Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Commentary Volume 2 Issue 4

A model of particles cold forming as collapsed Bose–Einstein condensate of gammons

Marius Arghirescu

Patents Department, State Office for Inventions and Trademarks, Romania

Correspondence: Marius Arghirescu, Patents Department, State Office for Inventions and Trademarks, Romania, Tel 4074 5795 507

Received: June 11, 2018 | Published: July 5, 2018

Citation: Arghirescu M. A model of particles cold forming as collapsed Bose–Einstein condensate of gammons. Phys Astron Int J. 2018;2(4):260-267. DOI: 10.15406/paij.2018.02.00096

Download PDF

Abstract

The paper brings supplementary arguments regarding the possibility of cold particles forming as collapsed cold clusters of gammons–considered as pairs: γ * =( e e + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdC2cpaWaaWbaaKqaGeqabaqcLbma peGaaiOkaaaajugibiabg2da9Kqba+aadaqadaGcbaqcLbsapeGaam yzaKqba+aadaahaaWcbeqcbasaaKqzadWdbiabgkHiTaaajugibiaa dwgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacqGHRaWkaaaak8aaca GLOaGaayzkaaaaaa@4A7A@ of axially coupled electrons with opposed charges. It is argued physico–mathematically that the particles cold forming from chiral quantum vacuum fluctuations is possible at T0K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaiabgkziUkaaicdacaWGlbaaaa@3DBE@ , either by a vortexial, magnetic–like field or by already formed gammons, in a “step–by–step” process, by two possible mechanisms: a)–by clusterizing, with the forming of preons z 0 =34 m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOEaKqba+aadaahaaWcbeqcbasaaKqz adWdbiaaicdaaaqcLbsacqGH9aqpcaaIZaGaaGinaiaad2gal8aada WgaaqcbasaaKqzadWdbiaadwgaaKqaG8aabeaaaaa@4421@ , and of basic bosons: z p =7 z 0 ;  z 2 =4 z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOEaKqba+aadaWgaaqcbasaaKqzadWd biaadchaaSWdaeqaaKqzGeWdbiabg2da9iaaiEdacaWG6bWcpaWaaW baaKqaGeqabaqcLbmapeGaaGimaaaajugibiaacUdacaqGGaGaamOE aSWdamaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbi abg2da9iaaisdacaWG6bqcfa4damaaCaaaleqajeaibaqcLbmapeGa aGimaaaaaaa@4F3B@ , with hexagonal symmetry and thereafter–of cold quarks and pseudo–quarks, by a mechanism with a first step of z * / ( q ± / q 0 ) * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOEaSWdamaaCaaajeaibeqaaKqzadWd biaacQcaaaqcLbsacaGGVaqcfa4damaabmaakeaajugib8qacaWGXb qcfa4damaaCaaaleqajeaibaqcLbmapeGaeyySaelaaKqzGeGaai4l aiaadghajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIWaaaaaGcpa GaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmapeGaaiOkaaaaaaa@4D66@ –pre–cluster forming by magnetic interaction and a second step of z/( q ± / q 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOEaiaac+cajuaGpaWaaeWaaOqaaKqz GeWdbiaadghal8aadaahaaqcbasabeaajugWa8qacqGHXcqSaaqcLb sacaGGVaGaamyCaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaaicda aaaak8aacaGLOaGaayzkaaaaaa@47B4@ –collapsed cluster forming , with the aid of magnetic confinement, and b)–by pearlitizing, by the transforming of a bigger Bose–Einstein condensate into smaller gammonic pre–clusters which may become particle–like collapsed BEC.

