8aabaWdbiaadkgaca GG7aGaamyyaaGaay5waiaaw2faaaWdaeqaaOGaaGPaVlaacYcacaaM c8UaaGPaV=qacaWGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabe aak8qacqGH9aqpcaaIYaGaeqy0dO0damaaBaaaleaapeWaamWaa8aa baWdbiaadkgacaGG7aGaamyyaaGaay5waiaaw2faaaWdaeqaaaaa@548F@ (2.1c)

Ε a = R n ( s β q 2 2 ) q a Ε ¯ a =R( q a q 2 θ * u a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyLdu0aaSbaaS qaaabaaaaaaaaapeGaamyyaaWdaeqaaOWdbiabg2da9maalaaapaqa a8qacaWGsbaapaqaa8qacaWGUbaaamaabmaapaqaamaaCeaaleqaba Gaey4fIOcaaOGaam4Ca8qacqGHsisldaWcaaWdaeaapeGaeqOSdiMa amyCa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaamaaCaaaleqaba WdbiaaikdaaaaaaaGccaGLOaGaayzkaaGaamyCa8aadaWgaaWcbaWd biaadggaa8aabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uafu yLduKbaebadaWgaaWcbaWdbiaadggaa8aabeaakiabg2da98qacaWG sbWaaeWaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaWGHbaapaqaba GcpeGaeyOeI0YaaSaaa8aabaWdbiaadghapaWaaWbaaSqabeaapeGa aGOmaaaaaOWdaeaadaahbaWcbeqaaiaacQcaaaGccqaH4oqCaaWdbi aadwhapaWaaSbaaSqaa8qacaWGHbaapaqabaaak8qacaGLOaGaayzk aaaaaa@6240@ (2.1d)

where μ a = μ u a +α q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH8oqBpaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaeyypa0Zdamaa CeaaleqabaGaey4fIOcaaOGaeqiVd02dbmaaBaaaleaacaWG1bWdam aaBaaameaapeGaamyyaaWdaeqaaaWcpeqabaGccqGHRaWkcqaHXoqy caWGXbWdamaaBaaaleaapeGaamyyaaWdaeqaaaaa@466C@  is the fluid momentum convector and ϑ a = θ * u a +β q a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHrpGspaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaeyypa0ZaaWra aSqabeaacaGGQaaaaOGaeqiUdeNaamyDa8aadaWgaaWcbaWdbiaadg gaa8aabeaak8qacqGHRaWkcqaHYoGycaWGXbWdamaaBaaaleaapeGa amyyaaWdaeqaaaaa@45C7@  is the thermal momentum convector. The fluid’s 4-velocity is denoted by u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A43@  which obeys the normalization condition u a u a =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaCaaaleqabaWdbiaadggaaaGccaWG1bWdamaaBaaaleaa peGaamyyaaWdaeqaaOWdbiabg2da9iabgkHiTiaaigdaaaa@3F4F@ .The matter current takes the form n a =n u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGUbWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpcaWGUbGaamyD a8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3E6B@  which is conserved, that is, n ;a a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGUbWdamaaDaaaleaapeGaai4oaiaadggaa8aabaWdbiaadggaaaGc cqGH9aqpcaaIWaaaaa@3DCA@ . This is usually called the baryon conservation law. q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGXbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A3F@ is the heat flow vector. The entropy current is represented by s a = S * u a + 1 θ * q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGZbWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqppaWaaWraaSqa beaacaGGQaaaaOGaam4ua8qacaWG1bWdamaaCaaaleqabaWdbiaadg gaaaGccqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaadaahbaWcbeqa aiaacQcaaaGccqaH4oqCaaWdbiaadghapaWaaWbaaSqabeaapeGaam yyaaaaaaa@4613@ . The fluid’s chemical potential, temperature, and entropy per baryon measured in the matter part of fluid’s frame are, respectively, designated by μ , θ and s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaacq GHxiIkaaGccqaH8oqBcaGGSaWaaWraaSqabeaacqGHxiIkaaGccqaH 4oqCcaaMc8UaaGPaVdbaaaaaaaaapeGaamyyaiaad6gacaWGKbGaaG PaVlaaykW7paWaaWraaSqabeaacqGHxiIkaaGccaWGZbaaaa@499D@ . The relation between thermodynamic quantities αandβ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHXoqycaaMc8Uaamyyaiaad6gacaWGKbGaaGPaVlabek7aIbaa@412F@  is expressible as β=( 1 s nα s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHYoGycqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aa baWaaWraaSqabeaacqGHxiIkaaGccaWGZbaaa8qacqGHsisldaWcaa WdaeaapeGaamOBaiabeg7aHbWdaeaadaahbaWcbeqaaiabgEHiQaaa kiaadohaaaaapeGaayjkaiaawMcaaaaa@4579@ , where α= A ns θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHXoqycqGH9aqpdaWcaaWdaeaapeGaamyqa8aadaahaaWcbeqaa8qa caWGUbGaam4CaaaaaOWdaeaadaahbaWcbeqaaiabgEHiQaaakiabeI 7aXbaaaaa@40DD@  which encodes the entrainment effect via A ns MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGbbWdamaaCaaaleqabaWdbiaad6gacaWGZbaaaaaa@3B13@ .17 The thermal resistivity of a thermally conducting fluid is described by R. The electric part of the thermal -fluid vorticity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B19@ is represented by E a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraabaaaaaaa aapeWaaSbaaSqaaiaadggaaeqaaaaa@39F2@ . Its magnetic part is defined by

V a = W ab u b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqppaWaaWraaSqa beaacqGHxiIkaaGccaWGxbWaaWbaaSqabeaapeGaamyyaiaadkgaaa GccaWG1bWdamaaBaaaleaapeGaamOyaaWdaeqaaaaa@4194@ (2.2)

Where W ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaacq GHxiIkaaGccaWGxbWaaWbaaSqabeaaqaaaaaaaaaWdbiaadggacaWG Ibaaaaaa@3C13@  denotes the Hodge dual of W ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaaaa GccaWGxbWaaWbaaSqabeaaqaaaaaaaaaWdbiaadggacaWGIbaaaaaa @3B24@  and is defined by W ab = 1 2 η a bcd W c d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaacq GHxiIkaaGccaWGxbWaaWbaaSqabeaaqaaaaaaaaaWdbiaadggacaWG IbaaaOWdaiabg2da98qadaWcaaqaaiaaigdaaeaacaaIYaaaaiabeE 7aO9aadaahaaWcbeqaa8qacaWGHbaaaOWaaWbaaSqabeaacaWGIbGa am4yaiaadsgaaaGccaWGxbWdamaaBaaaleaapeGaam4yaaWdaeqaaO WdbmaaBaaaleaacaWGKbaabeaaaaa@47ED@ . Here η a bcd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH3oaApaWaaWbaaSqabeaapeGaamyyaaaakmaaCaaaleqabaGaamOy aiaadogacaWGKbaaaaaa@3DE3@  is the Levi-Civita skew symmetric tensor. The magnetic part V a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A23@  is expressible as:10

V a =2( μ ω a +αq ω ^ a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpcaaIYaWaaeWa a8aabaWaaWraaSqabeaacqGHxiIkaaGccqaH8oqBpeGaeqyYdC3dam aaCaaaleqabaWdbiaadggaaaGccqGHRaWkcqaHXoqycaWGXbWdaiqb eM8a3zaajaWdbmaaCaaaleqabaGaamyyaaaaaOGaayjkaiaawMcaaa aa@4A0D@ <(2.3)

where ω a = 1 2 η abcd u b u c;d = 1 2 η abcd u b ω cd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHjpWDpaWaaWbaaSqabeaapeGaamyyaaaakiabg2da9maalaaapaqa a8qacaaIXaaapaqaa8qacaaIYaaaaiabeE7aO9aadaahaaWcbeqaa8 qacaWGHbGaamOyaiaadogacaWGKbaaaOGaamyDa8aadaWgaaWcbaWd biaadkgaa8aabeaak8qacaWG1bWdamaaBaaaleaapeGaam4yaiaacU dacaWGKbaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aa baWdbiaaikdaaaGaeq4TdG2damaaCaaaleqabaWdbiaadggacaWGIb Gaam4yaiaadsgaaaGccaWG1bWdamaaBaaaleaapeGaamOyaaWdaeqa aOWdbiabeM8a39aadaWgaaWcbaWdbiaadogacaWGKbaapaqabaaaaa@5895@  is the matter part of fluid’s vorticity tensor.24 ω cd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHjpWDpaWaaSbaaSqaa8qacaWGJbGaamizaaWdaeqaaaaa@3C0E@  is the rotation tensor associated with the timelike congruence of matter part of fluid’s flow lines. The space like twist of heat flow lines is denoted by ω ^ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyYdCNbaKaaqa aaaaaaaaWdbmaaCaaaleqabaGaamyyaaaaaaa@3B06@  and can be defined by invoking Greenberg’s theory25 of spacelike congruence as ω ^ a = 1 2 η abcd m b ω ^ cd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyYdCNbaKaaqa aaaaaaaaWdbmaaCaaaleqabaGaamyyaaaakiabg2da9maalaaapaqa a8qacaaIXaaapaqaa8qacaaIYaaaaiabeE7aO9aadaahaaWcbeqaa8 qacaWGHbGaamOyaiaadogacaWGKbaaaOGaamyBa8aadaWgaaWcbaWd biaadkgaa8aabeaakiqbeM8a3zaajaWaaSbaaSqaaiaadogacaWGKb aabeaaaaa@4992@ , where m a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGTbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A3A@  is the unit spacelike vector field directed along the heat flow vector q a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGXbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A3E@ and obeys the normalization condition m a m a =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGTbWdamaaCaaaleqabaWdbiaadggaaaGccaWGTbWdamaaBaaaleaa peGaamyyaaWdaeqaaOWdbiabg2da9iaaigdaaaa@3E51@ . The rotation tensor associated with the spacelike congruence of heat flow lines is represented by ω ^ ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyYdCNbaKaada WgaaWcbaaeaaaaaaaaa8qacaWGHbGaamOyaaWdaeqaaaaa@3BFB@  and is defined by ω ^ ab = p a c p b d m [ c;d ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyYdCNbaKaada WgaaWcbaaeaaaaaaaaa8qacaWGHbWdaiaadkgaaeqaaOWdbiabg2da 9iaadchapaWaa0baaSqaa8qacaWGHbaapaqaa8qacaWGJbaaaOGaam iCa8aadaqhaaWcbaWdbiaadkgaa8aabaWdbiaadsgaaaGccaWGTbWd amaaBaaaleaapeWaamWaa8aabaWdbiaadogacaGG7aGaamizaaGaay 5waiaaw2faaaWdaeqaaaaa@497A@ , where p b a = δ b a + u a u b m a m b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGWbWdamaaDaaaleaapeGaamOyaaWdaeaapeGaamyyaaaakiabg2da 9iabes7aK9aadaqhaaWcbaWdbiaadkgaa8aabaWdbiaadggaaaGccq GHRaWkcaWG1bWdamaaCaaaleqabaWdbiaadggaaaGccaWG1bWdamaa BaaaleaapeGaamOyaaWdaeqaaOWdbiabgkHiTiaad2gapaWaaWbaaS qabeaapeGaamyyaaaakiaad2gapaWaaSbaaSqaa8qacaWGIbaapaqa baaaaa@4AF5@  is the projection tensor orthogonal to both u a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A42@  and m a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGTbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A3A@ . The construction of the magnetic part V a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A23@  is subjected to the following condition

m a =( lnαq ) ,a   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaacaWGTb aaleqabaGaeSigI8gaaOWaaSbaaSqaaabaaaaaaaaapeGaamyyaaWd aeqaaOWdbiabg2da9maabmaapaqaaiGacYgacaGGUbGaeqySdeMaam yCaaWdbiaawIcacaGLPaaapaWaa0raaSqaa8qacaGGSaGaamyyaaWd aeaapeGaaiiOaaaaaaa@461D@ (2.4)

where m a = m a;b m b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaacaWGTb aaleqabaGaeSigI8gaaOWaaSbaaSqaaabaaaaaaaaapeGaamyyaaWd aeqaaOWdbiabg2da9iaad2gapaWaaSbaaSqaa8qacaWGHbGaai4oai aadkgaa8aabeaak8qacaWGTbWdamaaCaaaleqabaWdbiaadkgaaaaa aa@42ED@  is the curvature vector of heat flow lines.10 The magnetic part V a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A23@  is referred to as thermal –fluid vorticity vector.10

From now on, we assume that the space-time representing the gravitational field of a heat conducting fluid is axisymmetric stationary and non-circular. This means that there is a pair of two linearly independent Killing vectors of which one is time like Killing vector ξ (t) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aa0baaS qaaiaacIcaqaaaaaaaaaWdbiaadshapaGaaiykaaqaa8qacaWGHbaa aaaa@3D5D@ generating a translational symmetry with open timelike lines as orbits and the other one is a spacelike Killing vector ξ (φ) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aa0baaS qaaiaacIcacqaHgpGAcaGGPaaabaaeaaaaaaaaa8qacaWGHbaaaaaa @3E02@  generating rotations about a symmetry axis.21 There exists a family of invariant timelike 2-surfaces , called surfaces of transitivity , generated by this pair of Killing vectors that correspond to ignorable coordinates x 0 =t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG4bWdamaaCaaaleqabaWdbiaaicdaaaGccqGH9aqpcaWG0baaaa@3C22@  and x 3 =φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG4bWdamaaCaaaleqabaWdbiaaiodaaaGccqGH9aqpcqaHgpGAaaa@3CE9@  ( i.e. ξ (t) a = δ t a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aa0baaS qaaiaacIcaqaaaaaaaaaWdbiaadshapaGaaiykaaqaa8qacaWGHbaa aOGaeyypa0JaeqiTdq2damaaDaaaleaapeGaamiDaaWdaeaapeGaam yyaaaaaaa@425C@  and ξ (φ) a = δ φ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aa0baaS qaaiaacIcacqaHgpGAcaGGPaaabaaeaaaaaaaaa8qacaWGHbaaaOWd aiabg2da98qacqaH0oazpaWaa0baaSqaa8qacqaHgpGAa8aabaWdbi aadggaaaaaaa@43E4@ ).21 The ignorable coordinates t and φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOXdOgaaa@3A41@  are called toroidal coordinates. This pair of Killing vectors constitutes the basis of tangent plane tangential to surface of transitivity. Its dual basis can be constructed as follows:22

ξ * (t) a = 1 K ( g φφ ξ (t) a + g tφ ξ (φ) a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaaca GGQaaaaOGaeqOVdG3aa0baaSqaaiaacIcaqaaaaaaaaaWdbiaadsha paGaaiykaaqaa8qacaWGHbaaaOGaeyypa0ZaaSaaaeaacaaIXaaaba Gaam4saaaacaGGOaGaeyOeI0Iaam4zamaaBaaaleaapaGaeqOXdOMa eqOXdOgapeqabaGccaaMc8+daiabe67a4naaDaaaleaacaGGOaWdbi aadshapaGaaiykaaqaa8qacaWGHbaaaOGaey4kaSIaam4za8aadaWg aaWcbaWdbiaadshapaGaeqOXdOgabeaakiabe67a4naaDaaaleaaca GGOaGaeqOXdOMaaiykaaqaa8qacaWGHbaaaOGaaiykaaaa@59D8@ (2.5a)

