Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 3

Quarks species in a cold genesis theory; theoretic implications of a Vortical quark model

Marius Arghirescu

State Office for Inventions and Trademarks, Patents Department, Romania

Correspondence: Marius Arghirescu, State Office for Inventions and Trademarks, Patents Department, Romanian Academy, Romania

Received: September 21, 2023 | Published: September 29, 2023

Citation: Arghirescu M. Quarks species in a cold genesis theory; theoretic implications of a Vortical quark model. Phys Astron Int J. 2023;7(3):195‒207. DOI: 10.15406/paij.2023.07.00310

Download PDF

Abstract

By the author’s cold genesis theory (CGT), based on the Galileian relativity, it was argued the possibility to explain the massic spectrum of the elementary particles by two species of preonic quasi-crystalline quarks: A) preonics –formed by basic preons z0(34 me) which form bosonic preons z 2 ( 4 z 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadQhapaWaaSbaaSqaa8qacaaIYaaapaqabaGc daqadaqaa8qacaaI0aGaamOEa8aadaahaaWcbeqaa8qacaaIWaaaaa GcpaGaayjkaiaawMcaaaaa@41ED@ and z pi ( 7 z 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadQhapaWaaSbaaSqaa8qacaWGWbGaamyAaaWd aeqaaOWaaeWaaeaapeGaaG4naiaadQhapaWaaWbaaSqabeaapeGaaG imaaaaaOWdaiaawIcacaGLPaaaaaa@4317@ , and B) quarkonics – formed by 3n preonic quarks (4n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaaI0aGaeyyzImRaamOBaiabgwMiZkaa igdapaGaaiykaaaa@42B9@ (mainly –v- or/and s-quarks) or as crystalline cluster of 7x5 = 35 preonic or quarkonic quarks: ( p + ; n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aadaqadaqaaabaaaaaaaaapeGaamiCa8aadaahaaWcbeqaa8qacqGH RaWkaaGccaGG7aGaamOBa8aadaahaaWcbeqaa8qacqGHsislaaaak8 aacaGLOaGaayzkaaaaaa@4213@ –nucleonic quarks or l ± ,  s ± , v ± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadYgapaWaaWbaaSqabeaapeGaeyySaelaaOGa aiilaiaabccacaWGZbWdamaaCaaaleqabaWdbiabgglaXcaakiaacY cacaWG2bWdamaaCaaaleqabaWdbiabgglaXcaaaaa@4702@ -preonic quarks, or c- or b- quarkonic quarks, (‚charm’, ‚botton’), in two flavors: f=1-of Standard model’s variant and f = 2 –of Souza/CGT’s variant. Because the basic z0-preons are explained as cluster of paired degenerate electrons, the strong forces between quarks and particles can be naturally explained by the existence of a permanent etherono-quantonic vortex around the super-dense kernel of electron generated by etherono-quantonic winds of the quantum vacuum and by an etheronic centripetal force of Magnus type. As consequence, in CGT can be argued a model of‚ gravistar’ having a shell of dark energy but also of photons vortexed around a rotational hard core (HC) of black hole type which –by matter→energy conversion can obtain periodically an antigravitic (pseudo)charge MA, by the releasing of heavy etherons of the destroyed degenerate electrons’ vortices. The antigravitic field of an enough high value of MA, produced by the friction between the surface of an internal hard core (HCi) of HC, of black hole type, and the interior surface of a crystalline shell of current strange cold quarks, HCe, could be –in this case, a natural equivalent of the‚ dilaton’ field considered in the EMD theories.

Keywords: quark model, preon, vortical atom, cold genesis, gravistar, antigravitic charge

Introduction

In the Standard Model (S.M.), it is known the constituent quark model, with a valence current quark (u-up, d-down, s-strange) or (c-charm, b-bottom, t-top) with a current mass:1 (1.8¸2.8; 4.3¸5.2; 92¸104) MeV/c2, respective: (1.27; 4.18; 173) GeV/c2 and a gluonic shell formed by gluons and sea-quarks,1 the resulted effective quark mass being the constituent quark mass: (336, 340, 486) MeV/c2, respective: (1.55, 4.73, 177) GeV/c2. The electric charge of u-, c-, t- quarks is +(2/3)e and the electric charge of d-, s-, b- quarks is –(1/3)e, the strong interaction of quarks being explained by so-named “color charge”, the gluons having two opposed color charges, the gluon field between a pair of color charges forming a narrow flux tube (as a ‘string’) between them, (the Lund string model).2 However, the Grand Unified theories (GUT) predict relations among the fermion masses, such as between the electron and the u-, d-quark, the muon and the strange quark and between the tau lepton and the bottom quark, but these relations were only partially obtained.

In a Cold Genesis pre-quantum theory of particles and fields, (C.G.T.,),3-5 based on the Galilean relativity, it results as more natural alternative the possibility to explain the constituent quarks and the resulted elementary particles as clusters of negatron-positron pairs, named ‘gammons’ (γ( e e + )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacqaHZoWzpaWaaeWaaeaapeGaamyza8aa daahaaWcbeqaa8qacqGHsislaaGccaWGLbWdamaaCaaaleqabaWdbi abgUcaRaaaaOWdaiaawIcacaGLPaaacaGGPaaaaa@445F@ , resulting that preonic bosons and quarks can be formed also ‘at cold’, as Bose-Einstein condensate of ‘gammons’ which form quasi-stable basic preons z0 of mass ~34 me , forming constituent quarks, (M. Arghirescu, 2006, p. 58).3 This z0 -preon was deduced by calibrating the value: m k =  m e /2α= 68.5 m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGRbaapaqabaGc peGaeyypa0Jaaeiiaiaad2gapaWaaSbaaSqaa8qacaWGLbaapaqaba GcpeGaai4laiaaikdacqaHXoqycqGH9aqpcaqGGaGaaGOnaiaaiIda caGGUaGaaGynaiaad2gapaWaaSbaaSqaa8qacaWGLbaapaqabaaaaa@4B88@ obtained by Olavi Hellman,5 by using the masses of the proton and of the Σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo6atbaa@3CDD@ -baryon.3

The Olavi Hellman’s relation was deduced by a system of non-linear classical field equations having particle-like solutions, this relation being obtained in the form:

M= (k-1)( 2 l 0 c )=(k1) m e /2α;          (k 2;  l 0 =  e 2 m e c 2 = a c =2.82fm;    α= 1 137 ;    =  h 2π ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaiaab2eacqGH9aqpcaqGGaGaaeikaiaabUgacaqGTaGaaeym aiaabMcadaqadaqaamaaliaabaGaeS4dHGgabaGaaGOmaiaadYgada WgaaWcbaGaaGimaaqabaGccaWGJbaaaaGaayjkaiaawMcaaiabg2da 9iaacIcacaWGRbGaeyOeI0IaaGymaiaacMcacqGHflY1caWGTbWaaS baaSqaaiaadwgaaeqaaOGaae4laiaabkdacqaHXoqycaqG7aGaaeii aiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGa aabaGaaeikaiaabUgacqGHLjYScaqGYaGaae4oaiaabccacaqGGaGa aeiBamaaBaaaleaacaqGWaaabeaakiabg2da9iaabccadaWccaqaai aabwgadaahaaWcbeqaaiaabkdaaaaakeaacaqGTbWaaSbaaSqaaiaa bwgaaeqaaOGaam4yamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpca qGHbWaaSbaaSqaaiaabogaaeqaaOGaeyypa0JaaeOmaiaab6cacaqG 4aGaaeOmaiaabAgacaqGTbGaae4oaiaabccacaqGGaGaaeiiaaqaai abeg7aHjabg2da9maaliaabaGaaeymaaqaaiaabgdacaqGZaGaae4n aaaacaGG7aGaaeiiaiaabccacaqGGaGaeS4dHGMaaeiiaiabg2da9i aabccadaWccaqaaiaabIgaaeaacaqGYaGaeqiWdahaaiaacMcaaaaa @8511@   (1)

In a relative recent paper, (2015),7 after some experiments for the detection of dark photons, a research team of Science’ Institute for Nuclear Research in Debrecen (Hungary) evidenced a neutral super-light particle with a mass of ~17 MeV/c2 , (~34 me), named X17, by a reaction:

Li7 +  p + Be*Be8 +  b 0 ;   b 0 ( 17MeV ) e + +  e   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadYeacaWGPbGaaG4naiaabccacqGHRaWkcaqG GaGaamiCa8aadaahaaWcbeqaa8qacqGHRaWkaaGccqGHsgIRcaWGcb GaamyzaiaacQcacqGHsgIRcaWGcbGaamyzaiaaiIdacaqGGaGaey4k aSIaaeiiaiaadkgapaWaaWbaaSqabeaapeGaaGimaaaakiaacUdaca GGGcGaaiiOaiaadkgapaWaaWbaaSqabeaapeGaaGimaaaak8aadaqa daqaa8qacaaIXaGaaG4naiaad2eacaWGLbGaamOvaaWdaiaawIcaca GLPaaapeGaeyOKH4Qaamyza8aadaahaaWcbeqaa8qacqGHRaWkaaGc cqGHRaWkcaqGGaGaamyza8aadaahaaWcbeqaa8qacqGHsislcaGGGc aaaaaa@62AD@ ,

which was explained in CGT by the conclusion that z0-preon is composed by two ‘quarcins’, c0±, its stability being explained in CGT by the conclusion that it is formed as cluster of an even number n = 7x6 = 42 quasielectrons, (integer number of degenerate “gammons”, γ * ( e * e *+ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacqaHZoWzdaahaaWcbeqaaabaaaaaaaaapeGaaiOkaaaak8aadaqa daqaa8qacaWGLbWdamaaCaaaleqabaWdbiaacQcacqGHsislaaGcca WGLbWdamaaCaaaleqabaWdbiaacQcacqGHRaWkaaaak8aacaGLOaGa ayzkaaaaaa@4547@ ), with mass me* 34/42 = 0.8095  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgIKi7kaaiodacaaI0aGaai4laiaaisdacaaI YaGaaeiiaiabg2da9iaabccacaaIWaGaaiOlaiaaiIdacaaIWaGaaG yoaiaaiwdacaqGGaGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaa aaa@4A41@ , i.e. reduced to a value corresponding to the charge e* = ±(2/3)e by a degeneration of the magnetic moment’s quantum vortex Γ μ =   Γ A + Γ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiabeY7aTbWdaeqa aOWdbiabg2da98aadaWgaaWcbaWdbiaacckaa8aabeaak8qacqqHto WrpaWaaSbaaSqaa8qacaWGbbaapaqabaGcpeGaey4kaSIaeu4KdC0d amaaBaaaleaapeGaamOqaaWdaeqaaaaa@4796@ , given by ‘heavy’ etherons of mass m s 10 60 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGZbaapaqabaGc peGaeyisISRaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaG OnaiaaicdaaaGccaWGRbGaam4zaaaa@4576@ and ‘quantons’ of mass m h = h1/ c 2 =7.37x 10 51 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGObaapaqabaGc peGaeyypa0JaaeiiaiaadIgacqGHflY1caaIXaGaai4laiaadogapa WaaWbaaSqabeaapeGaaGOmaaaakiabg2da9iaaiEdacaGGUaGaaG4m aiaaiEdacaWG4bGaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0 IaaGynaiaaigdaaaGccaWGRbGaam4zaaaa@50F6@ . The considered “gammons” were experimentally observed in the form of quanta of “un-matter” plasma.8

The me* -value results in CGT by the conclusion that the difference between the masses of neutron and proton: ( m n m p 2.62  m e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGTbWdamaaBaaaleaapeGaamOBaaWd aeqaaOWdbiabgkHiTiaad2gapaWaaSbaaSqaa8qacaWGWbaapaqaba GcpeGaeyisISRaaGOmaiaac6cacaaI2aGaaGOmaiaabccacaWGTbWd amaaBaaaleaapeGaamyzaaWdaeqaaOGaaiykaaaa@49D1@ is given by an incorporate electron with degenerate magnetic moment and a linking ‘gammon’ σ e ( γ * ) = 2 m e * 1.62  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeo8aZ9aadaWgaaWcbaWdbiaadwgaa8aabeaa kiaacIcapeGaeq4SdC2damaaCaaaleqabaWdbiaacQcaaaGcpaGaai yka8qacaqGGaGaeyypa0JaaeiiaiaaikdacaWGTbWdamaaBaaaleaa peGaamyzaaWdaeqaaOWaaWbaaSqabeaapeGaaiOkaaaakiabgIKi7k aaigdacaGGUaGaaGOnaiaaikdacaqGGaGaamyBa8aadaWgaaWcbaWd biaadwgaa8aabeaaaaa@504D@ , forming a ‘weson’, w  = ( σ e ( γ * ) +  e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadEhapaWaaWbaaSqabeaapeGaeyOeI0caaOGa aiiOaiabg2da9iaabccapaGaaiika8qacqaHdpWCpaWaaSbaaSqaa8 qacaWGLbaapaqabaGccaGGOaWdbiabeo7aN9aadaahaaWcbeqaa8qa caGGQaaaaOWdaiaacMcapeGaaeiiaiabgUcaRiaabccacaWGLbWdam aaCaaaleqabaWdbiabgkHiTaaak8aacaGGPaaaaa@4D85@ , which explains the neutron in a dynamide model of Lenard- Radulescu type,3 (protonic center and a negatron revolving around it by the Γ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiabeY7aTbWdaeqa aaaa@3ED1@ -vortex with the speed ve* << c, at a distance r e * 1.36 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaWGLbaapaqabaGc daahaaWcbeqaa8qacaGGQaaaaOGaeyisISRaaGymaiaac6cacaaIZa GaaGOnaaaa@432E@ fm4- close to the value of the nucleon’s scalar radius: r 0  1.25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaaiiOaiabgIKi7kaaigdacaGGUaGaaGOmaiaaiwdaaaa@433B@ fm used by the formula of nuclear radius: R n r 0 A 1/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkfapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaeyisISRaamOCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacq GHflY1caWGbbWdamaaCaaaleqabaWdbiaaigdacaGGVaGaaG4maaaa aaa@46F4@ ), at which it has a degenerate μ e S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaadwgaa8aabeaa kmaaCaaaleqabaWdbiaadofaaaaaaa@3F72@ -magnetic moment and Sen –spin).

The degenerate value μ e p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaadwgaa8aabeaa kmaaCaaaleqabaWdbiaadchaaaaaaa@3F8F@ of the magnetic moment of a protonic positron (giving its charge, as in the Anderson’s model) or of a quasielectron results in CGT by the decreasing of its Compton radius r μ e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaaiabeY7aTbqabaGcdaah aaWcbeqaa8qacaWGLbaaaaaa@3F72@ proportional with the quantum density ρ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaad6gaa8aabeaa aaa@3E66@ of the protonic Np- cluster in which is placed the electron’s super-dense kernel, (its centroid), from the value: r μ e = 3.86x 10 13 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaaiabeY7aTbqabaGcdaah aaWcbeqaa8qacaWGLbaaaOGaeyypa0JaaeiiaiaaiodacaGGUaGaaG ioaiaaiAdacaWG4bGaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOe I0IaaGymaiaaiodaaaGccaWGTbaaaa@4A35@ , to the value: r i =  r μ p = 0,59 fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaeyypa0JaaeiiaiaadkhapaWaaSbaaSqaaiabeY7aTbqabaGcda ahaaWcbeqaa8qacaWGWbaaaOGaeyypa0JaaeiiaiaaicdacaGGSaGa aGynaiaaiMdacaqGGaGaamOzaiaad2gaaaa@4A9E@ , (virtual radius of the proton’s magnetic moment μ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaadchaa8aabeaa aaa@3E5E@ ) given by the quantum mean density increasing, from the value: ρ ¯ e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aadaqdaaqaaiabeg8aYbaadaWgaaWcbaaeaaaaaaaaa8qacaWGLbaa paqabaaaaa@3E50@ to the value: ρ ¯ n     f d N p ρ ¯ e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aadaqdaaqaaiabeg8aYbaadaWgaaWcbaaeaaaaaaaaa8qacaWGUbaa paqabaGcdaWgaaWcbaWdbiaacckaa8aabeaak8qacqGHfjcqcaGGGc GaamOza8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacqGHflY1caWG obWdamaaCaaaleqabaWdbiaadchaaaGccqGHflY1paWaa0aaaeaacq aHbpGCaaWaaSbaaSqaaiaadwgaaeqaaaaa@4E33@ ; ( ρ ¯ e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aadaqdaaqaaiabeg8aYbaadaWgaaWcbaGaamyzaaqabaaaaa@3E21@ ; ρ ¯ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aadaqdaaqaaiabeg8aYbaadaWgaaWcbaaeaaaaaaaaa8qacaWGUbaa paqabaaaaa@3E59@ – the mean density of electron and nucleon).

The used electron model supposes an exponential variation of its density, given by photons of inertial mass mf , vortically attracted around a dense kernel m0 and confined in a volume of classic radius a = 1.41 fm, (the e-charge in electron’s surface), the superposition of the (Np+1) quantonic vortices, Γ μ * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaGaeqiVd0gabeaakmaa CaaaleqabaGaaiOkaaaaaaa@3F97@ , of the protonic quasielectrons, generating a total dynamic pressure: P n = ( 1/2 ) ρ n ( r ) c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadcfapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaeyypa0Jaaeiia8aadaqadaqaa8qacaaIXaGaai4laiaaikdaa8 aacaGLOaGaayzkaaWdbiabeg8aY9aadaWgaaWcbaWdbiaad6gaa8aa beaakmaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWdbiabgwSixl aadogapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@4D2F@ , inside a volume with radius: da = 2.1 fm, which gives an exponential nuclear potential: V n ( r ) =  υ i P n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAfapaWaaSbaaSqaa8qacaWGUbaapaqabaGc daqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0 JaaeiiaiabgkHiTiabew8a19aadaWgaaWcbaWdbiaadMgaa8aabeaa k8qacaWGqbWdamaaBaaaleaapeGaamOBaaWdaeqaaaaa@48BE@ of eulerian form conform to :

V n ( r ) = υ i P n = V n0 e r/ η* ;  V n0 =  υ i P n0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAfapaWaaSbaaSqaa8qacaWGUbaapaqabaGc daqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0 JaeqyXdu3damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaadcfapaWa aSbaaSqaa8qacaWGUbaapaqabaGcpeGaeyypa0JaamOva8aadaWgaa WcbaWdbiaad6gacaaIWaaapaqabaGcpeGaeyyXICTaamyza8aadaah aaWcbeqaa8qacqGHsislcaWGYbGaai4laaaak8aadaahaaWcbeqaa8 qacqaH3oaAcaGGQaaaaOGaai4oaiaacckacaWGwbWdamaaBaaaleaa peGaamOBaiaaicdaa8aabeaak8qacqGH9aqpcaqGGaGaeyOeI0Iaeq yXdu3damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaadcfapaWaaSba aSqaa8qacaWGUbGaaGimaaWdaeqaaaaa@6195@ ,(2)

with: η* = 0.8fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeE7aOjaacQcacaqGGaGaeyypa0Jaaeiiaiaa icdacaGGUaGaaGioaiaadAgacaWGTbaaaa@440A@ and υ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabew8a19aadaWgaaWcbaWdbiaadMgaa8aabeaa aaa@3E68@ (0.6fm)-the ‘impenetrable’ volume,3,9 the nucleon resulting as formed by N p 54x42=2268 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6eapaWaaWbaaSqabeaapeGaamiCaaaakiab gIKi7kaaiwdacaaI0aGaamiEaiaaisdacaaIYaGaeyypa0JaaGOmai aaikdacaaI2aGaaGioaaaa@471C@ quasi-electrons which give a proton density in its center of value: ρ n o N p ρ e o = 5.04x 10 17 kg/ m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaad6gaa8aabeaa kmaaCaaaleqabaWdbiaad+gaaaGccqGHijYUcaWGobWdamaaCaaale qabaWdbiaadchaaaGccqGHflY1cqaHbpGCpaWaaSbaaSqaa8qacaWG LbaapaqabaGcdaahaaWcbeqaa8qacaWGVbaaaOGaeyypa0Jaaeiiai aaiwdacaGGUaGaaGimaiaaisdacaWG4bGaaGymaiaaicdapaWaaWba aSqabeaapeGaaGymaiaaiEdaaaGccaWGRbGaam4zaiaac+cacaWGTb WdamaaCaaaleqabaWdbiaaiodaaaaaaa@576D@ , ( ρ e 0 = 22.24 x 10 13 kg/ m 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacqaHbpGCpaWaaSbaaSqaa8qacaWGLbaa paqabaGcdaahaaWcbeqaa8qacaaIWaaaaOGaeyypa0Jaaeiiaiaaik dacaaIYaGaaiOlaiaaikdacaaI0aGaaeiiaiaadIhacaaIXaGaaGim a8aadaahaaWcbeqaa8qacaaIXaGaaG4maaaakiaadUgacaWGNbGaai 4laiaad2gapaWaaWbaaSqabeaapeGaaG4maaaak8aacaGGPaaaaa@4F94@ , giving- with υ i ( a i ) = 0.9 f m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabew8a19aadaWgaaWcbaWdbiaadMgaa8aabeaa kmaabmaabaWdbiaadggapaWaaSbaaSqaa8qacaWGPbaapaqabaaaki aawIcacaGLPaaapeGaaeiiaiabg2da9iaabccacaaIWaGaaiOlaiaa iMdacaqGGaGaamOzaiaad2gapaWaaWbaaSqabeaapeGaaG4maaaaaa a@4A57@ : V s 0 = 127.5 MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAfapaWaaSbaaSqaa8qacaWGZbaapaqabaGc daahaaWcbeqaa8qacaaIWaaaaOGaeyypa0JaaeiiaiaaigdacaaIYa GaaG4naiaac6cacaaI1aGaaeiiaiaad2eacaWGLbGaamOvaaaa@471D@ and: V s ( d=2fm ) 9MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAfapaWaaSbaaSqaa8qacaWGZbaapaqabaGc daqadaqaa8qacaWGKbGaeyypa0JaaGOmaiaadAgacaWGTbaapaGaay jkaiaawMcaa8qacqGHijYUcaGGGcGaaGyoaiaad2eacaWGLbGaamOv aaaa@49FF@ value specific to the mean binding energy per nucleon in the nuclei with the most strongly bound nucleons, (9.14 ¸9.15 MeV/nucleon for 56Fe, 58Fe, 60Ni, 62Ni), explained by the Bernoulli’s law.3

In CGT it was also deduced a quark model of cold forming quark, with effective (constituent) mass giving the particle’s mass by the sum rule, by considering as fundamental stable sub-constituent the basic preon z 0 = 42  m e * 34  m e   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadQhapaWaaWbaaSqabeaapeGaaGimaaaakiab g2da9iaabccacaaI0aGaaGOmaiaabccacaWGTbWdamaaBaaaleaape GaamyzaaWdaeqaaOWaaWbaaSqabeaapeGaaiOkaaaakiabgwKiajaa iodacaaI0aGaaeiiaiaad2gapaWaaSbaaSqaa8qacaWGLbaapaqaba GcpeGaaiiOaaaa@4B28@ which can form derived “zerons”, (preonic neutral bosons: 2 z 0 ; z 1 ( 3 z 0 ); z 2 ( 4 z 0 );  z μ ( 6 z 0 ),  z π ( 7 z 0 ),) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaaikdacaWG6bWdamaaCaaaleqabaWdbiaaicda aaGccaGG7aGaamOEa8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaabm aabaWdbiaaiodacaWG6bWdamaaCaaaleqabaWdbiaaicdaaaaak8aa caGLOaGaayzkaaWdbiaacUdacaWG6bWdamaaBaaaleaapeGaaGOmaa WdaeqaaOWaaeWaaeaapeGaaGinaiaadQhapaWaaWbaaSqabeaapeGa aGimaaaaaOWdaiaawIcacaGLPaaapeGaai4oaiaabccacaWG6bWdam aaBaaaleaacqaH8oqBaeqaaOWaaeWaaeaapeGaaGOnaiaadQhapaWa aWbaaSqabeaapeGaaGimaaaaaOWdaiaawIcacaGLPaaapeGaaiilai aabccacaWG6bWdamaaBaaaleaacqaHapaCaeqaaOWaaeWaaeaapeGa aG4naiaadQhapaWaaWbaaSqabeaapeGaaGimaaaaaOWdaiaawIcaca GLPaaapeGaaiila8aacaGGPaaaaa@6013@ , the light and semi-light quarks (mqc2 < 1 GeV) resulting by only two preonic bosons: z2(4z0) = 136 me and: z π ( 7 z 0 )=238  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadQhapaWaaSbaaSqaaiabec8aWbqabaGcdaqa daqaa8qacaaI3aGaamOEa8aadaahaaWcbeqaa8qacaaIWaaaaaGcpa GaayjkaiaawMcaa8qacqGH9aqpcaaIYaGaaG4maiaaiIdacaqGGaGa amyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@48FC@ .

The cold quarks result as superpositions of preonic bosons z2 = 4z0 and z π = 7 z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadQhapaWaaSbaaSqaaiabec8aWbqabaGcpeGa eyypa0JaaeiiaiaaiEdacaWG6bWdamaaCaaaleqabaWdbiaaicdaaa aaaa@42D9@ with almost the same symmetry (Figure 1), resulting a constituent quark’ mass equation:4,5

q=m+k z π +n(k2) z 2 ;  m=( m 1 + ; m 2 );  k=0÷i=3;   n<k,(n=0÷2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaiaadghacqGH9aqpcaWGTbGaey4kaSIaam4AaiabgwSixlaa dQhadaWgaaWcbaGaeqiWdahabeaakiabgUcaRiaad6gacqGHflY1ca GGOaGaam4AaiabgkHiTiaaikdacaGGPaGaeyyXICTaamOEamaaBaaa leaacaaIYaaabeaakiaacUdaqaaaaaaaaaWdbiaacckaaeaacaWGTb Gaeyypa0Jaaiikaiaad2gadaqhaaWcbaGaaGymaaqaaiabgUcaRaaa kiaacUdacaWGTbWaa0baaSqaaiaaikdaaeaacqGHsislaaGccaGGPa Gaai4oaiaacckacaGGGcGaam4Aaiabg2da9iaaicdacqGH3daUcaWG PbGaeyypa0JaaG4maiaacUdacaGGGcGaaiiOaaqaaiaad6gacqGH8a apcaWGRbGaaiilaiaacIcacaWGUbGaeyypa0JaaGimaiabgEpa4kaa ikdacaGGPaaaaaa@7578@   (3)

i.e: ( k, n = 0 )q =  m 1,2   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkHiT8aadaqadaqaa8qacaWGRbGaaiilaiaa bccacaWGUbGaaeiiaiabg2da9iaabccacaaIWaaapaGaayjkaiaawM caa8qacqGHshI3caWGXbGaaeiiaiabg2da9iaabccacaWGTbWdamaa BaaaleaapeGaaGymaiaacYcacaaIYaaapaqabaGcpeGaaiiOaaaa@4E99@ , (‚mark’ –mesonic quark);

( k = 1, n = 0  )q =  r ± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkHiT8aadaqadaqaa8qacaWGRbGaaeiiaiab g2da9iaabccacaaIXaGaaiilaiaabccacaWGUbGaaeiiaiabg2da9i aabccacaaIWaGaaeiiaaWdaiaawIcacaGLPaaapeGaeyO0H4TaamyC aiaabccacqGH9aqpcaqGGaGaamOCa8aadaahaaWcbeqaa8qacqGHXc qSaaaaaa@50C3@ , (‚rark’- un-stable quark);

( k = 2 ) q =  p + ,  n , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkHiT8aadaqadaqaa8qacaWGRbGaaeiiaiab g2da9iaabccacaaIYaaapaGaayjkaiaawMcaa8qacaGGGcGaeyO0H4 TaamyCaiaabccacqGH9aqpcaqGGaGaamiCa8aadaahaaWcbeqaa8qa cqGHRaWkaaGccaGGSaGaaeiiaiaad6gapaWaaWbaaSqabeaapeGaey OeI0caaOGaaiilaaaa@4F2E@  (park, nark –nucleonic quarks); (lark –lambda-quark);

 ( k = 3, n = 1  )q =  s ,  s + , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkHiTiaabccapaWaaeWaaeaapeGaam4Aaiaa bccacqGH9aqpcaqGGaGaaG4maiaacYcacaqGGaGaamOBaiaabccacq GH9aqpcaqGGaGaaGymaiaabccaa8aacaGLOaGaayzkaaWdbiabgkDi ElaadghacaqGGaGaeyypa0JaaeiiaiaadohapaWaaWbaaSqabeaape GaeyOeI0caaOGaaiilaiaabccacaWGZbWdamaaCaaaleqabaWdbiab gUcaRaaakiaacYcaaaa@54A6@  (sark –strange quark);

( k = 3, n = 2 )q =  v + ;  v , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkHiT8aadaqadaqaa8qacaWGRbGaaeiiaiab g2da9iaabccacaaIZaGaaiilaiaabccacaWGUbGaaeiiaiabg2da9i aabccacaaIYaaapaGaayjkaiaawMcaa8qacqGHshI3caWGXbGaaeii aiabg2da9iaabccacaWG2bWdamaaCaaaleqabaWdbiabgUcaRaaaki aacUdacaqGGaGaamODa8aadaahaaWcbeqaa8qacqGHsislaaGccaGG Saaaaa@5376@  (vark).

The values of the basic quarks m1,2 (‚mark’,)3,4 are m1+ = 135.2 me and m2- = 137.8 me and correspond to a mean value (1/α) m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaaIXaGaai4laiabeg7aH9aacaGGPaWd biaad2gapaWaaSbaaSqaa8qacaWGLbaapaqabaaaaa@4214@ obtained by Eq. (1) with l0 = a = 1.14 fm, (electron’s classic radius corresponding to the e-charge contained by its surface), so: m= [(1/α) 0.5± 1.3]  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gacqGH9aqpcaqGGaWdaiaacUfacaGGOaWd biaaigdacaGGVaGaeqySde2daiaacMcapeGaaeiiaiabgkHiTiaaic dacaGGUaGaaGynaiabgglaXkaacckacaaIXaGaaiOlaiaaiodapaGa aiyxa8qacaqGGaGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaaaa a@5047@ .

The particle’s mass results by eqs. (3), in the approximation of the sum rule applied to the particle’s cold forming, as consequence of the quantum fields’ superposition principle applied to the particle’s cold forming as sum of degenerate electrons, whose total vortical field can explain also the nuclear force F n =  V n ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaeyypa0JaaeiiaiabgkHiTiabgEGirlaadAfapaWaaSbaaSqaa8 qacaWGUbaapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMca aaaa@4678@ conform to eq. (2).3,9

The main link between CGT and the S. M. consists in the fact that- considering the electron’s mass confined in its kernel, the z0-preon can be considered as formed by 3 pairs ( u c   u ¯ c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaacIcacaWG1bWdamaaBaaaleaapeGaam4yaaWd aeqaaOWdbiaacckaceWG1bWdayaaraWaaSbaaSqaa8qacaWGJbaapa qabaGccaGGPaaaaa@428A@ of current uc -quarks formed by a quasielectron (e*±) surrounded by 3 gluonic ‘gammons’, i.e. with mass: m( u c ) = 7 m e * 2.9 MeV/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaeWaaeaapeGaamyDa8aadaWgaaWc baWdbiaadogaa8aabeaaaOGaayjkaiaawMcaa8qacaqGGaGaeyypa0 JaaeiiaiaaiEdacaWGTbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWa aWbaaSqabeaapeGaaiOkaaaakiabgIKi7kaaikdacaGGUaGaaGyoai aabccacaWGnbGaamyzaiaadAfacaGGVaGaam4ya8aadaahaaWcbeqa a8qacaaIYaaaaaaa@504A@ , the current d-quark resulting with a mass: m( d c ) = m( u c ) +  w ( e γ * ) = ( 2.9 + 2.62 ) MeV = 5.52 MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaeWaaeaapeGaamiza8aadaWgaaWc baWdbiaadogaa8aabeaaaOGaayjkaiaawMcaa8qacaqGGaGaeyypa0 Jaaeiiaiaad2gapaWaaeWaaeaapeGaamyDa8aadaWgaaWcbaWdbiaa dogaa8aabeaaaOGaayjkaiaawMcaa8qacaqGGaGaey4kaSIaaeiiai aadEhapaWaaWbaaSqabeaapeGaeyOeI0caaOWdaiaacIcapeGaamyz a8aadaahaaWcbeqaa8qacqGHsislaaGccqaHZoWzpaWaaWbaaSqabe aapeGaaiOkaaaak8aacaGGPaWdbiaabccacqGH9aqpcaqGGaWdamaa bmaabaWdbiaaikdacaGGUaGaaGyoaiaabccacqGHRaWkcaqGGaGaaG Omaiaac6cacaaI2aGaaGOmaaWdaiaawIcacaGLPaaapeGaaeiiaiaa d2eacaWGLbGaamOvaiaabccacqGH9aqpcaqGGaGaaGynaiaac6caca aI1aGaaGOmaiaabccacaWGnbGaamyzaiaadAfaaaa@694C@ , (in the limits accepted by S.M.).