Keywords: cold genesis, bose–einstein condensate, quasi–crystal quark, dark energy, quantum vortex

Commentary

In a previous paper1 were presented briefly some basic particle models resulted from a cold genesis theory of matter and fields2–5 of the author, (CGT), regarding the cold forming process of cosmic elementary particles, formed–according to the theory, as collapsed cold clusters of gammons–considered as pairs: γ * =( e e + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdC2cpaWaaWbaaKqaGeqabaqcLbma peGaaiOkaaaajugibiabg2da9Kqba+aadaqadaGcbaqcLbsapeGaam yzaKqba+aadaahaaWcbeqcbasaaKqzadWdbiabgkHiTaaajugibiaa dwgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacqGHRaWkaaaak8aaca GLOaGaayzkaaaaaa@4A7A@ of axially coupled electrons with opposed charges, which gives a preonic, quasi–crystalline internal structure of cold formed quarks with hexagonal symmetry,5 based on z 0 34 m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOEaKqba+aadaahaaWcbeqcbasaaKqz adWdbiaaicdaaaqcLbsacqGHijYUcaaIZaGaaGinaiaad2gal8aada WgaaqcbasaaKqzadWdbiaadwgaaKqaG8aabeaaaaa@44CC@ preon–experimentally evidenced in Krasznahorkay et al.,6 but considered as X–boson of a fifth force, of leptons–to quark binding, and on two cold formed bosonic ‘zerons’ : z 2 =4 z 0 =136  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOEaSWdamaaBaaajeaibaqcLbmapeGa aGOmaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaisdacaWG6bqcfa4dam aaCaaaleqajeaibaqcLbmapeGaaGimaaaajugibiabg2da9iaaigda caaIZaGaaGOnaiaabccacaWGTbWcpaWaaSbaaKqaGeaajugWa8qaca WGLbaajeaipaqabaaaaa@4B7B@ ; and z π = 7 z 0  =238 m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOEaSWdamaaBaaajeaibaqcLbmapeGa eqiWdahajeaipaqabaqcLbsapeGaeyypa0JaaeiiaiaaiEdacaWG6b WcpaWaaWbaaKqaGeqabaqcLbmapeGaaGimaaaajugibiaacckacqGH 9aqpcaaIYaGaaG4maiaaiIdacaWGTbWcpaWaaSbaaKqaGeaajugWa8 qacaWGLbaajeaipaqabaaaaa@4D18@ , formed as clusters of degenerate electrons with degenerate mass and magnetic moment and with degenerate charge e * =( 2 3 )e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyzaSWdamaaCaaajeaibeqaaKqzadWd biaacQcaaaqcLbsacqGH9aqpjuaGpaWaaeWaaOqaaKqbaoaaliaake aajugibiaaikdaaOqaaKqzGeGaaG4maaaaaOGaayjkaiaawMcaaKqz GeWdbiaadwgaaaa@454D@ , (characteristic to the up–quark–in the quantum mechanics).

According to this theory,2–5 based on the Galilean relativity, the magnetic field is generated by an etherono–quantonic vortex Γ M = Γ A + Γ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeu4KdCucfa4damaaBaaajeaibaqcLbma peGaamytaaWcpaqabaqcLbsapeGaeyypa0Jaeu4KdCucfa4damaaBa aajeaibaqcLbmapeGaaCyqaaWcpaqabaqcLbsapeGaey4kaSIaeu4K dCucfa4damaaBaaajeaibaqcLbmapeGaeqiVd0gal8aabeaaaaa@4ADE@ of s–etherons (sinergons–with mass m s 10 60 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyBaKqba+aadaWgaaqcbasaaKqzadWd biaadohaaSWdaeqaaKqzGeWdbiabgIKi7kaaigdacaaIWaWcpaWaaW baaKqaGeqabaqcLbmapeGaeyOeI0IaaGOnaiaaicdaaaqcLbsacaWG RbGaam4zaaaa@47D3@ ) giving the magnetic potential A by an impulse density: p s ( r )= ( ρ s c) r  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiCaSWdamaaBaaajeaibaqcLbmapeGa am4CaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGYbaak8aaca GLOaGaayzkaaqcLbsapeGaeyypa0ZdaiaacIcapeGaeqyWdi3cpaWa aSbaaKqaGeaajugWa8qacaWGZbaajeaipaqabaqcLbsapeGaeyyXIC Taam4ya8aacaGGPaWcdaWgaaqcbauaaKqzGdWdbiaadkhacaGGGcaa jeaqpaqabaaaaa@50E0@ and of quantons (h–quanta, with mass: m h =h1/ c 2 7.37x 10 51 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyBaSWdamaaBaaajeaibaqcLbmapeGa amiAaaqcbaYdaeqaaKqzGeWdbiabg2da9iaadIgacqGHflY1caaIXa Gaai4laiaadogal8aadaahaaqcbasabeaajugWa8qacaaIYaaaaKqz GeGaeyisISRaaG4naiaac6cacaaIZaGaaG4naiaadIhacaaIXaGaaG imaSWdamaaCaaajeaibeqaaKqzadWdbiabgkHiTiaaiwdacaaIXaaa aKqzGeGaam4AaiaadEgaaaa@54D4@ , formed as compact cluster of sinergons) giving the magnetic moment and the magnetic induction B by an impulse density: p c ( r )= ( ρ c v c ) r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiCaSWdamaaBaaajeaibaqcLbmapeGa am4yaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGYbaak8aaca GLOaGaayzkaaqcLbsapeGaeyypa0ZdaiaacIcapeGaeqyWdi3cpaWa aSbaaKqaGeaajugWa8qacaWGJbaajeaipaqabaqcLbsapeGaamODaK qba+aadaWgaaqcbasaaKqzadWdbiaadogaaSWdaeqaaKqzGeGaaiyk aKqbaoaaBaaaleaajugib8qacaWGYbaal8aabeaaaaa@5053@ , the nuclear field resulting from the attraction of the quantum impenetrable volume ui of a nucleon in the total field generated according to fields superposition principle, by the Nsup>n