< ξ * (φ) a = 1 K ( g tφ ξ ( t ) a g tt ξ ( φ ) a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaaca GGQaaaaOGaeqOVdG3aa0baaSqaaiaacIcacqaHgpGAcaGGPaaabaae aaaaaaaaa8qacaWGHbaaaOGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8 aabaWdbiaadUeaaaWaaeWaa8aabaWdbiaadEgapaWaaSbaaSqaa8qa caWG0bGaeqOXdOgapaqabaGcpeGaeqOVdG3damaaDaaaleaapeWaae Waa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiaadggaaaGc cqGHsislcaWGNbWdamaaBaaaleaapeGaamiDaiaadshaa8aabeaak8 qacqaH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGL OaGaayzkaaaapaqaa8qacaWGHbaaaaGccaGLOaGaayzkaaaaaa@5810@ (2.5b)

with the properties

ξ * (t) a ξ ( t )a   =1= ξ * ( φ ) a ξ ( φ )a   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaaca GGQaaaaOGaeqOVdG3aa0baaSqaaiaacIcaqaaaaaaaaaWdbiaadsha paGaaiykaaqaa8qacaWGHbaaaOGaeqOVdG3damaaDaaaleaapeWaae Waa8aabaWdbiaadshaaiaawIcacaGLPaaacaWGHbaapaqaa8qacaGG GcaaaOGaeyypa0JaaGymaiabg2da98aadaahbaWcbeqaaiaacQcaaa GccqaH+oaEdaqhaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawIca caGLPaaaa8aabaWdbiaadggaaaGccqaH+oaEpaWaa0baaSqaa8qada qadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaGaamyyaaWdaeaapeGa aiiOaaaaaaa@56FD@ and ξ * ( t ) a ξ ( φ )a   =0 ξ * ( φ ) a ξ ( t )a   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaaca GGQaaaaOGaeqOVdG3aa0baaSqaaabaaaaaaaaapeWaaeWaa8aabaWd biaadshaaiaawIcacaGLPaaaa8aabaWdbiaadggaaaGccqaH+oaEpa Waa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaGa amyyaaWdaeaapeGaaiiOaaaak8aacqGH9aqpcaaIWaWaaWraaSqabe aacaGGQaaaaOGaeqOVdG3aa0baaSqaa8qadaqadaWdaeaapeGaeqOX dOgacaGLOaGaayzkaaaapaqaa8qacaWGHbaaaOGaeqOVdG3damaaDa aaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaWGHbaa paqaa8qacaGGGcaaaaaa@5645@ (2.5c)

where

K= g tφ 2 g tt g φφ >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGlbGaeyypa0Jaam4za8aadaqhaaWcbaWdbiaadshacqaHgpGAa8aa baWdbiaaikdaaaGccqGHsislcaWGNbWdamaaBaaaleaapeGaamiDai aadshaa8aabeaak8qacaWGNbWdamaaBaaaleaapeGaeqOXdOMaeqOX dOgapaqabaGcpeGaeyOpa4JaaGimaaaa@499A@ (2.5d)

The thermal -fluid vorticity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B19@  is constituted by matter particle canonical momentum convector given by μ a = u a +α q a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH8oqBpaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaeyypa0JaamyD a8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGHRaWkcqaHXoqyca WGXbWdamaaBaaaleaapeGaamyyaaWdaeqaaaaa@4337@ . The matter part of fluid’s 4-velocity μ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH8oqBpaWaaSbaaSqaa8qacaWGHbaapaqabaaaaa@3B0C@ can be decomposed into toroidal and poloidal components as follows:22

u a =ζ( ξ ( t ) a +Ω ξ ( φ ) a )+ w a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpcqaH2oGEdaqa daWdaeaapeGaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaads haaiaawIcacaGLPaaaa8aabaWdbiaadggaaaGccqGHRaWkcqqHPoWv cqaH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOa Gaayzkaaaapaqaa8qacaWGHbaaaaGccaGLOaGaayzkaaGaey4kaSIa am4Da8aadaahaaWcbeqaa8qacaWGHbaaaaaa@5079@ ,(2.6)

where w a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG3bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A44@  denotes meridional circulation velocity of the matter part of fluid and is orthogonal to both ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaaWdaeaapeGaamyyaaaaaaa@3DCB@  and ξ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGa ayzkaaaapaqaa8qacaWGHbaaaaaa@3E8F@ . The quantity ζ= 1+ w 2 B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH2oGEcqGH9aqpdaGcaaWdaeaapeWaaSaaa8aabaWdbiaaigdacqGH RaWkcaWG3bWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadk eaaaaaleqaaaaa@3FD3@ , where B=( g tt +2Ω g tφ + Ω 2 g φφ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGcbGaeyypa0JaeyOeI0YaaeWaa8aabaWdbiaadEgapaWaaSbaaSqa a8qacaWG0bGaamiDaaWdaeqaaOWdbiabgUcaRiaaikdacqqHPoWvca WGNbWdamaaBaaaleaapeGaamiDaiabeA8aQbWdaeqaaOWdbiabgUca RiabfM6ax9aadaahaaWcbeqaa8qacaaIYaaaaOGaam4za8aadaWgaa WcbaWdbiabeA8aQjabeA8aQbWdaeqaaaGcpeGaayjkaiaawMcaaaaa @4F68@ . Since the matter part of thermal- fluid vorticity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B19@  must respect the symmetry assumption, we have

£ ξ ( t ) W ab =0= £ ξ ( φ ) W ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGJcWdamaaBaaaleaapeGaeqOVdG3damaaBaaameaapeWaaeWaa8aa baWdbiaadshaaiaawIcacaGLPaaaa8aabeaaaSqabaGcpeGaam4va8 aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaGcpeGaeyypa0JaaGim aiabg2da9iaacokapaWaaSbaaSqaa8qacqaH+oaEpaWaaSbaaWqaa8 qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqabaaaleqa aOWdbiaadEfapaWaaSbaaSqaa8qacaWGHbGaamOyaaWdaeqaaaaa@4E6C@ . (2.7)

where £ ξ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGJcWdamaaBaaaleaapeGaeqOVdG3damaaBaaameaapeWaaeWaa8aa baWdbiaadshaaiaawIcacaGLPaaaa8aabeaaaSqabaaaaa@3E52@  and £ ξ ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGJcWdamaaBaaaleaapeGaeqOVdG3damaaBaaameaapeWaaeWaa8aa baWdbiabeA8aQbGaayjkaiaawMcaaaWdaeqaaaWcbeaaaaa@3F16@  denote , respectively , the Lie derivative with respect to ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaaWdaeaapeGaamyyaaaaaaa@3DCB@  and ξ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGa ayzkaaaapaqaa8qacaWGHbaaaaaa@3E8F@ .

Using (2.7) in the first relation of (2.1c) , we find that

W ab ξ ( t ) b = ε ¯ ,a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacqaH+oaE paWaa0baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaa WdaeaapeGaamOyaaaakiabg2da98aacuaH1oqzgaqea8qadaWgaaWc baGaaiilaiaadggaaeqaaaaa@4599@  and W ab ξ ( φ ) b = j ¯ ,a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacqaH+oaE paWaa0baaSqaa8qadaqadaWdaeaacqaHgpGAa8qacaGLOaGaayzkaa aapaqaa8qacaWGIbaaaOGaeyypa0ZdaiqadQgagaqea8qadaWgaaWc baGaaiilaiaadggaaeqaaaaa@45A5@ ,(2.8)

where μ t = μ u t +α q t = ε ¯ ,a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH8oqBpaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaeyypa0Zdamaa CeaaleqabaGaey4fIOcaaOGaeqiVd02aaSbaaSqaa8qacaWG1bWdam aaBaaameaapeGaamiDaaWdaeqaaSWdbiabgUcaRiabeg7aHjaadgha paWaaSbaaWqaa8qacaWG0baapaqabaaaleqaaOWdbiabg2da98aacu aH1oqzgaqea8qadaWgaaWcbaGaaiilaiaadggaaeqaaaaa@4B66@  and μ t = μ u φ +α q φ = j ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH8oqBpaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaeyypa0Zdamaa CeaaleqabaGaey4fIOcaaOGaeqiVd02aaSbaaSqaa8qacaWG1bWdam aaBaaameaapeGaeqOXdOgapaqabaWcpeGaey4kaSIaeqySdeMaamyC a8aadaWgaaadbaWdbiabeA8aQbWdaeqaaaWcbeaak8qacqGH9aqppa GabmOAayaaraaaaa@4A64@  denote, respectively, the effective energy and the effective angular momentum per particle corresponding to the matter part of fluid.26 From (2.8), the thermal-fluid vorticity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B19@  and its Hodge dual W ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaacq GHxiIkaaGccaWGxbaeaaaaaaaaa8qadaahaaWcbeqaaiaadggacaWG Ibaaaaaa@3C13@  are obtainable in the following form:

W ab =2 ε ¯ ,[a ξ ( t )b] 2 j ¯ , [a ξ ( φ ) b] + I ¯ K η abcd  ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacqGH9aqp caaIYaWdaiqbew7aLzaaraWdbiaaykW7paWaaSbaaSqaa8qacaGGSa Gaai4waiaadggapaWaaWraaWqabeaacqGHxiIkaaWccqaH+oaEaeqa aOWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaai aadkgacaGGDbaapaqabaGcpeGaeyOeI0IaaGOma8aaceWGQbGbaeba caaMc8+aaSbaaSqaa8qacaGGSaGaaiiOaiaacUfacaWGHbaapaqaba GcdaWgaaWcbaWaaWraaWqabeaacqGHxiIkaaWccqaH+oaEpeWaaeWa a8aabaWdbiabeA8aQbGaayjkaiaawMcaaiaacckacaWGIbGaaiyxaa WdaeqaaOWdbiabgUcaRmaalaaapaqaaiqadMeagaqeaaqaa8qacaWG lbaaaiabeE7aO9aadaWgaaWcbaWdbiaadggacaWGIbGaam4yaiaads gacaGGGcaapaqabaGcpeGaeqOVdG3damaaDaaaleaapeWaaeWaa8aa baWdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiaadogaaaGccqaH+o aEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzk aaaapaqaa8qacaWGKbaaaaaa@72B1@ (2.9)

and

W ab = η abcd ε ¯ , c ξ ( t ) d η abcd ξ c * ( φ ) d I ¯ K ( ξ ( t ) a ξ ( φ ) b ξ ( φ ) a ξ ( t ) b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaacq GHxiIkaaGccaWGxbaeaaaaaaaaa8qadaahaaWcbeqaaiaadggacaWG IbaaaOGaeyypa0Jaeq4TdG2damaaCaaaleqabaWdbiaadggacaWGIb Gaam4yaiaadsgaaaGcpaGafqyTduMbaebapeGaaiila8aadaahbaWc beqaaiabgEHiQaaakmaaBeaaleaacaWGJbaabeaakiabe67a49qada WgaaWcbaWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGGcGa amizaaqabaGccqGHsislcqaH3oaApaWaaWbaaSqabeaapeGaamyyai aadkgacaWGJbGaamizaaaak8aadaqhbaWcbaGaam4yaaqaaiaacQca aaGccqaH+oaEdaWgaaWcbaWdbiaaykW7caaMc8+aaeWaa8aabaWdbi abeA8aQbGaayjkaiaawMcaaiaacckacaWGKbaapaqabaGcpeGaeyOe I0YaaSaaa8aabaGabmysayaaraaabaWdbiaadUeaaaWaaeWaa8aaba Wdbiabe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qacaWG0baacaGL OaGaayzkaaaapaqaa8qacaWGHbaaaOGaeqOVdG3damaaDaaaleaape WaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawMcaaaWdaeaapeGaamOy aaaakiabgkHiTiabe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qacq aHgpGAaiaawIcacaGLPaaaa8aabaWdbiaadggaaaGccqaH+oaEpaWa a0baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdae aapeGaamOyaaaaaOGaayjkaiaawMcaaaaa@7F64@ ,(2.10)

where I ¯ = W ab ξ ( t ) a ξ ( φ ) b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaaraaeaa aaaaaaa8qacqGH9aqppaWaaWraaSqabeaacqGHxiIkaaGccaWGxbWa aSbaaSqaa8qacaWGHbGaamOyaaWdaeqaaOWdbiabe67a49aadaqhaa WcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaapaqaa8qa caWGHbaaaOGaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiabeA 8aQbGaayjkaiaawMcaaaWdaeaapeGaamOyaaaaaaa@4A7F@ .

Contraction of (2.9) with u b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaCaaaleqabaWdbiaadkgaaaaaaa@3A43@  with the aid of (2.3) and the first relation of (2.1d) , reduces (2.1a) to yield that

Ε a =ζ( ε ¯ ,a Ω j ¯ ,a )( ε ¯ ,b w b ) ξ ( t ) a +( j ¯ ,b w b ) ξ ( φ ) a + I ¯ K η abcd w b ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyLdu0aaSbaaS qaaabaaaaaaaaapeGaamyyaaWdaeqaaOWdbiabg2da9iabeA7a6naa bmaapaqaaiqbew7aLzaaraWaaSbaaSqaa8qacaGGSaGaamyyaaWdae qaaOWdbiabgkHiTiabfM6axjaaykW7paGabmOAayaaraWaaSbaaSqa a8qacaGGSaGaamyyaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgkHiTm aabmaapaqaaiqbew7aLzaaraWaaSbaaSqaa8qacaGGSaGaamOyaaWd aeqaaOWdbiaadEhapaWaaWbaaSqabeaapeGaamOyaaaaaOGaayjkai aawMcaa8aadaahbaWcbeqaaiabgEHiQaaakiabe67a4naaBaaaleaa peWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGGcGaamyyaa WdaeqaaOWdbiabgUcaRmaabmaapaqaaiqadQgagaqeamaaBaaaleaa peGaaiilaiaadkgaa8aabeaak8qacaWG3bWdamaaCaaaleqabaWdbi aadkgaaaaakiaawIcacaGLPaaapaWaaWraaSqabeaacqGHxiIkaaGc cqaH+oaEdaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawIcaca GLPaaacaGGGcGaamyyaaWdaeqaaOWdbiabgUcaRmaalaaapaqaaiqa dMeagaqeaaqaa8qacaWGlbaaaiabeE7aO9aadaWgaaWcbaWdbiaadg gacaWGIbGaam4yaiaadsgaa8aabeaak8qacaWG3bWdamaaCaaaleqa baWdbiaadkgaaaGccqaH+oaEpaWaa0baaSqaa8qadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaaWdaeaapeGaam4yaaaakiabe67a49aa daqhaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaaa8 aabaWdbiaadsgaaaaaaa@81E5@ (2.11)

Setting C= 1 n ( β q 2 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGPaVdbaaaaaaa aapeGaam4qaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWG Ubaaamaabmaapaqaa8qacqGHsisldaWcaaWdaeaapeGaeqOSdiMaam yCa8aadaahaaWcbeqaaKqzadWdbiaaikdaaaaak8aabaWaaWbaaSqa beaapeGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@4618@  in the first relation of (2.1d), we obtain from (2.11) that

q a = 1 RC ζ ( ε ¯ ,a Ω j ¯ ,a )( ε ¯ ,b w b ) ξ ( t ) a +( j ¯ ,b w b ) ξ ( φ )a + I ¯ K η abcd w b ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGXbWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qacaaIXaaapaqaa8qacaWGsbGaam4qaaaacqaH2oGEdaGbda qaamaabmaapaqaaiqbew7aLzaaraWaaSbaaSqaa8qacaGGSaGaamyy aaWdaeqaaOWdbiabgkHiTiabfM6ax9aaceWGQbGbaebadaWgaaWcba WdbiaacYcacaWGHbaapaqabaaak8qacaGLOaGaayzkaaGaeyOeI0Ya aeWaa8aabaGafqyTduMbaebadaWgaaWcbaWdbiaacYcacaWGIbaapa qabaGcpeGaam4Da8aadaahaaWcbeqaa8qacaWGIbaaaaGccaGLOaGa ayzkaaWdamaaCeaaleqabaGaey4fIOcaaOGaeqOVdG3aaSbaaSqaa8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacckacaWGHbaa paqabaGcpeGaey4kaSYaaeWaa8aabaGabmOAayaaraWaaSbaaSqaa8 qacaGGSaGaamOyaaWdaeqaaOWdbiaadEhapaWaaWbaaSqabeaapeGa amOyaaaaaOGaayjkaiaawMcaa8aadaahbaWcbeqaaiabgEHiQaaaki abe67a4naaBaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjkaiaa wMcaaiaadggaa8aabeaak8qacqGHRaWkdaWcaaWdaeaaceWGjbGbae baaeaapeGaam4saaaacqaH3oaApaWaaSbaaSqaa8qacaWGHbGaamOy aiaadogacaWGKbaapaqabaGcpeGaam4Da8aadaahaaWcbeqaa8qaca WGIbaaaOGaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaadsha aiaawIcacaGLPaaaa8aabaWdbiaadogaaaGccqaH+oaEpaWaa0baaS qaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqaa8qa caWGKbaaaaGccaGLWJVaay5+4daaaa@86AD@ ,(2.12)

which determines the heat flow vector field in terms of the gradients of effective energy per particle and effective angular momentum per particle and the meridional circulation velocity of the matter part of fluid. Making use of (2.5a) and (2.5b) in (2.12), one may obtain