M. de Souza10 deduced the energy levels of baryon resonances with maximal discrepancy of ~5% by a rest mass’ energy of constituent quarks (Eq = mqc2) taken as being: E q ( m u m d ) = 0.31 GeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadweapaWaaSbaaSqaa8qacaWGXbaapaqabaGc caGGOaWdbiaad2gapaWaaSbaaSqaa8qacaWG1baapaqabaGcpeGaey isISRaamyBa8aadaWgaaWcbaWdbiaadsgaa8aabeaakiaacMcapeGa aeiiaiabg2da9iaabccacaaIWaGaaiOlaiaaiodacaaIXaGaaeiiai aadEeacaWGLbGaamOvaaaa@4DAA@ , Eq(ms) = 0.5 GeV, Eq(mc) = 1.7 GeV, Eq(mb) = 5 GeV, Eq(mt) = 174 GeV, (u, d- up, down; s, c- strange, charm; b, t –bottom, top).

A selection rule for the heavy quarks masses, which- with high discrepancy, may be applied also for the values used by de Souza (which are close to but higher than those used by the Standard Model, m q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGXbaapaqabaGc daahaaWcbeqaa8qacqGHIaYTaaaaaa@3F67@ ) was found by R. A. Carrigan Jr.11 which found an exponential formula for the heavy quark masses: m c = 1.55 GeV/ c 2   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGJbaapaqabaGc daahaaWcbeqaaiabgkci3caak8qacqGH9aqpcaqGGaGaaGymaiaac6 cacaaI1aGaaGynaiaabccacaWGhbGaamyzaiaadAfacaGGVaGaam4y a8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiiOaaaa@4AFC@ and m 3 =  m b = 4.73 GeV/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaaIZaaapaqabaGc daahaaWcbeqaaiabgkci3caak8qacqGH9aqpcaqGGaGaamyBa8aada ahaaWcbeqaaiabgkci3caakmaaBaaaleaapeGaamOyaaWdaeqaaOWd biabg2da9iaabccacaaI0aGaaiOlaiaaiEdacaaIZaGaaeiiaiaadE eacaWGLbGaamOvaiaac+cacaWGJbWdamaaCaaaleqabaWdbiaaikda aaaaaa@4F58@ , (values used by the Standard Model of the Quantum mechanics), of the form:

m n ( q n ) m 1 x 3 n1 ;     q n =  [(q q ¯ )q] n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGUbaapaqabaGc daahaaWcbeqaaiabgkci3caakmaabmaabaWdbiaadghapaWaaSbaaS qaa8qacaWGUbaapaqabaaakiaawIcacaGLPaaapeGaeyisISRaamyB a8aadaWgaaWcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaGaeyOiGC laaOWdbiaadIhacaaIZaWdamaaCaaaleqabaWdbiaad6gacqGHsisl caaIXaaaaOGaai4oaiaacckacaGGGcGaaiiOaiaacckacaWGXbWdam aaBaaaleaapeGaamOBaaWdaeqaaOWdbiabg2da9iaacckapaGaai4w aiaacIcacaWGXbGabmyCayaaraGaaiykaiaadghacaGGDbWaaSbaaS qaaiaad6gacqGHsislcaaIXaaabeaaaaa@604C@   (4)

m 1 ( q 1 ) =  m s 0.486GeV/ c 2 ;  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaaIXaaapaqabaGc daahaaWcbeqaaiabgkci3caakmaabmaabaWdbiaadghapaWaaSbaaS qaa8qacaaIXaaapaqabaaakiaawIcacaGLPaaapeGaaeiiaiabg2da 9iaabccacaWGTbWdamaaBaaaleaapeGaam4CaaWdaeqaaOWaaWbaaS qabeaacqGHIaYTaaGccqGHijYUpeGaaGimaiaac6cacaaI0aGaaGio aiaaiAdacaWGhbGaamyzaiaadAfacaGGVaGaam4ya8aadaahaaWcbe qaa8qacaaIYaaaaOGaai4oaiaacckaaaa@55C8@

Eq. (4) being explained by the forming of compound quarks with upper mass as tri-quark combinations, i.e- as triplets formed by quarks with adjacent lower mass, ( m 2 3 m 1 ;  m 3 3 m 2 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGTbWdamaaBaaaleaapeGaaGOmaaWd aeqaaOWaaWbaaSqabeaacqGHIaYTaaGcpeGaeyisISRaaG4maiaad2 gapaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWcbeqaaiabgkci 3caak8qacaGG7aGaaeiiaiaad2gapaWaaSbaaSqaa8qacaaIZaaapa qabaGcdaahaaWcbeqaaiabgkci3caak8qacqGHijYUcaaIZaGaamyB a8aadaWgaaWcbaWdbiaaikdaa8aabeaakmaaCaaaleqabaGaeyOiGC laaOGaaiyka8qacaGGGcaaaa@538C@ : two paired quarks (q q ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaacIcacaWGXbGabmyCayaaraGaaiykaaaa@3EB6@ and an un-paired quark giving the charge and the magnetic moment.

By a z0-preon with a ratio: length/diameter 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkziUkaaigdaaaa@3E01@ , it results in CGT that the cold quark’s stability is given by the (quasi)crystalline arrangement of its cluster of preonic kernels (kerneloids’)12 of regular hexagonal polyhedron form, with the ratio: length/diameter = 1÷2, i.e.- with 3÷5 levels of preonic bosons z π ( 7 z 0 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadQhapaWaaSbaaSqaa8qacqaHapaCa8aabeaa kmaabmaabaWdbiaaiEdacaWG6bWdamaaCaaaleqabaWdbiaaicdaaa aak8aacaGLOaGaayzkaaWdbiaacckaaaa@4425@ and/or z2(4z0) and a light m1;2 -quark resulting from a z2-boson by the loosing of a degenerate electron e*.

By the principle of similitude, it results that a similar (quasi)crystalline arrangement may result by kernels of (semi)light quarks (mq < 1GeV/c2) or of heavy quarks (c- or b-quarks), formed as composite quarks by some (q-`q)-pairs and a un-paired q± -quark, also in the form:   q k+1 = ( 7x5 ) q k = 17(+( q k q ¯ k )+ q k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaacckacaWGXbWdamaaBaaaleaapeGaam4Aaiab gUcaRiaaigdaa8aabeaak8qacqGH9aqpcaqGGaWdamaabmaabaWdbi aaiEdacaWG4bGaaGynaaWdaiaawIcacaGLPaaapeGaamyCa8aadaWg aaWcbaWdbiaadUgaa8aabeaak8qacqGH9aqpcaqGGaGaaGymaiaaiE dapaGaaiika8qacqGHRaWkpaGaaiikaiaadghadaWgaaWcbaGaam4A aaqabaGcceWGXbGbaebadaWgaaWcbaGaam4AaaqabaGccaGGPaWdbi abgUcaRiaadghapaWaaSbaaSqaa8qacaWGRbaapaqabaaaaa@5677@ .

It was shown by author12 that the values ms, mc and mb used by de Souza10 and those used by the S.M.1 can be deduced by the CGT’s model, with eq. (10), by the next observations:

  1. m u m d = 0.31 GeV/ c 2 612  m e m( p; n )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWG1baapaqabaGc peGaeyisISRaamyBa8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacq GH9aqpcaqGGaGaaGimaiaac6cacaaIZaGaaGymaiaabccacaWGhbGa amyzaiaadAfacaGGVaGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaO GaeyisISRaaGOnaiaaigdacaaIYaGaaeiiaiaad2gapaWaaSbaaSqa a8qacaWGLbaapaqabaGcpeGaeyisISRaamyBa8aadaqadaqaa8qaca WGWbGaai4oaiaabccacaWGUbaapaGaayjkaiaawMcaa8qacaGGGcaa aa@5BDA@  -the mass of the nucleonic quarks of CGT;
  2. m s = 0.5 GeV/ c 2 = 978.5  m e ( m s * = 987.8  m e ,~0.504GeV/ c 2 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGZbaapaqabaGc peGaeyypa0JaaeiiaiaaicdacaGGUaGaaGynaiaabccacaWGhbGaam yzaiaadAfacaGGVaGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGa eyypa0JaaeiiaiaaiMdacaaI3aGaaGioaiaac6cacaaI1aGaaeiiai aad2gapaWaaSbaaSqaa8qacaWGLbaapaqabaGccaGGOaWdbiabgIKi 7kaad2gapaWaaSbaaSqaa8qacaWGZbaapaqabaGcdaahaaWcbeqaa8 qacaGGQaaaaOGaeyypa0JaaeiiaiaaiMdacaaI4aGaaG4naiaac6ca caaI4aGaaeiiaiaad2gapaWaaSbaaSqaa8qacaWGLbaapaqabaGcpe Gaaiilaiaac6hacaaIWaGaaiOlaiaaiwdacaaIWaGaaGinaiaadEea caWGLbGaamOvaiaac+cacaWGJbWdamaaCaaaleqabaWdbiaaikdaaa GcpaGaaiyka8qacaGGGcaaaa@6A38@  -the mass of s-quark;
  3. mc = 1.7 GeV/c2 = 3326.8 me –charm quark’s mass used by de Souza, and:
  4. mb = 5000 MeV –bottom quark’s mass used by de Souza,

were obtained in CGT by eq. (4), by taking: m 3 =  m v + 1121.2  m e 574 MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaaIZaaapaqabaGc peGaeyypa0Jaaeiiaiaad2gapaWaaSbaaSqaa8qacaWG2baapaqaba GcdaahaaWcbeqaa8qacqGHRaWkaaGcpaGaeyisIS7dbiaaigdacaaI XaGaaGOmaiaaigdacaGGUaGaaGOmaiaabccacaWGTbWdamaaBaaale aapeGaamyzaaWdaeqaaOWdbiabgIKi7kaaiwdacaaI3aGaaGinaiaa bccacaWGnbGaamyzaiaadAfaaaa@52E6@ (-the mass of v-quark of CGT, instead of ms), and by considering the quarks c(mc+) and b(mc-) as de-excited states of the triplet with mass: m4*= m(c*) = 3mv*(v+) = 3363.6 me, (1.718 GeV/c2), and respective:

m 5 * = m( b * ± )= 3 m c 5.1 GeV/ c 2     MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaaI1aaapaqabaGc daahaaWcbeqaa8qacaGGQaaaaOGaeyypa0Jaaeiiaiaad2gapaGaai ika8qacaWGIbWdamaaCaaaleqabaWdbiaacQcaaaGcpaWaaWbaaSqa beaapeGaeyySaelaaOWdaiaacMcapeGaeyypa0Jaaeiiaiaaiodaca WGTbWdamaaBaaaleaapeGaam4yaaWdaeqaaOWdbiabgIKi7kaaiwda caGGUaGaaGymaiaabccacaWGhbGaamyzaiaadAfacaGGVaGaam4ya8 aadaahaaWcbeqaa8qacaaIYaaaaOGaaiiOaiaacckacaGGGcaaaa@58A2@ , (q* -‘cold’ quark), by the next de-excitation reaction:

c * ± [( V ± v ¯ ± )  V ± ] c ± (~1.7GeV/ c 2 ) +  z 0 ( 34 m e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadogapaWaaWbaaSqabeaapeGaaiOkaaaak8aa daahaaWcbeqaa8qacqGHXcqSaaGcpaGaai4waiaacIcatCvAUfeBSn 0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaajugOa8qacaWFwbGc paWaaWbaaSqabeaapeGaeyySaelaaOGabmODa8aagaqeamaaCaaale qabaWdbiabgglaXcaak8aacaGGPaWdbiaabccajugOaiaa=zfak8aa daahaaWcbeqaa8qacqGHXcqSaaGcpaGaaiyxa8qacqGHsgIRcaWGJb WdamaaCaaaleqabaWdbiabgglaXcaak8aacaGGOaWdbiaac6hacaaI XaGaaiOlaiaaiEdacaWGhbGaamyzaiaadAfacaGGVaGaam4ya8aada ahaaWcbeqaa8qacaaIYaaaaOWdaiaacMcapeGaaeiiaiabgUcaRiaa bccacaWG6bWdamaaCaaaleqabaWdbiaaicdaaaGcpaWaaeWaaeaape GaaG4maiaaisdacaWGTbWdamaaBaaaleaapeGaamyzaaWdaeqaaaGc caGLOaGaayzkaaaaaa@72E2@   (5a)

b * ± [( c ± c ¯ ± )  c ± ] b ± (~5GeV/ c 2 ) +  z 3 ( 204  m e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkgapaWaaWbaaSqabeaapeGaaiOkaaaak8aa daahaaWcbeqaa8qacqGHXcqSaaGcpaGaai4waiaacIcapeGaam4ya8 aadaahaaWcbeqaa8qacqGHXcqSaaGcpaGabm4yayaaraWaaWbaaSqa beaapeGaeyySaelaaOWdaiaacMcapeGaaeiiaiaadogapaWaaWbaaS qabeaapeGaeyySaelaaOWdaiaac2fapeGaeyOKH4QaamOya8aadaah aaWcbeqaa8qacqGHXcqSaaGcpaGaaiika8qacaGG+bGaaGynaiaadE eacaWGLbGaamOvaiaac+cacaWGJbWdamaaCaaaleqabaWdbiaaikda aaGcpaGaaiyka8qacaqGGaGaey4kaSIaaeiiaiaadQhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcdaqadaqaa8qacaaIYaGaaGimaiaaisda caqGGaGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaaaOGaayjkai aawMcaaaaa@65E3@   (5b)

z 3 =  z μ = ( 2x3 ) z 0 = 2 z 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadQhapaWaaSbaaSqaa8qacaaIZaaapaqabaGc peGaeyypa0JaaeiiaiaadQhapaWaaSbaaSqaaiabeY7aTbqabaGcpe Gaeyypa0Jaaeiia8aadaqadaqaa8qacaaIYaGaamiEaiaaiodaa8aa caGLOaGaayzkaaWdbiaadQhapaWaaWbaaSqabeaapeGaaGimaaaaki abg2da9iaabccacaaIYaGaamOEa8aadaWgaaWcbaWdbiaaigdaa8aa beaaaaa@4EAB@

  1. The t-quark results as collapsed cluster:

t ± = ( 7x5 )m( b ± )175GeV,(17(b b ¯ ) +  b ± ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadshapaWaaWbaaSqabeaapeGaeyySaelaaOGa eyypa0Jaaeiia8aadaqadaqaa8qacaaI3aGaamiEaiaaiwdaa8aaca GLOaGaayzkaaWdbiaad2gapaGaaiika8qacaWGIbWdamaaCaaaleqa baWdbiabgglaXcaak8aacaGGPaWdbiabgIKi7kaaigdacaaI3aGaaG ynaiaadEeacaWGLbGaamOvaiaacYcapaGaaiika8qacaaIXaGaaG4n a8aacaGGOaGaamOyaiqadkgagaqeaiaacMcapeGaaiiOaiabgUcaRi aabccacaWGIbWdamaaCaaaleqabaWdbiabgglaXcaak8aacaGGPaWd biaacYcaaaa@5E5A@  the structure of its kernel resulting by similitude with the preonic structure of the s-quark as formed from a pre-cluster of regular hexagonal polyhedron form with length/diameter 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkziUkaaigdaaaa@3E02@ , in acceptable concordance with the experimentally obtained value of its constituent mass ( 176.8177 GeV/ c 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaaigdacaaI3aGaaGOnaiaac6cacaaI4aGaeyis ISRaaGymaiaaiEdacaaI3aGaaeiiaiaadEeacaWGLbGaamOvaiaac+ cacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaGccaGGSaaaaa@4989@ 13 p. 135), with upper stability given by the crystalline form of its current mass, formed by kernels of b-quarks,12 the forms:

h0 = (7x3)m(c)= 35.7 GeV/c2 and (7x5)m(c) = 59.5 GeV/c2 resulting also as possible.

  1. The quarks s ( 486 ) c ( 1550 ) ;  b ( 4730 )   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohapaWaaWbaaSqabeaacqGHIaYTaaGcdaqa daqaa8qacaaI0aGaaGioaiaaiAdaa8aacaGLOaGaayzkaaWdbiaado gapaWaaWbaaSqabeaacqGHIaYTaaGcdaqadaqaa8qacaaIXaGaaGyn aiaaiwdacaaIWaaapaGaayjkaiaawMcaa8qacaqGGaGaai4oaiaabc cacaWGIbWdamaaCaaaleqabaGaeyOiGClaaOWaaeWaaeaapeGaaGin aiaaiEdacaaIZaGaaGimaaWdaiaawIcacaGLPaaapeGaaiiOaiaacc kaaaa@5520@ used by the S.M. result from the CGT’s quarks: s- , c+ , b- by the reactions:

c( 1700 ) c ( 1561 ) +p i 0 ( 2 z 2 );  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadogapaWaaeWaaeaapeGaaGymaiaaiEdacaaI WaGaaGimaaWdaiaawIcacaGLPaaapeGaeyOKH4Qaam4ya8aadaahaa Wcbeqaaiabgkci3caakmaabmaabaWdbiaaigdacaaI1aGaaGOnaiaa igdaa8aacaGLOaGaayzkaaWdbiaabccacqGHRaWkcaWGWbGaamyAa8 aadaahaaWcbeqaa8qacaaIWaaaaOWdamaabmaabaWdbiaaikdacaWG 6bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGccaGLOaGaayzkaaWdbi aacUdacaGGGcaaaa@5534@   (6a)

b( 5000 ) b ( 4756 ) +  z 6 (2 z π );  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkgapaWaaeWaaeaapeGaaGynaiaaicdacaaI WaGaaGimaaWdaiaawIcacaGLPaaapeGaeyOKH4QaamOya8aadaahaa Wcbeqaaiabgkci3caakmaabmaabaWdbiaaisdacaaI3aGaaGynaiaa iAdaa8aacaGLOaGaayzkaaWdbiaabccacqGHRaWkcaqGGaGaamOEa8 aadaWgaaWcbaWdbiaaiAdaa8aabeaakiaacIcapeGaaGOmaiaadQha paWaaSbaaSqaaiabec8aWbqabaGccaGGPaWdbiaacUdacaGGGcaaaa@55AE@   (6b)

s ± ( 500 ) s ± ( 483 )+  z 0 .  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohapaWaaWbaaSqabeaapeGaeyySaelaaOWd amaabmaabaWdbiaaiwdacaaIWaGaaGimaaWdaiaawIcacaGLPaaape GaeyOKH4Qaam4Ca8aadaahaaWcbeqaa8qacqGHIaYTcqGHXcqSaaGc paWaaeWaaeaapeGaaGinaiaaiIdacaaIZaaapaGaayjkaiaawMcaa8 qacqGHRaWkcaqGGaGaamOEa8aadaahaaWcbeqaa8qacaaIWaaaaOGa aiOlaiaacckaaaa@52AC@   (6c)

  1. If we interpret the energy: Δ E q = m( δ k ) c 2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfs5aejaadweapaWaaSbaaSqaa8qacaWGXbaa paqabaGcpeGaeyypa0Jaaeiiaiaad2gapaGaaiika8qacqaH0oazpa WaaSbaaSqaa8qacaWGRbaapaqabaGccaGGPaWdbiaadogapaWaaWba aSqabeaapeGaaGOmaaaakiaacckaaaa@492E@ , loosen at the de-exciting of the quarcic cluster qck+1, as binding energy between quarks, (by similitude with a nucleus), it may be obtained a semi-empiric relation for the mass of the heavy quarks c1.7 GeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadogacqGHijYUcaaIXaGaaiOlaiaaiEdacaqG GaGaam4raiaadwgacaWGwbaaaa@4354@ and b5 GeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkgacqGHijYUcaaI1aGaaeiiaiaadEeacaWG LbGaamOvaaaa@41E4@ :

m( q n c ) =  3 n1 [ m 1 ( z 0 /3 )ln( 3 n1 3 n2 ) ]; n >1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaeWaaeaapeGaamyCa8aadaWgaaWc baWdbiaad6gaa8aabeaakmaaCaaaleqabaWdbiaadogaaaaak8aaca GLOaGaayzkaaWdbiaabccacqGH9aqpcaqGGaGaaG4ma8aadaahaaWc beqaa8qacaWGUbGaeyOeI0IaaGymaaaak8aadaWadaqaa8qacaWGTb WdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacobipaWaaeWaaeaa peGaamOEa8aadaahaaWcbeqaa8qacaaIWaaaaOGaai4laiaaiodaa8 aacaGLOaGaayzkaaWdbiaadYgacaWGUbWdamaabmaabaWdbiaaioda paWaaWbaaSqabeaapeGaamOBaiabgkHiTiaaigdaaaGccaaIZaWdam aaCaaaleqabaWdbiaad6gacqGHsislcaaIYaaaaaGcpaGaayjkaiaa wMcaaaGaay5waiaaw2faa8qacaGG7aGaaeiiaiaad6gacaqGGaGaey Opa4JaaGymaaaa@617A@   (7)

with: m1 = mv = 0.574 GeV/c2 ; z0 = 17.374 MeV/c2, (34 me) and ln(3n-13n-2) = ln32n-3 , which gives:

n = 2m( q 2 c ) c 2 =1.703 GeV; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6gacaqGGaGaeyypa0JaaeiiaiaaikdacqGH sgIRcaWGTbWdamaabmaabaWdbiaadghapaWaaSbaaSqaa8qacaaIYa aapaqabaGcdaahaaWcbeqaa8qacaWGJbaaaaGcpaGaayjkaiaawMca a8qacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaGccqGH9aqpcaaIXa GaaiOlaiaaiEdacaaIWaGaaG4maiaabccacaWGhbGaamyzaiaadAfa caGG7aaaaa@51D7@
n = 3m( q 3 c ) c 2 = 4.994 GeV; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6gacaqGGaGaeyypa0JaaeiiaiaaiodacqGH sgIRcaWGTbWdamaabmaabaWdbiaadghapaWaaSbaaSqaa8qacaaIZa aapaqabaGcdaahaaWcbeqaa8qacaWGJbaaaaGcpaGaayjkaiaawMca a8qacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGa GaaGinaiaac6cacaaI5aGaaGyoaiaaisdacaqGGaGaam4raiaadwga caWGwbGaai4oaaaa@528B@
n = 4m( q 4 c ) c 2 = 14.64 GeV. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6gacaqGGaGaeyypa0JaaeiiaiaaisdacqGH sgIRcaWGTbWdamaabmaabaWdbiaadghapaWaaSbaaSqaa8qacaaI0a aapaqabaGcdaahaaWcbeqaa8qacaWGJbaaaaGcpaGaayjkaiaawMca a8qacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGa GaaGymaiaaisdacaGGUaGaaGOnaiaaisdacaqGGaGaam4raiaadwga caWGwbGaaiOlaaaa@5275@

A relative similar semi-empiric relation may be found also for the quarks c 1.55 GeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadogapaWaaWbaaSqabeaacqGHIaYTaaGcpeGa eyisISRaaGymaiaac6cacaaI1aGaaGynaiaabccacaWGhbGaamyzai aadAfaaaa@45EC@ and b 4.73 GeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkgapaWaaWbaaSqabeaacqGHIaYTaaGcpeGa eyisISRaaGinaiaac6cacaaI3aGaaG4maiaabccacaWGhbGaamyzai aadAfaaaa@45EE@ , of the S.M., but in the form:

m( q n ) =  3 n1 [( m 1 + δ )+ ( z 0 /3 )ln 3 n2 ], n>1; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaGaaiika8qacaWGXbWdamaaBaaaleaa peGaamOBaaWdaeqaaOWaaWbaaSqabeaacqGHIaYTaaGccaGGPaWdbi aabccacqGH9aqpcaqGGaGaaG4ma8aadaahaaWcbeqaa8qacaWGUbGa eyOeI0IaaGymaaaak8aacaGGBbGaaiika8qacaWGTbWdamaaBaaale aapeGaaGymaaWdaeqaaOWaaWbaaSqabeaacqGHIaYTaaGcpeGaey4k aSIaeqiTdq2damaaCaaaleqabaGaeyOiGClaaOGaaiyka8qacqGHRa WkcaqGGaWdamaabmaabaWdbiaadQhapaWaaWbaaSqabeaapeGaaGim aaaakiaac+cacaaIZaaapaGaayjkaiaawMcaa8qacaWGSbGaamOBai aaiodapaWaaWbaaSqabeaapeGaamOBaiabgkHiTiaaikdaaaGcpaGa aiyxa8qacaGGSaGaaeiiaiaad6gacqGH+aGpcaaIXaGaai4oaaaa@6492@   (8)

( m 1 + δ )= ( 2 m s + m v   z 0 )/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGTbWdamaaBaaaleaapeGaaGymaaWd aeqaaOWaaWbaaSqabeaacqGHIaYTaaGcpeGaey4kaSIaeqiTdq2dam aaCaaaleqabaGaeyOiGClaaOGaaiyka8qacqGH9aqpcaqGGaWdamaa bmaabaWdbiaaikdacaWGTbWdamaaBaaaleaapeGaam4CaaWdaeqaaO WdbiabgUcaRiaad2gapaWaaSbaaSqaa8qacaWG2baapaqabaGcpeGa ai4eGiaabccacaWG6bWdamaaCaaaleqabaWdbiaaicdaaaaak8aaca GLOaGaayzkaaWdbiaac+cacaaIZaaaaa@5397@

with: m 1 =  m s 486 MeV/ c 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaaIXaaapaqabaGc daahaaWcbeqaaiabgkci3caak8qacqGH9aqpcaqGGaGaamyBa8aada WgaaWcbaWdbiaadohaa8aabeaakmaaCaaaleqabaGaeyOiGClaaOWd biabgIKi7kaaisdacaaI4aGaaGOnaiaabccacaWGnbGaamyzaiaadA facaGGVaGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiilaaaa @4F81@ ( δ = 33MeV/ c 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacqGHshI3cqaH0oazpaWaaWbaaSqabeaa cqGHIaYTaaGcpeGaeyypa0JaaeiiaiaaiodacaaIZaGaamytaiaadw gacaWGwbGaai4laiaadogapaWaaWbaaSqabeaapeGaaGOmaaaak8aa caGGPaWdbiaacYcaaaa@4BC5@ giving: n = 2m( q 2 ) c 2 = 1.557 GeVm( c ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6gacaqGGaGaeyypa0JaaeiiaiaaikdacqGH sgIRcaWGTbWdaiaacIcapeGaamyCa8aadaWgaaWcbaWdbiaaikdaa8 aabeaakmaaCaaaleqabaGaeyOiGClaaOGaaiyka8qacaWGJbWdamaa CaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGaGaaGymaiaac6caca aI1aGaaGynaiaaiEdacaqGGaGaam4raiaadwgacaWGwbGaeyisISRa amyBa8aacaGGOaWdbiaadogapaWaaWbaaSqabeaacqGHIaYTaaGcca GGPaWdbiaacUdaaaa@59AD@ n = 3m( q 3 ) c 2 = 4.728 GeV ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6gacaqGGaGaeyypa0JaaeiiaiaaiodacqGH sgIRcaWGTbWdaiaacIcapeGaamyCa8aadaWgaaWcbaWdbiaaiodaa8 aabeaakmaaCaaaleqabaGaeyOiGClaaOGaaiyka8qacaWGJbWdamaa CaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGaGaaGinaiaac6caca aI3aGaaGOmaiaaiIdacaqGGaGaam4raiaadwgacaWGwbGaaeiiaiaa cUdaaaa@5377@ n = 4m( q 4 ) c 2 = 14.356 GeV, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6gacaqGGaGaeyypa0JaaeiiaiaaisdacqGH sgIRcaWGTbWdaiaacIcapeGaamyCa8aadaWgaaWcbaWdbiaaisdaa8 aabeaakmaaCaaaleqabaGaeyOiGClaaOGaaiyka8qacaWGJbWdamaa CaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGaGaaGymaiaaisdaca GGUaGaaG4maiaaiwdacaaI2aGaaeiiaiaadEeacaWGLbGaamOvaiaa cYcaaaa@537F@ the expression (8) being characteristic to mass addition to the tri-quark cluster, as in the case of the Sakharov’s equation,14 (which adds a term of spin-spin interaction at the total mass of quarks).

Quarks ‘species’ identifiable in CGT

From the previous equations it results that it is possible to classify the quarks obtained in CGT as being of two types (‚species’):

-A-species: preonic quarks -composed by the preonic bosons z2 = 4z0 and z π = 7 z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadQhapaWaaSbaaSqaaiabec8aWbqabaGcpeGa eyypa0JaaeiiaiaaiEdacaWG6bWdamaaCaaaleqabaWdbiaaicdaaa aaaa@42D9@ , with mass mq(qA) given by Eq. (3) -, which are characteristic mainly to astro-particles;

-B-species: quarkonic quarks (composed of lighter quarks with or without de-excitation reaction),

with two sub-species:

  • B1 –tri-quarcic, composed of 3n preonic quarks (mainly –v- or/and s-quarks) with 4 ³ n ³ 1,

(with mass mq(qB1) given by Eqs. (7) and (8)), and:

  • B2 –multi-quarcic (with mass mq(qB2) given by: mq(qB2) = (7x5)mq(qB1) with theoretically possible variant: m q (q ' B2 ) = ( 7x5 ) m q ( q A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGXbaapaqabaGc caGGOaWdbiaadghacaGGNaWdamaaBaaaleaapeGaamOqaiaaikdaa8 aabeaakiaacMcapeGaaeiiaiabg2da9iaabccapaWaaeWaaeaapeGa aG4naiaadIhacaaI1aaapaGaayjkaiaawMcaa8qacaWGTbWdamaaBa aaleaapeGaamyCaaWdaeqaaOWaaeWaaeaapeGaamyCa8aadaWgaaWc baWdbiaadgeaa8aabeaaaOGaayjkaiaawMcaaaaa@4F3B@ ),

(i.e. composed of preonic quarks).

The fact that the preonic quarks qA and qB1 can explain the ground states of the heavy elementary particles (mainly-heavy mesons and heavy baryons) by two mass ‚flavors’: of S.M. type and of Souza/CGT type, (Eqs. (6), (7), (8)) can be explained by the conclusion that the ‚flavor’ fq = f1 = 1 (of S.M.’s type) corresponds- for B-species, of composite quasi-stable quarks ( q k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGXbWdamaaBaaaleaapeGaam4AaaWd aeqaaOWaaWbaaSqabeaacqGHIaYTaaGccaGGPaaaaa@40B8@ generated in a strong interaction between lighter quarks (qk-1), at high impact energy, corresponding to a higher mass difference Δ m q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfs5aejaad2gapaWaaSbaaSqaa8qacaWGXbaa paqabaaaaa@3F01@ between the sum of the qA –quarks which compose the composite qB1 –quark and the mass of the formed qB1 –quark, and the second ‚flavor’ (fq = f2 = 2 -of Souza/CGT type) corresponds to meta-stable quarks (qks) generated in a semi-strong interaction between lighter quarks (qk-1).