superposed vortices Γ μ * ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacqqHtoWrlmaaDaaajeaibaqcLbma cqaH8oqBaKqaGeaajugWaiaacQcaaaqcfa4damaabmaakeaajugib8 qacaWGYbaak8aacaGLOaGaayzkaaaaaa@441A@ of component degenerate electrons of another nucleon, having an exponential variation of quanta impulse density, the nuclear potential resulting in the form:

V n ( r ) = υ i P n = V n 0 e r/ η* ;   P n ( r ) = ( 1 / 2 ) ρ n ( r ) c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGwbWcpaWaaSbaaKqaGeaajugW a8qacaWGUbaajeaipaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadkhaaO WdaiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0JaeqyXdu3cpaWa aSbaaKqaGeaajugWa8qacaWGPbaajeaipaqabaqcLbsapeGaamiuaS WdamaaBaaajeaibaqcLbmapeGaamOBaaqcbaYdaeqaaKqzGeWdbiab g2da9iaadAfalmaaDaaajuaibaqcLbmacaWGUbaajuaibaqcLbmaca aIWaaaaKqzGeGaeyyXICTaamyzaSWdamaaCaaajeaibeqaaKqzadWd biabgkHiTiaadkhacaGGVaaaaSWdamaaCaaajeaibeqaaKqzadWdbi abeE7aOjaacQcaaaqcLbsacaGG7aGaaiiOaiaacckacaWGqbqcfa4d amaaBaaajeaibaqcLbmapeGaamOBaaWcpaqabaqcfa4aaeWaaOqaaK qzGeWdbiaadkhaaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaeyyp a0JaaeiiaKqba+aadaqadaGcbaqcfa4aaWbaaSqabeaajugib8qaca aIXaaaaiaac+cajuaGpaWaaSbaaSqaaKqzGeWdbiaaikdaaSWdaeqa aaGccaGLOaGaayzkaaqcLbsapeGaeqyWdi3cpaWaaSbaaKqaGeaaju gWa8qacaWGUbaajeaipaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadkha aOWdaiaawIcacaGLPaaajugib8qacqGHflY1caWGJbqcfa4damaaCa aaleqajeaibaqcLbmapeGaaGOmaaaaaaa@848C@ (1)