q a = 1 RC ζ( ε ¯ ,a Ω j ¯ ,a )+ A 1 K ξ ( t )a A 2 K ξ ( φ )a + I ¯ K η abcd w b ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGXbWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qacaaIXaaapaqaa8qacaWGsbGaam4qaaaadaGbdaqaaiabeA 7a6naabmaapaqaaiqbew7aLzaaraWaaSbaaSqaa8qacaGGSaGaamyy aaWdaeqaaOWdbiabgkHiTiabfM6ax9aaceWGQbGbaebadaWgaaWcba WdbiaacYcacaWGHbaapaqabaaak8qacaGLOaGaayzkaaGaey4kaSYa aSaaa8aabaWdbiaadgeapaWaaSbaaSqaa8qacaaIXaaapaqabaaake aapeGaam4saaaacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaiaadggaa8aabeaak8qacqGHsisldaWcaa WdaeaapeGaamyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOqaa8qa caWGlbaaaiabe67a49aadaWgaaWcbaWdbmaabmaapaqaa8qacqaHgp GAaiaawIcacaGLPaaacaWGHbaapaqabaGcpeGaey4kaSYaaSaaa8aa baGabmysayaaraaabaWdbiaadUeaaaGaeq4TdG2damaaBaaaleaape GaamyyaiaadkgacaWGJbGaamizaaWdaeqaaOWdbiaadEhapaWaaWba aSqabeaapeGaamOyaaaakiabe67a49aadaqhaaWcbaWdbmaabmaapa qaa8qacaWG0baacaGLOaGaayzkaaaapaqaa8qacaWGJbaaaOGaeqOV dG3damaaDaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawM caaaWdaeaapeGaamizaaaaaOGaayj84laawUp+aaaa@7AC4@ , (2.13)

where

A 1 =( ε ¯ ,a w a ) g φφ +( j ¯ ,a w a ) g tφ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGbbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9maabmaa paqaaiqbew7aLzaaraWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaO WdbiaadEhapaWaaWbaaSqabeaapeGaamyyaaaaaOGaayjkaiaawMca aiaadEgapaWaaSbaaSqaa8qacqaHgpGAcqaHgpGAa8aabeaak8qacq GHRaWkdaqadaWdaeaaceWGQbGbaebadaWgaaWcbaWdbiaacYcacaWG HbaapaqabaGcpeGaam4Da8aadaahaaWcbeqaa8qacaWGHbaaaaGcca GLOaGaayzkaaGaam4za8aadaWgaaWcbaWdbiaadshacqaHgpGAa8aa beaaaaa@5325@  and A 2 =( ε ¯ ,a w a ) g tφ +( j ¯ ,a w a ) g tt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGbbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9maabmaa paqaaiqbew7aLzaaraWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaO WdbiaadEhapaWaaWbaaSqabeaapeGaamyyaaaaaOGaayjkaiaawMca aiaadEgapaWaaSbaaSqaa8qacaWG0bGaeqOXdOgapaqabaGcpeGaey 4kaSYaaeWaa8aabaGabmOAayaaraWaaSbaaSqaa8qacaGGSaGaamyy aaWdaeqaaOWdbiaadEhapaWaaWbaaSqabeaapeGaamyyaaaaaOGaay jkaiaawMcaaiaadEgapaWaaSbaaSqaa8qacaWG0bGaamiDaaWdaeqa aaaa@519E@ .  (2.14)
An explicit expression for thermal-fluid vorticity vector is obtainable as follows. Contracting (2.10) with u a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaBaaaleaapeGaamyyaaWdaeqaaaaa@3A50@ and making use of (2.6) and (2.5a,b) in the resulting expression, we find that

V a = 1 K [ I ¯ u φ ξ ( t ) a + u t ξ ( φ ) a η abcd w b ( Q c ξ ( t )d Q ¯ c ξ ( φ )d ) u t η abcd R b ξ ( t ) c ξ ( φ ) d ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpdaWcaaWdaeaa peGaaGymaaWdaeaapeGaam4saaaadaWadaWdaeaapeGaeyOeI0Ydai qadMeagaqea8qacaWG1bWdamaaBaaaleaapeGaeqOXdOgapaqabaGc peGaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaaa8aabaWdbiaadggaaaGccqGHRaWkcaWG1bWdamaaBaaa leaapeGaamiDaaWdaeqaaOWdbiabe67a49aadaqhaaWcbaWdbmaabm aapaqaa8qacqaHgpGAaiaawIcacaGLPaaaa8aabaWdbiaadggaaaGc cqGHsislcqaH3oaApaWaaWbaaSqabeaapeGaamyyaiaadkgacaWGJb GaamizaaaakiaadEhapaWaaSbaaSqaa8qacaWGIbaapaqabaGcpeWa aeWaa8aabaWdbiaadgfapaWaaSbaaSqaa8qacaWGJbaapaqabaGcpe GaeqOVdG3damaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIca caGLPaaacaWGKbaapaqabaGcpeGaeyOeI0YdaiqadgfagaqeamaaBa aaleaapeGaam4yaaWdaeqaaOWdbiabe67a49aadaWgaaWcbaWdbmaa bmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaacaWGKbaapaqabaaak8 qacaGLOaGaayzkaaGaeyOeI0IaamyDa8aadaWgaaWcbaWdbiaadsha a8aabeaak8qacqaH3oaApaWaaWbaaSqabeaapeGaamyyaiaadkgaca WGJbGaamizaaaakiaadkfapaWaaSbaaSqaa8qacaWGIbaapaqabaGc peGaeqOVdG3damaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaacaGGGcGaam4yaaWdaeqaaOWdbiabe67a49aadaWgaaWc baWdbmaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaacaGGGcGaam izaaWdaeqaaaGcpeGaay5waiaaw2faaaaa@89B3@ ,(2.15)

where

Q c = g φφ ε ¯ ,c + g tφ j ¯ ,c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGrbWdamaaBaaaleaapeGaam4yaaWdaeqaaOWdbiabg2da9iaadEga paWaaSbaaSqaa8qacqaHgpGAcqaHgpGAa8aabeaakiqbew7aLzaara WaaSbaaSqaa8qacaGGSaGaam4yaaWdaeqaaOWdbiabgUcaRiaadEga paWaaSbaaSqaa8qacaWG0bGaeqOXdOgapaqabaGcceWGQbGbaebada WgaaWcbaWdbiaacYcacaWGJbaapaqabaaaaa@4BA6@ , Q ¯ c = g tφ ε ¯ ,c + g tt j ¯ ,c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyuayaaraWaaS baaSqaaabaaaaaaaaapeGaam4yaaWdaeqaaOWdbiabg2da9iaadEga paWaaSbaaSqaa8qacaWG0bGaeqOXdOgapaqabaGccuaH1oqzgaqeam aaBaaaleaapeGaaiilaiaadogaa8aabeaak8qacqGHRaWkcaWGNbWd amaaBaaaleaapeGaamiDaiaadshaa8aabeaakiqadQgagaqeamaaBa aaleaapeGaaiilaiaadogaa8aabeaaaaa@4A17@  and R b = u t ζ ( j ¯ ,b l ε ¯ ,b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGsbWdamaaBaaaleaapeGaamOyaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qacaWG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaaGcbaWdbi abeA7a6baadaqadaWdaeaaceWGQbGbaebadaWgaaWcbaWdbiaacYca caWGIbaapaqabaGcpeGaeyOeI0IaamiBa8aacuaH1oqzgaqeamaaBa aaleaapeGaaiilaiaadkgaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@49E4@ , (2.16a)

l= u φ u t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGSbGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaadwhapaWaaSbaaSqa a8qacqaHgpGAa8aabeaaaOqaa8qacaWG1bWdamaaBaaaleaapeGaam iDaaWdaeqaaaaaaaa@40A1@ , u t =ζ( g tt +Ω g tφ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabg2da9iabeA7a 6naabmaapaqaa8qacaWGNbWdamaaBaaaleaapeGaamiDaiaadshaa8 aabeaak8qacqGHRaWkcqqHPoWvcaWGNbWdamaaBaaaleaapeGaamiD aiabeA8aQbWdaeqaaaGcpeGaayjkaiaawMcaaaaa@48C0@ , and u φ =ζ( g tφ +Ω g φφ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaBaaaleaapeGaeqOXdOgapaqabaGcpeGaeyypa0JaeqOT dO3aaeWaa8aabaWdbiaadEgapaWaaSbaaSqaa8qacaWG0bGaeqOXdO gapaqabaGcpeGaey4kaSIaeuyQdCLaam4za8aadaWgaaWcbaWdbiab eA8aQjabeA8aQbWdaeqaaaGcpeGaayjkaiaawMcaaaaa@4B0C@ . (2.16b)

In order to determine the matter part of fluid’s 4-velocity u a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A42@ , we use (2.1b) which describes the evolution of the entropy fluid. Setting s a =s u s a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGZbWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpcaWGZbGaamyD a8aadaqhaaWcbaWdbiaadohaa8aabaWdbiaadggaaaaaaa@3F8B@ , where u s a =γ( u a + v s a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaDaaaleaapeGaam4CaaWdaeaapeGaamyyaaaakiabg2da 9iabeo7aNnaabmaapaqaa8qacaWG1bWdamaaCaaaleqabaWdbiaadg gaaaGccqGHRaWkcaWG2bWdamaaDaaaleaapeGaam4CaaWdaeaapeGa amyyaaaaaOGaayjkaiaawMcaaaaa@461E@  which satisfies u a v s a =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadAhapaWaa0ba aSqaa8qacaWGZbaapaqaa8qacaWGHbaaaOGaeyypa0JaaGimaaaa@3F78@ . The red shift factor is γ=( 1 v s 2 )     1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHZoWzcqGH9aqpdaqadaWdaeaapeGaaGymaiabgkHiTiaadAhapaWa a0baaSqaa8qacaWGZbaapaqaa8qacaaIYaaaaaGccaGLOaGaayzkaa WdamaaDeaaleaapeGaaiiOaaWdaeaapeGaeyOeI0YaaSaaa8aabaWd biaaigdaa8aabaWdbiaaikdaaaaaaOGaaiiOaaaa@46A7@  and s  =γs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaacq GHxiIkaaGccaWGZbaeaaaaaaaaa8qacaGGGcGaeyypa0Jaeq4SdCMa am4Caaaa@3EFE@ . With this substitution, we transform (2.1b) in the following form

Z ab u s b = a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacaWG1bWd amaaDaaaleaapeGaam4CaaWdaeaapeGaamOyaaaakiabg2da9iabgk HiT8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@41B7@ , (2.17)

where

Ε ˜ a =γR( q a q 2 S θ u a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyLduKbaGaada WgaaWcbaaeaaaaaaaaa8qacaWGHbaapaqabaGcpeGaeyypa0Jaeq4S dCMaamOuamaabmaapaqaa8qacaWGXbWdamaaBaaaleaapeGaamyyaa WdaeqaaOWdbiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaCaaaleqa baWdbiaaikdaaaaak8aabaWaaWraaSqabeaacqGHxiIkaaGccaWGtb WaaWraaSqabeaacqGHxiIkaaGccqaH4oqCaaWdbiaadwhapaWaaSba aSqaa8qacaWGHbaapaqabaaak8qacaGLOaGaayzkaaaaaa@4CB7@ . (2.18)

We now decompose thermal vorticity 2-form Z ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B1C@  by invoking the space-time symmetry assumption. Because of symmetry assumption thermal vorticity 2-form Z ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B1C@  obeys the following conditions

£ ξ   ( t )   Z ab =0= £ ξ ( φ ) Z ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGJcWdamaaBaaaleaapeGaeqOVdG3damaaDeaameaapeWaaeWaa8aa baWdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiaacckaaaWccaGGGc aapaqabaGcpeGaamOwa8aadaWgaaWcbaWdbiaadggacaWGIbaapaqa baGcpeGaeyypa0JaaGimaiabg2da9iaacokapaWaaSbaaSqaa8qacq aH+oaEpaWaaSbaaWqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGa ayzkaaaapaqabaaaleqaaOWdbiaadQfapaWaaSbaaSqaa8qacaWGHb GaamOyaaWdaeqaaaaa@50DB@ ,(2.19)

Since Z ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B1C@  is a curl, we obtain from (2.19) that

Z ab ξ ( t ) b = ε ,a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacqaH+oaE paWaa0baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaa WdaeaapeGaamOyaaaakiabg2da98aacqaH1oqzdaWgaaWcbaWdbiaa cYcacaWGHbaapaqabaaaaa@4593@  and Z ab ξ ( φ ) b = j ,a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacqaH+oaE paWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaa aapaqaa8qacaWGIbaaaOGaeyypa0JaeyOeI0IaamOAa8aadaWgaaWc baWdbiaacYcacaWGHbaapaqabaaaaa@468C@ (2.20)

where

ϑ t = θ u t +β q t =ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHrpGspaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaeyypa0Zdamaa CeaaleqabaGaey4fIOcaaOGaeqiUde3dbiaadwhapaWaaSbaaSqaa8 qacaWG0baapaqabaGcpeGaey4kaSIaeqOSdiMaamyCa8aadaWgaaWc baWdbiaadshaa8aabeaak8qacqGH9aqpcqGHsislpaGaeqyTdugaaa@4A23@  and ϑ φ = θ u φ +β q φ =j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aHrpGspaWaaSbaaSqaa8qacqaHgpGAa8aabeaak8qacqGH9aqppaWa aWraaSqabeaacqGHxiIkaaGccqaH4oqCpeGaamyDa8aadaWgaaWcba WdbiabeA8aQbWdaeqaaOWdbiabgUcaRiabek7aIjaadghapaWaaSba aSqaa8qacqaHgpGAa8aabeaak8qacqGH9aqpcaWGQbaaaa@4ABB@ . (2.21)

Here ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@399D@  and j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGQbaaaa@3905@ denote, respectively, effective thermal energy and effective thermal angular momentum per particle like entropon (as is named by Carter26) in the sense of Carter.26 Using (2.20) we can express thermal vorticity 2- form as follows:

Z ab =2 ε , [a ξ ( t )b] 2 j , [a ξ ( φ )b ] + I K η abcd ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacqGH9aqp caaIYaWdaiabew7aLnaaBaaaleaapeGaaiilaiaacckacaGGBbGaam yyaaWdaeqaaOWaaWraaSqabeaacqGHxiIkaaGccqaH+oaEdaWgaaWc baWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaamOyaiaac2 faa8aabeaak8qacqGHsislcaaIYaGaamOAa8aadaWgaaWcbaWdbiaa cYcacaGGGcGaai4waiaadggaa8aabeaakmaaCeaaleqabaGaey4fIO caaOGaeqOVdG3aaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGL OaGaayzkaaGaamOyaiaacckacaGGDbaapaqabaGcpeGaey4kaSYaaS aaa8aabaWdbiaadMeaa8aabaWdbiaadUeaaaGaeq4TdG2damaaBaaa leaapeGaamyyaiaadkgacaWGJbGaamizaaWdaeqaaOWdbiabe67a49 aadaqhaaWcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaa paqaa8qacaWGJbaaaOGaeqOVdG3damaaDaaaleaapeWaaeWaa8aaba WdbiabeA8aQbGaayjkaiaawMcaaaWdaeaapeGaamizaaaaaaa@6F52@ , (2.22)

where I= Z ab ξ ( t ) a ξ ( φ ) b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGjbGaeyypa0ZdamaaCeaaleqabaGaey4fIOcaaOGaamOwamaaBaaa leaapeGaamyyaiaadkgaa8aabeaak8qacqaH+oaEpaWaa0baaSqaa8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaamyy aaaakiabe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qacqaHgpGAai aawIcacaGLPaaaa8aabaWdbiaadkgaaaaaaa@4A6A@ . The entropy fluid’s 4-velocity u s a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaDaaaleaapeGaam4CaaWdaeaapeGaamyyaaaaaaa@3B59@ can be decomposed into toroidal and poloidal components given by

u s a =λ( ξ ( t ) a + Ω s ξ ( φ ) a )+ v a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaDaaaleaapeGaam4CaaWdaeaapeGaamyyaaaakiabg2da 9iabeU7aSnaabmaapaqaa8qacqaH+oaEpaWaa0baaSqaa8qadaqada WdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaamyyaaaakiab gUcaRiabfM6ax9aadaWgaaWcbaWdbiaadohaa8aabeaak8qacqaH+o aEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzk aaaapaqaa8qacaWGHbaaaaGccaGLOaGaayzkaaGaey4kaSIaamODa8 aadaahaaWcbeqaa8qacaWGHbaaaaaa@52F2@ . (2.23)

where v a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG2bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A43@  represents the meridional velocity of motion of the entropy fluid and λ= 1+ v 2 A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH7oaBcqGH9aqpdaGcaaWdaeaapeWaaSaaa8aabaWdbiaaigdacqGH RaWkcaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadg eaaaaaleqaaaaa@3FC8@ , and A=( g tt +2 Ω s g tφ + Ω s 2 g φφ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGbbGaeyypa0JaeyOeI0YaaeWaa8aabaWdbiaadEgapaWaaSbaaSqa a8qacaWG0bGaamiDaaWdaeqaaOWdbiabgUcaRiaaikdacqqHPoWvpa WaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaam4za8aadaWgaaWcbaWd biaadshacqaHgpGAa8aabeaak8qacqGHRaWkcqqHPoWvpaWaa0baaS qaa8qacaWGZbaapaqaa8qacaaIYaaaaOGaam4za8aadaWgaaWcbaWd biabeA8aQjabeA8aQbWdaeqaaaGcpeGaayjkaiaawMcaaaaa@51EA@ .