  1. -For qA –quarks of A-species, the general equation for the effective (constituent) quark mass, is:

m( q A =  ( 1 α 0.5±1.3 ) m e  + k z π  +  n(k - 2) z 2  - (2-f q ) z 0  ;  [ m e ] α= 1/137;   k = 1÷ i=3 ;   n <  k ;  (k, n   N);   f q  =  [1; 2])   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaiaad2gacaGGOaGaamyCamaaBaaaleaacaWGbbaabeaakiaa bMcacaqGGaGaamiiaiaad2dacaqGGaGaaeiiamaabmaabaWaaSGaae aacaqGXaaabaGaeqySdegaaiabgkHiTiaaicdacaGGUaGaaGynaiab gglaXkaaigdacaGGUaGaaG4maaGaayjkaiaawMcaaiabgwSixlaab2 gadaWgaaWcbaGaaeyzaaqabaGccaqGGaGaey4kaSIaaeiiaiaabUga cqGHflY1caqG6bWaaSbaaSqaaiabec8aWbqabaGccaWGGaGaaeiiai abgUcaRiaabccacaqGGaGaaeOBaiabgwSixlaabIcacaqGRbGaaeii aiaab2cacaqGGaGaaeOmaiaabMcacqGHflY1caqG6bWaaSbaaSqaai aabkdaaeqaaOGaaeiiaiaab2cacaqGGaGaaeikaiaabkdacaqGTaGa aeOzamaaBaaaleaacaqGXbaabeaakiaabMcacqGHflY1caqG6bWaaW baaSqabeaacaqGWaaaaOGaaeiiaiaabUdacaqGGaGaaeiiamaadmaa baGaaeyBamaaBaaaleaacaqGLbaabeaaaOGaay5waiaaw2faaiaabU dacaqGGaaabaGaaeikaiaabccacqaHXoqycqGH9aqpcaqGGaGaaeym aiaab+cacaqGXaGaae4maiaabEdacaqG7aGaaeiiaiaabccacaqGGa Gaae4AaiaabccacqGH9aqpcaqGGaGaaeymaiabgEpa4kaabccacaqG PbGaeyypa0Jaae4maiaabccacaqG7aGaaeiiaiaabccacaqGGaGaae OBaiaabccacqGH8aapcaqGGaGaaeiiaiaabUgacaqGGaGaae4oaiaa bccacaqGGaGaaeikaiaabUgacaqGSaGaaeiiaiaab6gacaqGGaGaey icI4Saaeiiaiaab6eacaqGPaGaae4oaiaabccacaqGGaGaaeiiaiaa bAgadaWgaaWcbaGaaeyCaaqabaGccaqGGaGaeyypa0Jaaeiiaiaabc cacaqGBbGaaeymaiaabUdacaqGGaGaaeOmaiaab2facaqGPaGaaeii aiaabccaaaaa@B29C@   (9)

The values k = 0; n = 0 correspond in CGT to the basic (mesonic) quark m±, (‚mark’).

For k = 3, n = 1, f = 1 is retrieved the mass of the s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohapaWaaWbaaSqabeaacqGHIaYTaaaaaa@3E13@ -quark (of the S.M.): s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohapaWaaWbaaSqabeaacqGHIaYTaaaaaa@3E13@ ±(483) = s±(500) - z0 .

  1. -For the sub-species B1(qB1), by Eqs. (7), (8), assimilating the difference Δ m q c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfs5aejaad2gapaWaaSbaaSqaa8qacaWGXbaa paqabaGcpeGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaaaa@410C@ with a binding energy lost in the formation of the composite quark q k   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qacaWGRbaapaqabaGc daahaaWcbeqaaiabgkci3caakiaabccaaaa@4003@ or qks, we can obtain a semi-empiric general equation for the quark’s effective mass m(qnc) by considering the flavors numbers: fq = f1 = 1;

 fq = f2 = 2 and that both flavors of composite quarks: qns and q n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qacaWGUbaapaqabaGc daahaaWcbeqaaiabgkci3caaaaa@3F59@ are obtained from ‚cold’ v-quarks:

(m( v ± )574 MeV/ c 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGTbWdaiaacIcapeGaamODa8aadaah aaWcbeqaa8qacqGHXcqSaaGcpaGaaiyka8qacqGHijYUcaaI1aGaaG 4naiaaisdacaqGGaGaamytaiaadwgacaWGwbGaai4laiaadogapaWa aWbaaSqabeaapeGaaGOmaaaak8aacaGGPaWdbiaacYcaaaa@4D20@   i.e. by taking in Eq. (8):

( m 1 + δ )= ( 2 m s + m v   z 0 )/3 = 519 MeV/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGTbWdamaaBaaaleaapeGaaGymaaWd aeqaaOWaaWbaaSqabeaacqGHIaYTaaGcpeGaey4kaSIaeqiTdq2dam aaCaaaleqabaGaeyOiGClaaOGaaiyka8qacqGH9aqpcaqGGaWdamaa bmaabaWdbiaaikdacaWGTbWdamaaBaaaleaapeGaam4CaaWdaeqaaO WdbiabgUcaRiaad2gapaWaaSbaaSqaa8qacaWG2baapaqabaGcpeGa ai4eGiaabccacaWG6bWdamaaCaaaleqabaWdbiaaicdaaaaak8aaca GLOaGaayzkaaWdbiaac+cacaaIZaGaaeiiaiabg2da9iaabccacaaI 1aGaaGymaiaaiMdacaqGGaGaamytaiaadwgacaWGwbGaai4laiaado gapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@5DFE@   (10)

( m 1 + δ )=  m v β;β= 55 MeV/ c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkDiE=aacaGGOaWdbiaad2gapaWaaSbaaSqa a8qacaaIXaaapaqabaGcdaahaaWcbeqaaiabgkci3caak8qacqGHRa WkcqaH0oazpaWaaWbaaSqabeaacqGHIaYTaaGccaGGPaWdbiabg2da 9iaabccacaWGTbWdamaaBaaaleaapeGaamODaaWdaeqaaOWdbiabgk HiTiabek7aIjaacUdacqGHshI3cqaHYoGycqGH9aqpcaqGGaGaaGyn aiaaiwdacaqGGaGaamytaiaadwgacaWGwbGaai4laiaadogadaahaa WcbeqaaiaaikdaaaGcpaGaaiykaaaa@5C6D@

It results, from Eqs. (7) , (8), (10), with: m1 =mv(574MeV), that:

Δm( q n c ) = m( q n s )  m( q n ) =  3 n1 [ m v ( z 0 /3 )ln( 3 n1 3 n2 ) ]   3 n1 [( m v β)+ ( z 0 /3 )ln 3 n2 ], ( n >1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaeuiLdqKaamyBa8aadaqadaqaa8qacaWG XbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWaaWbaaSqabeaapeGaam 4yaaaaaOWdaiaawIcacaGLPaaapeGaaeiiaiabg2da9iaabccacaWG TbWdamaabmaabaWdbiaadghapaWaaSbaaSqaa8qacaWGUbaapaqaba GcdaahaaWcbeqaa8qacaWGZbaaaaGcpaGaayjkaiaawMcaa8qacaqG GaGaeyOeI0Iaaeiiaiaad2gapaGaaiika8qacaWGXbWdamaaBaaale aapeGaamOBaaWdaeqaaOWaaWbaaSqabeaacqGHIaYTaaGccaGGPaWd biaabccacqGH9aqpcaqGGaGaaG4ma8aadaahaaWcbeqaa8qacaWGUb GaeyOeI0IaaGymaaaak8aadaWadaqaa8qacaWGTbWdamaaBaaaleaa peGaamODaaWdaeqaaOWdbiaacobipaWaaeWaaeaapeGaamOEa8aada ahaaWcbeqaa8qacaaIWaaaaOGaai4laiaaiodaa8aacaGLOaGaayzk aaWdbiaadYgacaWGUbWdamaabmaabaWdbiaaiodapaWaaWbaaSqabe aapeGaamOBaiabgkHiTiaaigdaaaGccaaIZaWdamaaCaaaleqabaWd biaad6gacqGHsislcaaIYaaaaaGcpaGaayjkaiaawMcaaaGaay5wai aaw2faa8qacaqGGaGaeyOeI0IaaeiiaaqaaiaaiodapaWaaWbaaSqa beaapeGaamOBaiabgkHiTiaaigdaaaGcpaGaai4waiaacIcapeGaam yBa8aadaWgaaWcbaWdbiaadAhaa8aabeaak8qacqGHsislcqaHYoGy paGaaiyka8qacqGHRaWkcaqGGaWdamaabmaabaWdbiaadQhapaWaaW baaSqabeaapeGaaGimaaaakiaac+cacaaIZaaapaGaayjkaiaawMca a8qacaWGSbGaamOBaiaaiodapaWaaWbaaSqabeaapeGaamOBaiabgk HiTiaaikdaaaGcpaGaaiyxa8qacaGGSaGaaeiia8aadaqadaqaa8qa caWGUbGaaeiiaiabg6da+iaaigdaa8aacaGLOaGaayzkaaaaaaa@90BB@   (11)

Δm( q n c ) = m( q n s )  m( q n ) =  3 n1 [β ( z 0 /3 )( ln( 3 2n3 ) + ln( 3 n2 ) )  =  3 n1 [β ( z 0 /3 )ln( 3 3n5 )]  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaeuiLdqKaamyBa8aadaqadaqaa8qacaWG XbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWaaWbaaSqabeaapeGaam 4yaaaaaOWdaiaawIcacaGLPaaapeGaaeiiaiabg2da9iaabccacaWG TbWdamaabmaabaWdbiaadghapaWaaSbaaSqaa8qacaWGUbaapaqaba GcdaahaaWcbeqaa8qacaWGZbaaaaGcpaGaayjkaiaawMcaa8qacaqG GaGaeyOeI0Iaaeiiaiaad2gapaGaaiika8qacaWGXbWdamaaBaaale aapeGaamOBaaWdaeqaaOWaaWbaaSqabeaacqGHIaYTaaGccaGGPaWd biaabccacqGH9aqpcaqGGaGaaG4ma8aadaahaaWcbeqaa8qacaWGUb GaeyOeI0IaaGymaaaak8aacaGGBbWdbiabek7aIjabgkHiTiaabcca paWaaeWaaeaapeGaamOEa8aadaahaaWcbeqaa8qacaaIWaaaaOGaai 4laiaaiodaa8aacaGLOaGaayzkaaWaaeWaaeaapeGaamiBaiaad6ga paWaaeWaaeaapeGaaG4ma8aadaahaaWcbeqaa8qacaaIYaGaamOBai abgkHiTiaaiodaaaaak8aacaGLOaGaayzkaaWdbiaabccacqGHRaWk caqGGaGaamiBaiaad6gapaWaaeWaaeaapeGaaG4ma8aadaahaaWcbe qaa8qacaWGUbGaeyOeI0IaaGOmaaaaaOWdaiaawIcacaGLPaaaaiaa wIcacaGLPaaapeGaaeiiaaqaaiabg2da9iaabccacaaIZaWdamaaCa aaleqabaWdbiaad6gacqGHsislcaaIXaaaaOWdaiaacUfapeGaeqOS diMaeyOeI0Iaaeiia8aadaqadaqaa8qacaWG6bWdamaaCaaaleqaba WdbiaaicdaaaGccaGGVaGaaG4maaWdaiaawIcacaGLPaaapeGaamiB aiaad6gapaWaaeWaaeaapeGaaG4ma8aadaahaaWcbeqaa8qacaaIZa GaamOBaiabgkHiTiaaiwdaaaaak8aacaGLOaGaayzkaaGaaiyxaiaa bccaaaaa@8FD0@   (12)

The resulting general equation for m(qnc), for quarkonic quarks qnf = qB1 , is- in consequence:

m( q n f ) =  3 n1 [ m v ( z 0 /3 )ln( 3 2n3 ) ]  ( 2 f )Δm( q n f ) ;  (Δm( q n f ) =  3 n1 [β ( z 0 /3 )ln( 3 3n5 )]) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamyBa8aacaGGOaWdbiaadghapaWaaSba aSqaa8qacaWGUbaapaqabaGcdaahaaWcbeqaa8qacaWGMbaaaOWdai aacMcapeGaaeiiaiabg2da9iaabccacaaIZaWdamaaCaaaleqabaWd biaad6gacqGHsislcaaIXaaaaOWdamaadmaabaWdbiaad2gapaWaaS baaSqaa8qacaWG2baapaqabaGcpeGaai4eG8aadaqadaqaa8qacaWG 6bWdamaaCaaaleqabaWdbiaaicdaaaGccaGGVaGaaG4maaWdaiaawI cacaGLPaaapeGaamiBaiaad6gapaWaaeWaaeaapeGaaG4ma8aadaah aaWcbeqaa8qacaaIYaGaamOBaiabgkHiTiaaiodaaaaak8aacaGLOa GaayzkaaaacaGLBbGaayzxaaWdbiaabccacaGGtaIaaeiia8aadaqa daqaa8qacaaIYaGaaeiiaiabgkHiTiaadAgaa8aacaGLOaGaayzkaa Wdbiabfs5aejaad2gapaWaaeWaaeaapeGaamyCa8aadaWgaaWcbaWd biaad6gaa8aabeaakmaaCaaaleqabaWdbiaadAgaaaaak8aacaGLOa GaayzkaaWdbiaabccacaGG7aaabaGaaeiia8aacaGGOaWdbiabfs5a ejaad2gapaWaaeWaaeaapeGaamyCa8aadaWgaaWcbaWdbiaad6gaa8 aabeaakmaaCaaaleqabaWdbiaadAgaaaaak8aacaGLOaGaayzkaaWd biaabccacqGH9aqpcaqGGaGaaG4ma8aadaahaaWcbeqaa8qacaWGUb GaeyOeI0IaaGymaaaak8aacaGGBbWdbiabek7aIjabgkHiTiaabcca paWaaeWaaeaapeGaamOEa8aadaahaaWcbeqaa8qacaaIWaaaaOGaai 4laiaaiodaa8aacaGLOaGaayzkaaWdbiaadYgacaWGUbWdamaabmaa baWdbiaaiodapaWaaWbaaSqabeaapeGaaG4maiaad6gacqGHsislca aI1aaaaaGcpaGaayjkaiaawMcaaiaac2facaGGPaaaaaa@8BF6@   (13)

or:    m( q n f ) =  3 n1 [ m v ( 2f )β( z 0 /3 ) ln[ 3 (2n3) / 3 ( 2f )(3n5) ], (β= 55 MeV/ c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamyBa8aacaGGOaWdbiaadghapaWaaSba aSqaa8qacaWGUbaapaqabaGcdaahaaWcbeqaa8qacaWGMbaaaOWdai aacMcapeGaaeiiaiabg2da9iaabccacaaIZaWdamaaCaaaleqabaWd biaad6gacqGHsislcaaIXaaaaOWdaiaacUfapeGaamyBa8aadaWgaa WcbaWdbiaadAhaa8aabeaak8qacaGGtaYdamaabmaabaWdbiaaikda cqGHsislcaWGMbaapaGaayjkaiaawMcaa8qacqaHYoGycqGHsislpa WaaeWaaeaapeGaamOEa8aadaahaaWcbeqaa8qacaaIWaaaaOGaai4l aiaaiodaa8aacaGLOaGaayzkaaaabaWdbiaadYgacaWGUbWdamaadm aabaWdbiaaiodapaWaaWbaaSqabeaacaGGOaWdbiaaikdacaWGUbGa eyOeI0IaaG4ma8aacaGGPaaaaOWdbiaac+cacaaIZaWdamaaCaaale qabaWaaeWaaeaapeGaaGOmaiabgkHiTiaadAgaa8aacaGLOaGaayzk aaGaaiika8qacaaIZaGaamOBaiabgkHiTiaaiwdapaGaaiykaaaaaO Gaay5waiaaw2faa8qacaGGSaGaaeiia8aacaGGOaWdbiabek7aIjab g2da9iaabccacaaI1aGaaGynaiaabccacaWGnbGaamyzaiaadAfaca GGVaGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOWdaiaacMcaaaaa @79DF@   (13')

Eq. (13), by f=| f q |= 2 retrieves MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAgacqGH9aqppaGaaiiFa8qacaWGMbWdamaa BaaaleaapeGaamyCaaWdaeqaaOGaaiiFa8qacqGH9aqpcaqGGaGaaG OmaiaabccacaWGYbGaamyzaiaadshacaWGYbGaamyAaiaadwgacaWG 2bGaamyzaiaadohaaaa@4D4C@ Eq. (7) for m(qns) and by f = |fq| = 1 it retrieves Eq. (8) for m( q n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaGaaiika8qacaWGXbWdamaaBaaaleaa peGaamOBaaWdaeqaaOWaaWbaaSqabeaacqGHIaYTaaGccaGGPaaaaa@41CC@ .

The mass difference β= 55 MeV/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabek7aIjabg2da9iaabccacaaI1aGaaGynaiaa bccacaWGnbGaamyzaiaadAfacaGGVaGaam4ya8aadaahaaWcbeqaa8 qacaaIYaaaaaaa@45FE@ is characteristic –in consequence, to fq = 1, (strong interaction, at high energies) and it is approximately equal to the mass of the preonic boson z1(3z0) = 52.1 MeV. However, theoretically is not excluded the possibility to take in Eq. (13’), the value: m1 = ms(504MeV) or m 1 =  m λ ( 435 MeV ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyypa0Jaaeiiaiaad2gapaWaaSbaaSqaaiabeU7aSbqabaGcda qadaqaa8qacaaI0aGaaG4maiaaiwdacaqGGaGaamytaiaadwgacaWG wbaapaGaayjkaiaawMcaaaaa@492A@ , corresponding to a cold quark‚ (sark or lark), of CGT. From the Annexes C and D of Ref.15 it results that a de-excitation reaction with emission of z1 –boson can explain the ground states of the majority of baryons with total spin: Jp = 3/2. The conserving of the total‚ flavor’ number imply the conclusion that the flavor of Δ( q n c ) is  f Δ = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfs5ae9aadaqadaqaa8qacaWGXbWdamaaBaaa leaapeGaamOBaaWdaeqaaOWaaWbaaSqabeaapeGaam4yaaaaaOWdai aawIcacaGLPaaapeGaaeiiaiaadMgacaWGZbGaaeiiaiaadAgapaWa aSbaaSqaa8qacqqHuoara8aabeaak8qacqGH9aqpcaqGGaGaaGymaa aa@4A57@ for quarks and f Δ ( q ¯ ) = 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacqqHuoara8aabeaa kiaacIcaceWGXbGbaebacaGGPaWdbiaacckacqGH9aqpcaqGGaGaey OeI0IaaGymaaaa@44FA@ , at the anti-quark’s transforming, because we must take: f q (  q ¯ )=  f q ( q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAgapaWaaSbaaSqaa8qacaWGXbaapaqabaGc caGGOaWdbiaacckaceWGXbGbaebacaGGPaGaeyypa0JaeyOeI0Iaae iiaiaadAgapaWaaSbaaSqaa8qacaWGXbaapaqabaGcdaqadaqaa8qa caWGXbaapaGaayjkaiaawMcaaaaa@48B2@ .

  1. -For the sub-species B2(qB2), by the formula:

 m(qnc)B2 = (7x5)m(qn-1); (14)

 (or simply: mn = (7x5)mn-1)

it results the next possible variants:

q n1 =  z 0 , m n = 608.1 MeV/ c 2 ;  q n1 =  m 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qacaWGUbGaeyOeI0Ia aGymaaWdaeqaaOWdbiabg2da9iaabccacaWG6bWdamaaCaaaleqaba WdbiaaicdaaaGccaGGSaGaeyO0H4TaamyBa8aadaWgaaWcbaWdbiaa d6gaa8aabeaak8qacqGH9aqpcaqGGaGaaGOnaiaaicdacaaI4aGaai OlaiaaigdacaqGGaGaamytaiaadwgacaWGwbGaai4laiaadogapaWa aWbaaSqabeaapeGaaGOmaaaakiaacUdacaqGGaGaamyCa8aadaWgaa WcbaWdbiaad6gacqGHsislcaaIXaaapaqabaGcpeGaeyypa0Jaaeii aiaad2gapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiabgk DiEdaa@5FF3@

m n = 2418 MeV/ c 2 ;  q n1 = p, m n = 2418 MeV/ c 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaeyypa0JaaeiiaiaaikdacaaI0aGaaGymaiaaiIdacaqGGaGaam ytaiaadwgacaWGwbGaai4laiaadogapaWaaWbaaSqabeaapeGaaGOm aaaakiaacUdacaqGGaGaamyCa8aadaWgaaWcbaWdbiaad6gacqGHsi slcaaIXaaapaqabaGcpeGaeyypa0JaaeiiaiaadchacaGGSaGaeyO0 H4TaamyBa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacqGH9aqpca qGGaGaaGOmaiaaisdacaaIXaGaaGioaiaabccacaWGnbGaamyzaiaa dAfacaGGVaGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaai4oaa aa@60EA@

q n1 =λ, m n = 15,225 MeV/ c 2 ;  q n1 = s, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qacaWGUbGaeyOeI0Ia aGymaaWdaeqaaOWdbiabg2da9iabeU7aSjaacYcacqGHshI3caWGTb WdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabg2da9iaabccacaaI XaGaaGynaiaacYcacaaIYaGaaGOmaiaaiwdacaqGGaGaamytaiaadw gacaWGwbGaai4laiaadogapaWaaWbaaSqabeaapeGaaGOmaaaakiaa cUdacaqGGaGaamyCa8aadaWgaaWcbaWdbiaad6gacqGHsislcaaIXa aapaqabaGcpeGaeyypa0JaaeiiaiaadohacaGGSaGaeyO0H4naaa@5E84@

m n = 17,640 MeV/ c 2 ;  q n1 = v, m n = 20,090 MeV/ c 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGUbaapaqabaGc peGaeyypa0JaaeiiaiaaigdacaaI3aGaaiilaiaaiAdacaaI0aGaaG imaiaabccacaWGnbGaamyzaiaadAfacaGGVaGaam4ya8aadaahaaWc beqaa8qacaaIYaaaaOGaai4oaiaabccacaWGXbWdamaaBaaaleaape GaamOBaiabgkHiTiaaigdaa8aabeaak8qacqGH9aqpcaqGGaGaamOD aiaacYcacqGHshI3caWGTbWdamaaBaaaleaapeGaamOBaaWdaeqaaO Wdbiabg2da9iaabccacaaIYaGaaGimaiaacYcacaaIWaGaaGyoaiaa icdacaqGGaGaamytaiaadwgacaWGwbGaai4laiaadogapaWaaWbaaS qabeaapeGaaGOmaaaakiaacUdaaaa@63C3@

q n1 = c, m n = 59640 MeV/ c 2 ;  q n1 =  c , m n =  54,495 MeV/ c 2 ;  q n1 = b, m n = 175,271 MeV/ c 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamyCa8aadaWgaaWcbaWdbiaad6gacqGH sislcaaIXaaapaqabaGcpeGaeyypa0JaaeiiaiaadogacaGGSaGaey O0H4TaamyBa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacqGH9aqp caqGGaGaaGynaiaaiMdacaaI2aGaaGinaiaaicdacaqGGaGaamytai aadwgacaWGwbGaai4laiaadogapaWaaWbaaSqabeaapeGaaGOmaaaa kiaacUdacaqGGaGaamyCa8aadaWgaaWcbaWdbiaad6gacqGHsislca aIXaaapaqabaGcpeGaeyypa0JaaeiiaiaadogapaWaaWbaaSqabeaa cqGHIaYTaaGcpeGaaiilaiabgkDiElaad2gapaWaaSbaaSqaa8qaca WGUbaapaqabaGcpeGaeyypa0JaaeiiaaqaaiaaiwdacaaI0aGaaiil aiaaisdacaaI5aGaaGynaiaabccacaWGnbGaamyzaiaadAfacaGGVa Gaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaai4oaiaabccacaWG XbWdamaaBaaaleaapeGaamOBaiabgkHiTiaaigdaa8aabeaak8qacq GH9aqpcaqGGaGaamOyaiaacYcacqGHshI3caWGTbWdamaaBaaaleaa peGaamOBaaWdaeqaaOWdbiabg2da9iaabccacaaIXaGaaG4naiaaiw dacaGGSaGaaGOmaiaaiEdacaaIXaGaaeiiaiaad2eacaWGLbGaamOv aiaac+cacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaGccaGGUaaaaa a@889E@

The last variant, obtained with qn-1= b, corresponds to the top quark, (effective mass mt = 177GeV/c2).

A general equation for the mass of baryons and of mesons, obtained by CGT

By analysing the Annexes A- D of Ref.15 it results that:

  1. -for baryons:

-almost all baryons with total angular momentum (total spin) Jp = ½ result from quarks of flavor fq = 1, (of Souza/CGT type), by the sum rule or with a de-excitation reaction corresponding to the loosing of (1¸2) z0 –preons, excepting the case of Ξ cc ++ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkHiTiabf65ay9aadaWgaaWcbaWdbiaadoga caWGJbaapaqabaGcdaahaaWcbeqaa8qacqGHRaWkcqGHRaWkaaaaaa@41FF@ (3.621) which results as composed by c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadogapaWaaWbaaSqabeaacqGHIaYTaaaaaa@3E02@ - quarks of fq = 2, (of S.M. type), or as triplet: (ccp) or (ccn) de-excited by emission of 5z0.

 - the baryons with total spin Jp = 3/2 results from quarks of flavor fq =1, by de-excitation reaction with emission of at least one z0-preon, generally –of three preons (one z0-preon/constituent quark)- corresponding to a z1 bosonic preon, or with emission of a z2(4z0) or z3(6z0) –preonic boson, excepting four cases, of: Λ s 0* , Σ s 0* , Σ c * and   Ω c 0* , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfU5am9aadaWgaaWcbaWdbiaadohaa8aabeaa kmaaCaaaleqabaWdbiaaicdacaGGQaaaaOGaaiilaiabfo6at9aada WgaaWcbaWdbiaadohaa8aabeaakmaaCaaaleqabaWdbiaaicdacaGG QaaaaOGaaiilaiabfo6at9aadaWgaaWcbaWdbiaadogaa8aabeaakm aaCaaaleqabaWdbiaacQcaaaGccaWGHbGaamOBaiaadsgacaGGGcGa aiiOaiabfM6ax9aadaWgaaWcbaWdbiaadogaa8aabeaakmaaCaaale qabaWdbiaaicdacaGGQaaaaOGaaiilaaaa@53D0@  whose mass results as sum of the masses of their constituent quarks –indicating a weaker (semi-strong) interaction between these quarks at the baryon’s forming.

A general semi-empiric equation for the baryons’ mass can be written in this case in the form:

m( p b )= Σ 1 3 m( q k f )δ m q = Σ 1 3 m( q k f )(n 1 6 | Σ f q |+ J p 1 2 ) z 0 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gacaGGOaGaamiCamaaBaaaleaacaWGIbaa beaakiaacMcacqGH9aqpcqqHJoWupaWaa0baaSqaa8qacaaIXaaapa qaa8qacaaIZaaaaOGaamyBaiaacIcacaWGXbWdamaaDaaaleaapeGa am4AaaWdaeaapeGaamOzaaaakiaacMcacqGHsislcqaH0oazcaWGTb WaaSbaaSqaaiaadghaaeqaaOGaeyypa0Jaeu4Odm1damaaDaaaleaa peGaaGymaaWdaeaapeGaaG4maaaakiaad2gacaGGOaGaamyCa8aada qhaaWcbaWdbiaadUgaa8aabaWdbiaadAgaaaGccaGGPaGaeyOeI0Ia aiikaiaad6gacqGHflY1daWcaaqaaiaaigdaaeaacaaI2aaaamaaem aabaGaeu4OdmLaamOzamaaBaaaleaacaWGXbaabeaaaOGaay5bSlaa wIa7aiabgUcaRiaadQeadaahaaWcbeqaaiaadchaaaGccqGHsisllm aaliaabaGaaGymaaqaaiaaikdaaaGccaGGPaGaeyyXICTaamOEamaa CaaaleqabaGaaGimaaaakiaacUdaaaa@70A2@   (15)

(f = fq = 2; n = 0¸2 for Jp = ½ and n = 0¸5 for Jp = 3/2); δ m q /m( p b ) < 2.7%); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaad2gapaWaaSbaaSqaa8qacaWGXbaa paqabaGcpeGaai4laiaad2gapaWaaeWaaeaapeGaamiCa8aadaWgaa WcbaWdbiaadkgaa8aabeaaaOGaayjkaiaawMcaa8qacaqGGaGaeyip aWJaaeiiaiaaikdacaGGUaGaaG4naiaacwcapaGaaiyka8qacaGG7a aaaa@4BA4@ (fq –quark’s flavor).

Conform to Eq. (15), the baryon: Ξ cc ++ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabf65ay9aadaWgaaWcbaWdbiaadogacaWGJbaa paqabaGcdaahaaWcbeqaa8qacqGHRaWkcqGHRaWkaaaaaa@4112@ (3.621) corresponds to Jp = 3/2 and n = 4.

The mass defect δ m q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaad2gapaWaaSbaaSqaa8qacaWGXbaa paqabaaaaa@3F40@ represents generally less than 2.7% of the particle’s mass mass, (excepting Ξ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabf65ay9aadaahaaWcbeqaa8qacqGHxiIkcaaI Waaaaaaa@3ED2@ (1532), resulting as: [(λvv) –z1], for which m( z 1 )/m( p b )3.4%, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaeWaaeaapeGaamOEa8aadaWgaaWc baWdbiaaigdaa8aabeaaaOGaayjkaiaawMcaa8qacaGGVaGaamyBa8 aadaqadaqaa8qacaWGWbWdamaaBaaaleaapeGaamOyaaWdaeqaaaGc caGLOaGaayzkaaWdbiabgIKi7kaaiodacaGGUaGaaGinaiaacwcaca GGSaaaaa@4AF5@ corresponding to Jp = 3/2; n =2).

Conform to Eq. (15), the baryons which were formed without mass defect, (with δ m q 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaad2gapaWaaSbaaSqaa8qacaWGXbaa paqabaGcpeGaeyisISRaaGimaaaa@41C5@ ), are considered with Jp = ½ .

  1. For heavy mesons:

-by analysing the Annexes A- B of Ref.15 it results that the heavy mesons may be explained as pairs ( q k q ¯ ¯ l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGXbWdamaaBaaaleaapeGaam4AaaWd aeqaaOWdbiqadghagaqegaqea8aadaWgaaWcbaWdbiaadYgaa8aabe aakiaacMcaaaa@4186@ by considering the both variants of the charm and of the bottom quarks: c s = c and  c ;  b s = b and  b , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadogapaWaaWbaaSqabeaapeGaam4Caaaakiab g2da9iaabccacaWGJbGaaeiiaiaadggacaWGUbGaamizaiaabccaca WGJbWdamaaCaaaleqabaGaeyOiGClaaOWdbiaacUdacaqGGaGaamOy a8aadaahaaWcbeqaa8qacaWGZbaaaOGaeyypa0Jaaeiiaiaadkgaca qGGaGaamyyaiaad6gacaWGKbGaaeiiaiaadkgapaWaaWbaaSqabeaa cqGHIaYTaaGcpeGaaiilaaaa@548C@ (the Souza’s and the S.M.’s mass variants), i.e. with flavor fq = 2 or fq = 1, the pair of heavier quarks being de-excited by a defect mass dm corresponding to the emission of a preonic boson zk = n×z0 with n = 0÷8  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6gacaqGGaGaeyypa0JaaeiiaiaaicdacqGH 3daUcaaI4aGaaeiiaaaa@42F2@ and which is generally of higher value to the formed pseudo-scalar mesons than to the formed vector mesons.