By an electron model with radius: a = 1.41fm and with exponential variation of the quantum volume density and of the magnetic field quanta: ρ μ ( r ) ρ e ( r ) = ρ e 0 · e r/ η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacqaHbpGCl8aadaWgaaqcbasaaKqz adWdbiabeY7aTbqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGYb aak8aacaGLOaGaayzkaaqcLbsapeGaeyisISRaeqyWdi3cpaWaaSba aKqaGeaajugWa8qacaWGLbaajeaipaqabaqcfa4aaeWaaOqaaKqzGe WdbiaadkhaaOWdaiaawIcacaGLPaaajugib8qacaqGGaGaeyypa0Ja eqyWdi3cpaWaaSbaaKqaGeaajugWa8qacaWGLbaajeaipaqabaWcda ahaaqcbasabeaajugWa8qacaaIWaaaaKqzGeGaai4Taiaadwgal8aa daahaaqcbasabeaajugWa8qacqGHsislcaWGYbGaai4laaaal8aada ahaaqcbasabeaajugWa8qacqaH3oaAaaaaaa@60B6@ ; η0.96fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacqaH3oaAcqGHijYUcaaIWaGaaiOl aiaaiMdacaaI2aGaamOzaiaad2gaaaa@41BB@ ; ρ e 0 = 2.22x 10 14 kg/ m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacqaHbpGCjuaGpaWaaSbaaKqaGeaa jugWa8qacaWGLbaajeaipaqabaqcfa4aaWbaaKqaGeqabaqcLbmape GaaGimaaaajugibiabg2da9iaabccacaaIYaGaaiOlaiaaikdacaaI YaGaamiEaiaaigdacaaIWaqcfa4damaaCaaajeaibeqaaKqzadWdbi aaigdacaaI0aaaaKqzGeGaam4AaiaadEgacaGGVaGaamyBaKqba+aa daahaaqcbasabeaajugWa8qacaaIZaaaaaaa@5391@ .

In the base of some neo–classic (pre–quantum) relations of the electric and magnetic fields:2–5

E s (r)  = k 1 ρ e (r) v c 2 = 1 2 k 1 Δ  p c 2 Δ t ;  q s  = 4π r q 2 k 1 ;  = k 1 ρ μ (r) v c ; ( k 1 = 4π a 2 e =1.56 x 10 10 m 2 C ;  v c  c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqbaoaavabakeqajeaibaqcLbmacaWGZbaaleqakeaajugi biaadweaaaGaamikaiaadkhacaWGPaGaaeiiaiaadccacaWG9aGaam iiaKqbaoaavabakeqajeaibaqcLbmacaaIXaaaleqakeaajugibiaa dUgaaaGaeyyXICTaeqyWdixcfa4aaSbaaKqaGeaajugWaiaadwgaaS qabaqcLbsacaWGOaGaamOCaiaadMcacqGHflY1caqG2bWcdaqhaaqc basaaKqzadGaae4yaaqcbasaaKqzadGaaeOmaaaajugibiaadccacq GH9aqpjuaGdaWcaaGcbaqcLbsacaqGXaaakeaajugibiaabkdaaaGa amiiaKqbaoaavabakeqajeaibaqcLbmacaaIXaaaleqakeaajugibi aadUgaaaGaeyyXICDcfa4aaSaaaOqaaKqzGeGaeuiLdqKaaeiiaiaa dchalmaaDaaajeaibaqcLbmacaWGJbaajeaibaqcLbmacaaIYaaaaa GcbaqcLbsacqqHuoarcaqGGaGaamiDaaaacaWG7aGaaeiiaiaabgha juaGdaWgaaqcbasaaKqzadGaae4CaaWcbeaajugibiaabccacqGH9a qpjuaGdaWcaaGcbaqcLbsacaqG0aGaeqiWdaNaeyyXICTaaeOCaSWa a0baaKqaGeaajugWaiaabghaaKqaGeaajugWaiaabkdaaaaakeaaju gibiaabUgalmaaBaaajeaibaqcLbmacaqGXaaajeaibeaaaaqcLbsa caWG7aGaaeiiaaGcbaqcLbsacaqGcbGaaeiiaiabg2da9iaabUgaju aGdaWgaaqcbasaaKqzadGaaeymaaqcbasabaqcLbsacqGHflY1cqaH bpGCjuaGdaWgaaqcbasaaKqzadGaeqiVd0gajeaibeaajugibiaadI cacaWGYbGaamykaiabgwSixlaabAhajuaGdaWgaaqcbasaaKqzadGa ae4yaaqcbasabaqcLbsacaqG7aGaaeiiaiaabIcacaWGRbqcfa4aaS baaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaeyypa0tcfa4aaSaa aOqaaKqzGeGaaGinaiabec8aWjabgwSixlaadggajuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamyzaaaacqGH9aqpcaaI XaGaaiOlaiaaiwdacaaI2aGaaeiiaiaadIhacaaIXaGaaGimaKqbao aaCaaaleqajeaibaqcLbmacqGHsislcaaIXaGaaGimaaaajuaGdaWc aaGcbaqcLbsacaWGTbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaa GcbaqcLbsacaWGdbaaaiaacUdacaqGGaGaaeODaKqbaoaaBaaajeaq baqcLboacaqGJbaaleqaaKqzGeGaeyisISRaaeiiaiaadogacaqGGa Gaamykaaaaaa@D2AA@  (2)