Contracting (2.22) with u s b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaDaaaleaapeGaam4CaaWdaeaapeGaamOyaaaaaaa@3B5A@  with the aid of (2.23), we find that

Ε ˜ a =λ( ε ,a Ω s j ,a )( ε ,b v b ) ξ ( t  )a +( j ,b v b ) ξ ( φ )a + I K η abcd v b ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq GHsislpaGafuyLduKbaGaadaWgaaWcbaWdbiaadggaa8aabeaak8qa cqGH9aqpcqaH7oaBdaqadaWdaeaacqaH1oqzdaWgaaWcbaWdbiaacY cacaWGHbaapaqabaGcpeGaeyOeI0IaeuyQdC1damaaBaaaleaapeGa am4CaaWdaeqaaOWdbiaadQgapaWaaSbaaSqaa8qacaGGSaGaamyyaa WdaeqaaaGcpeGaayjkaiaawMcaaiabgkHiTmaabmaapaqaaiabew7a LnaaBaaaleaapeGaaiilaiaadkgaa8aabeaak8qacaWG2bWdamaaCa aaleqabaWdbiaadkgaaaaakiaawIcacaGLPaaapaWaaWraaSqabeaa cqGHxiIkaaGccqaH+oaEdaWgaaWcbaWdbmaabmaapaqaa8qacaWG0b GaaiiOaaGaayjkaiaawMcaaiaadggaa8aabeaak8qacqGHRaWkdaqa daWdaeaapeGaamOAa8aadaWgaaWcbaWdbiaacYcacaWGIbaapaqaba GcpeGaamODa8aadaahaaWcbeqaa8qacaWGIbaaaaGccaGLOaGaayzk aaWdamaaCeaaleqabaGaey4fIOcaaOGaeqOVdG3aaSbaaSqaa8qada qadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaGaamyyaaWdaeqaaOWd biabgUcaRmaalaaapaqaa8qacaWGjbaapaqaa8qacaWGlbaaaiabeE 7aO9aadaWgaaWcbaWdbiaadggacaWGIbGaam4yaiaadsgaa8aabeaa k8qacaWG2bWdamaaCaaaleqabaWdbiaadkgaaaGccqaH+oaEpaWaa0 baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaa peGaam4yaaaakiabe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qacq aHgpGAaiaawIcacaGLPaaaa8aabaWdbiaadsgaaaaaaa@8177@ . (2.24)

It follows from (2.12) , (2.18) and (2.24) that

u a = S * θ * R q 2 [ ( ζ C )( ε ¯ ,a Ω j ¯ ,a )+( λ γ )( ε ,a Ω s j ,a ) B 1 ξ ( t )a + B 2 ξ ( φ )a + 1 K η abcd ( I ¯ C w b + I γ v b ) ξ ( t ) c ξ ( φ ) d ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qadaahbaWcbeqaaiaacQcaaaGccaWGtbWaaWraaSqabeaaca GGQaaaaOGaeqiUdehapaqaa8qacaWGsbGaamyCa8aadaahaaWcbeqa a8qacaaIYaaaaaaakmaadmaapaqaa8qadaqadaWdaeaapeWaaSaaa8 aabaWdbiabeA7a6bWdaeaapeGaam4qaaaaaiaawIcacaGLPaaadaqa daWdaeaacuaH1oqzgaqeamaaBaaaleaapeGaaiilaiaadggaa8aabe aak8qacqGHsislcqqHPoWvpaGabmOAayaaraWaaSbaaSqaa8qacaGG SaGaamyyaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRmaabmaapa qaa8qadaWcaaWdaeaapeGaeq4UdWgapaqaa8qacqaHZoWzaaaacaGL OaGaayzkaaWaaeWaa8aabaGaeqyTdu2aaSbaaSqaa8qacaGGSaGaam yyaaWdaeqaaOWdbiabgkHiTiabfM6ax9aadaWgaaWcbaWdbiaadoha a8aabeaak8qacaWGQbWdamaaBaaaleaapeGaaiilaiaadggaa8aabe aaaOWdbiaawIcacaGLPaaacqGHsislcaWGcbWdamaaBaaaleaapeGa aGymaaWdaeqaaOWaaWraaSqabeaacqGHxiIkaaGccqaH+oaEdaWgaa WcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaamyyaaWd aeqaaOWdbiabgUcaRiaadkeapaWaaSbaaSqaa8qacaaIYaaapaqaba GcdaahbaWcbeqaaiabgEHiQaaakiabe67a4naaBaaaleaapeWaaeWa a8aabaWdbiabeA8aQbGaayjkaiaawMcaaiaadggaa8aabeaak8qacq GHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4saaaacqaH3oaA paWaaSbaaSqaa8qacaWGHbGaamOyaiaadogacaWGKbaapaqabaGcpe WaaeWaa8aabaWdbmaalaaapaqaaiqadMeagaqeaaqaa8qacaWGdbaa aiaadEhapaWaaWbaaSqabeaapeGaamOyaaaakiabgUcaRmaalaaapa qaa8qacaWGjbaapaqaa8qacqaHZoWzaaGaamODa8aadaahaaWcbeqa a8qacaWGIbaaaaGccaGLOaGaayzkaaGaeqOVdG3damaaDaaaleaape WaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiaadoga aaGccqaH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgaca GLOaGaayzkaaaapaqaa8qacaWGKbaaaaGccaGLBbGaayzxaaaaaa@9B16@ (2.25)

where

B 1 = 1 C ( ε ¯ ,b w b )+ 1 γ ( ε ,b v b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGcbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qacaaIXaaapaqaa8qacaWGdbaaamaabmaapaqaaiqbew7aLz aaraWaaSbaaSqaa8qacaGGSaGaamOyaaWdaeqaaOWdbiaadEhapaWa aWbaaSqabeaapeGaamOyaaaaaOGaayjkaiaawMcaaiabgUcaRmaala aapaqaa8qacaaIXaaapaqaa8qacqaHZoWzaaWaaeWaa8aabaGaeqyT du2aaSbaaSqaa8qacaGGSaGaamOyaaWdaeqaaOWdbiaadAhapaWaaW baaSqabeaapeGaamOyaaaaaOGaayjkaiaawMcaaaaa@4F75@ and B 2 = 1 C ( j ¯ ,b w b )+ 1 γ ( j ,b v b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGcbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qacaaIXaaapaqaa8qacaWGdbaaamaabmaapaqaaiqadQgaga qeamaaBaaaleaapeGaaiilaiaadkgaa8aabeaak8qacaWG3bWdamaa CaaaleqabaWdbiaadkgaaaaakiaawIcacaGLPaaacqGHRaWkdaWcaa WdaeaapeGaaGymaaWdaeaapeGaeq4SdCgaamaabmaapaqaa8qacaWG QbWdamaaBaaaleaapeGaaiilaiaadkgaa8aabeaak8qacaWG2bWdam aaCaaaleqabaWdbiaadkgaaaaakiaawIcacaGLPaaaaaa@4E25@ . (2.26)

It is evident from (2.25) that the matter part of fluid’s 4-velocity depends on gradients of effective energy and effective angular momentum per particle corresponding to both the matter part of fluid and the entropy fluid and is coupled to the meridional circulations of both fluids. Eq. (2.25) underlines the significance of dynamic interaction of the motion of both fluids. Contracting (2.25) with ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaaWdaeaapeGaamyyaaaaaaa@3DCC@  and ξ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGa ayzkaaaapaqaa8qacaWGHbaaaaaa@3E90@ , in turn, we find that

u t = B 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabg2da9iabgkHi TiaadkeapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@3E4D@  and u φ = B 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaBaaaleaapeGaeqOXdOgapaqabaGcpeGaeyypa0JaamOq a8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@3E25@ , (2.27)

which, in view of (2.26) , says that covariant toroidal components of matter part of fluid’s 4-velocity survive even if its meridional circulation vanishes because of non-vanishing meridional circulation of the entropy fluid . But it can be seen from (2.13) and (2.14) that q t =0= q φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGXbWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabg2da9iaaicda cqGH9aqpcaWGXbWdamaaBaaaleaapeGaeqOXdOgapaqabaaaaa@404D@  if the meridional circulation velocity of the matter part of fluid is zero. This result when used in the relation below (2.8) and (2.21) we see that the contributions due to toroidal components of heat flow vector couple with the entropy entrainment to the effective energy per particle and the effective angular momentum per particle of both fluids are excluded. This in turn implies that the zero meridional circulation of the matter part of fluid is contrary to the basic fact that EOS of a heat conducting fluid is a function of three thermodynamic state variables, namely that, the baryon number density, entropy density, and the entropy entrainment factor. Thus we arrive at the conclusion that the existence of matter part of fluid’s meridional circulation is mandatory in a Carter’s model16,17 of a heat conducting fluid. However, the zero meridional circulation of the entropy fluid does not lead to such contradiction. With these remarks, we proceed to investigate the rotational motion of the matter part of fluid.

Rotational motion of matter part of fluid

This section is concerned with the description of rotational velocity of the matter part of fluid because the rotational velocity represented by Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq qHPoWvaaa@39A5@  in a circular space-time will be modified due to the contribution of the presence of meridional circulations in a non-circular space-time. The rotational velocity in a non-circular axisymmetric stationary space-time with the aid of decomposition of matter part of fluid’s 4-velocity given by (2.6) is obtainable as

Ω ¯ = u φ u t = ζΩ+ w φ ζ+ w t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaebaqa aaaaaaaaWdbiabg2da9maalaaapaqaa8qacaWG1bWdamaaCaaaleqa baWdbiabeA8aQbaaaOWdaeaapeGaamyDa8aadaahaaWcbeqaa8qaca WG0baaaaaakiabg2da9maalaaapaqaa8qacqaH2oGEcqqHPoWvcqGH RaWkcaWG3bWdamaaCaaaleqabaWdbiabeA8aQbaaaOWdaeaapeGaeq OTdONaey4kaSIaam4Da8aadaahaaWcbeqaa8qacaWG0baaaaaaaaa@4DD7@ , (3.1)

which can be linearized in the following form

Ω ¯ Ω+ Ω ¯ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaebaqa aaaaaaaaWdbiabgIKi7kabfM6axjabgUcaR8aacuqHPoWvgaqegaqe aaaa@3FAA@ , (3.2)

where

Ω ¯ ¯ = 1 ζ ( w φ Ω w t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaeHbae baqaaaaaaaaaWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qa cqaH2oGEaaWaaeWaa8aabaWdbiaadEhapaWaaWbaaSqabeaapeGaeq OXdOgaaOGaeyOeI0IaeuyQdCLaam4Da8aadaahaaWcbeqaa8qacaWG 0baaaaGccaGLOaGaayzkaaaaaa@471D@ . (3.3)

In consequence of ignoring the second and higher order terms in the expansion.It is obvious from (3.3) that Ω ¯ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaeHbae baaaa@39B4@  represent an additional rotation induced by the meridional circulation of the matter part of fluid to that of the usual rotation Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq qHPoWvaaa@39A5@  found in circular space-time. Substituting w φ = 1 K ( g tφ g tA g tt g φA ) u A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG3bWdamaaCaaaleqabaWdbiabeA8aQbaakiabg2da9iabgkHiTmaa laaapaqaa8qacaaIXaaapaqaa8qacaWGlbaaamaabmaapaqaa8qaca WGNbWdamaaBaaaleaapeGaamiDaiabeA8aQbWdaeqaaOWdbiaadEga paWaaSbaaSqaa8qacaWG0bGaamyqaaWdaeqaaOWdbiabgkHiTiaadE gapaWaaSbaaSqaa8qacaWG0bGaamiDaaWdaeqaaOWdbiaadEgapaWa aSbaaSqaa8qacqaHgpGAcaWGbbaapaqabaaak8qacaGLOaGaayzkaa GaamyDa8aadaahaaWcbeqaa8qacaWGbbaaaaaa@51FD@  and w t = 1 K ( g φφ g tA g tφ g φA ) u A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG3bWdamaaCaaaleqabaWdbiaaykW7caWG0baaaOGaeyypa0ZaaSaa a8aabaWdbiaaigdaa8aabaWdbiaadUeaaaWaaeWaa8aabaWdbiaadE gapaWaaSbaaSqaa8qacqaHgpGAcqaHgpGAa8aabeaak8qacaWGNbWd amaaBaaaleaapeGaamiDaiaadgeaa8aabeaak8qacqGHsislcaWGNb WdamaaBaaaleaapeGaamiDaiabeA8aQbWdaeqaaOWdbiaadEgapaWa aSbaaSqaa8qacqaHgpGAcaWGbbaapaqabaaak8qacaGLOaGaayzkaa GaamyDa8aadaahaaWcbeqaa8qacaWGbbaaaaaa@535F@  (see for details27) in (3.3) and making use of g tφ = g φφ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGNbWdamaaBaaaleaapeGaamiDaiabeA8aQbWdaeqaaOWdbiabg2da 9iabgkHiTiaadEgapaWaaSbaaSqaa8qacqaHgpGAcqaHgpGAa8aabe aaaaa@42E0@ , we get

Ω ¯ ¯ = 1 ζK [ ( g tt ϖΩ g φφ ) g φA u A g φφ ( Ωϖ ) g tA u A ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaeHbae baqaaaaaaaaaWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qa cqaH2oGEcaWGlbaaamaadmaapaqaa8qadaqadaWdaeaapeGaam4za8 aadaWgaaWcbaWdbiaadshacaWG0baapaqabaGcpeGaeyOeI0Ydaiab eA9a2jaaykW7peGaeuyQdCLaaGPaVlaadEgapaWaaSbaaSqaa8qacq aHgpGAcqaHgpGAa8aabeaaaOWdbiaawIcacaGLPaaacaWGNbWdamaa BaaaleaapeGaeqOXdOMaamyqaaWdaeqaaOWdbiaadwhapaWaaWbaaS qabeaapeGaamyqaaaakiabgkHiTiaadEgapaWaaSbaaSqaa8qacqaH gpGAcqaHgpGAa8aabeaak8qadaqadaWdaeaapeGaeuyQdCLaeyOeI0 YdaiabeA9a2bWdbiaawIcacaGLPaaacaWGNbWdamaaBaaaleaapeGa amiDaiaadgeaa8aabeaak8qacaWG1bWdamaaCaaaleqabaWdbiaadg eaaaaakiaawUfacaGLDbaaaaa@68EE@ (3.4)

Where ϖ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqO1dyhaaa@39D0@  represents the frame dragging effect28 which contributes to the additional rotation Ω ¯ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaeHbae baaaa@39B4@ caused by meridional circulation of the matter part of fluid.

On account of second and third relations of (2.16), we find from (2.27) after some calculations that

Ω= 1 ζK ( C 1 D 1 + γ 1 D 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq qHPoWvcqGH9aqpcqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGa eqOTdONaam4saaaadaqadaWdaeaapeGaam4qa8aadaahaaWcbeqaa8 qacqGHsislcaaIXaaaaOGaamira8aadaWgaaWcbaWdbiaaigdaa8aa beaak8qacqGHRaWkcqaHZoWzpaWaaWbaaSqabeaapeGaeyOeI0IaaG ymaaaakiaadseapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGL OaGaayzkaaaaaa@4C14@ (3.5)

where

D 1 = g tφ ( ε ¯ ,a w a )+ g tt ( j ¯ ,a w a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGebWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iaadEga paWaaSbaaSqaa8qacaWG0bGaeqOXdOgapaqabaGcpeWaaeWaa8aaba GafqyTduMbaebadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGa am4Da8aadaahaaWcbeqaa8qacaWGHbaaaaGccaGLOaGaayzkaaGaey 4kaSIaam4za8aadaWgaaWcbaWdbiaadshacaWG0baapaqabaGcpeWa aeWaa8aabaGabmOAayaaraWaaSbaaSqaa8qacaGGSaGaamyyaaWdae qaaOWdbiaadEhapaWaaWbaaSqabeaapeGaamyyaaaaaOGaayjkaiaa wMcaaaaa@51BB@  and D 2 = g tφ ( ε ,a v a )+ g tt ( j ,a v a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGebWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9iaadEga paWaaSbaaSqaa8qacaWG0bGaeqOXdOgapaqabaGcpeWaaeWaa8aaba GaeqyTdu2aaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaOWdbiaadAha paWaaWbaaSqabeaapeGaamyyaaaaaOGaayjkaiaawMcaaiabgUcaRi aadEgapaWaaSbaaSqaa8qacaWG0bGaamiDaaWdaeqaaOWdbmaabmaa paqaa8qacaWGQbWdamaaBaaaleaapeGaaiilaiaadggaa8aabeaak8 qacaWG2bWdamaaCaaaleqabaWdbiaadggaaaaakiaawIcacaGLPaaa aaa@51A9@ . (3.6)

From (3.5) and the second relation of (3.6), we observe that the meridional circulation velocity of the entropy fluid also contributes to the rotational velocity of the matter part of fluid.