Because the pseudoscalar mesons have the total angular momentum (total spin) Jp = 0 and the vector mesons have Jp = 1, it can be written a semi-empiric equation similar to Eq. (15) but considered for m( p m ) = m( q k   q ¯ l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaeWaaeaapeGaamiCa8aadaWgaaWc baWdbiaad2gaa8aabeaaaOGaayjkaiaawMcaa8qacaqGGaGaeyypa0 Jaaeiiaiaad2gacaGGOaGaamyCa8aadaWgaaWcbaWdbiaadUgaa8aa beaak8qacaGGGcGabmyCa8aagaqeamaaBaaaleaapeGaamiBaaWdae qaaOGaaiykaaaa@4AC7@ , in the form:

m( p m )= Σ 1 2 m( q k f )δ m q = Σ 1 2 m( q k f )(n| Σ f q | J p ) z 0 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gacaGGOaGaamiCamaaBaaaleaacaWGTbaa beaakiaacMcacqGH9aqpcqqHJoWupaWaa0baaSqaa8qacaaIXaaapa qaa8qacaaIYaaaaOGaamyBaiaacIcacaWGXbWdamaaDaaaleaapeGa am4AaaWdaeaapeGaamOzaaaakiaacMcacqGHsislcqaH0oazcaWGTb WaaSbaaSqaaiaadghaaeqaaOGaeyypa0Jaeu4Odm1damaaDaaaleaa peGaaGymaaWdaeaapeGaaGOmaaaakiaad2gacaGGOaGaamyCa8aada qhaaWcbaWdbiaadUgaa8aabaWdbiaadAgaaaGccaGGPaGaeyOeI0Ia aiikaiaad6gacqGHsisldaabdaqaaiabfo6atjaadAgadaWgaaWcba GaamyCaaqabaaakiaawEa7caGLiWoacqGHsislcaWGkbWaaWbaaSqa beaacaWGWbaaaOGaaiykaiaadQhadaahaaWcbeqaaiaaicdaaaGcca GG7aaaaa@68F9@

δ m q /m( p m ) < 5%); ( f q ( q ¯ ) =  f q ( q )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaad2gapaWaaSbaaSqaa8qacaWGXbaa paqabaGcpeGaai4laiaad2gapaWaaeWaaeaapeGaamiCa8aadaWgaa WcbaWdbiaad2gaa8aabeaaaOGaayjkaiaawMcaa8qacaqGGaGaeyip aWJaaeiiaiaaiwdacaGGLaWdaiaacMcapeGaai4oaiaabccapaGaai ika8qacaWGMbWdamaaBaaaleaapeGaamyCaaWdaeqaaOGaaiikaiqa dghagaqeaiaacMcapeGaaeiiaiabg2da9iaabccacqGHsislcaWGMb WdamaaBaaaleaapeGaamyCaaWdaeqaaOWaaeWaaeaapeGaamyCaaWd aiaawIcacaGLPaaacaGGPaaaaa@5932@   (16)

(| f q |= [ 1;2 ] ; n = 0÷8 for  J p = 0 and n = 0÷5 for  J p = 1); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaGaaiiFaabaaaaaaaaapeGaamOza8aadaWgaaWcbaWdbiaa dghaa8aabeaakiaacYhapeGaeyypa0Jaaeiia8aadaWadaqaa8qaca aIXaGaai4oaiaaikdaa8aacaGLBbGaayzxaaWdbiaabccacaGG7aGa aeiiaiaad6gacaqGGaGaeyypa0JaaeiiaiaaicdacqGH3daUcaaI4a GaaeiiaiaadAgacaWGVbGaamOCaiaabccacaWGkbWdamaaCaaaleqa baWdbiaadchaaaGccqGH9aqpcaqGGaGaaGimaiaabccacaWGHbGaam OBaiaadsgacaqGGaGaamOBaiaabccacqGH9aqpcaqGGaGaaGimaiab gEpa4kaaiwdacaqGGaGaamOzaiaad+gacaWGYbGaaeiiaiaadQeapa WaaWbaaSqabeaapeGaamiCaaaakiabg2da9iaabccacaaIXaWdaiaa cMcapeGaai4oaaaa@6D1D@

So, all mesons which can be explained by a reaction of the form (16), by combinations ( q k q ¯ ¯ l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGXbWdamaaBaaaleaapeGaam4AaaWd aeqaaOWdbiqadghagaqegaqea8aadaWgaaWcbaWdbiaadYgaa8aabe aakiaacMcaaaa@4186@ , are in concordance with the CGT’s model.

Arguments for a vortical model of electron and a multi-vortical model of meson and baryon

The stability of the vector photon and of the electron’s magnetic moment

According to the vortical model of electron, of vector photon and of magnetic field, an electron and a free

vector photon must have also a perpetual ‘quantonic’ vortex Gv which gives its magnetic moment and – in the case of the lightest vector photons- also its spin. It was shown in CGT16 that for the case of a single ‚quanton’, of mass mh = h×1/c2 and radius rh , it results that its maintaining on the vortex line lr = 2pr around the super-dense centroid of radius r0 of a vector photon or of an electron, is possible by an etheronic force Fsh of Magnus type given by the quanton’s passing with the speed ωr =  v v = c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeM8a3jabgwSixlaadkhacaqGGaGaeyypa0Ja aeiiaiaadAhapaWaaSbaaSqaa8qacaWG2baapaqabaGcpeGaeyypa0 Jaaeiiaiaadogaaaa@47AE@ through a brownian etheronic medium of variable density ρ s ( r )~ r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadohaa8aabeaa kmaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWdbiaac6hacaWGYb WdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaaaaa@4511@ , caused by the electron’s or the vector photon’s etheronic vortex Γ a v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadggaa8aabeaa kmaaCaaaleqabaWdbiaadAhaaaaaaa@3F43@ of heavy etherons’ (‚sinergons’ –with mass 10 60 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgIKi7kaaigdacaaIWaWdamaaCaaaleqabaWd biabgkHiTiaaiAdacaaIWaaaaOGaam4AaiaadEgaaaa@4318@ )5 having an impulse density: p s = r sv ( r )w, (w = c2), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGZbaapaqabaGc peGaeyypa0JaamOCa8aadaWgaaWcbaWdbiaadohacaWG2baapaqaba Gcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacqGHflY1caWG 3bGaaiilaiaabccapaGaaiika8qacaWG3bGaaeiiaiabg2da9iaabc cacaWGJbqedmvETj2BSbacfaGae8NgIyTaaGOma8aacaGGPaWdbiaa cYcaaaa@54B7@ , the induced etheronic Γ h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadIgaa8aabeaa aaa@3E08@ - vortex of the quanton, of circulation: Γ h ( r h ) =2π r h v h ,( v h =  k v c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadIgaa8aabeaa kmaabmaabaWdbiaadkhapaWaaSbaaSqaa8qacaWGObaapaqabaaaki aawIcacaGLPaaapeGaaeiiaiabg2da9iaaikdacqaHapaCcqGHflY1 caWGYbWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiaadAhapaWaaS baaSqaa8qacaWGObaapaqabaGcpeGaaiila8aadaqadaqaa8qacaWG 2bWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabg2da9iaabccaca WGRbWdamaaBaaaleaapeGaamODaaWdaeqaaOWdbiaadogaa8aacaGL OaGaayzkaaaaaa@56D6@ , being explained by the gradient p s = ρ s ( r )c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgEGirlaadchapaWaaSbaaSqaa8qacaWGZbaa paqabaGcpeGaeyypa0Jaey4bIeTaeqyWdi3damaaBaaaleaapeGaam 4CaaWdaeqaaOWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaapeGa am4yaaaa@487F@ of the relative impulse density ps of etherons related to the quanton’s surface, maintained by etheronic winds.17 A similar gradient, ρ sv ( r )w, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgEGirlabeg8aY9aadaWgaaWcbaWdbiaadoha caWG2baapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8 qacaWG3bGaaiilaaaa@4551@ of the Γ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadggaa8aabeaa aaa@3E01@ –vortex, generates a Γ h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaGaamiAaaqabaaaaa@3DE9@ - vortex to pseudo-stationary quantons which are attracted towards the vecton’s center. The condition of the quanton’s maintaining on the vortex-line is given by the dynamic equilibrium equation:

F sh = 2 r h Γ h ( r h ) ρ s ( r )c = 4π r h 2 k v c 2 ρ s 0 ( r 0 /r )  =  m h c 2 /r = F cf ;( ρ s ( r ) = ρ s 0 ( r 0 /r );r r λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamOra8aadaWgaaWcbaWdbiaadohacaWG ObaapaqabaGcpeGaeyypa0JaaeiiaiaaikdacaWGYbWdamaaBaaale aapeGaamiAaaWdaeqaaOWdbiabgwSixlabfo5ah9aadaWgaaWcbaWd biaadIgaa8aabeaakmaabmaabaWdbiaadkhapaWaaSbaaSqaa8qaca WGObaapaqabaaakiaawIcacaGLPaaapeGaeyyXICTaeqyWdi3damaa BaaaleaapeGaam4CaaWdaeqaaOWaaeWaaeaapeGaamOCaaWdaiaawI cacaGLPaaapeGaeyyXICTaam4yaiaabccacqGH9aqpcaqGGaGaaGin aiabec8aWjabgwSixlaadkhapaWaaSbaaSqaa8qacaWGObaapaqaba GcdaahaaWcbeqaa8qacaaIYaaaaOGaam4Aa8aadaWgaaWcbaWdbiaa dAhaa8aabeaak8qacqGHflY1caWGJbWdamaaCaaaleqabaWdbiaaik daaaGccqGHflY1cqaHbpGCpaWaaSbaaSqaa8qacaWGZbaapaqabaGc daahaaWcbeqaa8qacaaIWaaaaOGaeyyXIC9damaabmaabaWdbiaadk hapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaai4laiaadkhaa8aa caGLOaGaayzkaaWdbiaabccaaeaacqGH9aqpcaqGGaGaamyBa8aada WgaaWcbaWdbiaadIgaa8aabeaak8qacaWGJbWdamaaCaaaleqabaWd biaaikdaaaGccaGGVaGaamOCaiaabccacqGH9aqpcaWGgbWdamaaBa aaleaapeGaam4yaiaadAgaa8aabeaak8qacaGG7aWdaiaacIcapeGa eqyWdi3damaaBaaaleaapeGaam4CaaWdaeqaaOWaaeWaaeaapeGaam OCaaWdaiaawIcacaGLPaaapeGaaeiiaiabg2da9iabeg8aY9aadaWg aaWcbaWdbiaadohaa8aabeaakmaaCaaaleqabaWdbiaaicdaaaGccq GHflY1paWaaeWaaeaapeGaamOCa8aadaWgaaWcbaWdbiaaicdaa8aa beaak8qacaGGVaGaamOCaaWdaiaawIcacaGLPaaapeGaai4oaiaadk hacqGHKjYOcaWGYbWdamaaBaaaleaacqaH7oaBaeqaaOGaaiykaaaa aa@9FC3@   (17)

with: ρ s 0 ( r 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadohaa8aabeaa kmaaCaaaleqabaWdbiaaicdaaaGcpaWaaeWaaeaapeGaamOCa8aada WgaaWcbaWdbiaaicdaa8aabeaaaOGaayjkaiaawMcaaaaa@4333@ - the density of sinergons’ at the surface of the vector photon’s or the electron’s centroid, by considering the quanton as cylindrical, of lenght lh = 2rh and density rh.17 This dynamic equilibrium (17) is realized by the resulted condition: 4π r h 2 k v ρ s 0 r 0 =  m h = h/ c 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaaisdacqaHapaCcaWGYbWdamaaBaaaleaapeGa amiAaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiaadUgapaWaaS baaSqaa8qacaWG2baapaqabaGcpeGaeqyWdi3damaaBaaaleaapeGa am4CaaWdaeqaaOWaaWbaaSqabeaapeGaaGimaaaakiabgwSixlaadk hapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyypa0Jaaeiiaiaa d2gapaWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaeyypa0Jaaeiiai aadIgacaGGVaGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiil aaaa@55F9@ i.e. –by the condition: ρ s 0 k v r 0 =  m h /4π r h 2 = ½ ρ h r h = constant MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadohaa8aabeaa kmaaCaaaleqabaWdbiaaicdaaaGccaWGRbWdamaaBaaaleaapeGaam ODaaWdaeqaaOWdbiaadkhapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyypa0Jaaeiiaiaad2gapaWaaSbaaSqaa8qacaWGObaapaqaba GcpeGaai4laiaaisdacqaHapaCcaWGYbWdamaaBaaaleaapeGaamiA aaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiabg2da9iaabccaca GG9cGaeqyWdi3damaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabgwSi xlaadkhapaWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaeyypa0Jaae iiaiaadogacaWGVbGaamOBaiaadohacaWG0bGaamyyaiaad6gacaWG 0baaaa@6257@ .

With the value resulting from Ref.3 for the ratio: k h =2π r h 2 / m h = 27.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadUgapaWaaSbaaSqaa8qacaWGObaapaqabaGc peGaeyypa0JaaGOmaiabec8aWjaadkhapaWaaSbaaSqaa8qacaWGOb aapaqabaGcdaahaaWcbeqaa8qacaaIYaaaaOGaai4laiaad2gapaWa aSbaaSqaa8qacaWGObaapaqabaGcpeGaeyypa0Jaaeiiaiaaikdaca aI3aGaaiOlaiaaisdaaaa@4C10@ , (giving rh = 1.79x10-25m), it results:

ρ s ( r ) k v r = ρ s 0 k v r 0 = m h /4π r h 2 = ( 2 k h ) 1 =1.825x 10 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadohaa8aabeaa kmaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWdbiaadUgapaWaaS baaSqaa8qacaWG2baapaqabaGcpeGaeyyXICTaamOCaiaabccacqGH 9aqpcqaHbpGCpaWaaSbaaSqaa8qacaWGZbaapaqabaGcdaahaaWcbe qaa8qacaaIWaaaaOGaam4Aa8aadaWgaaWcbaWdbiaadAhaa8aabeaa k8qacaWGYbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da9i aad2gapaWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaai4laiaaisda cqaHapaCcaWGYbWdamaaBaaaleaapeGaamiAaaWdaeqaaOWaaWbaaS qabeaapeGaaGOmaaaakiabg2da98aadaqadaqaa8qacaaIYaGaam4A a8aadaWgaaWcbaWdbiaadIgaa8aabeaaaOGaayjkaiaawMcaamaaCa aaleqabaWdbiabgkHiTiaaigdaaaGccqGH9aqpcaaIXaGaaiOlaiaa iIdacaaIYaGaaGynaiaadIhacaaIXaGaaGima8aadaahaaWcbeqaa8 qacqGHsislcaaIYaaaaaaa@6B91@   (18)

[kg/m2].

The quanton’s c-speed can be maintained by a dynamic equilibrium of etheronic pressure forces Ft on the tangent direction, of Stokes type ( F t ~v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGgbWdamaaCaaaleqabaWdbiaadsha aaGccaGG+bGaamODa8aacaGGPaaaaa@40D8@ , given by the Γ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadggaa8aabeaa aaa@3E01@ –vortex having a density ρ sv ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadohacaWG2baa paqabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaaaaa@420F@ and by the density ρ s ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacqaHbpGCdaWgaaWcbaaeaaaaaaaaa8qacaWGZbaapaqabaGcdaqa daqaa8qacaWGYbaapaGaayjkaiaawMcaaaaa@40F5@ which generates a drag force: F r t =  F a t ( r ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWGYbaapaqabaGc daahaaWcbeqaa8qacaWG0baaaOGaeyypa0JaaeiiaiabgkHiTiaadA eapaWaaSbaaSqaa8qacaWGHbaapaqabaGcdaahaaWcbeqaa8qacaWG 0baaaOWdamaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWdbiaac6 caaaa@481A@ .

The justification for the conclusion that the interaction of the etheronic fluid composed by ‚heavy etherons’ (‚sinergons’) with an un-bound quanton is in the laminary regime (specific to the Stokes type force) is the fact that the Reynolds number: Re = uL/ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkfacaWGLbGaaeiiaiabg2da9iaabccacaWG 1bGaeyyXICTaamitaiaac+cacqaH9oGBaaa@45E6@ is still low also in this case because- even if uc2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhacqGHijYUcaWGJbqedmvETj2BSbacfaGa e8NgIyTaaGOmaaaa@43D6@ and the kinematic viscosity ν= ν e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabe27aUjabg2da9iabe27aU9aadaWgaaWcbaWd biaadwgaa8aabeaaaaa@4113@ of the medium of heavy etherons must be low, the specific lenght L must be approximately the diameter of the quanton, in this case, so –very small, (L =  l h 2 r h 3.6x 10 25 m). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGmbGaaeiiaiabg2da9iaabccacaWG SbWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabgIKi7kaaikdaca WGYbWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabgIKi7kaaioda caGGUaGaaGOnaiaadIhacaaIXaGaaGima8aadaahaaWcbeqaa8qacq GHsislcaaIYaGaaGynaaaakiaad2gapaGaaiyka8qacaGGUaaaaa@51B9@ However, for the interaction of bound quantons with a flux of gravitonic etherons ( m g 10 69 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGNbaapaqabaGc peGaeyisISRaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaG OnaiaaiMdaaaGccaWGRbGaam4zaaaa@4573@ )18 we can consider the turbulent regime, (characterized by Navier-Stokes equations, with pρ w 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadchacqGHijYUcqaHbpGCcaWG3bWdamaaCaaa leqabaWdbiaaikdaaaaaaa@41C3@ ), the kinematic viscosity of the flux of gravitonc etherons being lower than that of the‚ heavy etherons’ medium, (the medium of gravitonic etherons –much smaller than the sinergons, being more super-fluid).

By the hypothesis that the etheronic force Fa on the tangent direction is of Stokes type, specific to a laminary flowing of the etheronic medium, at dynamic equilibrium we have:

F a t = 6π l h ρ sv ν e ( wc ) =  F a = 6π l h ρ s ν e c =  F r t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWGHbaapaqabaGc daahaaWcbeqaa8qacaWG0baaaOGaeyypa0JaaeiiaiaaiAdacqaHap aCcaWGSbWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabeg8aY9aa daWgaaWcbaWdbiaadohacaWG2baapaqabaGcpeGaeqyVd42damaaBa aaleaapeGaamyzaaWdaeqaaOWaaeWaaeaapeGaam4DaiabgkHiTiaa dogaa8aacaGLOaGaayzkaaWdbiaabccacqGH9aqpcaqGGaGaamOra8 aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGH9aqpcaqGGaGaaGOn aiabec8aWjaadYgapaWaaSbaaSqaa8qacaWGObaapaqabaGcpeGaeq yWdi3damaaBaaaleaapeGaam4CaaWdaeqaaOWdbiabe27aU9aadaWg aaWcbaWdbiaadwgaa8aabeaak8qacaWGJbGaaeiiaiabg2da9iaabc cacaWGgbWdamaaBaaaleaapeGaamOCaaWdaeqaaOWaaWbaaSqabeaa peGaamiDaaaaaaa@6897@   (19)

ρ sv ( r )( w c ) = ρ s ( r )c; (w2c, [ 5 ]), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadohacaWG2baa paqabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacqGHfl Y1paWaaeWaaeaapeGaam4DaiaabccacaGGtaIaam4yaaWdaiaawIca caGLPaaapeGaaeiiaiabg2da9iabeg8aY9aadaWgaaWcbaWdbiaado haa8aabeaakmaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWdbiab gwSixlaadogacaGG7aGaaeiia8aacaGGOaWdbiaadEhacqGHijYUrm Wu51MyVXgaiuaacqWFAiI1caaIYaGaam4yaiaacYcacaqGGaWdamaa dmaabaWdbiaaiwdaa8aacaGLBbGaayzxaaGaaiykaiaacYcaaaa@644F@   (20a)

ρ sv ( r )= ρ s ( r )/(21), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkDiElabeg8aY9aadaWgaaWcbaWdbiaadoha caWG2baapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8 qacqGH9aqpcqaHbpGCpaWaaSbaaSqaa8qacaWGZbaapaqabaGcdaqa daqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacaGGVaWdaiaacIcarm Wu51MyVXgaiuaapeGae8NgIyTaaGOmaiabgkHiTiaaigdapaGaaiyk a8qacaGGSaaaaa@54D9@   (20b)

Particularizing for the case of the electron’s magnetic moment vortex, Γ μ e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaGaeqiVd0gabeaakmaa CaaaleqabaWdbiaadwgaaaaaaa@3FE3@ , for which Ref.3 gives a density: ρ c ( a ) = ρ μ ( a )= ρ e ( a )= μ 0 / k 1 2 = 5.16x 10 13 kg, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadogaa8aabeaa kmaabmaabaWdbiaadggaa8aacaGLOaGaayzkaaWdbiaabccacqGH9a qpcqaHbpGCpaWaaSbaaSqaaiabeY7aTbqabaGcdaqadaqaa8qacaWG HbaapaGaayjkaiaawMcaa8qacqGH9aqpcqaHbpGCpaWaaSbaaSqaa8 qacaWGLbaapaqabaGcdaqadaqaa8qacaWGHbaapaGaayjkaiaawMca a8qacqGH9aqpcqaH8oqBpaWaaSbaaSqaa8qacaaIWaaapaqabaGcpe Gaai4laiaadUgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcdaahaaWc beqaa8qacaaIYaaaaOGaeyypa0JaaeiiaiaaiwdacaGGUaGaaGymai aaiAdacaWG4bGaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGymaiaa iodaaaGccaWGRbGaam4zaiaacYcaaaa@62C7@ (a = 1.41 fm), and by using the formula: B =  k 1 ρ c v v , ( k 1 = 4π a 2 /e), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkeacaqGGaGaeyypa0JaaeiiaiaadUgapaWa aSbaaSqaa8qacaaIXaaapaqabaGcpeGaeqyWdi3damaaBaaaleaape Gaam4yaaWdaeqaaOWdbiaadAhapaWaaSbaaSqaa8qacaWG2baapaqa baGcpeGaaiilaiaabccapaGaaiika8qacaWGRbWdamaaBaaaleaape GaaGymaaWdaeqaaOWdbiabg2da9iaabccacaaI0aGaeqiWdaNaamyy a8aadaahaaWcbeqaa8qacaaIYaaaaOGaai4laiaadwgapaGaaiyka8 qacaGGSaaaaa@5383@ for the electron’s B-field,3 with vv = c for r r λ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhacqGHKjYOcaWGYbWdamaaBaaaleaacqaH 7oaBaeqaaOWaaWbaaSqabeaapeGaam4yaaaaaaa@421A@ , by using for the magnetic potential the relation obtained in CGT,3 it results that :

A( r ) = ½Br = ½ k 1 ρ c cr =½ k 1 ρ sv wr; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadgeapaWaaeWaaeaapeGaamOCaaWdaiaawIca caGLPaaapeGaaeiiaiabg2da9iaabccacaGG9cGaamOqaiabgwSixl aadkhacaqGGaGaeyypa0Jaaeiiaiaac2lacaWGRbWdamaaBaaaleaa peGaaGymaaWdaeqaaOWdbiabeg8aY9aadaWgaaWcbaWdbiaadogaa8 aabeaak8qacaWGJbGaeyyXICTaamOCaiaabccacqGH9aqpcaGG9cGa am4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqaHbpGCpaWaaS baaSqaa8qacaWGZbGaamODaaWdaeqaaOWdbiaadEhacqGHflY1caWG YbGaai4oaaaa@618F@   (21a)

ρ sv ( a ) = ρ c ( a )/2 ρ s ( a )= ρ sv ( a )(21) = ρ c ( a )(11/2) ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaeyO0H4TaeqyWdi3damaaBaaaleaapeGa am4CaiaadAhaa8aabeaakmaabmaabaWdbiaadggaa8aacaGLOaGaay zkaaWdbiaabccacqGH9aqpcqaHbpGCpaWaaSbaaSqaa8qacaWGJbaa paqabaGcdaqadaqaa8qacaWGHbaapaGaayjkaiaawMcaa8qacaGGVa qedmvETj2BSbacfaGae8NgIyTaaGOmaaqaaiabeg8aY9aadaWgaaWc baWdbiaadohaa8aabeaakmaabmaabaWdbiaadggaa8aacaGLOaGaay zkaaWdbiabg2da9iabeg8aY9aadaWgaaWcbaWdbiaadohacaWG2baa paqabaGcdaqadaqaa8qacaWGHbaapaGaayjkaiaawMcaa8qacqGHfl Y1paGaaiika8qacqWFAiI1caaIYaGaeyOeI0IaaGyma8aacaGGPaWd biaabccacqGH9aqpcqaHbpGCpaWaaSbaaSqaa8qacaWGJbaapaqaba Gcdaqadaqaa8qacaWGHbaapaGaayjkaiaawMcaaiaacIcapeGaaGym aiabgkHiTiaaigdacaGGVaGae8NgIyTaaGOma8aacaGGPaWdbiaabc cacaGG7aaaaaa@7649@   (21b)

By taking: w =2c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadEhacaqGGaGaeyypa0tedmvETj2BSbacfaGa e8NgIyTaaGOmaiaadogaaaa@43D0@ ,3 it results:

ρ s ( a ) =0.29 ρ c ( a )1.49x 10 13 kg/ m 3 ;( a = 1.41fm ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadohaa8aabeaa kmaabmaabaWdbiaadggaa8aacaGLOaGaayzkaaWdbiaabccacqGH9a qpcaaIWaGaaiOlaiaaikdacaaI5aGaeqyWdi3damaaBaaaleaapeGa am4yaaWdaeqaaOWaaeWaaeaapeGaamyyaaWdaiaawIcacaGLPaaape GaeyisISRaaGymaiaac6cacaaI0aGaaGyoaiaadIhacaaIXaGaaGim a8aadaahaaWcbeqaa8qacaaIXaGaaG4maaaakiaadUgacaWGNbGaai 4laiaad2gapaWaaWbaaSqabeaapeGaaG4maaaakiaacUdapaWaaeWa aeaapeGaamyyaiaabccacqGH9aqpcaqGGaGaaGymaiaac6cacaaI0a GaaGymaiaadAgacaWGTbaapaGaayjkaiaawMcaa8qacaGGUaaaaa@63F1@

From Eq. (20) we have also: ρ s ( a )= 1.825x 10 2 /a k v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadohaa8aabeaa kmaabmaabaWdbiaadggaa8aacaGLOaGaayzkaaWdbiabg2da9iaabc cacaaIXaGaaiOlaiaaiIdacaaIYaGaaGynaiaadIhacaaIXaGaaGim a8aadaahaaWcbeqaa8qacqGHsislcaaIYaaaaOGaai4laiaadggacq GHflY1caWGRbWdamaaBaaaleaapeGaamODaaWdaeqaaaaa@50FF@ , resulting that: k v 0.87, ( v h 0.87c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadUgapaWaaSbaaSqaa8qacaWG2baapaqabaGc peGaeyisISRaaGimaiaac6cacaaI4aGaaG4naiaacYcacaqGGaWdai aacIcapeGaamODa8aadaWgaaWcbaWdbiaadIgaa8aabeaak8qacqGH ijYUcaaIWaGaaiOlaiaaiIdacaaI3aGaam4ya8aacaGGPaaaaa@4D16@ , i.e.- a value which corresponds to the used hypothesis that the magnetic moment of electrons and of vector photons is given by an etherono-quantonic vortex induced by etherono-quantonic winds. For r 0 10 20 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyisISRaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaG OmaiaaicdaaaGccaWGTbaaaa@444F@ , (value corresponding to a density of 3.6x1019 kg/m3 of the inertial mass m v 2.3x 10 40 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWG2baapaqabaGc peGaeyisISRaaGOmaiaac6cacaaIZaGaamiEaiaaigdacaaIWaWdam aaCaaaleqabaWdbiabgkHiTiaaisdacaaIWaaaaOGaam4AaiaadEga aaa@489F@ of a vector photon),3 by Eq. (18) we obtain: ρ s 0 a ρ s ( a )/ r 0 = 3.5x 10 2 ρ c ( a )»2.1× 10 18 kg/ m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaam4CaaWdaeqaaOWaaWbaaSqabeaa peGaaGimaaaakiabgIKi7kaadggacqGHflY1cqaHbpGCpaWaaSbaaS qaa8qacaWGZbaapaqabaGcdaqadaqaa8qacaWGHbaapaGaayjkaiaa wMcaa8qacaGGVaGaamOCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8 qacqGH9aqpcaqGGaGaaG4maiaac6cacaaI1aGaamiEaiaaigdacaaI WaWdamaaCaaaleqabaWdbiaaikdaaaGccqaHbpGCpaWaaSbaaSqaa8 qacaWGJbaapaqabaGcdaqadaqaa8qacaWGHbaapaGaayjkaiaawMca a8qacaGG7cGaaGOmaiaac6cacaaIXaGaey41aqRaaGymaiaaicdada ahaaWcbeqaaiaaigdacaaI4aaaaOGaaGPaVlaadUgacaWGNbGaai4l aiaad2gapaWaaWbaaSqabeaapeGaaG4maaaaaaa@6480@ , (with one size order of magnitude higher than the nucleon’s density). By Coandă effect, an etheronic vortex (but of gravitonic etherons) and an etheronic force of Magnus type can explain the stability of the sinergonic vortex ΓA which –in CGT, explains the observed physical nature of the magnetic potential A of the electron’s magnetic moment.

The perpetual rotation of the atomic electrons

It is know that the persisting currents in a superconductor, which flow at the superconductor’s surface to oppose the applied field and which expel the magnetic field of an external magnet, are not a result of Lenz's Law or Faraday's Law, (are not induced by change in flux), and that they do not decay with time, giving the illusion of perfect diamagnetism. Conform to CGT, we may suppose that the etheronic (‘sinergonic’) Γ A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadgeaa8aabeaa aaa@3DE1@ –vortex associated to the A-potential which induces the magnetic vortex-tubes ξ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabe67a49aadaWgaaWcbaWdbiaadkeaa8aabeaa aaa@3E3D@ of the magnet’s B-field, can maintain the intensity of the persisting current of electrons and of electronic Cooper pairs in a supraconductor, by its dynamic (etheronic) impulse density:

p A = ρ sv w= ρ c c, (wc2), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGbbaapaqabaGc peGaeyypa0JaeqyWdi3damaaBaaaleaapeGaam4CaiaadAhaa8aabe aak8qacaWG3bGaeyypa0JaeqyWdi3damaaBaaaleaapeGaam4yaaWd aeqaaOWdbiaadogacaGGSaGaaeiia8aacaGGOaWdbiaadEhacqGHij YUcaWGJbqedmvETj2BSbacfaGae8NgIyTaaGOma8aacaGGPaWdbiaa cYcaaaa@54D4@   conform to a dynamic equilibrium equation (19), (20) multiplied by a fa- factor (fa <<1) imposed by the superfluidity of the etherono-quantonic medium (in which the drag force tends to zero). A similar but nuclear Γ A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadgeaa8aabeaa aaa@3DE1@ –vortex can explain the perpetual rotation of the atomic electrons, in CGT.3 In the case of the hydrogen atom- for example, the quantified electron’s speed: ve(rn) = ve0(r0)/n, (rn = n2r0; n = 0, 1, 2…), gives the variation law: v e ( r n ) = c( 2a/r ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAhapaWaaSbaaSqaa8qacaWGLbaapaqabaGc daqadaqaa8qacaWGYbWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcca GLOaGaayzkaaWdbiaabccacqGH9aqpcaqGGaGaam4yaiabgwSixhXa tLxBI9gBaGqbaiab=PHiw=aadaqadaqaa8qacaaIYaGaamyyaiaac+ cacaWGYbaapaGaayjkaiaawMcaa8qacaGGSaaaaa@5108@ which can be explained by a equation of dynamic equilibrium on the direction tangent to the electron’s rotation:

F A =  F R ; ρ w ( r )[ w  v e ( r ) ] = ρ R ( r ) v e ( r ); (w = c2 ; ρ R ( r )= ρ w ( r )[ γ p ( r/a )  1] ; a = 1.41 fm) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamOra8aadaWgaaWcbaWdbiaadgeaa8aa beaak8qacqGH9aqpcaqGGaGaamOra8aadaWgaaWcbaWdbiaadkfaa8 aabeaak8qacaGG7aGaeyO0H4TaeqyWdi3damaaBaaaleaapeGaam4D aaWdaeqaaOWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaadaWada qaa8qacaWG3bGaeyOeI0IaaeiiaiaadAhapaWaaSbaaSqaa8qacaWG LbaapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaaaGaay 5waiaaw2faa8qacaqGGaGaeyypa0JaeqyWdi3damaaBaaaleaapeGa amOuaaWdaeqaaOWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaape GaamODa8aadaWgaaWcbaWdbiaadwgaa8aabeaakmaabmaabaWdbiaa dkhaa8aacaGLOaGaayzkaaWdbiaacUdaaeaapaGaaiika8qacaWG3b Gaaeiiaiabg2da9iaabccacaWGJbqedmvETj2BSbacfaGae8NgIyTa aGOmaiaabccacaGG7aGaeqyWdi3damaaBaaaleaapeGaamOuaaWdae qaaOWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaapeGaeyypa0Ja eqyWdi3damaaBaaaleaapeGaam4DaaWdaeqaaOWaaeWaaeaapeGaam OCaaWdaiaawIcacaGLPaaacaGGBbWdbiabeo7aN9aadaWgaaWcbaWd biaadchaa8aabeaak8qacqGHflY1cqWFAiI1paWaaeWaaeaapeGaam OCaiaac+cacaWGHbaapaGaayjkaiaawMcaa8qacaqGGaGaai4eGiaa bccacaaIXaWdaiaac2fapeGaaeiiaiaacUdacaqGGaGaamyyaiaabc cacqGH9aqpcaqGGaGaaGymaiaac6cacaaI0aGaaGymaiaabccacaWG MbGaamyBa8aacaGGPaaaaaa@938D@   (22)

with: p A = ρ w w= ρ c v c = B( r )/ k 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGbbaapaqabaGc peGaeyypa0JaeqyWdi3damaaBaaaleaapeGaam4DaaWdaeqaaOWdbi aadEhacqGH9aqpcqaHbpGCpaWaaSbaaSqaa8qacaWGJbaapaqabaGc peGaamODa8aadaWgaaWcbaWdbiaadogaa8aabeaak8qacqGH9aqpca qGGaGaamOqa8aadaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qa caGGVaGaam4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@5119@ - impulse density of the etherono-quantonic vortex Γ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiabeY7aTbWdaeqa aaaa@3ED1@ of the nuclear proton’s magnetic moment, μ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaadchaa8aabeaa aaa@3E5E@ and: ρ R ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWaaSbaaWqaa8qacaWG sbaapaqabaaaleqaaOWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPa aaaaa@412B@ the equivalent density of the low frictional Brownian (etherono-quantonic) medium which generate a drag force FR of Stokes’ type.