In two relative recent papers,7,8 were brought arguments for two possible mechanism of cold particles forming as collapsed Bose–Einstein condensate (BEC) without destruction:
a) by clusterizing and cold collapsing without destruction, from a gammonic quasi–crystallin pre–cluster Nz,7 or

b) by pearlitizing, by the fragmenting of a bigger BEC.8 The particles cold forming by clusterizing may results–according to CGT, in a “step–by–step” process,7 supposing:
a1) z 0* / z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWG6bWcpaWaaWbaaKqaGeqabaqc LbmapeGaaGimaiaacQcaaaqcLbsacaGGVaGaamOEaKqba+aadaahaa WcbeqcbasaaKqzadWdbiaaicdaaaaaaa@42CA@ pre–cluster/cluster forming, with the aid of magnetic confinement, with a metastable equilibrium interdistance between gammons with antiparallel magnetic moments: d e =a=1.41fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGKbWcpaWaaSbaaKqaGeaajugW a8qacaWGLbaajeaipaqabaqcLbsapeGaeyypa0Jaamyyaiabg2da9i aaigdacaGGUaGaaGinaiaaigdacaWGMbGaamyBaaaa@4595@ (Figure 1);

Figure 1 The z0*–pre–cluster forming.

a2) z 2 * / z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWG6bWcpaWaaSbaaKqaGeaajugW a8qacaaIYaaajeaipaqabaWcdaahaaqcbasabeaajugWa8qacaGGQa aaaKqzGeGaai4laiaadQhajuaGpaWaaSbaaKqaGeaajugWa8qacaaI Yaaal8aabeaaaaa@44A9@ and z π * / z π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWG6bWcpaWaaSbaaKqaGeaajugW a8qacqaHapaCaKqaG8aabeaalmaaCaaajeaibeqaaKqzadWdbiaacQ caaaqcLbsacaGGVaGaamOEaKqba+aadaWgaaqcbasaaKqzadWdbiab ec8aWbWcpaqabaaaaa@46AB@  are pre–cluster/cluster forming;
a3) ( q ± / q 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeGaaiikaabaaaaaaaaapeGaamyCaKqba+aadaahaaWc beqcbasaaKqzadWdbiabgglaXcaajugibiaac+cacaWGXbqcfa4dam aaCaaaleqajeaibaqcLbmapeGaaGimaaaajugib8aacaGGPaaaaa@45C3@ –quark or neutral pseudo–quark pre–cluster/cluster forming;
a4) pre–cluster of quarks or pseudo–quarks forming;
a5) elementary particle/dark boson forming, or directly:
a1’) quark pre–cluster forming (Figure 2) (Figure 3)®collapsed quark cluster forming;

Figure 2 The m1–and r*–quark pre–cluster forming.

Figure 3 The cold forming of baryonic quarks.

a2’) elementary particle/dark boson forming (cluster of quarks with the current mass in the same baryonic impenetrable quantum volume, uITable 1).