Following Bardeen,28 we define the injection energy per particle corresponding to both the matter part of fluid and the entropy fluid , respectively , as follows

Φ ¯ = ε ¯ Ω j ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuOPdyKbaebaqa aaaaaaaaWdbiabg2da98aacuaH1oqzgaqea8qacqGHsislcqqHPoWv caaMc8+daiqadQgagaqeaaaa@41A8@  and Φ=ε Ω s j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyeeaaaaaa aaa8qacqGH9aqppaGaeqyTdu2dbiabgkHiTiabfM6ax9aadaWgaaWc baWdbiaadohaa8aabeaak8qacaWGQbaaaa@4133@ (3.7)

which yields that

ε ,a Ω s   j ,a = Φ ,a +j  Ω s ,a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaSbaaS qaaabaaaaaaaaapeGaaiilaiaadggaa8aabeaak8qacqGHsislcqqH PoWvpaWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaaiiOaiaadQgapa WaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaOWdbiabg2da98aacqqH MoGrdaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGaey4kaSIaam OAaiaacckacqqHPoWvpaWaaSbaaSqaa8qacaWGZbGaaiiOaiaacYca caWGHbaapaqabaaaaa@50C5@ (3.8)

From (2.13) and the first relation of (3.8) , we find that

w A = 1 I AB [ KRC q B Kζ( Φ ¯ ,B + j ¯ Ω ,B ) A 1 g tB + A 2 g φB ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG3bWdamaaCaaaleqabaWdbiaadgeaaaGccqGH9aqpdaWcaaWdaeaa peGaaGymaaWdaeaacaWGjbaaa8qacaGGScYdamaaCaaaleqabaWdbi aadgeacaWGcbaaaOWaamWaa8aabaWdbiaadUeacaWGsbGaam4qaiaa dghapaWaaSbaaSqaa8qacaWGcbaapaqabaGcpeGaeyOeI0Iaam4sai abeA7a6naabmaapaqaaiqbfA6agzaaraWaaSbaaSqaa8qacaGGSaGa amOqaaWdaeqaaOWdbiabgUcaR8aaceWGQbGbaebapeGaeuyQdC1dam aaBaaaleaapeGaaiilaiaadkeaa8aabeaaaOWdbiaawIcacaGLPaaa cqGHsislcaWGbbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadE gapaWaaSbaaSqaa8qacaWG0bGaamOqaaWdaeqaaOWdbiabgUcaRiaa dgeapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaam4za8aadaWgaa WcbaWdbiabeA8aQjaadkeaa8aabeaaaOWdbiaawUfacaGLDbaaaaa@61AF@ ,(3.9)

which gives the meridional circulation velocity of the matter part of fluid. The alternating symbol AB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGScYdamaaCaaaleqabaWdbiaadgeacaWGcbaaaaaa@3B40@  takes values 1 or -1 for poloidal indices. It follows from (3.4) and (3.9) after some calculations that

Ω ¯ ¯ = 1 IζK [ ( g tt ϖΩ g φφ ) D 3 g φφ ( Ωϖ ) D 4 +{ A 2 g φφ ( Ωϖ ) A 1 ( g tt ϖΩ g φφ ) } D 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaeHbae baqaaaaaaaaaWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qa caWGjbGaeqOTdONaam4saaaadaWadaWdaeaapeWaaeWaa8aabaWdbi aadEgapaWaaSbaaSqaa8qacaWG0bGaamiDaaWdaeqaaOWdbiabgkHi T8aacqaHwpGDcaaMc8+dbiabfM6axjaadEgapaWaaSbaaSqaa8qacq aHgpGAcqaHgpGAa8aabeaaaOWdbiaawIcacaGLPaaacaWGebWdamaa BaaaleaapeGaaG4maaWdaeqaaOWdbiabgkHiTiaadEgapaWaaSbaaS qaa8qacqaHgpGAcqaHgpGAa8aabeaak8qadaqadaWdaeaapeGaeuyQ dCLaeyOeI0YdaiabeA9a2bWdbiaawIcacaGLPaaacaWGebWdamaaBa aaleaapeGaaGinaaWdaeqaaOWdbiabgUcaRmaacmaapaqaa8qacaWG bbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadEgapaWaaSbaaS qaa8qacqaHgpGAcqaHgpGAa8aabeaak8qadaqadaWdaeaapeGaeuyQ dCLaeyOeI0YdaiabeA9a2bWdbiaawIcacaGLPaaacqGHsislcaWGbb WdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG NbWdamaaBaaaleaapeGaamiDaiaadshaa8aabeaak8qacqGHsislpa GaeqO1dy3dbiabfM6axjaadEgapaWaaSbaaSqaa8qacqaHgpGAcqaH gpGAa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUhacaGL9baacaWGeb WdamaaBaaaleaapeGaaGynaaWdaeqaaaGcpeGaay5waiaaw2faaaaa @8439@ ,                (3.10)

where

D 3 = AB [ KRC g φA q B Kζ g tA ( Φ ¯ ,B + j ¯ Ω ,B ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGebWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iaacYki paWaaWbaaSqabeaapeGaamyqaiaadkeaaaGcdaWadaWdaeaapeGaam 4saiaadkfacaWGdbGaam4za8aadaWgaaWcbaWdbiabeA8aQjaadgea a8aabeaak8qacaWGXbWdamaaBaaaleaapeGaamOqaaWdaeqaaOWdbi abgkHiTiaadUeacqaH2oGEcaWGNbWdamaaBaaaleaapeGaamiDaiaa dgeaa8aabeaak8qadaqadaWdaeaacuqHMoGrgaqeamaaBaaaleaape Gaaiilaiaadkeaa8aabeaak8qacqGHRaWkpaGabmOAayaaraWdbiab fM6ax9aadaWgaaWcbaWdbiaacYcacaWGcbaapaqabaaak8qacaGLOa GaayzkaaaacaGLBbGaayzxaaaaaa@59FE@ (3.11a)

D 4 = AB [ KRC g tA q B Kζ g tA ( Φ ¯ ,B + j ¯ Ω ,B ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGebWdamaaBaaaleaapeGaaGinaaWdaeqaaOWdbiabg2da9iaacYki paWaaWbaaSqabeaapeGaamyqaiaadkeaaaGcdaWadaWdaeaapeGaam 4saiaadkfacaWGdbGaam4za8aadaWgaaWcbaWdbiaadshacaWGbbaa paqabaGcpeGaamyCa8aadaWgaaWcbaWdbiaadkeaa8aabeaak8qacq GHsislcaWGlbGaeqOTdONaam4za8aadaWgaaWcbaWdbiaadshacaWG bbaapaqabaGcpeWaaeWaa8aabaGafuOPdyKbaebadaWgaaWcbaWdbi aacYcacaWGcbaapaqabaGcpeGaey4kaSYdaiqadQgagaqea8qacqqH PoWvpaWaaSbaaSqaa8qacaGGSaGaamOqaaWdaeqaaaGcpeGaayjkai aawMcaaaGaay5waiaaw2faaaaa@593B@ , (3.11b)

D 5 = AB g φA g tB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGebWdamaaBaaaleaapeGaaGynaaWdaeqaaOWdbiabg2da9iaacYki paWaaWbaaSqabeaapeGaamyqaiaadkeaaaGccaWGNbWdamaaBaaale aapeGaeqOXdOMaamyqaaWdaeqaaOWdbiaadEgapaWaaSbaaSqaa8qa caWG0bGaamOqaaWdaeqaaaaa@4535@ .(3.11c)

It is evident from (3.10) and (3.11a,b) that the frame dragging effect as well as the gradient of Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3985@  comprise an additional rotation Ω ¯ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaeHbae baaaa@39B4@  of the matter part of fluid arising due to its merdional circulation that couples to the heat flow and the gradient of the injection energy.

From (2.13) with the aid of the first relation of (3.8) ,we get

q A = 1 RC [ ( Φ ¯ ,A + j ¯ Ω ,A )+ A 1 K g tA A 2 K g φA + I g K AB w B ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGXbWdamaaBaaaleaapeGaamyqaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qacaaIXaaapaqaa8qacaWGsbGaam4qaaaadaWadaWdaeaape WaaeWaa8aabaGafuOPdyKbaebadaWgaaWcbaWdbiaacYcacaWGbbaa paqabaGcpeGaey4kaSYdaiqadQgagaqea8qacqqHPoWvpaWaaSbaaS qaa8qacaGGSaGaamyqaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgUca Rmaalaaapaqaa8qacaWGbbWdamaaBaaaleaapeGaaGymaaWdaeqaaa GcbaWdbiaadUeaaaGaam4za8aadaWgaaWcbaWdbiaadshacaWGbbaa paqabaGcpeGaeyOeI0YaaSaaa8aabaWdbiaadgeapaWaaSbaaSqaa8 qacaaIYaaapaqabaaakeaapeGaam4saaaacaWGNbWdamaaBaaaleaa peGaeqOXdOMaamyqaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qaca WGjbWaaOaaa8aabaWdbiabgkHiTiaadEgaaSqabaaak8aabaWdbiaa dUeaaaGaaiiRG8aadaWgaaWcbaWdbiaadgeacaWGcbaapaqabaGcpe Gaam4Da8aadaahaaWcbeqaa8qacaWGcbaaaaGccaGLBbGaayzxaaaa aa@639A@ . (3.12)

From (2.15) and the third relation of (2.16a), we obtain

V A = ( u t )     2 ζ g AB ( j ¯ ,B l ε ¯ ,B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWdamaaCaaaleqabaWdbiaadgeaaaGccqGH9aqpdaWcaaWdaeaa peWaaeWaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaWG0baapaqaba aak8qacaGLOaGaayzkaaWdamaaDeaaleaapeGaaiiOaaWdaeaapeGa aGOmaaaakiaacckaa8aabaWdbiabeA7a6naakaaapaqaa8qacqGHsi slcaWGNbaaleqaaaaakiaacYkipaWaaWbaaSqabeaapeGaamyqaiaa dkeaaaGcdaqadaWdaeaaceWGQbGbaebadaWgaaWcbaWdbiaacYcaca WGcbaapaqabaGcpeGaeyOeI0IaamiBa8aacuaH1oqzgaqeamaaBaaa leaapeGaaiilaiaadkeaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@53FB@ . (3.13)

It follows from (3.12) and (3.13), on account of (3.2), that

Ω ¯ ,A V A = Ω ¯ ¯ ,A V A + 1 j ¯ ( RC q A Φ ¯ ,A ) V A + 1 K { ( A 2 g φA A 1 g tA ) V A I ¯ g AB V A w B } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaebada WgaaWcbaaeaaaaaaaaa8qacaGGSaGaamyqaaWdaeqaaOWdbiaadAfa paWaaWbaaSqabeaapeGaamyqaaaakiabg2da98aacuqHPoWvgaqega qeamaaBaaaleaapeGaaiilaiaadgeaa8aabeaak8qacaWGwbWdamaa CaaaleqabaWdbiaadgeaaaGccqGHRaWkdaWcaaWdaeaapeGaaGymaa WdaeaaceWGQbGbaebaaaWdbmaabmaapaqaa8qacaWGsbGaam4qaiaa dghapaWaaSbaaSqaa8qacaWGbbaapaqabaGcpeGaeyOeI0YdaiqbfA 6agzaaraWaaSbaaSqaa8qacaGGSaGaamyqaaWdaeqaaaGcpeGaayjk aiaawMcaaiaadAfapaWaaWbaaSqabeaapeGaamyqaaaakiabgUcaRm aalaaapaqaa8qacaaIXaaapaqaa8qacaWGlbaaamaacmaapaqaa8qa daqadaWdaeaapeGaamyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8 qacaWGNbWdamaaBaaaleaapeGaeqOXdOMaamyqaaWdaeqaaOWdbiab gkHiTiaadgeapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaam4za8 aadaWgaaWcbaWdbiaadshacaWGbbaapaqabaaak8qacaGLOaGaayzk aaGaamOva8aadaahaaWcbeqaa8qacaWGbbaaaOGaeyOeI0YdaiqadM eagaqea8qadaGcaaWdaeaapeGaeyOeI0Iaam4zaaWcbeaakiaacYki paWaaSbaaSqaa8qacaWGbbGaamOqaaWdaeqaaOWdbiaadAfapaWaaW baaSqabeaapeGaamyqaaaakiaadEhapaWaaWbaaSqabeaapeGaamOq aaaaaOGaay5Eaiaaw2haaaaa@72E0@ (3.14)

The term on the left hand side of (3.14) describes the differential rotation of the matter part of fluid along the poloidal component of thermal-fluid vorticity vector and the first term on right hand side represents differential rotation due to meridional circulation of the matter part of fluid along the poloidal component of the thermal – fluid vorticity vector , the second term is the action of difference of poloidal component of heat flow and the gradient of injection energy along the poloidal component of thermal fluid vorticity , and the last term shows the contribution of non-diagonal metric tensor components and the cross-product of poloidal thermal–fluid vorticity and the meridional velocity of matter part of fluid. If we assume that the space-time is circular, (3.14) takes the form

Ω ,A V A = RC j ¯ q A V A I ¯ g AB V A w B 1 j ¯ Φ ¯ ,A V A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq qHPoWvpaWaaSbaaSqaa8qacaGGSaGaamyqaaWdaeqaaOWdbiaadAfa paWaaWbaaSqabeaapeGaamyqaaaakiabg2da9maalaaapaqaa8qaca WGsbGaam4qaaWdaeaaceWGQbGbaebaaaWdbiaadghapaWaaSbaaSqa a8qacaWGbbaapaqabaGcpeGaamOva8aadaahaaWcbeqaa8qacaWGbb aaaOGaeyOeI0YdaiqadMeagaqea8qadaGcaaWdaeaapeGaeyOeI0Ia am4zaaWcbeaakiaacYkipaWaaSbaaSqaa8qacaWGbbGaamOqaaWdae qaaOWdbiaadAfapaWaaWbaaSqabeaapeGaamyqaaaakiaadEhapaWa aWbaaSqabeaapeGaamOqaaaakiabgkHiTmaalaaapaqaa8qacaaIXa aapaqaaiqadQgagaqeaaaacuqHMoGrgaqeamaaBaaaleaapeGaaiil aiaadgeaa8aabeaak8qacaWGwbWdamaaCaaaleqabaWdbiaadgeaaa aaaa@595E@ , (3.15)

which exhibits that the differential rotation of matter part of fluid along the thermal-fluid vorticity vector causes

    1. the twist of the matter part of fluid’s vortex lines10 due to first term on the left hand side of (3.15),
    2. thermal-fluid vorticity vector is non-parallel to the matter part of fluid’s meridional velocity due to the second term and
    3. the injection energy per particle varies along the thermal-fluid vorticity vector due to third term.

This simple interpretation of (3.15) when extended to (3.14) in the case of non-circular spactime indicates the complication of the effect of differential rotation along the thermal-fluid vorticity.

The above result in turn suggests that the thermal-fluid vorticity may have a strong bearing on differential rotation of matter part of fluid because of the interdependence of heat flow and fluid’s vorticity. We now investigate the impact of differentia rotation of matter part of fluid in a frame of reference in which thermal –fluid helicity is conserved in the following section.