The expression of ρ R ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWaaSbaaWqaa8qacaWG sbaapaqabaaaleqaaOWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPa aaaaa@412B@ in Eq. (22) results by correspondence with Eq. (20) at least for r = 2a. The coefficient γ p =  e r 0 /r , ( r 0 =ħ/ m p c0.21 fm), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeo7aN9aadaWgaaWcbaWdbiaadchaa8aabeaa k8qacqGH9aqpcaqGGaGaamyza8aadaahaaWcbeqaa8qacaWGYbaaaO WdamaaBaaaleaapeGaaGimaaWdaeqaaOWaaWbaaSqabeaapeGaai4l aiaadkhaaaGccaGGSaGaaeiia8aacaGGOaWdbiaadkhapaWaaSbaaS qaa8qacaaIWaaapaqabaGcpeGaeyypa0ZexLMBbXgBd9gzLbvyNv2C aeHbnfgBNvNBGC0B0HwAJbacfaGaa83jbiaac+cacaWGTbWdamaaBa aaleaapeGaamiCaaWdaeqaaOWdbiaadogacqGHijYUcaaIWaGaaiOl aiaaikdacaaIXaGaaeiiaiaadAgacaWGTbWdaiaacMcapeGaaiilaa aa@629B@ is imposed by the exponential variation of the quantonic density given by the superposed Γ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiabeY7aTbWdaeqa aaaa@3ED1@ - vortices of the proton’s cluster of degenerate electrons in the volume of radius r = 2a, (a = 1.41 fm), with their kernels confined in a protonic ‚impenetrable’ quantum volume of radius r i 0.6 fm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaeyizImQaaGimaiaac6cacaaI2aGaaeiiaiaadAgacaWGTbGaai ilaaaa@44C3@ .3,4

For: r = 2a ,

with v e ( r ) =  k v c, ( k v 1), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAhapaWaaSbaaSqaa8qacaWGLbaapaqabaGc daqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacaqGGaGaeyypa0 JaaeiiaiaadUgapaWaaSbaaSqaa8qacaWG2baapaqabaGcpeGaam4y aiaacYcacaqGGaWdaiaacIcapeGaam4Aa8aadaWgaaWcbaWdbiaadA haa8aabeaak8qacqGHKjYOcaaIXaWdaiaacMcapeGaaiilaaaa@4E4D@ we have:

ρ w ( r )c[2 k v ] = ρ R ( r ) v e ( r ) = ρ w ( r )[ γ p ( 2a/a )  1] k v c k v = 0.92; ( γ p = γ p ( r )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaeqyWdi3damaaBaaaleaapeGaam4DaaWd aeqaaOWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaapeGaam4ya8 aacaGGBbqedmvETj2BSbacfaWdbiab=PHiwlaaikdacaGGtaIaam4A a8aadaWgaaWcbaWdbiaadAhaa8aabeaakiaac2fapeGaaeiiaiabg2 da9iabeg8aY9aadaWgaaWcbaWdbiaadkfaa8aabeaakmaabmaabaWd biaadkhaa8aacaGLOaGaayzkaaWdbiaadAhapaWaaSbaaSqaa8qaca WGLbaapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qa caqGGaGaeyypa0JaeqyWdi3damaaBaaaleaapeGaam4DaaWdaeqaaO WaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaacaGGBbWdbiabeo7a N9aadaWgaaWcbaWdbiaadchaa8aabeaak8qacqWFAiI1paWaaeWaae aapeGaaGOmaiaadggacaGGVaGaamyyaaWdaiaawIcacaGLPaaapeGa aeiiaiaacobicaqGGaGaaGyma8aacaGGDbWdbiaadUgapaWaaSbaaS qaa8qacaWG2baapaqabaGcpeGaam4yaaqaaiabgkDiElaadUgapaWa aSbaaSqaa8qacaWG2baapaqabaGcpeGaeyypa0Jaaeiiaiaaicdaca GGUaGaaGyoaiaaikdacaGG7aGaaeiia8aacaGGOaWdbiabeo7aN9aa daWgaaWcbaWdbiaadchaa8aabeaak8qacqGH9aqpcqaHZoWzpaWaaS baaSqaa8qacaWGWbaapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjk aiaawMcaaiaacMcaaaaa@871F@   (23)

(with: ρ w = ρ c v c /w=B( r )/2 k 1 c  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadEhaa8aabeaa k8qacqGH9aqpcqaHbpGCpaWaaSbaaSqaa8qacaWGJbaapaqabaGcpe GaamODa8aadaWgaaWcbaWdbiaadogaa8aabeaak8qacaGGVaGaam4D aiabg2da9iaadkeapaWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPa aapeGaai4laeXatLxBI9gBaGqbaiab=PHiwlaaikdacaWGRbWdamaa BaaaleaapeGaaGymaaWdaeqaaOWdbiaadogacaGGGcaaaa@5504@  -the sinergonic vortex Γ A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadgeaa8aabeaa aaa@3DE1@ resulting as pseudo-vortex with w- quasi-constant). It is observed that the speed of a beta radiation’s electron (~0.92c) is obtained (Eq. (23)) for: r = 2a.

For r >> a, (i.e. –for the case of an atomic electron), because in this case ve << c, we have:

r >> a, ρ w ( r ) [c2  v e ( r )] r w ( r )c2 ρ w ( r )c2 = ρ R ( r ) v e ( r ) ρ w ( r ) v e ( r )( r/a ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamOCaiaabccacqGH+aGpcqGH+aGpcaqG GaGaamyyaiaacYcacqGHshI3cqaHbpGCpaWaaSbaaSqaa8qacaWG3b aapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacaqG GaWdaiaacUfapeGaam4yaeXatLxBI9gBaGqbaiab=PHiwlaaikdaca qGGaGaai4eGiaadAhapaWaaSbaaSqaa8qacaWGLbaapaqabaGcdaqa daqaa8qacaWGYbaapaGaayjkaiaawMcaaiaac2fapeGaeyisISRaam OCa8aadaWgaaWcbaWdbiaadEhaa8aabeaakmaabmaabaWdbiaadkha a8aacaGLOaGaayzkaaWdbiaadogacqWFAiI1caaIYaaabaGaeqyWdi 3damaaBaaaleaapeGaam4DaaWdaeqaaOWaaeWaaeaapeGaamOCaaWd aiaawIcacaGLPaaapeGaam4yaiab=PHiwlaaikdacaqGGaGaeyypa0 JaeqyWdi3damaaBaaaleaapeGaamOuaaWdaeqaaOWaaeWaaeaapeGa amOCaaWdaiaawIcacaGLPaaapeGaamODa8aadaWgaaWcbaWdbiaadw gaa8aabeaakmaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWdbiab gIKi7kabeg8aY9aadaWgaaWcbaWdbiaadEhaa8aabeaakmaabmaaba Wdbiaadkhaa8aacaGLOaGaayzkaaWdbiaadAhapaWaaSbaaSqaa8qa caWGLbaapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8 qacqWFAiI1paWaaeWaaeaapeGaamOCaiaac+cacaWGHbaapaGaayjk aiaawMcaa8qacaGG7aaaaaa@8A81@   (24a)

v e ( r ) = c( 2a/r ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkDiElaadAhapaWaaSbaaSqaa8qacaWGLbaa paqabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacaqGGa Gaeyypa0JaaeiiaiaadogarmWu51MyVXgaiuaacqWFAiI1paWaaeWa aeaapeGaaGOmaiaadggacaGGVaGaamOCaaWdaiaawIcacaGLPaaape Gaai4oaaaa@4FE2@   (24b)

 It can be shown that –without the‚ sinergonic’ vortex of the atomic nucleus’ magnetic moment, because the density of the etherono-quantonic component of the‚ zero point’ energy of the quantum vacuum, the atoms would have a relative short existence, because the‚ drag force’ FR generated by this medium would determine the loosing of the electron’s kinetic energy and its falling to atomic nucleus. For a released electron at the neutron’s beta transforming, but also for quantons of the nuclear proton’s magnetic moment: μ p =2.79   μ N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaadchaa8aabeaa k8qacqGH9aqpcaaIYaGaaiOlaiaaiEdacaaI5aGaaiiOaiaacckacq aH8oqBpaWaaSbaaSqaa8qacaWGobaapaqabaaaaa@479B@ , ( μ N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6eaa8aabeaa aaa@3E3C@ –the nuclear magneton), corresponding to a Compton radius: r μ p = 2 μ p /ec = 0.59fm r i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaaiabeY7aTbqabaGcdaah aaWcbeqaa8qacaWGWbaaaOGaeyypa0JaaeiiaiaaikdacqaH8oqBpa WaaSbaaSqaa8qacaWGWbaapaqabaGcpeGaai4laiaadwgacaWGJbGa aeiiaiabg2da9iaabccacaaIWaGaaiOlaiaaiwdacaaI5aGaamOzai aad2gacqGHijYUcaWGYbWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa @5297@ (ri –theoretic radius of the proton’s impenetrable quantum volume), Eq. (23) of dynamic equilibrium gives vh = c (until) at the limit: rlp = 2.35 fm and it is explained by the coefficient γ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeo7aN9aadaWgaaWcbaWdbiaadchaa8aabeaa aaa@3E4F@ , i.e. by the Compton radius of the photons contained in the proton’s quantum volume, which decreases from the value: r λ e = ħ/ m e c = 386fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacqaH7oaBa8aabeaa kmaaCaaaleqabaWdbiaadwgaaaGccqGH9aqpcaqGGaWexLMBbXgBd9 gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfaGaa83jbiaac+cacaWG TbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbiaadogacaqGGaGaey ypa0JaaeiiaiaaiodacaaI4aGaaGOnaiaadAgacaWGTbaaaa@5709@ –specific to a photon contained by the electron’s volume, to the value: r λ f = ( ρ ¯ e / ρ p a )× r λ e 0.9 fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaaiabeU7aSbqabaGcdaah aaWcbeqaa8qacaWGMbaaaOGaeyypa0Jaaeiia8aacaGGOaWdbiqbeg 8aYzaaraWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbiaac+cacqaH bpGCpaWaaSbaaSqaa8qacaWGWbaapaqabaGcdaahaaWcbeqaa8qaca WGHbaaaOWdaiaacMcapeGaey41aqRaamOCa8aadaWgaaWcbaGaeq4U dWgabeaakmaaCaaaleqabaWdbiaadwgaaaGccqGHijYUcaaIWaGaai OlaiaaiMdacaqGGaGaamOzaiaad2gaaaa@5782@ –for the photons contained in the proton’s surface, of theoretic scalar radius r p s 1.4 fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaa8qacaWGWbaapaqabaGc daahaaWcbeqaa8qacaWGZbaaaOGaeyisISRaaGymaiaac6cacaaI0a GaaeiiaiaadAgacaWGTbaaaa@4544@ , (rle extending the protonic volume with quantons circulated at vct = c, to one of radius: r =  r λ f +  r p s r l p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhacaGGzaIaaeiiaiabg2da9iaabccacaWG YbWdamaaBaaaleaacqaH7oaBaeqaaOWaaWbaaSqabeaapeGaamOzaa aakiabgUcaRiaabccacaWGYbWdamaaBaaaleaapeGaamiCaaWdaeqa aOWaaWbaaSqabeaapeGaam4CaaaakiabgIKi7kaadkhapaWaaSbaaS qaa8qacaWGSbaapaqabaGcdaahaaWcbeqaa8qacaWGWbaaaaaa@4DBE@ , ρ ¯ e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiqbeg8aYzaaraWdamaaBaaaleaapeGaamyzaaWd aeqaaaaa@3E75@ and ρ p a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadchaa8aabeaa kmaaCaaaleqabaWdbiaadggaaaaaaa@3F95@ - being the electron’s mean density and the density of the proton’s surface, considering an exponential decreasing of its density.3 The apparent contradiction between the obtained values rlp = 2.35 fm and r μ p = 0.59 fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaaiabeY7aTbqabaGcdaah aaWcbeqaa8qacaWGWbaaaOGaeyypa0JaaeiiaiaaicdacaGGUaGaaG ynaiaaiMdacaqGGaGaamOzaiaad2gaaaa@469E@ is solved in CGT by a semi-empiric relation for the quantons’ speed in the vortex Γ p =2πr v ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadchaa8aabeaa k8qacqGH9aqpcaaIYaGaeqiWdaNaamOCaiaadAhapaWaaSbaaSqaa8 qacaWGJbGaamiDaaWdaeqaaaaa@45D6@ of the proton’s magnetic moment, of the form:3

v ct (r)={ c,for:r< r l p 2.35fm ;     c ( r μ p r ) ( 1  r l p r ) ,for:r r l p 2.35fm;     ( r μ p = r i =0,59fm) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeODamaaBa aaleaacaqGJbGaaeiDaaqabaGccaGGOaGaamOCaiaacMcacqGH9aqp daGabaabaeqabaGaeyisISRaam4yaiaacYcacaaMf8UaaGzbVlaayw W7caaMf8UaaGzbVlaadAgacaWGVbGaamOCaiaacQdacaWGYbGaeyip aWJaamOCamaaDaaaleaacaWGSbaabaGaamiCaaaakiabgwKiajaaik dacaGGUaGaaG4maiaaiwdacaWGMbGaamyBaiaabccacaqG7aGaaeii aiaabccacaqGGaGaaeiiaaqaaiaadogadaqadaqaamaalaaabaGaam OCamaaDaaaleaacqaH8oqBaeaacaWGWbaaaaGcbaGaamOCaaaaaiaa wIcacaGLPaaadaahaaWcbeqaamaabmaabaGaaGymaiabgkHiTiaabc cadaWcaaqaaiaadkhadaqhaaadbaGaamiBaaqaaiaadchaaaaaleaa caWGYbaaaaGaayjkaiaawMcaaaaakiaacYcacaaMf8UaamOzaiaad+ gacaWGYbGaaiOoaiaadkhacqGHLjYScaWGYbWaa0baaSqaaiaadYga aeaacaWGWbaaaOGaeyyrIaKaaGOmaiaac6cacaaIZaGaaGynaiaadA gacaWGTbGaae4oaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeik aiaadkhadaqhaaWcbaGaeqiVd0gabaGaamiCaaaakiabg2da9iaadk hadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaGaaiilaiaaiwda caaI5aGaamOzaiaad2gacaGGPaaaaiaawUhaaaaa@8E37@   (25)

which - for r >> rlp , gives: v ct c( r μ p /r), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAhapaWaaSbaaSqaa8qacaWGJbGaamiDaaWd aeqaaOWdbiabgIKi7kaadogacqGHflY1paGaaiika8qacaWGYbWdam aaBaaaleaacqaH8oqBaeqaaOWaaWbaaSqabeaapeGaamiCaaaakiaa c+cacaWGYbWdaiaacMcapeGaaiilaaaa@4BAB@ which retrieve the classic expression of magnetic induction by the CGT’s formula, with a variation of the density of quantons: ρ c ( r ) = ρ c a ( a/r ) 2 , ( ρ c a = μ 0 / k 1 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadogaa8aabeaa kmaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWdbiaabccacqGH9a qpcqaHbpGCpaWaaSbaaSqaa8qacaWGJbaapaqabaGcdaahaaWcbeqa a8qacaWGHbaaaOWdamaabmaabaWdbiaadggacaGGVaGaamOCaaWdai aawIcacaGLPaaadaahaaWcbeqaa8qacaaIYaaaaOGaaiilaiaabcca paGaaiika8qacqaHbpGCpaWaaSbaaSqaa8qacaWGJbaapaqabaGcda ahaaWcbeqaa8qacaWGHbaaaOGaeyypa0JaeqiVd02damaaBaaaleaa peGaaGimaaWdaeqaaOWdbiaac+cacaWGRbWdamaaBaaaleaapeGaaG ymaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaak8aacaGGPaWdbiaa cYcaaaa@5BC2@ i.e.:

B= k 1 ρ c (r)v ct (r)= k 1 μ 0 k 1 2 ( a r ) 2 c( r μ p r )= μ 0 4π  r 3 ec r μ p = μ 0 2π μ p r 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabg2 da9iaadUgadaWgaaWcbaGaaGymaaqabaGccqaHbpGCdaWgaaWcbaGa am4yaaqabaGccaqGOaGaaeOCaiaabMcacaqG2bWaa0baaSqaaiaado gacaWG0baabaaaaOGaaiikaiaadkhacaGGPaGaeyypa0Jaam4Aamaa BaaaleaacaaIXaaabeaakmaalaaabaGaeqiVd02aaSbaaSqaaiaaic daaeqaaaGcbaGaam4AamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaGc daqadaqaamaalaaabaGaamyyaaqaaiaadkhaaaaacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaOGaam4yamaabmaabaWaaSaaaeaacaWG YbWaa0baaSqaaiabeY7aTbqaaiaadchaaaaakeaacaWGYbaaaaGaay jkaiaawMcaaiabg2da9maalaaabaGaeqiVd02aaSbaaSqaaiaaicda aeqaaaGcbaGaaGinaiabec8aWjaabccacaWGYbWaaWbaaSqabeaaca aIZaaaaaaakiaadwgacaWGJbGaamOCamaaDaaaleaacqaH8oqBaeaa caWGWbaaaOGaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaGimaa qabaaakeaacaaIYaGaeqiWdahaamaalaaabaGaeqiVd02aaSbaaSqa aiaadchaaeqaaaGcbaGaamOCamaaCaaaleqabaGaaG4maaaaaaaaaa@719C@   (26)

It exist a phenomenon named "cryogenic electron emission," that has no known physics explanation. At very cold temperatures, in the absence of light, a photomultiplier will spontaneously emit single electrons. The phenomenon was first observed nearly 50 years ago. The electrons are emitted in bursts distributed randomly in time. As the temperature decreases, the rate of bursts, as well as the number of events per burst, increase. Although scientists know of a few causes for electron emission without light (also called ‚the dark rate’), including heat, electric field and ionizing radiation - none of these can account for cryogenic emission.19 It can be observed that this phenomenon is in concordance with the vortical atomic model, i.e. with the conclusion that the atomic electrons are rotated under the pressure force generated by a vortex of heavy etherons of the magnetic potential A which generate the B-field of the nuclear magnetic moment, which acts more efficient over the electrons of an un-vibrated atom, (at lower temperatures).

Theoretic implications in astrophysics of a (multi)vortical model of nucleon

Arguments for a ‘gravistar’ model

An important theoretic consequence of the (multi)vortical model of quark and of elementary baryonic particle, of CGT, (particularly-nucleon), is a ‘gravistar’ model,3 conceived as a hard-core rotation ellipsoid of “dark energy” with vortexially generated “dark photons” and “dark particles” formed as Bose-Einstein condensates at distinct levels of density.

This gravistar model was inspired by the model of “gravastar”proposed by Mottola and Mazur20 with very cold core with central “black hole” and a “dark energy” fluid which may create Bose-Einstein condensate in the outer core, and a thin shell of matter on the events horizon, the dark energy-like behavior of the inner region preventing the collapse to a singularity and the presence of the thin shell preventing the formation of an event horizon, avoiding the infinite blue-shift. Also, the inner region of this gravastar has thermodynamically no entropy and may be thought of as a gravitational Bose–Einstein condensate.

In the model of hard-core gravistar proposed in CGT,3 a region of vortexed elementary particles, plasma and photons can exists inside an ellipsoidic region of “dark” etherono-quantonic enery, forming a relativist etherono-quantonic vortex: Η μ C = 2πr v c , ( v c c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfE5ai9aadaWgaaWcbaGaeqiVd0gabeaakmaa CaaaleqabaWdbiaadoeaaaGccqGH9aqpcaqGGaGaaGOmaiabec8aWj aadkhacqGHflY1caWG2bWdamaaBaaaleaapeGaam4yaaWdaeqaaOWd biaacYcacaqGGaWdaiaacIcapeGaamODa8aadaWgaaWcbaWdbiaado gaa8aabeaak8qacqGHsgIRcaWGJbWdaiaacMcaaaa@5190@ , with the etheronic part formed by heavy etherons (sinergons’) generating the magnetic potential A of a strong (magnetaric) magnetic B-field generated by the magnetic moment μ BH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaadkeacaWGibaa paqabaaaaa@3EFD@ of a rotated hard-core, similarly to the electron case. This gravistaric hard core (HC) of mass MC must be a black hole but in the sense that at least the quantons ( m h = h1/ c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGTbWdamaaBaaaleaapeGaamiAaaWd aeqaaOWdbiabg2da9iaabccacaWGObGaeyyXICTaaGymaiaac+caca WGJbWdamaaCaaaleqabaWdbiaaikdaaaGcpaGaaiykaaaa@475C@ and‚ trapped’ vector photons are maintained on circular orbit around the gravistaric hard core by a quantum potential V Γ ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAfapaWaaSbaaSqaa8qacqqHtoWra8aabeaa kmaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaaaaa@409F@ generated by a force FM(r) of Magnus type, which satisfy the stability condition conform to Eqs. (19)-(22), (and not purely gravitational- in this case), the pseudo-scalar photons of mass m f = hν/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGMbaapaqabaGc peGaeyypa0JaaeiiaiaadIgacqaH9oGBcaGGVaGaam4ya8aadaahaa Wcbeqaa8qacaaIYaaaaaaa@449B@ , speed v f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAhapaWaaSbaaSqaa8qacaWGMbaapaqabaGc peGaeyizImQaam4yaaaa@4050@ and density ρ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadAgaa8aabeaa aaa@3E5E@ of the inertial mass of its vector photons, (formed as couple of vector photons with opposed spins and magnetic moments –in CGT),17 being retained when the sum between the gravitation potential Vg(r) and the gravito-magnetic potential V gm ( r ) = υ i P s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAfapaWaaSbaaSqaa8qacaWGNbGaamyBaaWd aeqaaOWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaapeGaaeiiai abg2da9iabew8a19aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaWG qbWdamaaBaaaleaapeGaam4CaaWdaeqaaaaa@481E@ (conform to Eq. (2)), (given by the static pressure Ps(r) of the pseudo-stationary etheronic medium of heavy etherons gravitationally accumulated around the gravistaric hard core), becomes equal to the centrifugal potential, i.e.:

E c = ½ m f v f 2 =  V g ( r ) +  V gm ( r ) =  m f (G M C /r + P s ( r )/ ρ f ); ( m f / ρ f = υ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamyra8aadaWgaaWcbaWdbiaadogaa8aa beaak8qacqGH9aqpcaqGGaGaaiyVaiaad2gapaWaaSbaaSqaa8qaca WGMbaapaqabaGcpeGaamODa8aadaWgaaWcbaWdbiaadAgaa8aabeaa kmaaCaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGaGaamOva8aada WgaaWcbaWdbiaadEgaa8aabeaakmaabmaabaWdbiaadkhaa8aacaGL OaGaayzkaaWdbiaabccacqGHRaWkcaqGGaGaamOva8aadaWgaaWcba WdbiaadEgacaWGTbaapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjk aiaawMcaa8qacaqGGaGaeyypa0Jaaeiiaiaad2gapaWaaSbaaSqaa8 qacaWGMbaapaqabaGccaGGOaWdbiaadEeacaWGnbWdamaaBaaaleaa peGaam4qaaWdaeqaaOWdbiaac+cacaWGYbGaaeiiaiabgUcaRiaadc fapaWaaSbaaSqaa8qacaWGZbaapaqabaGcdaqadaqaa8qacaWGYbaa paGaayjkaiaawMcaa8qacaGGVaGaeqyWdi3damaaBaaaleaapeGaam OzaaWdaeqaaOGaaiyka8qacaGG7aaabaWdaiaacIcapeGaamyBa8aa daWgaaWcbaWdbiaadAgaa8aabeaak8qacaGGVaGaeqyWdi3damaaBa aaleaapeGaamOzaaWdaeqaaOWdbiabg2da9iabew8a19aadaWgaaWc baWdbiaadMgaa8aabeaakiaacMcaaaaa@75AF@   (27)

The magnetic field B of a gravistar can be generated- as in a black-hole’s case, by the charged plasma of a rotated accretion disk or/and the electric charge of the rotated HC, (or –low probable, and by its permanent magnetization). Also, if HC is a spinning black hole, it can generate matter MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkziUcaa@3D46@ energy conversion in the known mode, destroying nuclear matter and releasing polar relativist jets of radiation and elementary particles.

- It is known in this sense that spinning black holes with accretion disks are thought to generate very strong magnetic fields, which are presumably responsible for the astrophysical jets that have been observed in several systems.21 Relativistic jets are beams of ionized matter accelerated close to the speed of light. Most have been observationally associated with central black holes of some active galaxies, radio galaxies or quasars, and also by galactic stellar black holes, neutron stars or pulsars. Massive central black holes in galaxies have the most powerful jets, but their structure and behaviors are similar to those of smaller galactic neutron stars and black holes. These systems are often called microquasars’. Relativistic jets formation may also explain observed gamma-ray bursts. But the mechanisms behind the composition of jets remained uncertain. Some studies favor models where jets are composed of an electrically neutral mixture of nuclei, electrons, and positrons, while others are consistent with jets composed of positron–electron plasma, as in case of quasars 3C278 and 3C345.22

About 1% of supermassive black holes have an "accretion disk" of gas and dust swirling around them. When material from this disk falls toward the black hole, it gets so hot that it shines more brightly than the whole rest of its galaxy. One in 10 of these active black holes also produces jets that fire out particles at 99.995% of the speed of light. Astrophysicists suspect that accretion disks produce the jets, but they don't know how. The researchers chose for its association with a natural cosmic lens. Schild and his colleagues23 found that for the quasar Q0957+561 the jets appear to emerge from two regions of 1,000 astronomical units in size located above the poles of the central compact object, and that location would be expected only if the jets were powered by reconnecting magnetic field lines that were anchored to the rotating supermassive compact object within the quasar. It was concluded that by interacting with a surrounding accretion disk, such spinning magnetic field lines spool up, winding tighter and tighter until they explosively unite, reconnect and break, releasing huge amounts of energy that power the jets, this magnetic field being internally anchored to a central, rotating supermassive black hole, the inner edge of the accretion disk, located about 2,000 astronomical units from the central object, being heated to incandescence by the swirling, internal magnetic field, pulled around by the rotation of the central compact object, ("magnetic propeller effect").

Observations also suggest the presence of a broad cone-shaped outflow from the accretion disk. The surprisingly large angular opening of the outflow that is observed is best explained by the influence of an intrinsic magnetic field contained within the central compact object in this quasar. With Kerr’s equations, Blandford and Znajek showed24 that when magnetic field lines from the accretion disk fall onto the spinning hole, the black hole’s rotation will wind the field lines into a helix oriented along the hole’s rotation axis, for the most part of its matter the disk being locked in place, (“magnetically arrested disk” or MAD models). Because the magnetic fields in motion generate E-field, a current of electrons and positrons will start flowing through the helix away from the black hole in both directions, forming the jet. But in light of the previous observations, Schild and his colleagues23 have proposed a controversial theory that the magnetic field is intrinsic to the quasar's central, supermassive compact object, rather than only being part of the accretion disk, proposing the name- Magnetospheric Eternally Collapsing Objects, (MECOs) and concluding that in addition to its mass and spin, the quasar's central compact object may have physical properties more like a highly redshifted, spinning magnetic dipole than like a black hole. For that reason, most approaching matter does not disappear forever, but instead feels the motor-like rotating magnetic fields and gets spun back out.

According to this theory, a MECO does not have an event horizon, so any matter that is able to get by the magnetic propeller is gradually slowed down and stopped at the MECO's highly redshifted surface, with just a weak signal connecting the radiation from that matter, but that signal is very hard to observe.23 This explanatory hypothesis is in concordance with the fact that Black holes become electrically charged when charged particles falls into them, up to an “extremal limit,” a saturation point where they store as much electric charge as possible for their size.

- By the vortical model of magnetic field used in CGT,3 the previous hypothesis is in concordance with the proposed model of gravistar.

-Also, because in the polar zones the radial speed of these emitted jets are less affected (diminished) by the dynamic pressure P Γd ½ ρ Γ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadcfapaWaaSbaaSqaa8qacqqHtoWrcaWGKbaa paqabaGcpeGaeyisISRaaiyVaiabeg8aYnaaBaaaleaacqqHtoWrae qaaOGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaaaa@4733@ of the etherono-quantonic vortex Γ μ C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaGaeqiVd0gabeaakmaa CaaaleqabaWdbiaadoeaaaaaaa@3FC1@ of the HC’s magnetic field, the fact that these spinning black holes can emit relativist jets, by the resulting gravistar model it can be explained.

-It is also considered that four years of observations from the European Space Agency’s Integral (INTErnational Gamma-Ray Astrophysics Laboratory) satellite have cleared up the origin of a giant cloud of antimatter surrounding the galactic center of Milky Way, by observing a glow of 511 keV gamma rays from electron-positron annihilation. It was concluded that hard low-mass X-ray binaries, since they light up in high-energy (hard) X-rays as gas from a low-mass star spirals into a companion black hole or neutron star, they are producing significant amounts of positrons .

But scientists don’t understand how low-mass X-ray binaries could produce enough positrons to explain the cloud, and they also don’t know how they escape from these systems.25

- It can be observed that the quark model of CGT, resulting as Bose-Eistein condensate of ‚gammons’- considered as pairs of degenerate electrons: γ * ( e * e *+ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeo7aN9aadaahaaWcbeqaa8qacaGGQaaaaOWd amaabmaabaWdbiaadwgapaWaaWbaaSqabeaapeGaaiOkaiabgkHiTa aakiaadwgapaWaaWbaaSqabeaapeGaaiOkaiabgUcaRaaaaOWdaiaa wIcacaGLPaaapeGaaiilaaaa@4626@ which –logically, are released in the matter energy conversion process, can explain the considered composition of the emitted relativist jets, consisting in electrons, positrons, electron-positron pairs and gamma quanta.

The gravistar as source of dark energy

The Universe’ expansion is considered as caused by the ‚dark energy’ of the cosmic space. In CGT,3 in concordance with some astrophysical observations,26 this energy is an etheronic field-like component of the quantum vacuum; similar etheronic un-compensated fluxes can explain the gravitation force as in the Fatio-Lesage theory.3,18 A 32-year-old hypothesis of the formation of barred-spiral galaxies (Bostick 1957, 1958, 1986; Laurence, 1956 ) which become coherent-self-exciting homopolar generators has recently gained confirmative support from 3-D, particle-in-cell computer simulations.27 According to this model, such galaxies should be able to convert an appreciable fraction, f, of the energy from their gravitationally-collapsing plasmas to coherently-increasing magnetic energy via their coherent, self-exciting, homopolar-generator action. The following simple calculation shows that the resulting mutually-induced magnetic repulsions (Lenz's law) between neighboring galaxies is greater than the gravitational attractive forces between the galaxies. It was concluded that the observed expansion of the Universe can be thus simply accounted for, without recourse to the ‘Big Bang’ hypothesis.27 But the existence of the dark energy could explain and other astrophysical observations.