Basic quarks: m1 = (z2– me*) = 135.2 me,

m 2 = m 1 + e + σ e =137,8  m e ;   m 2 m 1 +  e + v ¯ e ;  ( σ e =( e +* + e * ) v ¯ e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyBaSWdamaaBaaajeaibaqcLbmapeGa aGOmaaqcbaYdaeqaaSWaaWbaaKqaGeqabaqcLbmapeGaeyOeI0caaK qzGeGaeyypa0JaamyBaSWdamaaBaaajeaibaqcLbmapeGaaGymaaqc baYdaeqaaKqzGeWdbiabgUcaRiaadwgal8aadaahaaqcbasabeaaju gWa8qacqGHsislaaqcLbsacqGHRaWkcqaHdpWCl8aadaWgaaqcbasa aKqzadWdbiaadwgaaKqaG8aabeaajugib8qacqGH9aqpcaaIXaGaaG 4maiaaiEdacaGGSaGaaGioaiaabccacaWGTbWcpaWaaSbaaKqaGeaa jugWa8qacaWGLbaajeaipaqabaqcLbsapeGaai4oaiaacckacaGGGc GaamyBaSWdamaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaSWa aWbaaKqaGeqabaqcLbmapeGaeyOeI0caaKqzGeGaeyOKH4QaamyBaK qba+aadaWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaajugib8qa cqGHRaWkcaqGGaGaamyzaKqba+aadaahaaqcbasabeaajugWa8qacq GHsislaaqcLbsacqGHRaWkceWG2bGbaebajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGLbaajeaipaqabaqcLbsapeGaai4oaiaacckacaGGGc WdaiaacIcapeGaeq4Wdmxcfa4damaaBaaajeaibaqcLbmapeGaamyz aaqcbaYdaeqaaKqzGeWdbiabg2da9Kqba+aadaqadaGcbaqcLbsape GaamyzaKqba+aadaahaaqcbasabeaajugWa8qacqGHRaWkcaGGQaaa aKqzGeGaey4kaSIaamyzaKqba+aadaahaaqcbasabeaajugWa8qacq GHsislcaGGQaaaaaGcpaGaayjkaiaawMcaaKqzGeWdbiabgkziUkqa dAhagaqeaKqba+aadaWgaaqcbasaaKqzadWdbiaadwgaaSWdaeqaaK qzGeGaaiykaaaa@962F@

Derived quarks: p+(n) = m1(m2) + 2zp

n = p + + e + σ e p + + e + v ¯ e ;  λ=  n ( p ) +  z π ; s=λ+ z 2 ;   v = λ +2 z 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOBaSWdamaaCaaajeaibeqaaKqzadWd biabgkHiTaaajugibiabg2da9iaadchal8aadaahaaqcbasabeaaju gWa8qacqGHRaWkaaqcLbsacqGHRaWkcaWGLbWcpaWaaWbaaKqaGeqa baqcLbmapeGaeyOeI0caaKqzGeGaey4kaSIaeq4Wdm3cpaWaaSbaaK qaGeaajugWa8qacaWGLbaajeaipaqabaqcLbsapeGaeyOKH4QaamiC aSWdamaaCaaajeaibeqaaKqzadWdbiabgUcaRaaajugibiabgUcaRi aadwgajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaeyOeI0caaKqzGeGa ey4kaSIabmODayaaraqcfa4damaaBaaajeaibaqcLbmapeGaamyzaa qcbaYdaeqaaKqzGeWdbiaacUdacaGGGcGaaiiOaiabeU7aSjabg2da 9iaabccacaWGUbqcfa4damaaCaaaleqajeaibaqcLbmapeGaeyOeI0 caaKqba+aadaqadaGcbaqcLbsapeGaamiCaaGcpaGaayjkaiaawMca aKqzGeWdbiaabccacqGHRaWkcaqGGaGaamOEaKqba+aadaWgaaqcba saaKqzadWdbiabec8aWbWcpaqabaqcLbsapeGaai4oaiaacckacaWG ZbGaeyypa0Jaeq4UdWMaey4kaSIaamOEaKqba+aadaWgaaqcbasaaK qzadWdbiaaikdaaKqaG8aabeaajugib8qacaGG7aGaaiiOaiaaccka caWG2bqcfa4damaaCaaajeaibeqaaKqzadWdbiabgkHiTaaajugibi abg2da9iabeU7aSLqba+aadaahaaqcbasabeaajugWa8qacqGHsisl aaqcLbsacqGHRaWkcaaIYaGaamOEaKqba+aadaWgaaqcbasaaKqzad WdbiaaikdaaKqaG8aabeaaaaa@9469@

Mesons: (q– q ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmyCayaaraaaaa@3A7C@ )

Baryons: (q–q–q)