Differential rotation of thermal-fluid vorticity flux surfaces

In a Carter’s model of a heat conducting fluid,16,17 it is observed that the non-conservation of thermal–fluid helicity is a generic property in a matter part of fluid’s frame u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A43@ .10 However, a frame of reference with 4-velocity U a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A23@  may be constructed in which the thermal -fluid helicity is conserved.10 The relation between the thermal -fluid helicity conserving 4-velocity U a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A23@  and the matter part of fluid’s 4-velocity may be expressed as:10

U a =Γ( u a + v ¯ a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqppaGaeu4KdC0d bmaabmaapaqaa8qacaWG1bWdamaaCaaaleqabaWdbiaadggaaaGccq GHRaWkpaGabmODayaaraWaaWbaaSqabeaapeGaamyyaaaaaOGaayjk aiaawMcaaaaa@43C9@ , (4.1)

Where Γ=( 1 v ¯ 2 )         1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCeeaaaaaa aaa8qacqGH9aqpdaqadaWdaeaapeGaaGymaiabgkHiT8aaceWG2bGb aebadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOaGaayzkaaWdamaaDe aaleaapeGaaiiOaaWdaeaadaqhbaadbaWdbiaacckaa8aabaWdbiab gkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaaliaacc kaaaGccaGGGcaaaa@480B@  and u a v ¯ a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaBaaaleaapeGaamyyaaWdaeqaaOGabmODayaaraWaaWba aSqabeaapeGaamyyaaaakiabg2da9iaaicdaaaa@3E5B@  and U a U a =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaGccaWGvbWdamaaBaaaleaa peGaamyyaaWdaeqaaOWdbiabg2da9iabgkHiTiaaigdaaaa@3F0F@ . The 4-velocity U a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A23@  will be the thermal–fluid helicity conserving if it satisfies the following condition

£ U   W ab =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGJcWdamaaBaaaleaapeGaamyva8aadaahaaadbeqaa8qacaGGGcaa aaWcpaqabaGcpeGaam4va8aadaWgaaWcbaWdbiaadggacaWGIbaapa qabaGcpeGaeyypa0JaaGimaaaa@40E5@ , (4.2)

where £ U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGJcWdamaaBaaaleaapeGaamyvaaWdaeqaaaaa@3A72@  represent the Lie derivative along the vector U a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A23@ . Since W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B1A@  is a curl, it follows from (4.2) that

W ab U b =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacaWGvbWd amaaCaaaleqabaWdbiaadkgaaaGccqGH9aqpcaaIWaaaaa@3F0B@ , (4.3)

The velocity of deviation from the matter part of fluid’s 4-velocity u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WG1bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A43@  is denoted by v ¯ a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaaraWaaW baaSqabeaaqaaaaaaaaaWdbiaadggaaaaaaa@3A3D@  which is given by10.

v ¯ a = 1 V 2 η abcd Ε b V c u d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaaraWaaW baaSqabeaaqaaaaaaaaaWdbiaadggaaaGccqGH9aqpdaWcaaWdaeaa peGaaGymaaWdaeaapeGaamOva8aadaahaaWcbeqaa8qacaaIYaaaaa aakiabeE7aO9aadaahaaWcbeqaa8qacaWGHbGaamOyaiaadogacaWG KbaaaOWdaiabfw5afnaaBaaaleaapeGaamOyaaWdaeqaaOWdbiaadA fapaWaaSbaaSqaa8qacaWGJbaapaqabaGcpeGaamyDa8aadaWgaaWc baWdbiaadsgaa8aabeaaaaa@4B1A@ (4.4)

This gives the transport velocity of thermal-fluid vortex lines generated by V a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGwbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A24@ . The magnetic part of W ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B19@  is defined by

ς a = W ab U b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaWbaaS qabeaaqaaaaaaaaaWdbiaadggaaaGccqGH9aqppaWaaWraaSqabeaa cqGHxiIkaaGccaWGxbWaaWbaaSqabeaapeGaamyyaiaadkgaaaGcca WGvbWdamaaBaaaleaapeGaamOyaaWdaeqaaaaa@421F@ ,(4.5)

It is found that (see for details10)

ς   a = 1 V V 2 Ε 2      V a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdyfeaaaaaa aaa8qacaGGGcWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaamOvaaaadaGcaaWdaeaapeGaam Ova8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0Ydaiabfw5afnaa CaaaleqabaWdbiaaikdaaaaabeaakiaacckacaGGGcGaaiiOaiaacc kacaWGwbWdamaaCaaaleqabaWdbiaadggaaaaaaa@4B25@ .(4.6)

On account of (4.3) and (4.5), one may find that,/

W ab = U a ς b U b ς a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaacq GHxiIkaaGccaWGxbWaaWbaaSqabeaaqaaaaaaaaaWdbiaadggacaWG IbaaaOGaeyypa0Jaamyva8aadaahaaWcbeqaa8qacaWGHbaaaOWdai abek8awnaaCaaaleqabaWdbiaadkgaaaGccqGHsislcaWGvbWdamaa CaaaleqabaWdbiaadkgaaaGcpaGaeqOWdy1aaWbaaSqabeaapeGaam yyaaaaaaa@47F6@ .(4.7a)

W ab = η abcd ς c U d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaCaaaleqabaWdbiaadggacaWGIbaaaOGaeyypa0Jaeq4T dG2damaaCaaaleqabaWdbiaadggacaWGIbGaam4yaiaadsgaaaGcpa GaeqOWdy1aaSbaaSqaa8qacaWGJbaapaqabaGccaaMc8+dbiaadwfa paWaaSbaaSqaa8qacaWGKbaapaqabaaaaa@4865@ . (4.7b)

Because of (4.7b) ς a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaWbaaS qabeaaqaaaaaaaaaWdbiaadggaaaaaaa@3ACE@ and U a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A22@  are eigenvector of thermal -fluid vorticity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B1A@  with zero eigenvalues. Hence, by Carter’s argument,26 these two independent eigenvectors span a family of timelike 2-surfaces which have been referred to as thermal -fluid vorticity flux surfaces.10 The 4-velocity vector U a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A22@  can now be interpreted as to represent the 4- velocity of those matter particles which are confined to the thermal –fluid vorticity flux surfaces. In fact, these time like surfaces are material surfaces which will be shown later in the text below. Consequently, the 4-velocity U a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A22@  may be thought of as a 4-velocity of thermal-fluid flux surfaces.

It follows from (2.1a) , (4.1) ,and (4.3) that

Ε a = W ab v ¯ b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyLdu0aaSbaaS qaaabaaaaaaaaapeGaamyyaaWdaeqaaOWdbiabg2da9iabgkHiTiaa dEfapaWaaSbaaSqaa8qacaWGHbGaamOyaaWdaeqaaOGabmODayaara WaaWbaaSqabeaapeGaamOyaaaaaaa@41F1@ , (4.8)

which because of (2.9) and (2.5a.b) takes the form

Ε a = 1 K [ A ¯ 1 ξ (t) a+ A ¯ 2 ξ ( φ )a I ¯ a ηbcd v ¯ b ξ (t) c ξ (φ) d ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyLdu0aaSbaaS qaaabaaaaaaaaapeGaamyyaaWdaeqaaOWdbiabg2da9maaleaajeaW baGaaGymaaqaaiaadUeaaaGccaGGBbGaeyOeI0Ydaiqadgeagaqeam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiabe67a49aadaWgaaWcbaWd biaacIcacaWG0bGaaiykaaWdaeqaaOWdbiaadggacqGHRaWkpaGabm yqayaaraWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeqOVdG3aaSba aSqaamaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaacaWGHbaabe aakiabgkHiT8aaceWGjbGbaebadaWgaaWcbaWdbiaadggaa8aabeaa kiaaykW7caaMc8Uaeq4TdG2dbiaadkgacaWGJbGaamizaiaaykW7ca aMc8UaaGPaV=aaceWG2bGbaebadaahaaWcbeqaa8qacaWGIbaaaOGa eqOVdG3aa0baaSqaaiaacIcacaWG0bGaaiykaaqaaiaadogaaaGccq aH+oaEdaqhaaWcbaGaaiikaiabeA8aQjaacMcaaeaacaWGKbaaaOGa aiyxaaaa@6E51@ ,(4.9)

where

A ¯ 1 =( ε ¯ ,a v ¯ a ) g φφ +( j ¯ ,a v ¯ a ) g tφ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyqayaaraWaaS baaSqaaabaaaaaaaaapeGaaGymaaWdaeqaaOWdbiabg2da9maabmaa paqaaiqbew7aLzaaraWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaO GabmODayaaraWaaWbaaSqabeaapeGaamyyaaaaaOGaayjkaiaawMca aiaadEgapaWaaSbaaSqaa8qacqaHgpGAcqaHgpGAa8aabeaak8qacq GHRaWkdaqadaWdaeaaceWGQbGbaebadaWgaaWcbaWdbiaacYcacaWG HbaapaqabaGcceWG2bGbaebadaahaaWcbeqaa8qacaWGHbaaaaGcca GLOaGaayzkaaGaam4za8aadaWgaaWcbaWdbiaadshacqaHgpGAa8aa beaaaaa@530F@ , (4.10a)

A ¯ 2 =( ε ¯ ,a v ¯ a ) g tφ +( j ¯ ,a v ¯ a ) g tt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyqayaaraWaaS baaSqaaiaaikdaaeqaaOaeaaaaaaaaa8qacqGH9aqpdaqadaWdaeaa cuaH1oqzgaqeamaaBaaaleaapeGaaiilaiaadggaa8aabeaakiqadA hagaqeamaaCaaaleqabaWdbiaadggaaaaakiaawIcacaGLPaaacaWG NbWdamaaBaaaleaapeGaamiDaiabeA8aQbWdaeqaaOWdbiabgUcaRm aabmaapaqaaiqadQgagaqeamaaBaaaleaapeGaaiilaiaadggaa8aa beaakiqadAhagaqeamaaCaaaleqabaWdbiaadggaaaaakiaawIcaca GLPaaacaWGNbWdamaaBaaaleaapeGaamiDaiaadshaa8aabeaaaaa@5169@ .(4.10b)

The toroidal components of E a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGHbaabeaaaaa@39D2@  are obtainable from (4.9) and (4.10a,b) in the following form:

Ε t =( ε ¯ ,a v ¯ a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyLdu0aaSbaaS qaaabaaaaaaaaapeGaamiDaaWdaeqaaOWdbiabg2da9maabmaapaqa aiqbew7aLzaaraWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaOGabm ODayaaraWaaWbaaSqabeaapeGaamyyaaaaaOGaayjkaiaawMcaaaaa @4355@ , Ε φ =( j ¯ ,a v ¯ a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyLdu0aaSbaaS qaaabaaaaaaaaapeGaeqOXdOgapaqabaGcpeGaeyypa0ZaaeWaa8aa baGabmOAayaaraWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaOGabm ODayaaraWaaWbaaSqabeaapeGaamyyaaaaaOGaayjkaiaawMcaaaaa @4361@ . (4.11)

From (2.6) and (4.1) , we get

U a =Γ{ ζ( ξ ( t ) a +Ω ξ ( φ ) a )+ v ¯ ¯ a } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqppaGaeu4KdC0d bmaacmaapaqaa8qacqaH2oGEdaqadaWdaeaapeGaeqOVdG3damaaDa aaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabaWd biaadggaaaGccqGHRaWkcqqHPoWvcqaH+oaEpaWaa0baaSqaa8qada qadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqaa8qacaWGHbaa aaGccaGLOaGaayzkaaGaey4kaSYdaiqadAhagaqegaqeamaaCaaale qabaWdbiaadggaaaaakiaawUhacaGL9baaaaa@5469@ , (4.12)

where

v ¯ ¯ a = w a + v ¯ a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaaryaara WaaWbaaSqabeaaqaaaaaaaaaWdbiaadggaaaGccqGH9aqpcaWG3bWd amaaCaaaleqabaWdbiaadggaaaGccqGHRaWkpaGabmODayaaraWaaW baaSqabeaapeGaamyyaaaaaaa@40C3@ .(4.13)

The angular velocity corresponding to (4.12) can be defined as

Ω ^ = U φ U t Ω+ Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaKaaqa aaaaaaaaWdbiabg2da9maalaaapaqaa8qacaWGvbWdamaaCaaaleqa baWdbiabeA8aQbaaaOWdaeaapeGaamyva8aadaahaaWcbeqaa8qaca WG0baaaaaakiabgIKi7kabfM6axjabgUcaR8aacuqHPoWvgaafaaaa @45F8@ ,(4.14)

where the second and higher order terms in the expansion are ignored and first order term is retained as

Ω = 1 Γζ ( v ¯ ¯ φ Ω v ¯ ¯ t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaqbaqa aaaaaaaaWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaaiabfo5a h9qacqaH2oGEaaWaaeWaa8aabaGabmODayaaryaaraWaaWbaaSqabe aapeGaeqOXdOgaaOGaeyOeI0IaeuyQdC1daiqadAhagaqegaqeamaa CaaaleqabaWdbiaadshaaaaakiaawIcacaGLPaaaaaa@48AD@ .(4.15)

Using (4.14) in (4.16) and taking (3.3) into account, we find that

Ω = 1 Γ + 1 Γζ ( v ¯ φ Ω v ¯ t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaqbaqa aaaaaaaaWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaaiabfo5a hbaapeGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaGaeu4KdC0dbi abeA7a6baadaqadaWdaeaaceWG2bGbaebadaahaaWcbeqaa8qacqaH gpGAaaGccqGHsislcqqHPoWvpaGabmODayaaraWaaWbaaSqabeaape GaamiDaaaaaOGaayjkaiaawMcaaaaa@4BD3@ .(4.16)

From (4.9), we have Ε a v ¯ a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyLdu0aaSbaaS qaaabaaaaaaaaapeGaamyyaaWdaeqaaOGabmODayaaraWaaWbaaSqa beaapeGaamyyaaaakiabg2da9iaaicdaaaa@3EAA@  which because of (4.9) gives,

Ε t v ¯ t + Ε φ v ¯ φ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyLdu0aaSbaaS qaaabaaaaaaaaapeGaamiDaaWdaeqaaOGabmODayaaraWaaWbaaSqa beaapeGaamiDaaaakiabgUcaR8aacqqHvoqrdaWgaaWcbaWdbiabeA 8aQbWdaeqaaOGabmODayaaraWaaWbaaSqabeaapeGaeqOXdOgaaOGa eyypa0JaaGimaaaa@4652@ ,(4.17)

If it obeys the condition that

v ¯ t =( j ¯ ,a v ¯ a ε ¯ ,a v ¯ a ) v ¯ φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaaraWaaW baaSqabeaaqaaaaaaaaaWdbiaadshaaaGccqGH9aqpdaqadaWdaeaa peWaaSaaa8aabaWaaSbaaSqaaiqadQgagaqea8qacaGGSaGaamyyaa WdaeqaaOGabmODayaaraWaaWbaaSqabeaapeGaamyyaaaaaOWdaeaa cuaH1oqzgaqeamaaBaaaleaapeGaaiilaiaadggaa8aabeaakiqadA hagaqeamaaCaaaleqabaWdbiaadggaaaaaaaGccaGLOaGaayzkaaWd aiqadAhagaqeamaaCaaaleqabaWdbiabeA8aQbaaaaa@4B6E@ .(4.18)

Substitution for v ¯ φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmODayaaraWaaW baaSqabeaaqaaaaaaaaaWdbiabeA8aQbaaaaa@3B14@ from (4.17) in the second term on right hand side of (4.16) gives

Ω = 1 Γ Ω ¯ ¯ v ¯ t Γ ζ Ε φ ( Ε t +Ω Ε φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaqbaqa aaaaaaaaWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaaiabfo5a hbaacuqHPoWvgaqegaqea8qacqGHsisldaWcaaWdaeaaceWG2bGbae badaahaaWcbeqaa8qacaWG0baaaaGcpaqaaiabfo5ah9qadaWgaaWc baGamyfGeA7a6bqabaGcpaGaeuyLdu0aaSbaaSqaa8qacqaHgpGAa8 aabeaaaaGcpeWaaeWaa8aabaGaeuyLdu0aaSbaaSqaa8qacaWG0baa paqabaGcpeGaey4kaSIaeuyQdC1daiabfw5afnaaBaaaleaapeGaeq OXdOgapaqabaaak8qacaGLOaGaayzkaaaaaa@54AA@ ,(4.19)

which, on account of (4.14) , yields that

Ω ^ =Ω+ 1 Γ v ¯ t Γ ζ Ε φ ( Ε t +Ω Ε φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaKaaqa aaaaaaaaWdbiabg2da9iabfM6axjabgUcaRmaalaaapaqaa8qacaaI Xaaapaqaaiabfo5ahbaapeGaeyOeI0YaaSaaa8aabaGabmODayaara WaaWbaaSqabeaapeGaamiDaaaaaOWdaeaacqqHtoWrpeWaaSbaaSqa aiad4aiH2oGEaeqaaOWdaiabfw5afnaaBaaaleaapeGaeqOXdOgapa qabaaaaOWdbmaabmaapaqaaiabfw5afnaaBaaaleaapeGaamiDaaWd aeqaaOWdbiabgUcaRiabfM6ax9aacqqHvoqrdaWgaaWcbaWdbiabeA 8aQbWdaeqaaaGcpeGaayjkaiaawMcaaaaa@5534@ .(4.20)

It is seen from (4.20) that the rotational velocity of those particles which are confined to thermal-fluid vorticity flux surfaces is composed of the rotational velocity of matter part of fluid and the toroidal components of heat flow vector. In other words, (4.20) represents the rotational velocity of thermal-fluid flux surfaces caused by the rotational velocity of the matter part of fluid and the heat flows.