-It was also concluded that the supermassive black holes in elliptical galaxies are between seven and 20 times more massive than they were nine billion years ago.28 This indicates that supermassive black holes can gain mass through some other mechanism as well. And if they contain vacuum energy, they would both contribute to the expansion of the universe and gain mass from the process as well, in a phenomenon called‚ cosmological coupling’.

 The researchers considered that this is the first observational evidence that black holes contain vacuum energy, and when they crunched the numbers they found that this could account for the amount of the dark energy measured in the universe today, (around 68%). While there’s been no shortage of other proposed sources of dark energy, this conclusion doesn’t require anything new to be added to our existing models – the gap can be plugged by black holes as predicted by Einstein’s general theory of relativity. The new model also explains another cosmological puzzle: In current models black holes are theorized to compress everything that falls into them into an infinitely dense singularity, a point where the laws of physics break down. This should be mathematically impossible. But if black holes contain vacuum energy, singularities no longer need to exist.

- The team compared observations of elliptical galaxies, which lack star formation, in the past and in the present day. These dead galaxies have used up all their fuel. Thus, any increase in their black hole mass over this time is not due to the normal processes by which black holes grow by accumulating matter. The team considered that these black holes actually contain vacuum energy and that they are “coupled” to the expansion of the universe, so that they increase in mass as the universe expands. The idea that black holes might contain vacuum energy (a manifestation of dark energy) is not particularly new, but this latest model assumes that this energy (and therefore the mass of the black holes) would increase with time as the universe expands as a result of cosmological coupling. The team calculated how much of the dark energy in the universe they could attribute to this process. They found that black holes could potentially explain the total amount of dark energy we measure in the universe today. It is considered that this theoretical result could solve one of the most fundamental problems in modern cosmology and provides a possible origin for the dark energy in the Universe.28

-In connection with the problem of the the dark energy’s provenience, a new survey of more than 200 of supermassive black holes found that the emitted jets are much more powerful than scientists thought. Astronomers don't know what powers these jets, but they proposed the conclusion that the jets are tapping into the rotational energy of the black hole itself.29 Also, it is known that the stars which are called "blue fast optical transients" (LFBOT) are much brighter than the supernovae. They light up very quickly and are extremely hot, reaching temperatures of up to nearly 40,000 degrees Celsius, and emit blue light. Supernovae normally flare up and then die out over weeks or months, but the LFBOTs flare up in just three or four days and turn off in a much shorter time period.30

-The recent observation that black holes in certain Einstein-Maxwell-dilaton (EMD) theories can violate the entropy super-additivity led to the suggestion that these black holes might repel each other without electrostatic force between them, the dilaton being the antigravity agent, (i.e. two black holes might not always attract).31 It was also shown that the potential of dilaton field can be taken in an exponential form and that the dilaton can be a candidate for dark energy that can explain the accelerated universe, an analytical solution of Einstein equation being found.32 These results led one to propose that and the dilaton may play the role of antigravity.33

-In CGT3 the electronic neutrino results as couple of two super-heavy centroids of electrons with opposed e-charge, and it was deduced that sinergonic winds (of heavy etherons) are generated in the gammon MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgkziUcaa@3D46@ electronic neutrino conversion:

  e + +  e γ ν e +Δ γ (~0.9MeV) ; ( π 0 +γ π 0 + ν e +Δ γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaaiiOaiaadwgapaWaaWbaaSqabeaapeGa ey4kaScaaOGaey4kaSIaaeiiaiaadwgapaWaaWbaaSqabeaapeGaey OeI0caaOGaeyOKH4Qaeq4SdCMaeyOKH4QaeqyVd42damaaBaaaleaa peGaamyzaaWdaeqaaOWdbiabgUcaRiabfs5aejabgIGio=aadaWgaa WcbaGaeq4SdCgabeaakiaacIcapeGaaiOFaiaaicdacaGGUaGaaGyo aiaad2eacaWGLbGaamOva8aacaGGPaWdbiaabccacaGG7aaabaWdai aacIcapeGaeqiWda3damaaCaaaleqabaWdbiaaicdaaaGccqGHRaWk cqaHZoWzcqGHsgIRcqaHapaCpaWaaWbaaSqabeaapeGaaGimaaaaki abgUcaRiabe27aU9aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH RaWkcqqHuoarcqGHiiIZpaWaaSbaaSqaaiabeo7aNbqabaGccaGGPa aaaaa@6E91@   (28)

–when also the sinergonic vortices of the paired electrons are reciprocally annihilated. These sinergonic winds contribute to the mean value ρ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaGaeu4MdWeabeaaaaa@3EC9@ of the dark energy” as fluxes of quanta of an antigravitic (pseudo)charge of the “black hole”.

Writing the electric field energy of an electron in the form: E =½ a F e ( a ) =  m e c 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgIGio=aadaWgaaWcbaWdbiaadweaa8aabeaa k8qacqGH9aqpcaGG9cGaaeiiaiaadggacqGHflY1caWGgbWdamaaBa aaleaapeGaamyzaaWdaeqaaOWaaeWaaeaapeGaamyyaaWdaiaawIca caGLPaaapeGaaeiiaiabg2da9iaabccacaWGTbWdamaaBaaaleaape GaamyzaaWdaeqaaOWdbiaadogapaWaaWbaaSqabeaapeGaaGOmaaaa kiaacYcaaaa@5032@ for: F ea =  e 2 /4π ε 0 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWGLbGaamyyaaWd aeqaaOWdbiabg2da9iaabccacqGHsislcaWGLbWdamaaCaaaleqaba WdbiaaikdaaaGccaGGVaGaaGinaiabec8aWjabew7aL9aadaWgaaWc baWdbiaaicdaa8aabeaak8qacaWGHbWdamaaCaaaleqabaWdbiaaik daaaaaaa@4AEB@ and F eN = G m e 2 / a 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWGLbGaamOtaaWd aeqaaOWdbiabg2da9iaabccacqGHsislcaWGhbGaeyyXICTaamyBa8 aadaWgaaWcbaWdbiaadwgaa8aabeaakmaaCaaaleqabaWdbiaaikda aaGccaGGVaGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiilaa aa@4A9F@ it results for the electron’s (electro) gravitic energy, that:

G = ½ a F eN ( a ) =  m e 2 G/2a; E / G = ρ a 0 / ρ g 0 = 2a c 2 / m e G = 4x 10 42 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaeyicI48damaaBaaaleaapeGaam4raaWd aeqaaOWdbiabg2da9iaabccacaGG9cGaaeiiaiaadggacqGHflY1ca WGgbWdamaaBaaaleaapeGaamyzaiaad6eaa8aabeaakmaabmaabaWd biaadggaa8aacaGLOaGaayzkaaWdbiaabccacqGH9aqpcaqGGaGaam yBa8aadaWgaaWcbaWdbiaadwgaa8aabeaakmaaCaaaleqabaWdbiaa ikdaaaGccaWGhbGaai4laiaaikdacaWGHbGaai4oaiabgkDiEdqaai abgIGio=aadaWgaaWcbaWdbiaadweaa8aabeaak8qacaGGVaGaeyic I48damaaBaaaleaapeGaam4raaWdaeqaaOWdbiabg2da9iabeg8aY9 aadaWgaaWcbaWdbiaadggaa8aabeaakmaaCaaaleqabaWdbiaaicda aaGccaGGVaGaeqyWdi3damaaBaaaleaapeGaam4zaaWdaeqaaOWaaW baaSqabeaapeGaaGimaaaakiabg2da9iaabccacaaIYaGaamyyaiaa dogapaWaaWbaaSqabeaapeGaaGOmaaaakiaac+cacaWGTbWdamaaBa aaleaapeGaamyzaaWdaeqaaOWdbiaadEeacaqGGaGaeyypa0Jaaeii aiaaisdacaWG4bGaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGinai aaikdaaaGccaGGSaaaaaa@7755@   (29)

i.e.- the gravitic field energy of the me-gravitic charge is of ~1042 times smaller than the etheronic energy contained by the sinergonic - vortex of the electron’s magnetic moment: s =  m e c 2 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgIGio=aadaWgaaWcbaWdbiaadohaa8aabeaa k8qacqGH9aqpcaqGGaGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabe aak8qacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaGccaGGVaGaaGOm aaaa@45AB@ .

In consequence, according to the CGT’s electron model, (which deduces a value E s m e c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadweapaWaaSbaaSqaa8qacaWGZbaapaqabaGc peGaeyisISRaamyBa8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qaca WGJbWdamaaCaaaleqabaWdbiaaikdaaaaaaa@4380@ also for the sinergonic energy contained by the volume of Compton radius: r λ = ħ/ m e c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkhapaWaaSbaaSqaaiabeU7aSbqabaGcpeGa eyypa0JaaeiiamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL 2yaGqbaiaa=DsacaGGVaGaamyBa8aadaWgaaWcbaWdbiaadwgaa8aa beaak8qacaWGJbaaaa@4F61@ ),3 the releasing of the sinergonic energy of the destroyed degenerate electrons of the nucleons’ quarks (considered as in CGT, as non-destructively collapsed Bose-Einstein condensate of ‘gammons’), in the process of matter ®energy conversion at the surface of a black hole or inside its volume, could explain the amount and the provenience of the dark energy in the actual Universe, responsible for the Universe’s expansion, in concordance with the mentioned conclusions looking the phenomenon called ‚cosmological coupling’.

Because the radial releasing of the sinergons of destroyed Γ A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadgeaa8aabeaa aaa@3DE1@ – vortices generate periodically an antigravitic (pseudo)charge Ma = kam, (m- the mass of the destroyed particle, ka >>1), in condition of the existence of a magnetically ‘arrested’ disk of matter around the gravistar’s hard core (HC), (MAD - which contributes also to the black hole’s growing), it results that the CGT’s model of gravistar could explain not only the source of the dark energy, but also the repulsive property of some black holes in condition of the existence of a ‘dilaton’ field- considered by the EMD theories. But because in the considered gravistar’s case, this repulsive field of the central HC of black hole type can be produced only pulsatory, it raises also the question if a pulsatory gravistar can produce a removal total mechanical work LT over a material particle or celestial body mt on a given distance Δ l R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfs5aejaadYgapaWaaSbaaSqaa8qacaWGsbaa paqabaaaaa@3EE1@ .

- In CGT, the force generated by gravistar’s HC as in the Fatio-LeSage’s theory, has the expression:

Fg = mtkhPg = GmtMC/r2, ( P g = ρ gr w 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadcfapaWaaSbaaSqaa8qacaWGNbaapaqabaGc peGaeyypa0JaeqyWdi3damaaBaaaleaapeGaam4zaiaadkhaa8aabe aak8qacaWG3bWdamaaCaaaleqabaWdbiaaikdaaaaaaa@44AF@ –the equivalent pressure generated by the un-compensated radial flux of (gravitonic) etherons with impulse density p g r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaahchapaWaaSbaaSqaa8qacaWGNbaapaqabaGc peGaeyyKH0Qaey4KH8QaaCOCaaaa@4287@ ; k h = 2π r h 2 / m h = 27.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadUgapaWaaSbaaSqaa8qacaWGObaapaqabaGc peGaeyypa0JaaeiiaiaaikdacqaHapaCcaWGYbWdamaaBaaaleaape GaamiAaaWdaeqaaOWaaWbaaSqabeaapeGaaGOmaaaakiaac+cacaWG TbWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabg2da9iaabccaca aIYaGaaG4naiaac6cacaaI0aaaaa@4CB3@ ).

Let us suppose that at the surface of the gravistar’s HC of radius R0, in a cubic meter is destroyed simultaneously a quantity of nucleons:

Δ ρ n =Δ M n /1 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfs5aejabeg8aY9aadaWgaaWcbaWdbiaad6ga a8aabeaak8qacqGH9aqpcqqHuoarcaWGnbWdamaaBaaaleaapeGaam OBaaWdaeqaaOWdbiaac+cacaaIXaGaamyBa8aadaahaaWcbeqaa8qa caaIZaaaaaaa@47F4@ , which –according to CGT,3 will generate a radial flux of sinergons of energy density: s ½ ( 1 / 3 Δ ρ n w 2 ) = ( 1 / 6 )Δ ρ n w 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabgIGio=aadaWgaaWcbaWdbiaadohaa8aabeaa k8qacqGHijYUcaGG9cWdaiaacIcadaahaaWcbeqaa8qacaaIXaaaaO Gaai4la8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqqHuoarcqaH bpGCpaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaam4Da8aadaahaa Wcbeqaa8qacaaIYaaaaOWdaiaacMcapeGaaeiiaiabg2da9iaabcca paWaaeWaaeaadaahaaWcbeqaa8qacaaIXaaaaOGaai4la8aadaWgaa WcbaWdbiaaiAdaa8aabeaaaOGaayjkaiaawMcaa8qacqqHuoarcqaH bpGCpaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaam4Da8aadaahaa Wcbeqaa8qacaaIYaaaaaaa@59A1@ corresponding to an impulse density: p s =( 1 / 3 ) ρ sv w, (w = c2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadchapaWaaSbaaSqaa8qacaWGZbaapaqabaGc peGaeyypa0ZdamaabmaabaWaaWbaaSqabeaapeGaaGymaaaakiaac+ capaWaaSbaaSqaa8qacaaIZaaapaqabaaakiaawIcacaGLPaaapeGa eqyWdi3damaaBaaaleaapeGaam4CaiaadAhaa8aabeaak8qacaWG3b GaaiilaiaabccapaGaaiika8qacaWG3bGaaeiiaiabg2da9iaabcca caWGJbqedmvETj2BSbacfaGae8NgIyTaaGOma8aacaGGPaaaaa@5455@ and to a static pressure P s = ( 1 / 3 )Δ ρ n w 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadcfapaWaaSbaaSqaa8qacaWGZbaapaqabaGc peGaeyypa0Jaaeiia8aadaqadaqaamaaCaaaleqabaWdbiaaigdaaa GccaGGVaWdamaaBaaaleaapeGaaG4maaWdaeqaaaGccaGLOaGaayzk aaWdbiabfs5aejabeg8aY9aadaWgaaWcbaWdbiaad6gaa8aabeaak8 qacaWG3bWdamaaCaaaleqabaWdbiaaikdaaaaaaa@4A52@ , which will generate –over each quanton mh of a test particle mt, (particularly –a photon), a force of Stokes type, generating a total antigravitic force:

F a =6π m t m h l h 1 3 ρ sv ν e w= m t k h k a P s c 2 = k A G m t M A r 2 e f(r) ; ( k A = k a 2 c = 6 ν e 2 r h c ;  f(r)0 )          MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGgb WaaSbaaSqaaiaadggaaeqaaOGaeyypa0JaaGOnaiabec8aWnaalaaa baGaamyBamaaBaaaleaacaWG0baabeaaaOqaaiaad2gadaWgaaWcba GaamiAaaqabaaaaOGaamiBamaaBaaaleaacaWGObaabeaakmaalaaa baGaaeymaaqaaiaabodaaaGaeqyWdi3aaSbaaSqaaiaadohacaWG2b aabeaakiabe27aUnaaBaaaleaacaWGLbaabeaakiaadEhacqGH9aqp caWGTbWaaSbaaSqaaiaadshaaeqaaOGaam4AamaaBaaaleaacaWGOb aabeaakiaadUgadaWgaaWcbaGaamyyaaqabaGcdaWcaaqaaiaadcfa daWgaaWcbaGaam4CaaqabaaakeaacaWGJbWaaOaaaeaacaaIYaaale qaaaaakiabg2da9iaadUgadaWgaaWcbaGaamyqaaqabaGccaWGhbWa aSaaaeaacaWGTbWaaSbaaSqaaiaadshaaeqaaOGaamytamaaBaaale aacaWGbbaabeaaaOqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaOGa amyzamaaCaaaleqabaGaamOzaiaacIcacaWGYbGaaiykaaaakiaacU daaeaadaqadaqaaiaabUgadaWgaaWcbaGaaeyqaaqabaGccqGH9aqp daWcaaqaaiaadUgadaWgaaWcbaGaamyyaaqabaaakeaadaGcaaqaai aaikdaaSqabaGccaWGJbaaaiabg2da9maalaaabaGaaGOnaiabe27a UnaaBaaaleaacaWGLbaabeaaaOqaamaakaaabaGaaGOmaaWcbeaaki aadkhadaWgaaWcbaGaamiAaaqabaGccaWGJbaaaiaacUdacaqGGaGa aeiiaiaabAgacaqGOaGaaeOCaiaabMcacqGHKjYOcaqGWaaacaGLOa GaayzkaaGaaeiiaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa aeiiaiaabccaaaaa@8285@   (30)

(MA- the antigravitic charge generated by a matter quantity ΔM = 4π R 0 2 Δ ρ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfs5aejaad2eacaqGGaGaeyypa0Jaaeiiaiaa isdacqaHapaCcaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWaaW baaSqabeaapeGaaGOmaaaakiabfs5aejabeg8aY9aadaWgaaWcbaWd biaad6gaa8aabeaaaaa@49C3@ simultaneously destroyed at the HC’s surface ; kA –proportionality constant, depending on the kinematic viscosity ne of the flux of heavy etherons and on the quanton’s radius, rh ; kh = 27.4).3

The exponential factor f(r) is justified by the gravitational attraction over the sinergons, in the next way: Supposing an initial speed =c2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabEhacaqGGaGaeyypa0Jaae4yaGGaaiab =PHiwlaaikdaaaa@4248@ for the released sinergons at matter-energy conversion, after a radial distance: r characterized by a (quasi)constant gravitational acceleration aC, the sinergons’ speed will be given by the classic formula: v s 2 =  2c 2  2a C =  2c 2 ( 1-  a C r/c 2 ) . For r >>R 0 , v s 2 =  2c 2  2GM C ( 1/R 0 -1/r ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabAhapaWaaSbaaSqaa8qacaqGZbaapaqa baGcdaahaaWcbeqaa8qacaqGYaaaaOGaeyypa0Jaaeiiaiaabkdaca qGJbWdamaaCaaaleqabaWdbiaabkdaaaGccaGGtaIaaeiiaiaabkda caqGHbWdamaaBaaaleaapeGaae4qaaWdaeqaaOWdbiaabkhacaqGGa Gaeyypa0JaaeiiaiaabkdacaqGJbWdamaaCaaaleqabaWdbiaabkda aaGcpaWaaeWaaeaapeGaaeymaiaac2cacaqGGaGaaeyya8aadaWgaa WcbaWdbiaaboeaa8aabeaak8qacaqGYbGaae4laiaabogapaWaaWba aSqabeaapeGaaeOmaaaaaOWdaiaawIcacaGLPaaapeGaaeOlaiaabc cacaqGgbGaae4BaiaabkhacaqGGaGaaeOCaiaabccacaqG+aGaaeOp aiaabkfapaWaaSbaaSqaa8qacaqGWaaapaqabaGcpeGaaeilaiaabc cacaqG2bWdamaaBaaaleaapeGaae4CaaWdaeqaaOWaaWbaaSqabeaa peGaaeOmaaaakiabg2da9iaabccacaqGYaGaae4ya8aadaahaaWcbe qaa8qacaqGYaaaaOGaai4eGiaabccacaqGYaGaae4raiaab2eapaWa aSbaaSqaa8qacaqGdbaapaqabaGcdaqadaqaa8qacaqGXaGaae4lai aabkfapaWaaSbaaSqaa8qacaqGWaaapaqabaGcpeGaaiylaiaabgda caqGVaGaaeOCaaWdaiaawIcacaGLPaaapeGaaeiiaiaab6caaaa@7893@ .

By the formula: e x = 1 + x/1 +  x 2 /2 +..+  x k /k! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabwgapaWaaWbaaSqabeaapeGaaeiEaaaa kiabg2da9iaabccacaaIXaGaaeiiaiabgUcaRiaabccacaqG4bGaai 4laiaaigdacaqGGaGaey4kaSIaaeiiaiaabIhapaWaaWbaaSqabeaa peGaaGOmaaaakiaac+cacaaIYaGaaeiiaiabgUcaRiaac6cacaGGUa Gaey4kaSIaaeiiaiaabIhapaWaaWbaaSqabeaapeGaae4Aaaaakiaa c+cacaqGRbGaaiyiaaaa@5427@ , admitting the approximation: 1 + x » ex, for the previous case, ( =( GM C / c 2 )( 1/ R 0 1/r ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaqadaqaaabaaaaaaaaapeGaaeiEaiaabccacqGH9aqpcqGH sislpaWaaeWaaeaapeGaae4raiaab2eapaWaaSbaaSqaa8qacaqGdb aapaqabaGcpeGaai4laiaabogapaWaaWbaaSqabeaapeGaaGOmaaaa aOWdaiaawIcacaGLPaaadaqadaqaa8qacaaIXaGaai4laiaabkfapa WaaSbaaSqaa8qacaqGWaaapaqabaGcpeGaeyOeI0IaaGymaiaac+ca caWGYbaapaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@5116@ , it results that:

v s c 2 e G M C 2 c 2 ( 1 R 0 1 r ) ;    F a (r)= k A G m t M A r 2 e G M C 2 c 2 ( 1 R 0 1 r ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaqG2b WaaSbaaSqaaiaabohaaeqaaOGaeyisISRaam4yamaakaaabaGaaGOm aiabgwSixdWcbeaakiaadwgadaahaaWcbeqaaiabgkHiTmaalaaaba Gaam4raiaad2eadaWgaaadbaGaam4qaaqabaaaleaacaaIYaGaam4y amaaCaaameqabaGaaGOmaaaaaaWcdaqadaqaamaalaaabaGaaGymaa qaaiaadkfadaWgaaadbaGaaGimaaqabaaaaSGaeyOeI0YaaSaaaeaa caaIXaaabaGaamOCaaaaaiaawIcacaGLPaaaaaGccaGG7aaabaGaey O0H4TaaeiiaiaabccacaWGgbWaaSbaaSqaaiaadggaaeqaaOGaaiik aiaadkhacaGGPaGaeyypa0Jaam4AamaaBaaaleaacaWGbbaabeaaki aadEeadaWcaaqaaiaad2gadaWgaaWcbaGaamiDaaqabaGccaWGnbWa aSbaaSqaaiaadgeaaeqaaaGcbaGaamOCamaaCaaaleqabaGaaGOmaa aaaaGccaWGLbWaaWbaaSqabeaacqGHsisldaWcaaqaaiaadEeacaWG nbWaaSbaaWqaaiaadoeaaeqaaaWcbaGaaGOmaiaadogadaahaaadbe qaaiaaikdaaaaaaSWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGsbWa aSbaaWqaaiaaicdaaeqaaaaaliabgkHiTmaalaaabaGaaGymaaqaai aadkhaaaaacaGLOaGaayzkaaaaaaaaaa@6C5F@   (31)

-If the gravistaric HC has also a magnetization MB that generates a magnetic B-field of the form:

B( r ) = B( R 0 ) ( R o /r ) 3 = rot.A( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadkeapaWaaeWaaeaapeGaamOCaaWdaiaa wIcacaGLPaaapeGaaeiiaiabg2da9iaabccacaWGcbWdamaabmaaba WdbiaadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaaakiaawIcacaGL Paaadaqadaqaa8qacaWGsbWdamaaBaaaleaapeGaam4BaaWdaeqaaO Wdbiaac+cacaWGYbaapaGaayjkaiaawMcaamaaCaaaleqabaWdbiaa iodaaaGccqGH9aqpcaqGGaGaamOCaiaad+gacaWG0bGaaiOlaiaadg eapaWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaaaaa@55DF@ , with A( r ) = rB( r )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadgeapaWaaeWaaeaapeGaamOCaaWdaiaa wIcacaGLPaaapeGaaeiiaiabg2da9iaabccacaWGYbGaeyyXICTaam Oqa8aadaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacaGGVaGa aGOmaaaa@4A67@ , the sinergonic (pseudo)vortex of this magnetic potential A will generate –according to CGT, a magneto-gravitic potential V gm = m t P s ( r )/ ρ f   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadAfapaWaaSbaaSqaa8qacaWGNbGaamyB aaWdaeqaaOWdbiabg2da9iaad2gapaWaaSbaaSqaa8qacaWG0baapa qabaGcpeGaeyyXICTaamiua8aadaWgaaWcbaWdbiaadohaa8aabeaa kmaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWdbiaac+cacqaHbp GCpaWaaSbaaSqaa8qacaWGMbaapaqabaGcpeGaaiiOaaaa@4F14@ and a magneto-gravitic force: F gm = V gm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWGNbGaamyB aaWdaeqaaOWdbiabg2da9GGaaiab=DGirlaadAfapaWaaSbaaSqaa8 qacaWGNbGaamyBaaWdaeqaaaaa@4521@ , which can be estimated by applying the Bernoulli’s law to the etheronic medium existent around the gravistaric HC, (composed of light and heavy etherons):

P s e ( r ) +  P d s ( r )= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabcfapaWaaSbaaSqaa8qacaqGZbaapaqa baGcdaahaaWcbeqaa8qacaqGLbaaaOWdamaabmaabaWdbiaabkhaa8 aacaGLOaGaayzkaaWdbiaabccacqGHRaWkcaqGGaGaaeiua8aadaWg aaWcbaWdbiaabsgaa8aabeaakmaaCaaaleqabaWdbiaabohaaaGcpa WaaeWaaeaapeGaaeOCaaWdaiaawIcacaGLPaaacqGH9aqpaaa@4BAF@   constant, resulting that:

P s e ( r ) = P d s ( r ) F gm = V gm = ( m t / ρ f ) P d s ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakqaabeqaaGGaaabaaaaaaaaapeGae83bIeTaamiua8aadaWgaaWc baWdbiaadohaa8aabeaakmaaCaaaleqabaWdbiaadwgaaaGcpaWaae WaaeaapeGaamOCaaWdaiaawIcacaGLPaaapeGaaiiOaiabg2da9iab gkHiTiab=DGirlaadcfapaWaaSbaaSqaa8qacaWGKbaapaqabaGcda ahaaWcbeqaa8qacaWGZbaaaOWdamaabmaabaWdbiaadkhaa8aacaGL OaGaayzkaaaabaWdbiab=jDiElaadAeapaWaaSbaaSqaa8qacaWGNb GaamyBaaWdaeqaaOWdbiabg2da9iabgkHiTiab=DGirlaadAfapaWa aSbaaSqaa8qacaWGNbGaamyBaaWdaeqaaOWdbiabg2da9iaabccapa Gaaiika8qacaWGTbWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiaa c+cacqaHbpGCpaWaaSbaaSqaa8qacaWGMbaapaqabaGccaGGPaWdbi ab=DGirlaadcfapaWaaSbaaSqaa8qacaWGKbaapaqabaGcdaahaaWc beqaa8qacaWGZbaaaOWdamaabmaabaWdbiaadkhaa8aacaGLOaGaay zkaaaaaaa@6BB9@   (32)

The dynamic sinergonic pressure Pds(r) = ½rsvw2 can estimated by Eq.(21a) of CGT:

   P d s ( r ) = ½ ρ sv w 2 = A( r )w/ k 1 r =½2B( r )c/ k 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaacckacaGGGcGaamiua8aadaWgaaWcbaWd biaadsgaa8aabeaakmaaCaaaleqabaWdbiaadohaaaGcpaWaaeWaae aapeGaamOCaaWdaiaawIcacaGLPaaapeGaaeiiaiabg2da9iaabcca caGG9cGaeqyWdi3damaaBaaaleaapeGaam4CaiaadAhaa8aabeaak8 qacaWG3bWdamaaCaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGaGa amyqa8aadaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacaWG3b Gaai4laiaadUgapaWaaSbaaSqaa8qacaaIXaaapaqabaGccaaMc8+d biaadkhacaqGGaGaeyypa0JaaiyVaGGaaiab=PHiwlaaikdacaWGcb WdamaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaWdbiabgwSixlaa dogacaGGVaGaam4Aa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@68BE@ ,  (33)

( k 1 = 4π a 2 /e) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaGGOaaeaaaaaaaaa8qacaWGRbWdamaaBaaaleaapeGaaGym aaWdaeqaaOWdbiabg2da9iaabccacaaI0aGaeqiWdaNaamyya8aada ahaaWcbeqaa8qacaaIYaaaaOGaai4laiaadwgapaGaaiykaaaa@47A2@ ,

for a variation of B(r) of the form:

B( r ) = B( R 0 )× ( R 0 /r ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadkeapaWaaeWaaeaapeGaamOCaaWdaiaa wIcacaGLPaaapeGaaeiiaiabg2da9iaabccacaWGcbWdamaabmaaba WdbiaadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaaakiaawIcacaGL PaaapeGaey41aq7damaabmaabaWdbiaadkfapaWaaSbaaSqaa8qaca aIWaaapaqabaGcpeGaai4laiaadkhaa8aacaGLOaGaayzkaaWaaWba aSqabeaapeGaaG4maaaaaaa@4F1E@ , resulting that:

F gm = m t ρ f P d s = 2 m t c 2 k 1 ρ f B(r)=3 m t K gm B( R 0 ) R 0 r 4 ;  ( K gm = 2 c/2 k 1 ρ f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakqaabeqaaiaadAeadaWgaaWcbaGaam4zaiaad2gaaeqaaOGaeyyp a0ZaaSaaaeaacaWGTbWaaSbaaKqaafaacaaMc8UaamiDaaWcbeaaaO qaaiabeg8aYnaaBaaajeaqbaGaamOzaaWcbeaaaaGccqGHhis0caWG qbWaa0baaKqaafaacaWGKbaabaGaaGPaVlaadohaaaGccqGH9aqpca aMc8UaaGPaVpaalaaabaWaaOaaaeaacaaIYaaaleqaaOGaamyBamaa BaaajeaybaGaamiDaaWcbeaakiaaykW7caWGJbaabaGaaGOmaiaadU gadaWgaaqcbawaaiaaigdaaSqabaGccaaMc8UaeqyWdi3aaSbaaKqa GfaacaWGMbaaleqaaaaakiabgEGirlaadkeacaGGOaGaamOCaiaacM cacqGH9aqpcaaIZaGaamyBamaaBaaajeaybaGaamiDaaWcbeaakiaa ykW7caWGlbWaaSbaaSqaaiaadEgacaWGTbaabeaakiaaykW7caWGcb GaaiikaiaadkfadaWgaaqcbauaaiaaicdaaSqabaGccaGGPaGaeyyX IC9aaSaaaeaacaWGsbWaaSbaaKqaafaacaaIWaaaleqaaaGcbaGaam OCamaaCaaaleqajeaqbaGaaGinaaaaaaGccaGG7aGaaeiiaaqaaiaa cIcacaWGlbWaaSbaaKqaGfaacaWGNbGaamyBaaWcbeaakiabg2da9m aakaaabaGaaGOmaaWcbeaakiaadogacaGGVaGaaGPaVlaaykW7caaI YaGaam4AamaaBaaajeaybaGaaGymaaWcbeaakiaaykW7cqaHbpGCda WgaaqcbawaaiaadAgaaSqabaGccaGGPaaaaaa@8DB9@   (34)

resulting that:

V gm ( r ) =   m t K gm B( R 0 )( R 0 3 / r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadAfapaWaaSbaaSqaa8qacaWGNbGaamyB aaWdaeqaaOWaaeWaaeaapeGaamOCaaWdaiaawIcacaGLPaaapeGaae iiaiabg2da9iaabccacqGHsislcaqGGaGaamyBa8aadaWgaaWcbaWd biaadshaa8aabeaak8qacaWGlbWdamaaBaaaleaapeGaam4zaiaad2 gaa8aabeaak8qacaWGcbWdamaabmaabaWdbiaadkfapaWaaSbaaSqa a8qacaaIWaaapaqabaaakiaawIcacaGLPaaapeGaeyyXIC9damaabm aabaWdbiaadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcdaahaaWc beqaa8qacaaIZaaaaOGaai4laiaadkhapaWaaWbaaSqabeaapeGaaG 4maaaaaOWdaiaawIcacaGLPaaaaaa@59B6@   .(34')