μ =2 Z 1 + e =205  m e / μ + =206.7  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd02cpaWaaWbaaKqaGeqabaqcLbma peGaeyOeI0caaKqzGeGaeyypa0JaaGOmaiaadQfal8aadaWgaaqcba saaKqzadWdbiaaigdaaKqaG8aabeaajugib8qacqGHRaWkcaWGLbWc paWaaWbaaKqaGeqabaqcLbmapeGaeyOeI0caaKqzGeGaeyypa0JaaG OmaiaaicdacaaI1aGaaeiiaiaad2gajuaGpaWaaSbaaKqaGeaajugW a8qacaWGLbaajeaipaqabaqcLbsapeGaai4laiabeY7aTLqba+aada ahaaqcbasabeaajugWa8qacqGHRaWkaaqcLbsacqGH9aqpcaaIYaGa aGimaiaaiAdacaGGUaGaaG4naiaabccacaWGTbqcfa4damaaBaaaje aibaqcLbmapeGaamyzaaqcbaYdaeqaaaaa@614D@

p r =2p+n = 1836.2 m e ;  n e =2n+p=1838.8 m e ;/  p r + ,  n e =1836.1; 1838.7 m e ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeyOeI0IaamiCaSWdamaaBaaajeaibaqc LbmapeGaamOCaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaikdacaWGWb Gaey4kaSIaamOBaiaabccacqGH9aqpcaqGGaGaaGymaiaaiIdacaaI ZaGaaGOnaiaac6cacaaIYaGaamyBaKqba+aadaWgaaqcbasaaKqzad WdbiaadwgaaSWdaeqaaKqzGeWdbiaacUdacaGGGcGaamOBaKqba+aa daWgaaqcbasaaKqzadWdbiaadwgaaSWdaeqaaKqzGeWdbiabg2da9i aaikdacaWGUbGaey4kaSIaamiCaiabg2da9iaaigdacaaI4aGaaG4m aiaaiIdacaGGUaGaaGioaiaad2gajuaGpaWaaSbaaKqaGeaajugWa8 qacaWGLbaal8aabeaajugib8qacaGG7aGaai4laiaabccacaWGWbWc paWaaSbaaKqaGeaajugWa8qacaWGYbaajeaipaqabaWcdaahaaqcba sabeaajugWa8qacqGHRaWkaaqcLbsacaGGSaGaaeiiaiaad6gal8aa daWgaaqcbasaaKqzadWdbiaadwgaaKqaG8aabeaajugib8qacqGH9a qpcaaIXaGaaGioaiaaiodacaaI2aGaaiOlaiaaigdacaGG7aGaaeii aiaaigdacaaI4aGaaG4maiaaiIdacaGGUaGaaG4naiaad2gal8aada WgaaqcbasaaKqzadWdbiaadwgaaKqaG8aabeaajugib8qacaGG7aaa aa@82FB@

π o = m 1 + m ¯ 1 = 270.4 m e ;/ π 0 =264.2  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiWda3cpaWaaWbaaKqaGeqabaqcLbma peGaam4Baaaajugibiabg2da9iaad2gal8aadaWgaaqcbasaaKqzad WdbiaaigdaaKqaG8aabeaajugib8qacqGHRaWkceWGTbGbaebal8aa daWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaajugib8qacqGH9a qpcaqGGaGaaGOmaiaaiEdacaaIWaGaaiOlaiaaisdacaWGTbWcpaWa aSbaaKqaGeaajugWa8qacaWGLbaajeaipaqabaqcLbsapeGaai4oai aac+cacqaHapaCl8aadaahaaqcbasabeaajugWa8qacaaIWaaaaKqz GeGaeyypa0JaaGOmaiaaiAdacaaI0aGaaiOlaiaaikdacaqGGaGaam yBaSWdamaaBaaajeaibaqcLbmapeGaamyzaaqcbaYdaeqaaaaa@616E@