In order to find the magnetic part ς a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaWbaaS qabeaaqaaaaaaaaaWdbiaadggaaaaaaa@3ACF@  of the fluid-thermal voracity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B1A@ , we substitute (4.12) in the right hand side of (4.5) and simplify with the aid of (2.5a, b), (2.10), (2.16a,b) to get

ς a =Γζ[ I ¯ ζ u φ ξ ( t ) a + I ¯ ζ u t ξ ( φ ) a η abcd R b ξ ( t )c ξ ( φ )d η abcd v ¯ ¯ b Q c ξ ( t )d + η abcd v ¯ ¯ b Q ¯ c ξ ( φ )d ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaWbaaS qabeaaqaaaaaaaaaWdbiaadggaaaGccqGH9aqppaGaeu4KdC0dbiab eA7a6naadmaapaqaa8qacqGHsisldaWcaaWdaeaaceWGjbGbaebaae aapeGaeqOTdOhaaiaadwhapaWaaSbaaSqaa8qacqaHgpGAa8aabeaa k8qacqaH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaamiDaaGaay jkaiaawMcaaaWdaeaapeGaamyyaaaakiabgUcaRmaalaaapaqaaiqa dMeagaqeaaqaa8qacqaH2oGEaaGaamyDa8aadaWgaaWcbaWdbiaads haa8aabeaak8qacqaH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGa eqOXdOgacaGLOaGaayzkaaaapaqaa8qacaWGHbaaaOGaeyOeI0Iaeq 4TdG2damaaCaaaleqabaWdbiaadggacaWGIbGaam4yaiaadsgaaaGc caWGsbWdamaaBaaaleaapeGaamOyaaWdaeqaaOWdbiabe67a49aada WgaaWcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaam4y aaWdaeqaaOWdbiabe67a49aadaWgaaWcbaWdbmaabmaapaqaa8qacq aHgpGAaiaawIcacaGLPaaacaWGKbaapaqabaGcpeGaeyOeI0Iaeq4T dG2damaaCaaaleqabaWdbiaadggacaWGIbGaam4yaiaadsgaaaGcpa GabmODayaaryaaraWaaSbaaSqaa8qacaWGIbaapaqabaGccaaMc8+d biaadgfapaWaaSbaaSqaa8qacaWGJbaapaqabaGcpeGaeqOVdG3dam aaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaWG KbaapaqabaGcpeGaey4kaSIaeq4TdG2damaaCaaaleqabaWdbiaadg gacaWGIbGaam4yaiaadsgaaaGcpaGabmODayaaryaaraWaaSbaaSqa a8qacaWGIbaapaqabaGccaaMc8UabmyuayaaraWaaSbaaSqaa8qaca WGJbaapaqabaGcpeGaeqOVdG3damaaBaaaleaapeWaaeWaa8aabaWd biabeA8aQbGaayjkaiaawMcaaiaadsgaa8aabeaaaOWdbiaawUfaca GLDbaaaaa@9550@ . (4.21)

From now on, we assume that

ς t =o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaWbaaS qabeaaqaaaaaaaaaWdbiaadshaaaGccqGH9aqpcaWGVbaaaa@3CE6@  and ς φ =o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaWbaaS qabeaaqaaaaaaaaaWdbiabeA8aQbaakiabg2da9iaad+gaaaa@3DAA@ . (4.22)

It is to be noted that because of (4.22) the covariant toroidal components ς t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaSbaaS qaaiaadshaaeqaaaaa@3AC1@  and ς φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaSbaaS qaaiabeA8aQbqabaaaaa@3B85@  are non-zero due to non-circularity of space-time and the presence of meridional circulation of matter part of fluid. This in turn implies that I ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaaraaaaa@38DD@  is not zero because I ¯ = U t ς φ U φ ς t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaaraaeaa aaaaaaa8qacqGH9aqpcaWGvbWdamaaBaaaleaapeGaamiDaaWdaeqa aOGaeqOWdy1aaSbaaSqaa8qacqaHgpGAa8aabeaak8qacqGHsislca WGvbWdamaaBaaaleaapeGaeqOXdOgapaqabaGccqaHcpGvdaWgaaWc baWdbiaadshaa8aabeaaaaa@46D2@  cannot vanish. Making use of (4.22) with the aid of (4.21), we find that

lϖ=1+ ζK u t g φφ g [ AB v ¯ ¯ A Q B AB R A g φB ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGSbWdaiabeA9a29qacqGH9aqpcaaIXaGaey4kaSYaaSaaa8aabaWd biabeA7a6jaadUeaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaWG0b aapaqabaGcpeGaam4za8aadaWgaaWcbaWdbiabeA8aQjabeA8aQbWd aeqaaOWdbmaakaaapaqaa8qacqGHsislcaWGNbaaleqaaaaakmaadm aapaqaa8qacaGGScYdamaaCaaaleqabaWdbiaadgeacaWGcbaaaOWd aiqadAhagaqegaqeamaaBaaaleaapeGaamyqaaWdaeqaaOWdbiaadg fapaWaaSbaaSqaa8qacaWGcbaapaqabaGcpeGaeyOeI0IaaiiRG8aa daahaaWcbeqaa8qacaWGbbGaamOqaaaakiaadkfapaWaaSbaaSqaa8 qacaWGbbaapaqabaGcpeGaam4za8aadaWgaaWcbaWdbiabeA8aQjaa dkeaa8aabeaaaOWdbiaawUfacaGLDbaaaaa@5DAA@ , (4.22)

which describes the frame dragging effect in terms of the meridional circulation of the matter part of fluid coupled to the transport velocity of thermal -fluid vortex lines and the gradients of effective energy and angular momentum per particle corresponding to the matter part of fluid.

Since W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@3B1A@  is a curl , we have

W ;b ab =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaacq GHxiIkaaGccaWGxbWaa0baaSqaaabaaaaaaaaapeGaai4oaiaadkga a8aabaWdbiaadggacaWGIbaaaOGaeyypa0JaaGimaaaa@3FA3@ .(4.24)

Substitution of (4.7a) into (4.24) gives that

U ,b a ς b ς ,b a U b + U a ς ;b b = U ;b b ς a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaDaaaleaapeGaaiilaiaadkgaa8aabaWdbiaadggaaaGc paGaeqOWdy1aaWbaaSqabeaapeGaamOyaaaakiabgkHiT8aacqaHcp GvdaqhaaWcbaWdbiaacYcacaWGIbaapaqaa8qacaWGHbaaaOGaamyv a8aadaahaaWcbeqaa8qacaWGIbaaaOGaey4kaSIaamyva8aadaahaa Wcbeqaa8qacaWGHbaaaOWdaiabek8awnaaDaaaleaapeGaai4oaiaa dkgaa8aabaWdbiaadkgaaaGccqGH9aqpcaWGvbWdamaaDaaaleaape Gaai4oaiaadkgaa8aabaWdbiaadkgaaaGcpaGaeqOWdy1aaWbaaSqa beaapeGaamyyaaaaaaa@55B8@ .(4.25)

By virtue of our assumption (4.22), we find from (4.27) for a=t , φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGHbGaeyypa0JaamiDaiaacckacaGGSaGaaiiOaiabeA8aQbaa@3FB1@

that

U ,b t ς b + U t ς ;b b =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaDaaaleaapeGaaiilaiaadkgaa8aabaWdbiaadshaaaGc paGaeqOWdy1aaWbaaSqabeaapeGaamOyaaaakiabgUcaRiaadwfapa WaaWbaaSqabeaapeGaamiDaaaak8aacqaHcpGvdaqhaaWcbaWdbiaa cUdacaWGIbaapaqaa8qacaWGIbaaaOGaeyypa0JaaGimaaaa@484A@ , (4.26a)

U ,b φ ς b + U φ ς ;b b =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaDaaaleaapeGaaiilaiaadkgaa8aabaWdbiabeA8aQbaa k8aacqaHcpGvdaahaaWcbeqaa8qacaWGIbaaaOGaey4kaSIaamyva8 aadaahaaWcbeqaa8qacqaHgpGAaaGcpaGaeqOWdy1aa0baaSqaa8qa caGG7aGaamOyaaWdaeaapeGaamOyaaaakiabg2da9iaaicdaaaa@49D2@ .(4.26b)

Making use of (4.14) in (4.26b), one may obtain

Ω ^ ,b ς b + Ω ^ U ,b t ς b + Ω ^ U t ς ;b b =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaKaada WgaaWcbaaeaaaaaaaaa8qacaGGSaGaamOyaaWdaeqaaOGaeqOWdy1a aWbaaSqabeaapeGaamOyaaaakiabgUcaR8aacuqHPoWvgaqca8qaca WGvbWdamaaDaaaleaapeGaaiilaiaadkgaa8aabaWdbiaadshaaaGc paGaeqOWdy1aaWbaaSqabeaapeGaamOyaaaakiabgUcaR8aacuqHPo Wvgaqca8qacaWGvbWdamaaCaaaleqabaWdbiaadshaaaGcpaGaeqOW dy1aa0baaSqaa8qacaGG7aGaamOyaaWdaeaapeGaamOyaaaakiabg2 da9iaaicdaaaa@52F3@ .(4.27)

Multiplying (4.26a) by Ω ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuqHPo Wvgaqcaaaa@3823@  and subtracting the resulting equation from (4.27), we get

Ω ^ ,A ς A =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaKaada WgaaWcbaaeaaaaaaaaa8qacaGGSaGaamyqaaWdaeqaaOGaaGPaVlaa ykW7cqaHcpGvdaahaaWcbeqaa8qacaWGbbaaaOGaeyypa0JaaGimaa aa@42F8@ ,(4.28)

which bears a striking resemblance with Ferraro’s law of isorotation in RMHD.19 This result states that the differential rotation of thermal -fluid vorticity flux surfaces is constant along the magnetic part of thermal-fluid vorticity 2-form that represents the thermal- fluid vorticity given by (4.6). It follows from (2.3), (4.6) and (4.28) that

μ Ω ^ ,A ω A =αq Ω ^ ,A ω ^ A  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabeaacq GHxiIkaaGccqaH8oqBcaaMc8UafuyQdCLbaKaadaWgaaWcbaaeaaaa aaaaa8qacaGGSaGaamyqaaWdaeqaaOWdbiabeM8a39aadaahaaWcbe qaa8qacaWGbbaaaOGaeyypa0JaeyOeI0IaeqySdeMaamyCa8aacuqH PoWvgaqcamaaBaaaleaapeGaaiilaiaadgeaa8aabeaakiqbeM8a3z aajaWaaWbaaSqabeaapeGaamyqaiaacckaaaaaaa@4ED5@ ,(4.29)

which can be interpreted as follows. The left hand side of (4.29) is the gravitational isorotation in the sense of Glass9 and the right hand side is the thermal isorotation by virtue of ω ^ A  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyYdCNbaKaada ahaaWcbeqaaabaaaaaaaaapeGaamyqaiaacckaaaaaaa@3C0A@ that represents the poloidal component of vorticity of heat flow lines. Thus (4.29) says that the gravitational isorotation of thermal -fluid vorticity flux surfaces is balanced by counter rotating thermal isorotation. The coupled effects of differential rotation of matter part of fluid with that of thermal–fluid vorticity flux surfaces can be seen by substituting (4.20) in (4.29).

It follows from (4.25) that

£ U ς a = U a ς ;b b ς a U ;b b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca GGJcWdamaaBaaaleaapeGaamyvaaWdaeqaaOGaeqOWdy1aaWbaaSqa beaapeGaamyyaaaakiabg2da9iaadwfapaWaaWbaaSqabeaapeGaam yyaaaak8aacqaHcpGvdaqhaaWcbaWdbiaacUdacaWGIbaapaqaa8qa caWGIbaaaOGaeyOeI0Ydaiabek8awnaaCaaaleqabaWdbiaadggaaa GccaWGvbWdamaaDaaaleaapeGaai4oaiaadkgaa8aabaWdbiaadkga aaaaaa@4CB0@ ,(4.30)

which shows that the Lie derivative of ς a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaWbaaS qabeaaqaaaaaaaaaWdbiaadggaaaaaaa@3ACE@  is a linear combination of U a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A22@ and ς a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaWbaaS qabeaaqaaaaaaaaaWdbiaadggaaaaaaa@3ACE@ . Consequently, ς a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaWbaaS qabeaaqaaaaaaaaaWdbiaadggaaaaaaa@3ACE@  obeys Greenberg’s transport law25 and hence because of (4.6) thermal-fluid vortex lines are material lines.6 This in turn implies that a family of timelike 2-suraces spanned by U a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGvbWdamaaCaaaleqabaWdbiaadggaaaaaaa@3A22@  and ς a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOWdy1aaWbaaS qabeaaqaaaaaaaaaWdbiaadggaaaaaaa@3ACE@  (or equivalently V a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaCaaale qabaaeaaaaaaaaa8qacaWGHbaaaaaa@3A04@  ) is a family of material thermal-fluid vortex surfaces. The differential rotation of thermal-fluid vortex surfaces given by (4.29) induces differential rotation in the matter part of fluid and vice-versa.

Conservation of energy and angular momentum currents

In this section we discuss the symmetry related conservation laws of energy and angular momentum currents associated with a system composed of a heat conducting fluid. As is known21 that the energy and angular momentum currents associated with the system under space-time symmetry assumption corresponding to the time like Killing vector ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaaWdaeaapeGaamyyaaaaaaa@3DCB@  and the spacelike Killing vector ξ (φ) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH+oaEpaWaa0baaSqaa8qacaGGOaGaeqOXdOMaaiykaaWdaeaapeGa amyyaaaaaaa@3E40@  are, respectively, defined by

χ ( t ) a = T b a ξ ( t ) b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaabaaaaaaaaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa a8aabaWdbiaadggaaaGccqGH9aqpcaWGubWdamaaDaaaleaapeGaam OyaaWdaeaapeGaamyyaaaakiabe67a49aadaqhaaWcbaWdbmaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaaapaqaa8qacaWGIbaaaaaa@4782@ ,(5.1a)

and

χ ( φ ) a = T b a ξ ( φ ) b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaabaaaaaaaaapeWaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawMca aaWdaeaapeGaamyyaaaakiabg2da9iaadsfapaWaa0baaSqaa8qaca WGIbaapaqaa8qacaWGHbaaaOGaeqOVdG3damaaDaaaleaapeWaaeWa a8aabaWdbiabeA8aQbGaayjkaiaawMcaaaWdaeaapeGaamOyaaaaaa a@490A@ ,(5.1b)

Where χ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaabaaaaaaaaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa a8aabaWdbiaadggaaaaaaa@3DA1@  and χ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaabaaaaaaaaapeWaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawMca aaWdaeaapeGaamyyaaaaaaa@3E65@  denote, respectively, the energy and angular momentum currents. T b a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGubWdamaaDaaaleaapeGaamOyaaWdaeaapeGaamyyaaaaaaa@3B28@  is the energy-momentum tensor of a heat conducting fluid given by