By k 1 = 4π a 2 /e = 1,56× 10 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadUgapaWaaSbaaSqaa8qacaaIXaaapaqa baGcpeGaeyypa0JaaeiiaiaaisdacqaHapaCcaWGHbWdamaaCaaale qabaWdbiaaikdaaaGccaGGVaGaamyzaiaabccacqGH9aqpcaqGGaGa aGymaiaacYcacaaI1aGaaGOnaiabgEna0kaaigdacaaIWaWdamaaCa aaleqabaWdbiabgkHiTiaaigdacaaIWaaaaaaa@51AA@ [m2/C] and taking for ρ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadAgaa8aabeaa aaa@3E5E@ the value obtained in CGT for the inertial mass of the vecton (vector photon of ~ 3K-radiation and of electric field, of mass m f 2.3x 10 40 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad2gapaWaaSbaaSqaa8qacaWGMbaapaqabaGc peGaeyisISRaaGOmaiaac6cacaaIZaGaamiEaiaaigdacaaIWaWdam aaCaaaleqabaWdbiabgkHiTiaaisdacaaIWaaaaOGaam4AaiaadEga aaa@488F@ ):

ρ f 3.6× 10 19 kg/m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeg8aY9aadaWgaaWcbaWdbiaadAgaa8aa beaak8qacqGHijYUcaaIZaGaaiOlaiaaiAdacqGHxdaTcaaIXaGaaG ima8aadaahaaWcbeqaa8qacaaIXaGaaGyoaaaakiaabUgacaqGNbGa ae4laiaab2gapaWaaWbaaSqabeaapeGaaG4maaaaaaa@4D44@ ,16 it results that:

K gm = (2c/2 k 1 ρ f )3.766× 10 2 [ m 2 C/skg]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadUeapaWaaSbaaSqaa8qacaWGNbGaamyB aaWdaeqaaOWdbiabg2da9iaabccapaGaaiikaGGaa8qacqWFAiI1ca aIYaGaam4yaiaac+cacaaIYaGaam4Aa8aadaWgaaWcbaWdbiaaigda a8aabeaak8qacqaHbpGCpaWaaSbaaSqaa8qacaWGMbaapaqabaGcca GGPaWdbiabgIKi7kaaiodacaGGUaGaaG4naiaaiAdacaaI2aGaey41 aqRaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaGOmaaaak8 aacaGGBbWdbiaad2gapaWaaWbaaSqabeaapeGaaGOmaaaakiaadoea caGGVaGaam4CaiabgwSixlaadUgacaWGNbWdaiaac2fapeGaaiOlaa aa@62D0@

Considering that the gravistaric HC is a charged rotational black hole of 25 MS (MS –solar mass: 2× 10 30 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabgIKi7kaaikdacqGHxdaTcaaIXaGaaGim a8aadaahaaWcbeqaa8qacaaIZaGaaGimaaaakiaabUgacaqGNbaaaa@4600@ ) and radius R 0 (2÷3)× 10 4 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadkfapaWaaSbaaSqaa8qacaaIWaaapaqa baGcpeGaeyisIS7daiaacIcapeGaaGOmaiabgEpa4kaaiodapaGaai yka8qacqGHxdaTcaaIXaGaaGima8aadaahaaWcbeqaa8qacaaI0aaa aOGaamyBaaaa@4AF5@ , that has also a magnetaric B-field of MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabgIKi7caa@3E13@  1011 T –at its surface, it results that:

F gm ( R 0 )/ m t = 3 K gm B( R 0 )( 1/ R 0 )= 3×3.76× 10 2 × 10 11 /2.5× 10 4 = 4.5× 10 5 N/kg. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakqaabeqaaabaaaaaaaaapeGaamOra8aadaWgaaWcbaWdbiaadEga caWGTbaapaqabaGcdaqadaqaa8qacaWGsbWdamaaBaaaleaapeGaaG imaaWdaeqaaaGccaGLOaGaayzkaaWdbiaac+cacaWGTbWdamaaBaaa leaapeGaamiDaaWdaeqaaOWdbiabg2da9iaabccacaaIZaGaam4sa8 aadaWgaaWcbaWdbiaadEgacaWGTbaapaqabaGcpeGaamOqa8aadaqa daqaa8qacaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGccaGLOa GaayzkaaWdbiabgwSix=aadaqadaqaa8qacaaIXaGaai4laiaadkfa paWaaSbaaSqaa8qacaaIWaaapaqabaaakiaawIcacaGLPaaacqGH9a qpaeaapeGaaG4maiabgEna0kaaiodacaGGUaGaaG4naiaaiAdacqGH xdaTcaaIXaGaaGima8aadaahaaWcbeqaa8qacqGHsislcaaIYaaaaO Gaey41aqRaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGymaiaaigda aaGccaGGVaGaaGOmaiaac6cacaaI1aGaey41aqRaaGymaiaaicdapa WaaWbaaSqabeaapeGaaGinaaaakiabg2da9iaacckacaaI0aGaaiOl aiaaiwdacqGHxdaTcaaIXaGaaGima8aadaahaaWcbeqaa8qacaaI1a aaaOGaaeOtaiaab+cacaqGRbGaae4zaiaac6caaaaa@7DBB@

In the same time, the Newtonian force/kg will be:

F g ( R 0 )/ m t = G M C / R 0 2 = 5.3× 10 12 N/kg. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaWGNbaapaqa baGcdaqadaqaa8qacaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaa GccaGLOaGaayzkaaWdbiaac+cacaWGTbWdamaaBaaaleaapeGaamiD aaWdaeqaaOWdbiabg2da9iaabccacaWGhbGaamyta8aadaWgaaWcba Wdbiaadoeaa8aabeaak8qacaGGVaGaamOua8aadaWgaaWcbaWdbiaa icdaa8aabeaakmaaCaaaleqabaWdbiaaikdaaaGccqGH9aqpcaqGGa GaaGynaiaac6cacaaIZaGaey41aqRaaGymaiaaicdapaWaaWbaaSqa beaapeGaaGymaiaaikdaaaGccaWGobGaai4laiaadUgacaWGNbGaai Olaaaa@5A9F@

It results- in consequence, that even if HC is magnetaric, the gravitomagnetic force is neglijible compared to the Newtonian gravitic force generated by a relative small stellar black hole, and can be neglected. So, the HC must be a black hole in a purely gravitational sense, for retain also relativist particles and pseudo-scalar photons. However, the magneto-gravitiv force Fgm of Magnus type, generated by the sinergonic vortex Γ A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiaadgeaa8aa beaaaaa@3EEA@ corresponding to the sinergonic energy of the magnetic A-potential of the HC’s B-field, remains of values that maintain quantons and vector photons and electrons around the gravistar’s HC.

-For r < Rl, by considering a short time δτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjabes8a0baa@3FCC@  of existence of the antigravitic (pseudo)charge

MA >> MC , it is understood that the particles mt of the magnetically ‘arrested’ accretion disk (MAD) will be rejected with a force Fa(r) that will produce a mechanic work: L a ½ F a ( r )dτc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadYeapaWaaSbaaSqaa8qacaWGHbaapaqa baGcpeGaeyisISRaaiyVaiaadAeapaWaaSbaaSqaa8qacaWGHbaapa qabaGcdaqadaqaa8qacaWGYbaapaGaayjkaiaawMcaa8qacqGHflY1 caWGKbGaeqiXdqNaeyyXICTaam4yaaaa@4E6D@ (admitting the conclusion that the test particle mt obtains a relativist speed in the time δτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjabes8a0baa@3FCC@ ).

 The obtained kinetic energy E k ½ m t c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadweapaWaaSbaaSqaa8qacaWGRbaapaqa baGcpeGaeyisISRaaiyVaiaad2gapaWaaSbaaSqaa8qacaWG0baapa qabaGcpeGaeyyXICTaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaaaa @481B@ will be lost by the test particle on a distance Δ l a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgapaWaaSbaaSqaa8qacaWG Hbaapaqabaaaaa@3FF9@ as consequence of the mechanic work LG produced mainly by the gravitation force: Fg(r) (and by Fgm(r) << Fg(r)), i.e.:

L G =( F g ( r )+ F gm ( r ) )dr ( F g dr =  ( F ¯ g ) l Δ l a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadYeapaWaaSbaaSqaa8qacaWGhbaapaqa baGcpeGaeyypa0dccaGae83kIi=damaabmaabaWdbiaadAeapaWaaS baaSqaa8qacaWGNbaapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjk aiaawMcaa8qacqGHRaWkcaWGgbWdamaaBaaaleaapeGaam4zaiaad2 gaa8aabeaakmaabmaabaWdbiaadkhaa8aacaGLOaGaayzkaaaacaGL OaGaayzkaaWdbiaadsgacaWGYbGaeyisISRaaiiOaiab=TIiY=aaca GGOaWdbiaadAeapaWaaSbaaSqaa8qacaWGNbaapaqabaGcpeGaamiz aiaadkhacaqGGaGaeyypa0Jaaeiia8aacaGGOaWdbiqadAeagaqea8 aadaWgaaWcbaWdbiaadEgaa8aabeaakiaacMcadaWgaaWcbaWdbiaa dYgaa8aabeaak8qacqGHflY1cqqHuoarcaWGSbWdamaaBaaaleaape GaamyyaaWdaeqaaaaa@66D4@ ,  (35)

( F ¯  mean force MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiqadAeagaqeaiaabccacqGHsislcaWGTbGa amyzaiaadggacaWGUbGaaeiiaiaadAgacaWGVbGaamOCaiaadogaca WGLbaaaa@47D5@ ).

It results that:

Δ l a =  L a / ( F ¯ g ) l   ; Δ t l =  Δ l a / v ¯ s   = c× m t / F ¯ g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaadYgapaWaaSbaaSqaa8qacaWG HbaapaqabaGcpeGaeyypa0JaaeiiaiaadYeapaWaaSbaaSqaa8qaca WGHbaapaqabaGcpeGaai4la8aacaGGOaWdbiqadAeagaqea8aadaWg aaWcbaWdbiaadEgaa8aabeaakiaacMcadaWgaaWcbaWdbiaadYgaa8 aabeaak8qacaGGGcGaaiiOaiaacUdacaGGGcGaeuiLdqKaamiDa8aa daWgaaWcbaWdbiaadYgaa8aabeaak8qacqGH9aqpcaGGGcGaaiiOai abfs5aejaadYgapaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaai4l aiqadAhagaqea8aadaWgaaWcbaWdbiaadohaa8aabeaak8qacaGGGc GaaiiOaiabg2da9iaacckacaWGJbGaey41aqRaamyBa8aadaWgaaWc baWdbiaadshaa8aabeaak8qacaGGVaGabmOrayaaraWdamaaBaaale aapeGaam4zaaWdaeqaaaaa@6867@   (36)

So, inside the volume of radius R l =  R 0 +Δ l a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadkfapaWaaSbaaSqaa8qacaWGSbaapaqabaGc peGaeyypa0JaaeiiaiaadkfapaWaaSbaaSqaa8qacaaIWaaapaqaba GcpeGaey4kaSIaeuiLdqKaamiBa8aadaWgaaWcbaWdbiaadggaa8aa beaaaaa@45BC@ , (r R l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aacaGGOaaeaaaaaaaaa8qacaWGYbGaeyizImQaamOua8aadaWgaaWc baWdbiaadYgaa8aabeaakiaacMcaaaa@418A@ , if the t- period between the antigravitic (short) pulses δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaadshaaaa@3DF7@  satisfy the condition: τ2Δ t l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes8a0jabgwMiZkaaikdacqqHuoarcaqG 0bWdamaaBaaaleaapeGaaeiBaaWdaeqaaaaa@444F@ , the MAD will be gradually destroyed at the HC’s surface, (with a period τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes8a0baa@3E27@  between the moments δτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjabes8a0baa@3FCC@  of MA –antigravitic (pseudo)charge’ generating), with the releasing of mixed radiation (including X-rays, gamma radiation and electronic neutrinos). But because in the polar zones the radial speed of these emitted jets are less affected (diminished) by the dynamic pressure P Γd ½ ρ Γ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadcfapaWaaSbaaSqaa8qacqqHtoWrcaWG KbaapaqabaGcpeGaeyisISRaaiyVaiabeg8aY9aadaWgaaWcbaWdbi abfo5ahbWdaeqaaOWdbiaadogapaWaaWbaaSqabeaapeGaaGOmaaaa aaa@487A@ of the etherono-quantonic vortex Γ μ C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfo5ah9aadaWgaaWcbaWdbiabeY7aTbWd aeqaaOWaaWbaaSqabeaapeGaam4qaaaaaaa@40E9@  of the HC’s magnetic field, the fact that the spinning surface of the gravistar’s HC can emit relativist jets of particles and photonic radiation, as it vas astrophysically observed, excepting the released sinergons, which are slowed by the gravitational Fg –force but not retained by the HC’s gravitic field, (Fgm not acting on sinergons, on their volume, because it is generated by sinergons with approximately the same volume).

-For r > Rl, an external body gravitationally attracted by HC can be repelled by the periodically generated MA –antigravitic charge, up to a distance RR > Rl, given by the equality: L a (τ,R) = F ¯ g ΔR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadYeapaWaaSbaaSqaa8qacaWGHbaapaqa baGccaGGOaWdbiabes8a0jaacYcacaWGsbWdaiaacMcapeGaaeiiai abg2da9iqadAeagaqea8aadaWgaaWcbaWdbiaadEgaa8aabeaak8qa cqqHuoarcaWGsbaaaa@497A@ .

For r =  R l , E( m t ; R l )½ m t c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadkhacaqGGaGaeyypa0Jaaeiiaiaadkfa paWaaSbaaSqaa8qacaWGSbaapaqabaGcpeGaaiilaiaabccacaWGfb WdamaabmaabaWdbiaad2gapaWaaSbaaSqaa8qacaWG0baapaqabaGc peGaai4oaiaadkfapaWaaSbaaSqaa8qacaWGSbaapaqabaaakiaawI cacaGLPaaapeGaeyisISRaaiyVaiaad2gapaWaaSbaaSqaa8qacaWG 0baapaqabaGcpeGaam4ya8aadaahaaWcbeqaa8qacaaIYaaaaaaa@5241@ , because: L G ( F g ( r ) )dr =  ( V g ) R2   ( V g ) R1 =  V g ( R 2 )   V g ( R 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadYeapaWaaSbaaSqaa8qacaWGhbaapaqa baGcpeGaeyisISlccaGae83kIi=damaabmaabaWdbiaadAeapaWaaS baaSqaa8qacaWGNbaapaqabaGcdaqadaqaa8qacaWGYbaapaGaayjk aiaawMcaaaGaayjkaiaawMcaa8qacaWGKbGaamOCaiaabccacqGH9a qpcaGGGcWdamaabmaabaWdbiaadAfapaWaaSbaaSqaa8qacaWGNbaa paqabaaakiaawIcacaGLPaaadaWgaaWcbaWdbiaadkfacaaIYaaapa qabaGcpeGaeyOeI0Iaaeiia8aadaqadaqaa8qacaWGwbWdamaaBaaa leaapeGaam4zaaWdaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaa8qaca WGsbGaaGymaaWdaeqaaOWdbiabg2da9iaabccacaWGwbWdamaaBaaa leaapeGaam4zaaWdaeqaaOWaaeWaaeaapeGaamOua8aadaWgaaWcba Wdbiaaikdaa8aabeaaaOGaayjkaiaawMcaa8qacaqGGaGaeyOeI0Ia aeiiaiaadAfapaWaaSbaaSqaa8qacaWGNbaapaqabaGcdaqadaqaa8 qacaWGsbWdamaaBaaaleaapeGaaGymaaWdaeqaaaGccaGLOaGaayzk aaaaaa@6997@ , it results that:

L a (τ, R l )   1 2 δτc F a ( R 0 )= 1 2 δτc k A G m t M A R 0 2 1 2 m t c 2 =G m t M C ( 1 R 0 1 R l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaqGmbWaaSbaaSqaaiaabggaaeqaaOGaaeikaiabes8a0jaa cYcacaWGsbWaaSbaaSqaaiaadYgaaeqaaOGaaeykaiabgIKi7kaabc cacaqGGaWaaSqaaSqaaiaabgdaaeaacaqGYaaaaOGaeqiTdqMaeqiX dqNaeyyXICTaam4yaiabgwSixlaadAeadaWgaaWcbaGaamyyaaqaba GccaGGOaGaamOuamaaBaaaleaacaaIWaaabeaakiaacMcacqGH9aqp daWcbaWcbaGaaeymaaqaaiaabkdaaaGccqaH0oazcqaHepaDcqGHfl Y1caWGJbGaeyyXICTaam4AamaaBaaaleaacaWGbbaabeaakiaadEea daWcaaqaaiaad2gadaWgaaWcbaGaamiDaaqabaGccaWGnbWaaSbaaS qaaiaadgeaaeqaaaGcbaGaamOuamaaDaaaleaacaaIWaaabaGaaGOm aaaaaaGccqGHijYUdaWcbaWcbaGaaGymaaqaaiaaikdaaaGccaqGTb WaaSbaaSqaaiaabshaaeqaaOGaam4yamaaCaaaleqabaGaaGOmaaaa kiabg2da9iaadEeacqGHflY1caWGTbWaaSbaaSqaaiaadshaaeqaaO GaamytamaaBaaaleaacaWGdbaabeaakmaabmaabaWaaSaaaeaacaaI XaaabaGaamOuamaaBaaaleaacaaIWaaabeaaaaGccqGHsisldaWcaa qaaiaaigdaaeaacaWGsbWaaSbaaSqaaiaadYgaaeqaaaaaaOGaayjk aiaawMcaaaaa@8242@   (37)

For r >> Rl, it results that: (1/R0-1/r) » 1/R0, and to a distance Δ R L =  R R   R L R R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabfs5aejaadkfapaWaaSbaaSqaa8qacaWGmbaa paqabaGcpeGaeyypa0JaaeiiaiaadkfapaWaaSbaaSqaa8qacaWGsb aapaqabaGcpeGaai4eGiaabccacaWGsbWdamaaBaaaleaapeGaamit aaWdaeqaaOWdbiabgIKi7kaadkfapaWaaSbaaSqaa8qacaWGsbaapa qabaaaaa@49D5@ , we have:

L a (τ ;R L )       1 2 δτ v t ( R L ) F a ( R L )= 1 2 δτ v t ( R L ) k A G m t M A R L 2 e G M C 2 c 2 R 0 1 2 m t v t 2 ( R L )=G m t M C ( 1 R L 1 R R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakqaabeqaaiaabYeadaWgaaWcbaGaaeyyaaqabaGccaqGOaGaeqiX dqNaae4oaiaabkfadaWgaaWcbaGaaeitaaqabaGccaqGPaGaaeiiai aabccacaqGGaGaeyisISRaaeiiaiaabccacaqGGaWaaSqaaSqaaiaa bgdaaeaacaqGYaaaaOGaeqiTdqMaeqiXdqNaeyyXICTaaeODamaaBa aaleaacaqG0baabeaakiaacIcacaWGsbWaaSbaaSqaaiaadYeaaeqa aOGaaiykaiabgwSixlaadAeadaWgaaWcbaGaamyyaaqabaGccaGGOa GaamOuamaaBaaaleaacaWGmbaabeaakiaacMcacqGH9aqpdaWcbaWc baGaaGymaaqaaiaaikdaaaGccqaH0oazcqaHepaDcqGHflY1caqG2b WaaSbaaSqaaiaabshaaeqaaOGaaiikaiaadkfadaWgaaWcbaGaamit aaqabaGccaGGPaGaeyyXICTaam4AamaaBaaaleaacaWGbbaabeaaki aadEeadaWcaaqaaiaad2gadaWgaaWcbaGaamiDaaqabaGccaWGnbWa aSbaaSqaaiaadgeaaeqaaaGcbaGaamOuamaaDaaaleaacaWGmbaaba GaaGOmaaaaaaGccaWGLbWaaWbaaSqabeaacqGHsisldaWcaaqaaiaa dEeacaWGnbWaaSbaaWqaaiaadoeaaeqaaaWcbaGaaGOmaiaadogada ahaaadbeqaaiaaikdaaaWccaWGsbWaaSbaaWqaaiaaicdaaeqaaaaa aaGccqGHijYUaeaadaWcbaWcbaGaaGymaaqaaiaaikdaaaGccaWGTb WaaSbaaSqaaiaadshaaeqaaOGaaeODamaaDaaaleaacaqG0baabaGa aeOmaaaakiaacIcacaWGsbWaaSbaaSqaaiaadYeaaeqaaOGaaiykai abg2da9iaadEeacqGHflY1caWGTbWaaSbaaSqaaiaadshaaeqaaOGa amytamaaBaaaleaacaWGdbaabeaakmaabmaabaWaaSaaaeaacaaIXa aabaGaamOuamaaBaaaleaacaWGmbaabeaaaaGccqGHsisldaWcaaqa aiaaigdaaeaacaWGsbWaaSbaaSqaaiaadkfaaeqaaaaaaOGaayjkai aawMcaaaaaaa@9B31@   (38)

 (by considering vs as quasi-constant on distances comparable with the diameter of mt -test-particle).

From Eq. (37) it results that: δt=  R 0 2 c/ k A G M A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjaabshacqGH9aqpcaqGGaGaaeOu a8aadaWgaaWcbaWdbiaabcdaa8aabeaakmaaCaaaleqabaWdbiaabk daaaGccaqGJbGaai4laiaabUgapaWaaSbaaSqaa8qacaqGbbaapaqa baGcpeGaae4raiabgwSixlaab2eapaWaaSbaaSqaa8qacaqGbbaapa qabaaaaa@4C50@ , and with r s = 2 GM C / c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabkhapaWaaSbaaSqaa8qacaqGZbaapaqa baGcpeGaeyypa0JaaeiiaiaaikdacaqGhbGaaeyta8aadaWgaaWcba Wdbiaaboeaa8aabeaak8qacaGGVaGaae4ya8aadaahaaWcbeqaa8qa caaIYaaaaaaa@469B@ , Eq.(38)

becomes:

  L a (R L ;τ)=  c v t ( R L ) m t ( R 0 R L ) 2 e r S 4 R 0 1 2 m t v t 2 ( R L )=G m t M C ( 1 R L 1 R R ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakqaabeqaaiaabccacaqGGaGaaeitamaaBaaaleaacaqGHbaabeaa kiaabIcacaqGsbWaaSbaaSqaaiaabYeaaeqaaOGaai4oaiabes8a0j aabMcacqGH9aqpcaqGGaGaaeiiaiaabogacqGHflY1caqG2bWaaSba aSqaaiaabshaaeqaaOGaaiikaiaadkfadaWgaaWcbaGaamitaaqaba GccaGGPaGaeyyXICTaamyBamaaBaaaleaacaWG0baabeaakmaabmaa baWaaSaaaeaacaqGsbWaaSbaaSqaaiaabcdaaeqaaaGcbaGaaeOuam aaBaaaleaacaqGmbaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGccqGHflY1caWGLbWaaWbaaSqabeaacqGHsisldaWcaa qaaiaadkhadaWgaaadbaGaam4uaaqabaaaleaacaaI0aGaamOuamaa BaaameaacaaIWaaabeaaaaaaaOGaeyisISlabaWaaSqaaSqaaiaaig daaeaacaaIYaaaaOGaamyBamaaBaaaleaacaWG0baabeaakiaabAha daqhaaWcbaGaaeiDaaqaaiaabkdaaaGccaGGOaGaamOuamaaBaaale aacaWGmbaabeaakiaacMcacqGH9aqpcaWGhbGaeyyXICTaamyBamaa BaaaleaacaWG0baabeaakiaad2eadaWgaaWcbaGaam4qaaqabaGcda qadaqaamaalaaabaGaaGymaaqaaiaadkfadaWgaaWcbaGaamitaaqa baaaaOGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOuamaaBaaaleaaca WGsbaabeaaaaaakiaawIcacaGLPaaacaqG7aaaaaa@7F9B@   (39)

that- because the antigravitic field generated by the antigravitic charge GA vary approximately with: r 2 × e r s /4R o   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabkhapaWaaWbaaSqabeaapeGaeyOeI0Ia aGOmaaaakiabgEna0kaabwgapaWaaWbaaSqabeaapeGaeyOeI0Iaae OCaaaak8aadaWgaaWcbaWdbiaabohaa8aabeaakmaaCaaaleqabaWd biaac+cacaaI0aGaaeOuaaaak8aadaWgaaWcbaWdbiaab+gaa8aabe aak8qacaGGGcaaaa@4AFE@ , conform to Eq. (38), (because the spherical distribution of the released sinergons and the gravitationally reducing of their speed), to distances R > Rl , will give:

v t ( R L )=τ F ¯ a ( R L ) m t  c ( R 0 R L ) 2 e r S 4 R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaqG2bWaaSbaaSqaaiaabshaaeqaaOGaaiikaiaadkfadaWg aaWcbaGaamitaaqabaGccaGGPaGaeyypa0JaeqiXdq3aaSaaaeaace WGgbGbaebadaWgaaWcbaGaamyyaaqabaGccaGGOaGaamOuamaaBaaa leaacaWGmbaabeaakiaacMcaaeaacaWGTbWaaSbaaSqaaiaadshaae qaaaaakiabgIKi7kaabccacaqGJbGaeyyXIC9aaeWaaeaadaWcaaqa aiaabkfadaWgaaWcbaGaaeimaaqabaaakeaacaqGsbWaaSbaaSqaai aabYeaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa kiabgwSixlaadwgadaahaaWcbeqaaiabgkHiTmaalaaabaGaamOCam aaBaaameaacaWGtbaabeaaaSqaaiaaisdacaWGsbWaaSbaaWqaaiaa icdaaeqaaaaaaaaaaa@605A@   (40)

and:

E k (R L =  1 2 m t v t 2 ( R L )= 1 2 m t c 2 e r s 2 R 0 ( R 0 R L ) 4 =G m t M C ( 1 R L 1 R R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaqGfbWaaSbaaSqaaiaabUgaaeqaaOGaaeikaiaabkfadaWg aaWcbaGaaeitaaqabaGccaqGPaGaaeiiaiabg2da9iaabccadaWcba WcbaGaaGymaaqaaiaaikdaaaGccaWGTbWaaSbaaSqaaiaadshaaeqa aOGaaeODamaaDaaaleaacaqG0baabaGaaeOmaaaakiaacIcacaWGsb WaaSbaaSqaaiaadYeaaeqaaOGaaiykaiabg2da9maaleaaleaacaqG XaaabaGaaeOmaaaakiaad2gadaWgaaWcbaGaamiDaaqabaGccaWGJb WaaWbaaSqabeaacaaIYaaaaOGaamyzamaaCaaaleqabaGaeyOeI0Ya aSaaaeaacaWGYbWaaSbaaWqaaiaadohaaeqaaaWcbaGaaGOmaiaadk fadaWgaaadbaGaaGimaaqabaaaaaaakmaabmaabaWaaSaaaeaacaWG sbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOuamaaBaaaleaacaWGmb aabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaisdaaaGccqGH 9aqpcaWGhbGaamyBamaaBaaaleaacaWG0baabeaakiaad2eadaWgaa WcbaGaam4qaaqabaGcdaqadaqaamaalaaabaGaaGymaaqaaiaadkfa daWgaaWcbaGaamitaaqabaaaaOGaeyOeI0YaaSaaaeaacaaIXaaaba GaamOuamaaBaaaleaacaWGsbaabeaaaaaakiaawIcacaGLPaaaaaa@6E90@   (41)

Because the sinergonic pulses of duration dt generates gravitational waves, for R>> R0 we must have- by Eq. (31): v s ( r ) = w e rs/4R o > c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabAhapaWaaSbaaSqaa8qacaqGZbaapaqa baGcdaqadaqaa8qacaqGYbaapaGaayjkaiaawMcaa8qacaqGGaGaey ypa0JaaeiiaiaabEhacqGHflY1caqGLbWdamaaCaaaleqabaWdbiab gkHiTiaabkhacaqGZbGaai4laiaaisdacaqGsbaaaOWdamaaBaaale aapeGaae4BaaWdaeqaaOWdbiabg6da+iaabccacaqGJbaaaa@5145@ , i.e.:

r s /4 R 0 < ln2;  R 0 > 0.7276  r s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabkhapaWaaSbaaSqaa8qacaqGZbaapaqa baGcpeGaai4laiaaisdacaqGsbWdamaaBaaaleaapeGaaeimaaWdae qaaOWdbiabgYda8iaabccacaqGSbGaaeOBaGGaaiab=PHiwlaaikda caGG7aGaaiiOaiaabkfapaWaaSbaaSqaa8qacaqGWaaapaqabaGcpe GaeyOpa4JaaeiiaiaaicdacaGGUaGaaG4naiaaikdacaaI3aGaaGOn aiaabccacaqGYbWdamaaBaaaleaapeGaae4CaaWdaeqaaaaa@54EE@ , i.e. it can be black hole in purely gravitational sense, for rs > R0 > 0.7276 rs .

 For R0 a little lower than rs = 2GMC/c2, (the HC’s Schwarzschild radius), said: R 0 = 0 .9r s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaabkfapaWaaSbaaSqaa8qacaqGWaaapaqabaGc peGaeyypa0JaaeiiaiaabcdacaqGUaGaaeyoaiaabkhapaWaaSbaaS qaa8qacaqGZbaapaqabaaaaa@4363@ , we will have: vs(R) = 1.07c . Writing: R R =  R L / k R,   ( k R < 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabkfapaWaaSbaaSqaa8qacaqGsbaapaqa baGcpeGaeyypa0JaaeiiaiaabkfapaWaaSbaaSqaa8qacaqGmbaapa qabaGcpeGaai4laiaabUgapaWaaSbaaSqaa8qacaqGsbGaaeilaiaa bckaa8aabeaak8qacaGGGcWdamaabmaabaWdbiaabUgapaWaaSbaaS qaa8qacaqGsbaapaqabaGcpeGaeyipaWJaaeiiaiaaigdaa8aacaGL OaGaayzkaaaaaa@4E71@ , Eq.(41) may be written as:

1 2 m t c 2 e r s 2 R 0 ( R 0 4 R L 3 )  =  G m t M C ( 1 k R )  =  L a (R R ;τ )/R L   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaWcbaWcbaGaaeymaaqaaiaabkdaaaGccaWGTbWaaSbaaSqa aiaadshaaeqaaOGaam4yamaaCaaaleqabaGaaGOmaaaakiaadwgada ahaaWcbeqaaiabgkHiTmaalaaabaGaamOCamaaBaaameaacaWGZbaa beaaaSqaaiaaikdacaWGsbWaaSbaaWqaaiaaicdaaeqaaaaaaaGcda qadaqaamaalaaabaGaamOuamaaDaaaleaacaaIWaaabaGaaGinaaaa aOqaaiaadkfadaqhaaWcbaGaamitaaqaaiaaiodaaaaaaaGccaGLOa GaayzkaaGaaeiiaiaabccacqGH9aqpcaqGGaGaaeiiaiaadEeacaWG TbWaaSbaaSqaaiaadshaaeqaaOGaamytamaaBaaaleaacaWGdbaabe aakmaabmaabaGaaGymaiabgkHiTiaadUgadaWgaaWcbaGaamOuaaqa baaakiaawIcacaGLPaaacaqGGaGaaeiiaiabg2da9iaabccacaqGmb WaaSbaaSqaaiaabggaaeqaaOGaaeikaiaabkfadaWgaaWcbaGaaeOu aaqabaGccaGG7aGaeqiXdqNaaeykaiaab+cacaqGsbWaaSbaaSqaai aabYeaaeqaaOGaaeiiaaaa@6A86@   (42)

Some particular values of MC and R0 can be relevant:

a1)-Taking in Eq. (37) M C =  10 6 M S = 2× 10 36 kg and R 0 = 0.9 r S  = 2.668× 10 9 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaab2eapaWaaSbaaKqaafaapeGaae4qaaWc paqabaGcpeGaeyypa0JaaeiiaiaaigdacaaIWaWdamaaCaaaleqaba WdbiaaiAdaaaGccaqGnbWdamaaBaaajeaqbaWdbiaabofaaSWdaeqa aOWdbiabg2da9iaabccacaaIYaGaey41aqRaaGymaiaaicdapaWaaW baaSqabeaapeGaaG4maiaaiAdaaaGccaqGRbGaae4zaiaabckacaqG HbGaaeOBaiaabsgacaqGGaGaaeOua8aadaWgaaWcbaWdbiaabcdaa8 aabeaak8qacqGH9aqpcaGGGcGaaGimaiaac6cacaaI5aGaaeOCa8aa daWgaaqcbauaa8qacaqGtbaal8aabeaak8qacaGGGcGaeyypa0Jaae iiaiaaikdacaGGUaGaaGOnaiaaiAdacaaI4aGaey41aqRaaGymaiaa icdapaWaaWbaaSqabeaapeGaaGyoaaaakiaab2gaaaa@685C@ , (super-massive black hole), we obtain for Rl the value: R l = 2.668× 10 10 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabkfapaWaaSbaaSqaa8qacaqGSbaapaqa baGcpeGaeyypa0JaaeiiaiaaikdacaGGUaGaaGOnaiaaiAdacaaI4a Gaey41aqRaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGymaiaaicda aaGccaqGTbaaaa@4A3A@ .

From Eq. (37) it results that Δ R l =  R l  R 0 = 2.4× 10 10 m and  a ¯ i = F ¯ f / m t =  c 2 /2Δ R l = 1.875× 10 6 N/kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaabkfapaWaaSbaaSqaa8qacaqG SbaapaqabaGcpeGaeyypa0JaaeiiaiaabkfapaWaaSbaaSqaa8qaca qGSbaapaqabaGcpeGaai4eGiaabccacaqGsbWdamaaBaaaleaapeGa aeimaaWdaeqaaOWdbiabg2da9iaabccacaaIYaGaaiOlaiaaisdacq GHxdaTcaaIXaGaaGima8aadaahaaWcbeqaa8qacaaIXaGaaGimaaaa kiaab2gacaqGGcGaaeyyaiaab6gacaqGKbGaaiiOaiqadggagaqea8 aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpceqGgbGbaeba paWaaSbaaSqaa8qacaqGMbaapaqabaGcpeGaai4laiaab2gapaWaaS baaSqaa8qacaqG0baapaqabaGcpeGaeyypa0JaaeiiaiaabogapaWa aWbaaSqabeaapeGaaGOmaaaakiaac+cacaaIYaGaeuiLdqKaaeOua8 aadaWgaaWcbaWdbiaabYgaa8aabeaak8qacqGH9aqpcaGGGcGaaGym aiaac6cacaaI4aGaaG4naiaaiwdacqGHxdaTcaaIXaGaaGima8aada ahaaWcbeqaa8qacaaI2aaaaOGaaeOtaiaab+cacaqGRbGaae4zaaaa @758C@ , so the test particle loses its kinetic energy in a time:

Δ= c/ a ¯ i  160 s, ( 0.0( 4 ) hr. ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaabshacaqGGaGaeyypa0Jaaeii aiaabogacaGGVaGabmyyayaaraWdamaaBaaaleaapeGaamyAaaWdae qaaOWdbiaacckacqGHijYUcaaIXaGaaGOnaiaaicdacaqGGaGaae4C aiaacYcacaqGGaWdamaabmaabaWdbiaaicdacaGGUaGaaGima8aada qadaqaa8qacaaI0aaapaGaayjkaiaawMcaa8qacaqGGaGaaeiAaiaa bkhacaGGUaaapaGaayjkaiaawMcaa8qacaGGUaaaaa@5753@

If the test particle is a nucleus from the MAD, it results that τ 1 = 2Δ= 0.0( 8 ) hr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes8a09aadaWgaaWcbaWdbiaaigdaa8aa beaak8qacqGH9aqpcaqGGaGaaGOmaiabfs5aejaabshacaqGGaGaey ypa0JaaeiiaiaaicdacaGGUaGaaGima8aadaqadaqaa8qacaaI4aaa paGaayjkaiaawMcaa8qacaqGGaGaaeiAaiaabkhaaaa@4D96@ .

 a2)- Taking in Eq. (37) M C =  10 9 M S = 2× 10 39 kg and R 0 = 0.9 r S  = 2.668× 10 12 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaab2eapaWaaSbaaSqaa8qacaqGdbaapaqa baGcpeGaeyypa0JaaeiiaiaaigdacaaIWaWdamaaCaaaleqabaWdbi aaiMdaaaGccaqGnbWdamaaBaaaleaapeGaae4uaaWdaeqaaOWdbiab g2da9iaabccacaaIYaGaey41aqRaaGymaiaaicdapaWaaWbaaSqabe aapeGaaG4maiaaiMdaaaGccaqGRbGaae4zaiaabckacaqGHbGaaeOB aiaabsgacaqGGaGaaeOua8aadaWgaaWcbaWdbiaabcdaa8aabeaak8 qacqGH9aqpcaGGGcGaaGimaiaac6cacaaI5aGaaeOCa8aadaWgaaqc bauaa8qacaqGtbaal8aabeaak8qacaGGGcGaeyypa0Jaaeiiaiaaik dacaGGUaGaaGOnaiaaiAdacaaI4aGaey41aqRaaGymaiaaicdapaWa aWbaaSqabeaapeGaaGymaiaaikdaaaGccaqGTbaaaa@6882@ , (super-massive b. h.), we obtain for Rl the value: R l = 2.2× 10 13 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabkfapaWaaSbaaSqaa8qacaqGSbaapaqa baGcpeGaeyypa0JaaeiiaiaaikdacaGGUaGaaGOmaiabgEna0kaaig dacaaIWaWdamaaCaaaleqabaWdbiaaigdacaaIZaaaaOGaaeyBaaaa @48B7@ .

From Eq. (37) it results that Δ R l =  R l  R 0 = 1.93× 10 13 m and  a ¯ i = F ¯ f / m t =  c 2 /2Δ R l = 2328 N/kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaabkfapaWaaSbaaSqaa8qacaqG SbaapaqabaGcpeGaeyypa0JaaeiiaiaabkfapaWaaSbaaSqaa8qaca qGSbaapaqabaGcpeGaai4eGiaabccacaqGsbWdamaaBaaaleaapeGa aeimaaWdaeqaaOWdbiabg2da9iaabccacaaIXaGaaiOlaiaaiMdaca aIZaGaey41aqRaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGymaiaa iodaaaGccaqGTbGaaeiOaiaabggacaqGUbGaaeizaiaacckaceWGHb GbaebapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyypa0JabeOr ayaaraWdamaaBaaaleaapeGaaeOzaaWdaeqaaOWdbiaac+cacaqGTb WdamaaBaaaleaapeGaaeiDaaWdaeqaaOWdbiabg2da9iaabccacaqG JbWdamaaCaaaleqabaWdbiaaikdaaaGccaGGVaGaaGOmaiabfs5aej aabkfapaWaaSbaaSqaa8qacaqGSbaapaqabaGcpeGaeyypa0JaaiiO aiaaikdacaaIZaGaaGOmaiaaiIdacaqGGaGaaeOtaiaab+cacaqGRb Gaae4zaaaa@7199@ , so the test particle loses its kinetic energy in a time: Δ= c/ a ¯ i 1.2884× 10 5 s, ( 35.8 hr. ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejaabshacaqGGaGaeyypa0Jaaeii aiaabogacaGGVaGabmyyayaaraWdamaaBaaaleaapeGaamyAaaWdae qaaOWdbiabgIKi7kaaigdacaGGUaGaaGOmaiaaiIdacaaI4aGaaGin aiabgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbiaaiwdaaaGcca qGZbGaaiilaiaabccapaWaaeWaaeaapeGaaG4maiaaiwdacaGGUaGa aGioaiaabccacaqGObGaaeOCaiaac6caa8aacaGLOaGaayzkaaaaaa@59E6@ .

 If the test particle is a nucleus from the MAD, it results that τ 2 = 2Δt= 71.6 hr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes8a09aadaWgaaWcbaWdbiaaikdaa8aa beaak8qacqGH9aqpcaqGGaGaaGOmaiabfs5aejaabshacqGH9aqpca GGGcGaaG4naiaaigdacaGGUaGaaGOnaiaabccacaqGObGaaeOCaaaa @4BB4@ .

The sinergons of the antigravitic pulses, released with = c2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabEhacaqGGaGaeyypa0Jaaeiiaiaaboga iiaacqWFAiI1caaIYaaaaa@42EB@ , will have at the limit Rl a kinetic energy:

E s ( R l ) = ½ m s w 2 F ¯ f Δ R 1 =½ m s w 2  ½ m s c 2 = ½ m s c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabweapaWaaSbaaSqaa8qacaqGZbaapaqa baGcdaqadaqaa8qacaqGsbWdamaaBaaaleaapeGaaeiBaaWdaeqaaa GccaGLOaGaayzkaaWdbiaabccacqGH9aqpcaGGGcGaaiyVaiaab2ga paWaaSbaaSqaa8qacaqGZbaapaqabaGcpeGaae4Da8aadaahaaWcbe qaa8qacaaIYaaaaOGaeyOeI0IabeOrayaaraWdamaaBaaaleaapeGa aeOzaaWdaeqaaOWdbiabfs5aejaabkfapaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaeyypa0JaaiyVaiaab2gapaWaaSbaaSqaa8qacaqG ZbaapaqabaGcpeGaae4Da8aadaahaaWcbeqaa8qacaaIYaaaaOGaey OeI0Iaaeiiaiaac2lacaqGTbWdamaaBaaaleaapeGaae4CaaWdaeqa aOWdbiaabogapaWaaWbaaSqabeaapeGaaGOmaaaakiabg2da9iaabc cacaGG9cGaaeyBa8aadaWgaaWcbaWdbiaabohaa8aabeaak8qacaqG JbWdamaaCaaaleqabaWdbiaaikdaaaaaaa@6660@ ,

( =c2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabEhacaqGGaGaeyypa0Jaae4yaGGaaiab =PHiwlaaikdaaaa@4248@ )  (43)

and the antigravitic pulses can be detected as gravitational waves.

The energy lost by sinergon at r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadkhacqGHsgIRcqGHEisPaaa@40B7@ will be:

δ E s   V g ( R l ) = 6× 10 45 J0.1 E s ( R l )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjaabweapaWaaSbaaSqaa8qacaqG ZbaapaqabaGcpeGaaiiOaiabgIKi7kaabAfapaWaaSbaaSqaa8qaca qGNbaapaqabaGcdaqadaqaa8qacaqGsbWdamaaBaaaleaapeGaaeiB aaWdaeqaaaGccaGLOaGaayzkaaWdbiaabccacqGH9aqpcaqGGaGaaG OnaiabgEna0kaaigdacaaIWaWdamaaCaaaleqabaWdbiabgkHiTiaa isdacaaI1aaaaOWdaiaadQeapeGaeyisISRaaGimaiaac6cacaaIXa Gaaeyra8aadaWgaaWcbaWdbiaabohaa8aabeaakmaabmaabaWdbiaa bkfapaWaaSbaaSqaa8qacaqGSbaapaqabaaakiaawIcacaGLPaaape GaaeiOaaaa@5E3A@ ;

(For obtain E s () =½ m s c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabweapaWaaSbaaSqaa8qacaqGZbaapaqa baGccaGGOaWdbiabg6HiL+aacaGGPaWdbiaabccacqGH9aqpcaGG9c GaaeyBa8aadaWgaaWcbaWdbiaabohaa8aabeaak8qacaqGJbWdamaa CaaaleqabaWdbiaaikdaaaaaaa@48AF@ would be necessary to have:

w( R 0 )=1.4866c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadEhapaWaaeWaaeaapeGaamOua8aadaWg aaWcbaWdbiaaicdaa8aabeaaaOGaayjkaiaawMcaa8qacqGH9aqpca aIXaGaaiOlaiaaisdacaaI4aGaaGOnaiaaiAdacaWGJbWdaiaacMca aaa@4822@ .

-b)-For r > Rl, by taking R L = 2 R l = 4.4× 10 13 m, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabkfapaWaaSbaaSqaa8qacaqGmbaapaqa baGcpeGaeyypa0JaaeiiaiaaikdacaqGsbWdamaaBaaaleaapeGaae iBaaWdaeqaaOWdbiabg2da9iaabccacaaI0aGaaiOlaiaaisdacqGH xdaTcaaIXaGaaGima8aadaahaaWcbeqaa8qacaaIXaGaaG4maaaaki aab2gacaqGSaaaaa@4DE7@ in the previous case, a2):

R 0 = 0.9 r s = 2.668× 10 12 m, ( r s = 2.964× 10 12 m ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabkfapaWaaSbaaSqaa8qacaqGWaaapaqa baGcpeGaeyypa0JaaeiiaiaaicdacaGGUaGaaGyoaiaabkhapaWaaS baaSqaa8qacaqGZbaapaqabaGcpeGaeyypa0JaaeiiaiaaikdacaGG UaGaaGOnaiaaiAdacaaI4aGaey41aqRaaGymaiaaicdapaWaaWbaaS qabeaapeGaaGymaiaaikdaaaGccaqGTbGaaiilaiaabccapaWaaeWa aeaapeGaaeOCa8aadaWgaaWcbaWdbiaabohaa8aabeaak8qacqGH9a qpcaqGGaGaaGOmaiaac6cacaaI5aGaaGOnaiaaisdacqGHxdaTcaaI XaGaaGima8aadaahaaWcbeqaa8qacaaIXaGaaGOmaaaakiaab2gaa8 aacaGLOaGaayzkaaGaaiilaaaa@61F1@  by Eq. (42) it results:

R R = 4.40066× 10 13 m;Δ= ( R R R L ) = 6.6× 10 9 m; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabkfapaWaaSbaaSqaa8qacaqGsbaapaqa baGcpeGaeyypa0JaaeiiaiaaisdacaGGUaGaaGinaiaaicdacaaIWa GaaGOnaiaaiAdacqGHxdaTcaaIXaGaaGima8aadaahaaWcbeqaa8qa caaIXaGaaG4maaaakiaab2gacaGG7aGaeuiLdqKaaeOuaiaabccacq GH9aqpcaqGGaWdamaabmaabaWdbiaabkfapaWaaSbaaSqaa8qacaqG sbaapaqabaGcpeGaai4eGiaabkfapaWaaSbaaSqaa8qacaqGmbaapa qabaaakiaawIcacaGLPaaapeGaaeiiaiabg2da9iaabccacaaI2aGa aiOlaiaaiAdacqGHxdaTcaaIXaGaaGima8aadaahaaWcbeqaa8qaca aI5aaaaOGaaeyBaiaacUdaaaa@6242@

 Eq. (40) gives: v( R L ) = 8.18× 10 5 m/s ; Δ= 2ΔR/v( R L ) = 1.613× 10 4 , (4.48 h <  τ 2 ) ;  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabAhapaWaaeWaaeaapeGaaeOua8aadaWg aaWcbaWdbiaabYeaa8aabeaaaOGaayjkaiaawMcaa8qacaqGGaGaey ypa0JaaeiiaiaaiIdacaGGUaGaaGymaiaaiIdacqGHxdaTcaaIXaGa aGima8aadaahaaWcbeqaa8qacaaI1aaaaOGaaeyBaiaab+cacaqGZb GaaeiiaiaacUdacaGGGcGaeuiLdqKaaeiDaiaabccacqGH9aqpcaqG GaGaaGOmaiabfs5aejaabkfacaGGVaGaaeODa8aadaqadaqaa8qaca qGsbWdamaaBaaaleaapeGaaeitaaWdaeqaaaGccaGLOaGaayzkaaWd biaabccacqGH9aqpcaqGGaGaaGymaiaac6cacaaI2aGaaGymaiaaio dacqGHxdaTcaaIXaGaaGima8aadaahaaWcbeqaa8qacaaI0aaaaOGa ae4CaiaabccacaGGSaGaaeiia8aacaGGOaWdbiaaisdacaGGUaGaaG inaiaaiIdacaqGGaGaaeiAaiaabccacqGH8aapcaGGGcGaeqiXdq3d amaaBaaaleaapeGaaGOmaaWdaeqaaOGaaiyka8qacaqGGaGaai4oai aacckaaaa@78DC@

 The same conclusion (Δ<τ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaGGOaaeaaaaaaaaa8qacqqHuoarcaqG0bGaaeiiaiabgYda 8iabes8a09aacaGGPaaaaa@4393@ is obtained also for the case a1), by taking RL = 2Rl.

- Extrapolating, we can conclude that the sinergons released by the destruction (by matter→energy conversion) of the MAD cannot generate an expansion of the matter existing over the limit Rl, but the generated antigravitic (pseudo)charge can interrupt periodically the matter’s ‚eating ‚by the black hole.  An argument for this conclusion can be also the fact that a team of astrophysicists observed tidal disruption events to a white dwarf named Swift J0230 observed in X-rays spectrum, with a mass of three times the Eart’s mass, each time when it passes close to the black hole existent in the center of the galaxy named 2MASX J02301709+2836050, a small one with a mass of about 10,000 to 100,000 times the sun’s mass. Regular observations of Swift J0230 revealed a rapid drop in the star's brightness on the fourth day. According to the new study, that's the point at which it dimmed by a factor of 20 in just 57 kiloseconds (15.8 hours). Shortly after, the star became elusive to telescope observations. But why this black hole only partially disrupts the star is not very well understood.34

However, the HC’s antigravitic charge MA can be generated also by matter→energy conversion inside the gravistaric HC, if we consider a HC’s shell of cold current strange quarks forming a crystalline network, (as in the model of the known quark star made entirely of quark matter, which would be stable if they quickly transform into strange quark matter),35 or even of nucleons in quasi-crystalline state (depending on the HCi’s mass), taking into account the fact that the high density of the quak matter and the strong force nucleons ensures – at T→0K, a high inter-quarks force and binding energy, (at least tens of MeV/current quark), which can determine the resistance of the HC’s surface at high internal pressure Pi , and the fact that the sinergons released by the destroyed matter and radially emitted can penetrate the HC’s shell of strange quarks matter.

The possible cause of the interior destruction of nucleons inside the gravistaric HC is not only the pressure given by the gravitational attraction of its inner part , but also a small difference between the angular rotation speed w of this inner part HCi-supposed to be of gravitic black hole type (network of current quarks considered in CGT’s model) and its rotated shell, HCe , formed by strange current quarks, (in conformity with Ref. 35). This angular rotation speed difference Δω= ( ω e ω i ) = ω 1 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejabeM8a3jabg2da9iaabccapaGa aiika8qacqaHjpWDpaWaaSbaaSqaa8qacaqGLbaapaqabaGcpeGaey OeI0IaeqyYdC3damaaBaaaleaapeGaaeyAaaWdaeqaaOGaaiyka8qa caqGGaGaeyypa0JaeqyYdC3damaaBaaaleaapeGaaGymaaWdaeqaaO WdbiabgkHiTiabeM8a39aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@526E@ (Figure 1) will generate a neutronic liquid shell F, when Δω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabfs5aejabeM8a3baa@3F95@  increases and decreases periodically changing its sign, as a consequence of HCe’s growth, similar to the case of the Earth’s convective liquid inner shell (of ionized atoms) which- in Bullard’s self-exciting dynamo model36 explains the generating of Earth’s magnetic field.

Inside this neutronic liquid shell, matter→energy conversion can be generated due the high radial pressure gravitationally generated by the attraction of the inner part Hci, conform to the model. -If the antigravitic (pseudo)charge M A >>  M C   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaab2eapaWaaSbaaSqaa8qacaqGbbaapaqa baGcpeGaeyOpa4JaeyOpa4Jaaeiiaiaab2eapaWaaSbaaSqaa8qaca qGdbaapaqabaGcpeGaaiiOaaaa@444B@ of the inner part HCi cannot destroy the solid shell HCe, but is enough high for cancel the gravitational attraction of HCi and for generate matter’s expansion, it is able to generate a mechanic work higher than that of the gravitational force: L a >  L g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabYeapaWaaSbaaSqaa8qacaqGHbaapaqa baGcpeGaeyOpa4JaaeiiaiaabYeapaWaaSbaaSqaa8qacaqGNbaapa qabaaaaa@4247@ , if its duration δτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes7aKjabes8a0baa@3FCC@  is enoug high and its generating period is τΔ t 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabes8a0jabgkziUkabfs5aejaabshapaWa aSbaaSqaa8qacaaIXaaapaqabaaaaa@4386@ .

The generated antigravitic field, can be- in this case, a natural equivalent of the dilaton field of the EMD theories.

The internal pression must satisfy the equation:

P < 2 σ s / R s  , ( σ s E/A =  F q / l q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaadcfacaqGGaGaeyipaWJaaeiiaiaaikda cqaHdpWCpaWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaai4laiaadk fapaWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaaiiOaiaacYcacaqG GaWdaiaacIcapeGaeq4Wdm3damaaBaaaleaapeGaam4CaaWdaeqaaO WdbiabgIKi7kaadweacaGGVaGaamyqaiaabccacqGH9aqpcaqGGaGa amOra8aadaWgaaWcbaWdbiaadghaa8aabeaak8qacaGGVaGaamiBa8 aadaWgaaWcbaWdbiaadghaa8aabeaakiaacMcaaaa@58F3@   (44)

with: σ s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeo8aZ9aadaWgaaWcbaWdbiaadohaa8aa beaaaaa@3F77@ -the superficial tension of HCe; Fq –the strong force between two current strange quarks at l q 2 r q 0.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabYgapaWaaSbaaSqaa8qacaqGXbaapaqa baGcpeGaeyisISRaaGOmaiaabkhapaWaaSbaaSqaa8qacaqGXbaapa qabaGcpeGaeyisISRaaGimaiaac6cacaaI0aaaaa@475E@ fm (the approximate diameter’s value of a preonic current quark; Rs –the inner radius of HCe –shell) or between two cold nucleons at ~ 1 fm inter-distance, (depending on the HCi’s mass).

Figure 1 Antigravitic (pseudo)charge generating by matter→energy conversion inside the gravistar’s HC.

Conclusion

By the author’s cold genesis theory (CGT), based on the Galileian relativity, it was argued the possibility to explain the massic spectrum of the elementary particles by two species of preonic quasi-crystalline quarks: A) preonic –formed by basic preons z0(34 me) which form bosonic preons z2(4z0) and z π ( 7 z 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadQhapaWaaSbaaSqaaiabec8aWbqabaGcdaqa daqaa8qacaaI3aGaamOEa8aadaahaaWcbeqaa8qacaaIWaaaaaGcpa GaayjkaiaawMcaaaaa@42D2@ , and B) quarkonic – formed by 3n preonic quarks ( 4 n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaaisdacqGHLjYScaGGGcGaamOBaiaaccka cqGHLjYScaaIXaaaaa@44A2@ ) (mainly –v- or/and s-quarks) or as crystalline cluster of 7x5 = 35 preonic or quarkonic quarks : (p+;n-) –nucleonic quarks or λ ± ,  s ± , v ± MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabeU7aS9aadaahaaWcbeqaa8qacqGHXcqS aaGccaGGSaGaaeiiaiaabohapaWaaWbaaSqabeaapeGaeyySaelaaO GaaiilaiaabAhapaWaaWbaaSqabeaapeGaeyySaelaaOGaeyOeI0ca aa@49C1@ preonic quarks, or c- or b- quarkonic quarks.

 Because in CGT the z0 –preon is a crystalline cluster of degenerate paired electrons (gammons’ γ * ( e e + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiabgkHiTiabeo7aN9aadaahaaWcbeqaa8qa caGGQaaaaOWdamaabmaabaWdbiaabwgapaWaaWbaaSqabeaapeGaey OeI0caaOGaaeyza8aadaahaaWcbeqaa8qacqGHRaWkaaaak8aacaGL OaGaayzkaaaaaa@45FC@ ), considered in a vortical model and the considered etherono-quantonic vortex of the electron’s magnetic moment is essential in CGT for the natural explaining of the strong force (between quarks) and of the nuclear force (between nucleons), it was also argued that the existence of a permanent etherono-quantonic vortex around the super-dense kernel of electron is possible by its interaction with etherono-quantonic winds which represent a main negentropic component of the quantum vacuum, associated with its subquantum and quantum dynamic pressure, whose gradient generates a static pressure gradient of a brownian component of the etherono-quantonic medium, in conformity with the Bernoulli’s law applied to the etheronic medium whose ‚sinergonic’ component of heavy etherons ( m s 10 60 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaab2gapaWaaSbaaSqaa8qacaqGZbaapaqabaGc peGaeyisISRaaGymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaG OnaiaaicdaaaGccaqGRbGaae4zaaaa@456E@ ) (which can explain effects of a physical nature of the magnetic potential A) generate also a centripetal vortical force of Magnus type over the‚ quantons’ ( m h h×1/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaab2gapaWaaSbaaSqaa8qacaqGObaapaqa baGcpeGaeyisISRaaeiAaiabgEna0kaaigdacaGGVaGaae4ya8aada ahaaWcbeqaa8qacaaIYaaaaaaa@46C0@ ) and over the inertial (dense) mass of vortexed vector photons, which equilibrate the centrifugal force. The vortical nature of the magnetic moment is argued also by the perpetual rotation of the atomic electrons.

Similarly, as consequence, in CGT can be argued a model of ‚gravistar’ –similar to the‚ gravastar’ model proposed by Mottola and Mazur, having a shell of dark energy but also of photons vortexed around a rotational hard core (HC) of black hole type which –by matter→energy conversion. This conversion is produced with the releasing of heavy etherons of the destroyed degenerate electrons’ vortices as well, which generate periodically an antigravitic (pseudo)charge MA of the HC.

 It was argued that a HC’s antigravitic (pseudo)charge generated by matter→energy conversion produced by gravitational attraction and periodically produced destruction of an accretion disk, (particularly –of MAD type, i.e. magnetically‚ arrested’), is insufficient for generating a total mechanic work LT (generated by MA and Mg) of matter’s expansion, but this possibility ( L T  > 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaqaaaaaaaaaWdbiaabYeapaWaaSbaaSqaa8qacaqGubaapaqa baGcpeGaaiiOaiabg6da+iaabccacaaIWaaaaa@4205@ ) could be produced by an antigravitic (pseudo) charge MA of an internal solid core HCi of HC, generated by the friction between its surface and the interior surface of a crystalline shell HCe, of current cold strange quarks or even of nucleons in quasi-crystalline state (depending on the HCi’s mass), as consequence of an angular rotation speed’ difference between HCi and HCe, which could be increasing and decreasing periodically changing its sign. The antigravitic field of this MA-(pseudo)charge could be –in a such case, a natural equivalent of the ‚dilaton’ field considered in EMD theories.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Patrignani C, Agashe K, Aielli G, et al. Particle data group. Chin Phys C. 2016;40:100001.
  2. Andersson B, Gustafson G, Ingelman G, et al. Parton fragmentation and string dynamics. Phys Rep. 1983;97(2–3):31–145.  
  3. Arghirescu M. The material structures genesis and fields effects. MatrixRom. 2006. The cold genesis of matter and fields. Science Publishing Group. 2015.
  4. Arghirescu M. A preonic quasi-crystal quark model based on a cold genesis theory and on the experimentally evidenced neutral boson of 34 Me. Global J of Phys. 2016;5(1):496–504.
  5. Arghirescu M. A model of particles cold forming as collapsed Bose–Einstein condensate of gammons. Phys Astron Int J. 2018;2(4):260–267.  
  6. Hellman Olavi. A proposed elementary particle theory based on interacting classical fields. Turun Yliopisto, Turku-preprint. 1961.
  7. Krasznahorkay AJ, Csatlós M, Csige L, et al. Observation of anomalous internal pair creation in 8Be: A possible signature of a light, Neutral Boson. arXiv: 1504.01527v1. [nucl-ex]. 2015.  
  8. Sarri G, Poder K, Cole J, et al. Generation of neutral and high-density electron– positron pair plasmas in the laboratory. Nature Comm. 2015;6:6747.  
  9. Arghirescu M. The nuclear force explaining by a bag model resulted from a vortexial, cold genesis model of nucleon. Phys Astron Int J. 2018;2(4):349‒358.  
  10. Souza ME. Calculation of almost all energy levels of baryons. Papers in Physics. 2011;3:ART.030003.
  11. Carrigan RA Jr. Compound quarks as an explanation for the apparent quark mass spectrum. Fermi Nat Accelerator Lab. 1978.  
  12. Arghirescu M. An explanatory model of heavy quarks and particles generating resulted by a cold genesis theory. Theor Phys Lett. 2011;9(11).
  13. Griffiths D.J. Introduction to elementary particles (2nd revised ed.). Wiley-VCH. 2008;181–188.
  14. Sakharov AD. Mass formula for mesons and baryons. Zh Eksp Teor Fiz. 1980;78:2112–2115.
  15. Arghirescu M. A preonic model of quarks and particles, based on a cold genesis theory. In book: Redefining standard model particles physics. IntechOpen. 2023.
  16. Arghirescu M. The nature of the 1 MeV-gamma quantum in a classic interpretation of the quantum potential. Phys Tomorrow Lett. 2023;18(6):631–3657.
  17. Arghirescu M. A photon model resulted by a pre-quantum theory of fields. Bull Polytech Inst Iasi Theor Mech Phys. 2015;LXI(3):35–47.
  18. Popescu II. Ether and etherons -a possible reappraisal of the ether concept. Stud Cerc de Fizica. 1982;34:451–468.
  19. Meyer HO. Spontaneous electron emission from a cold surface. Europhys Lett. 2010;89(5):58001.
  20. Mottola E, Mazur PO. Gravitational condensate stars: an alternative to black holes. Universe. 2003;9(2):88.
  21. Kundt W. A Uniform Description of All the Astrophysical Jets. Proceedings of Science. 2014.
  22. Hirotani K, Iguchi S, Kimura M, et al. Pair Plasma Dominance in the Parsec‐ Scale Relativistic Jet of 3C 345". The Astrophysical Journal. 2000;545(1):100–106.
  23. Schild RE, Leiter DJ, Robertson SL. Observations Supporting the Existence of an  Intrinsic Magnetic Moment inside the Central Compact Object within the Quasar Q0957+561. The Astronomical Journal. 2006;132(1).
  24. RD Blandford, RL Znajek. Electromagnetic extraction of energy from Kerr black holes. Mon Not R Astr Soc. 1977;179:433–456.
  25. Naeye R, Gutro R. Vast Cloud of Antimatter Traced to Binary Stars. NASA. 2008.
  26. Gong-Bo Z, Raveri M, Pogosian L, et al. Dynamical dark energy in light of the latest  observations. Nature Astronomy. 2017;1:627–632.
  27. Bostick WH. The Hubble expansion as ascribed to mutual magnetic induction between neighboring galaxies. Laser and Particle Beams. 1988;6(3):405–408.
  28. Farrah D, Petty S, Croker KS, et al. A Preferential Growth Channel for Supermassive   Black Holes in Elliptical Galaxies at z ≲ 2. The Astrophysical Journal. 2023;943.
  29. Clery D. What powers a black hole’s mighty jets?. Science. 2014;19.
  30. Andreoni I, Coughlin MW, Perley DA. A very luminous jet from the disruption of a star  by a massive black hole. The Astrophysical Journal. 2023;943:133.
  31. Lü H, Wang, Zhao-Long, et al. Black holes that repel. Phys Rev D 99. 2019;101502.
  32. Lu HQ, Huang ZG, Fang W, et al. Dark Energy and Dilaton Cosmology. 2004. 
  33. Gibbons GW, Wells CG. Antigravity bounds and the Ricci tensor. 1993.
  34. Evans PA, Nixon CJ, Campana S, et al. Monthly quasi-periodic eruptions from repeated stellar disruption by a massive black hole. Nature astronomy. 2023.
  35. Weber F,  Kettner C, Weigel MK, et al. "Strange-matter Stars".  Internat.  Symp on Strangeness and Quark Matter, Kolymbari, Greece, 1-5 Sep (1994). Singapore: World Scientific. pp. 308–317.
  36. Bullard EC. The magnetic Field within the Earth. Proceedings of the Royal Society of London, Series A, Math and Physical Sciences. 1949;197(1051):433–453.
Creative Commons Attribution License

©2023 Arghirescu. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.