T b a =( n μ + s θ ) u a u b +ψ δ b a + u a q b + q a u b + β θ q a q b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGubWdamaaDaaaleaapeGaamOyaaWdaeaapeGaamyyaaaakiabg2da 9maabmaapaqaa8qacaWGUbWdamaaCeaaleqabaGaey4fIOcaaOGaeq iVd02dbiabgUcaR8aadaahbaWcbeqaaiabgEHiQaaakiaadohadaah baWcbeqaaiabgEHiQaaakiabeI7aXbWdbiaawIcacaGLPaaacaWG1b WdamaaCaaaleqabaWdbiaadggaaaGccaWG1bWdamaaBaaaleaapeGa amOyaaWdaeqaaOWdbiabgUcaRiabeI8a5jabes7aK9aadaqhaaWcba Wdbiaadkgaa8aabaWdbiaadggaaaGccqGHRaWkcaWG1bWdamaaCaaa leqabaWdbiaadggaaaGccaWGXbWdamaaBaaaleaapeGaamOyaaWdae qaaOWdbiabgUcaRiaadghapaWaaWbaaSqabeaapeGaamyyaaaakiaa dwhapaWaaSbaaSqaa8qacaWGIbaapaqabaGcpeGaey4kaSYaaSaaa8 aabaWdbiabek7aIbWdaeaadaahbaWcbeqaaiabgEHiQaaakiabeI7a XbaapeGaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaOGaamyCa8aada WgaaWcbaWdbiaadkgaa8aabeaaaaa@67D7@ .(5.2)

Since ξ ( t ) b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq aH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaaWdaeaapeGaamOyaaaaaaa@3DCD@  is a Killing vector, it follows from (5.1) that

χ ( t );a a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaabaaaaaaaaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa caGG7aGaamyyaaWdaeaapeGaamyyaaaakiabg2da9iaaicdaaaa@4110@ ,(5.3)

In consequence of the conservation law T b;a a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGubWdamaaDaaaleaapeGaamOyaiaacUdacaWGHbaapaqaa8qacaWG HbaaaOGaeyypa0JaaGimaaaa@3E97@ . Substituting (5.2) in (5.1a) and using the resulting expression in (5.3), we find that

n[ ( μ + s θ n ) u t + q t n ]     ,a     u a +[ ( u t + β θ q t ) q a ]     ;a     =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGUbWaamWaa8aabaWdbmaabmaapaqaamaaCeaaleqabaGaey4fIOca aOGaeqiVd02dbiabgUcaRmaalaaapaqaamaaCeaaleqabaGaey4fIO caaOGaam4CamaaCeaaleqabaGaey4fIOcaaOGaeqiUdehabaWdbiaa d6gaaaaacaGLOaGaayzkaaGaamyDa8aadaWgaaWcbaWdbiaadshaa8 aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaWgaaWcbaWd biaadshaa8aabeaaaOqaa8qacaWGUbaaaaGaay5waiaaw2faa8aada qhbaWcbaWaa0raaWqaa8qacaGGSaGaamyyaaWdaeaapeGaaiiOaaaa liaacckaa8aabaWdbiaacckaaaGccaGGGcGaamyDa8aadaahaaWcbe qaa8qacaWGHbaaaOGaey4kaSYaamWaa8aabaWdbmaabmaapaqaa8qa caWG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabgUcaRmaala aapaqaa8qacqaHYoGya8aabaWaaWraaSqabeaacqGHxiIkaaGccqaH 4oqCaaWdbiaadghapaWaaSbaaSqaa8qacaWG0baapaqabaaak8qaca GLOaGaayzkaaGaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaaGccaGL BbGaayzxaaWdamaaDeaaleaadaqhbaadbaWdbiaacUdacaWGHbaapa qaa8qacaGGGcaaaSGaaiiOaaWdaeaapeGaaiiOaaaakiaacckacqGH 9aqpcaaIWaaaaa@70A2@ ,(5.4)

In consequence of baryon conservation law ( n u a )   ;a   =0a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qada qadaWdaeaapeGaamOBaiaadwhapaWaaWbaaSqabeaapeGaamyyaaaa aOGaayjkaiaawMcaa8aadaqhbaWcbaWdbiaacUdacaWGHbaapaqaa8 qacaGGGcaaaOGaaiiOaiabg2da9iaaicdacaWGHbaaaa@43F1@ . Eq. (5.4) gives the conservation of energy current associated with the motion of a heat conducting fluid. We now introduce the energy per baryon defined by

E=( μ + s θ n ) u t + q t n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qacq GHsislcaWGfbGaeyypa0ZaaeWaa8aabaWaaWraaSqabeaacqGHxiIk aaGccqaH8oqBpeGaey4kaSYaaSaaa8aabaWaaWraaSqabeaacqGHxi IkaaGccaWGZbWaaWraaSqabeaacqGHxiIkaaGccqaH4oqCaeaapeGa amOBaaaaaiaawIcacaGLPaaacaWG1bWdamaaBaaaleaapeGaamiDaa WdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacaWGXbWdamaaBaaaleaa peGaamiDaaWdaeqaaaGcbaWdbiaad6gaaaaaaa@4D27@ .(5.5)

From (5.4) and (5.5), on account of the first relation of (2.21), we find that,/

n E ,a u a +( ε θ q a )   ;a   =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGUbGaamyra8aadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGa amyDa8aadaahaaWcbeqaa8qacaWGHbaaaOGaey4kaSYaaeWaa8aaba Wdbmaalaaapaqaaiabew7aLbqaamaaCeaaleqabaGaey4fIOcaaOGa eqiUdehaa8qacaWGXbWdamaaCaaaleqabaWdbiaadggaaaaakiaawI cacaGLPaaapaWaa0raaSqaa8qacaGG7aGaamyyaaWdaeaapeGaaiiO aaaakiaacckacqGH9aqpcaaIWaaaaa@4DA6@ ,(5.6)

which shows that there is a mutual exchange between the energy per baryon of the matter part of fluid and the flux of effective thermal energy per entropon per unit of local temperature of the entropy fluid coupled to heat flow vector. Similarly, we find from (5.1b) and (5.2) by invoking the conservation law of energy-momentum tensor that

n[ ( μ + s θ n ) u φ + q φ n ]     ,a     u a +[ ( u φ + β θ q φ ) q a ]     :a     =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGUbWaamWaa8aabaWdbmaabmaapaqaamaaCeaaleqabaGaey4fIOca aOGaeqiVd02dbiabgUcaRmaalaaapaqaamaaCeaaleqabaGaey4fIO caaOGaam4CamaaCeaaleqabaGaey4fIOcaaOGaeqiUdehabaWdbiaa d6gaaaaacaGLOaGaayzkaaGaamyDa8aadaWgaaWcbaWdbiabeA8aQb WdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacaWGXbWdamaaBaaaleaa peGaeqOXdOgapaqabaaakeaapeGaamOBaaaaaiaawUfacaGLDbaapa Waa0raaSqaamaaDeaameaapeGaaiilaiaadggaa8aabaWdbiaaccka aaWccaGGGcaapaqaa8qacaGGGcaaaOGaaiiOaiaadwhapaWaaWbaaS qabeaapeGaamyyaaaakiabgUcaRmaadmaapaqaa8qadaqadaWdaeaa peGaamyDa8aadaWgaaWcbaWdbiabeA8aQbWdaeqaaOWdbiabgUcaRm aalaaapaqaa8qacqaHYoGya8aabaWaaWraaSqabeaacqGHxiIkaaGc cqaH4oqCaaWdbiaadghapaWaaSbaaSqaa8qacqaHgpGAa8aabeaaaO WdbiaawIcacaGLPaaacaWGXbWdamaaCaaaleqabaWdbiaadggaaaaa kiaawUfacaGLDbaapaWaa0raaSqaamaaDeaameaajugWa8qacaGG6a GaamyyaaadpaqaaKqzadWdbiaacckaaaWccaGGGcaapaqaa8qacaGG GcaaaOGaaiiOaiabg2da9iaaicdaaaa@7619@ .(5.7)

The angular momentum per baryon is defined as

L=[ ( μ + s θ n ) u φ + q φ n ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGmbGaeyypa0ZaamWaa8aabaWdbmaabmaapaqaamaaCeaaleqabaGa ey4fIOcaaOGaeqiVd02dbiabgUcaRmaalaaapaqaamaaCeaaleqaba Gaey4fIOcaaOGaam4CamaaCeaaleqabaGaey4fIOcaaOGaeqiUdeha baWdbiaad6gaaaaacaGLOaGaayzkaaGaamyDa8aadaWgaaWcbaWdbi abeA8aQbWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacaWGXbWdamaa BaaaleaapeGaeqOXdOgapaqabaaakeaapeGaamOBaaaaaiaawUfaca GLDbaaaaa@4FDA@ .(5.8)

It follows from (5.7) and (5.8), in view of the second relation of (2.21), that

n L ,a u a +( j θ q a )     ;a     =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qaca WGUbGaamita8aadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGa amyDa8aadaahaaWcbeqaa8qacaWGHbaaaOGaey4kaSYaaeWaa8aaba Wdbmaalaaapaqaa8qacaWGQbaapaqaamaaCeaaleqabaGaey4fIOca aOGaeqiUdehaa8qacaWGXbWdamaaCaaaleqabaWdbiaadggaaaaaki aawIcacaGLPaaapaWaa0raaSqaamaaDeaajiaObaWdbiaacUdacaWG Hbaapaqaa8qacaGGGcaaaSGaaiiOaaWdaeaapeGaaiiOaaaakiaacc kacqGH9aqpcaaIWaaaaa@5053@ (5.9)

which exhibits the mutual exchange between the matter part of fluid’s angular momentum per baryon and the flux of angular momentum per entropon per unit of local temperature of the entropy fluid coupled to heat flow vector. Thus (5.6) and (5.9) describe the dynamic interaction between the matter part of fluid and the entropy fluid during the course of evolution via the mutual exchange of fluid’s both energy and angular momentum per baryon with that of the flux of both the effective energy and effective angular momentum per entropon per unit of local temperature coupled to heat flow vector generated by the entropy fluid. It is worthwhile to notice that both (5.6) and (5.9) differ from the usual Bernoulli’s theorem30 in the sense that the energy and angular momentum per baryon of the matter part of fluid is not constant along the matter part of fluid’s flow lines. Eq. (5.6) and (5.9) represent the mutual exchange between the energy and angular momentum per baryon of mater part of fluid and flux of both the effective energy and effective angular momentum per entropon per unit of local temperature coupled to heat flow vector created by the entropy fluid in response to dynamic interaction with the motion of the matter part of fluid. This result looks simple but vindicates the hypothesis that the entropy element can be thought of as a mass less fluid constituted by entropon. It is expected that further investigation will reveal the elegance of the entropy fluid in the dynamic interaction with the motion of a heat conducting matter in Carter’s model.16,17

Conclusion

The present work is focused on the study of dynamic interaction of the entropy fluid with the motion of matter part of fluid based on Carter’s two-fluid model under the assumption that the space-time representing the gravitational field of a self-gravitating heat conducting fluid is stationary axisymmetric and non-circular. It is found that the rotational velocity of the matter part of fluid is modified due to non-circularity assumption of space-time which ensures the existence of its meridional circulation that induces an additional rotational effect. The effective energy and the effective angular momentum per particle of both the fluids contribute to the generation of rotational velocity. The differential rotation of the matter part of fluid along the thermal-fluid vector generates twist of the matter part of fluid’s vortex lines besides other effects. Ferraro’s like law of isorotation is obtained in the case of differentially rotating thermal-fluid vorticity flux surfaces in a frame of reference in which thermal-fluid helicity is conserved. Finally, by deriving the conservation laws of energy and angular momentum currents associated with the system of heat conducting fluid, it is demonstrated that there is a mutual exchange between both the energy and angular momentum per baryon of the matter part of fluid and of flux of both effective energy and effective angular momentum per entropon per unit of local temperature coupled to the heat flow vector created by the entropy fluid.

The above results indicate that the novel idea of the entropy element as a fluid will provide a new insight into the physical processes associated with the evolution of hot matter that departs from thermodynamic equilibrium. The notion of thermal equilibrium defined by the vanishing of heat flow vector seems to be a mathematical artifact because there is no thermodynamic condition that states the physical condition for the vanishing of heat flow vector in bringing the system to a thermal equilibrium except to assuming the vanishing of heat flow vector in addition to Born rigidity condition of fluid’s flow lines. If it is true, then the question is how the contribution of heat coupled to the entropy entrainment is eliminated from the EOS of a heat conducting fluid. This question requires answer.

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

  1. C Constantinou, B Mucciali, M Prakash, et al. Thermal properties of hot and dense matter with finite range interactions. Phys Rev C. 2015;92:025801.
  2. JL Friedman, N Stergioulas. Rotating Relativistic Stars. Cambridge Monographs on Mathematical Physics, UK:Cambridge University press; 2013. p. 429.
  3. L Lindblom. On the Analyticity of Certain Stationary Nonvacuum Einstein Spacetimes. Astroph J. 1976;208:873−880.
  4. M Born. Die träge Masse und das Relativitä Annlen Phys. 1909;333(3):571.
  5. C Eckart. The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid. Rev. 1940;58(10):919−924.
  6. M Tsamparlis, DP Masson. On spacelike congruences in general relativity. J Math Phys. 1983;24:1577.
  7. JN Cook, SL Shapiro, BC Stephens. Magnetic Braking and Viscous Damping of Differential Rotation in Cylindrical Stars. Astroph J. 2003;599(2):1272.
  8. RH Boyer. Rotating fluid masses in general relativity. II. Proc Camb Phil Soc. 1966;62(3):495−501.
  9. EN Glass. Rotating steady state configurations in general relativity. J Math Phys. 1977;18:708.
  10. G Prasad. Vorticity and helicity in relativistic heat−conducting fluid. Class Quant Grav. 2017;34:245011.
  11. D Bekenstein. Helicity conservation laws for fluids and plasmas. Astroph J. 1987;319:207−214.
  12. F Weber, R Negreiros. Phase Transitions in Dense Baryonic Matter and Cooling of Rotating Neutron Stars. Acta Physica Pol. 2010;30:701−710.
  13. R Negreiros, S Schramn. Thermal evolution of neutron stars in two dimensions. Phys Rev D. 2012;85:104019.
  14. AY Potekhin, A De Lucas, JA Pons. Neutron Stars−Cooling and Transport. Space Sci Rev. 2015;191(1−4):239−291.
  15. SK Lander, N Andersson. Heat Conduction in Rotating Stars. 2018;479(3):4207−4215.
  16. B Carter. Relativistic Fluid Dynamics in Lecture Notes in Mathematics. In: Angelo M Anile, Yvonne Choquet Bruhat, editors. Lecture Notes in Mathematics. Volume 1385, Berlin, Heidelberg: Springer;1989. p.1−64
  17. CS Lopez Monsalov, N Andersson. Thermal dynamics in general relativity. Proc Roy Soc London A. 2011;467(2127):738−759.
  18. W Israel, JM Stewart. Transient relativistic thermodynamics and kinetic theory. Ann Phys. 1979;118(2):341−372.
  19. D Priou. Comparison between variational and traditional approaches to relativistic thermodynamics of dissipative fluids. Phys Rev D. 1991;43(4):1223.
  20. G Prasad. Thermal Vorticity and Thermal Chirality in Relativistic Thermally Conducting Fluids. Class Quant Grav. 2018.
  21. B Carter. Black Hole Equilibrium States. In: Black Hole. Les Houches, C Dewitt, editors. New York. 1973. p. 61−214.
  22. E Gourgoulhon, C Marlakis, K Uryu, et al. Magnetohydrodynamics in stationary and axisymmetric spacetimes: A fully covariant approach. Phys Rev D. 2011;83:104007.
  23. A Lichnerowicz. Relativistic Hydrodynamics and Magnetohydrodynamics. New York: Benjamin. 1967.
  24. J Ehlers. Contributions to the relativistic mechanics of continuous media. Gen Rel Grav. 1993;25:1225−1266.
  25. PJ Greenberg. The general theory of space like congruences with an application to vorticity in relativistic hydrodynamics. J Math Anal Appl. 1970;30(1):128−143.
  26. B Carter. Perfect Fluid and Magnetic Field Conservation Laws in the Theory of Black Hole accretion Rings. In: Active Galactic Nuclei. C Hazard, S Mitton, editors. UK: Cambridge University press; 1979. p.273−279.
  27. G Prasad. Fluid−magnetic helicity in axisymmetric stationary relativistic magnetohydrodynamics. General Relativity and Gravitation. 2017;49:126.
  28. JM Bardeen. Rotating Stars and Disk in Black Hole. In: Les Houches, C Dewitt, BS Dewitt, editors. New York: Gordon Breach; 1973. p. 241−290.
  29. AK Raychaudhuri. Ferraro’s theorem in non−flat space time. Mont Not Roy Astron Soc. 1979;189:39−43.
  30. JD Bekennstein, E Oron. New conservation laws in general−relativistic magnetohydrodynamics. Phys Rev D. 1978;18:1809.
Creative Commons Attribution License

©2018 Prasad. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.