Λ o =s+n+p=2212.8  m e ; / Λ 0 =2182.7  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeyOeI0Iaeu4MdW0cpaWaaWbaaKqaGeqa baqcLbmapeGaam4Baaaajugibiabg2da9iaadohacqGHRaWkcaWGUb Gaey4kaSIaamiCaiabg2da9iaaikdacaaIYaGaaGymaiaaikdacaGG UaGaaGioaiaabccacaWGTbWcpaWaaSbaaKqaGeaajugWa8qacaWGLb aajeaipaqabaqcLbsapeGaai4oaiaacckacaGGVaGaeu4MdW0cpaWa aWbaaKqaGeqabaqcLbmapeGaaGimaaaajugibiabg2da9iaaikdaca aIXaGaaGioaiaaikdacaGGUaGaaG4naiaabccacaWGTbWcpaWaaSba aKqaGeaajugWa8qacaWGLbaajeaipaqabaaaaa@5FC5@

π + = m 1 + m ¯ 2 = 273  m e ;/ π + =273.2  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibuaabaaabeaaaOqaaKqzGeaeaaaaaaaaa8qacqaHapaCl8aa daahaaqcbasabeaajugWa8qacqGHRaWkaaqcLbsacqGH9aqpcaWGTb WcpaWaaSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaqcLbsapeGa ey4kaSIabmyBayaaraWcpaWaaSbaaKqaGeaajugWa8qacaaIYaaaje aipaqabaqcLbsapeGaeyypa0JaaeiiaiaaikdacaaI3aGaaG4maiaa bccacaWGTbWcpaWaaSbaaKqaGeaajugWa8qacaWGLbaajeaipaqaba qcLbsapeGaai4oaiaac+cacqaHapaCl8aadaahaaqcbasabeaajugW a8qacqGHRaWkaaqcLbsacqGH9aqpcaaIYaGaaG4naiaaiodacaGGUa GaaGOmaiaabccacaWGTbWcpaWaaSbaaKqaGeaajugWa8qacaWGLbaa jeaipaqabaaaaaaa@615D@

Δ ( ++;+;0; )  =  s ± + λ ± +  p + ( n ) =2445.6; 2453.4  m e ;/ Δ ±;0 =2411±4  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeyOeI0IaeuiLdq0cpaWaaWbaaKqaGeqa baWcdaqadaqcbasaaKqzadWdbiabgUcaRiabgUcaRiaacUdacqGHRa WkcaGG7aGaaGimaiaacUdacqGHsislaKqaG8aacaGLOaGaayzkaaqc LbmapeGaaiiOaaaajugibiabg2da9iaabccacaWGZbWcpaWaaWbaaK qaGeqabaqcLbmapeGaeyySaelaaKqzGeGaey4kaSIaeq4UdWwcfa4d amaaCaaaleqajeaibaqcLbmapeGaeyySaelaaKqzGeGaey4kaSIaae iiaiaadchal8aadaahaaqcbasabeaajugWa8qacqGHRaWkaaqcfa4d amaabmaakeaajugib8qacaWGUbWcpaWaaWbaaKqaGeqabaqcLbmape GaeyOeI0caaaGcpaGaayjkaiaawMcaaKqzGeWdbiaabccacqGH9aqp caaIYaGaaGinaiaaisdacaaI1aGaaiOlaiaaiAdacaGG7aGaaeiiai aaikdacaaI0aGaaGynaiaaiodacaGGUaGaaGinaiaabccacaWGTbWc paWaaSbaaKqaGeaajugWa8qacaWGLbaajeaipaqabaqcLbsapeGaai 4oaiaac+cacqqHuoarl8aadaahaaqcbasabeaajugWa8qacqGHXcqS caGG7aGaaGimaaaajugibiabg2da9iaaikdacaaI0aGaaGymaiaaig dacqGHXcqScaaI0aGaaeiiaiaad2gal8aadaWgaaqcbasaaKqzadWd biaadwgaaKqaG8aabeaaaaa@872C@

K + = m 1 + λ ¯ =987  m e ;/ K + =966.3  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saSWdamaaCaaajeaibeqaaKqzadWd biabgUcaRaaajugibiabg2da9iaad2gal8aadaWgaaqcbauaaKqzGd WdbiaaigdaaKqaa9aabeaajugib8qacqGHRaWkcuaH7oaBgaqeaiab g2da9iaaiMdacaaI4aGaaG4naiaabccacaWGTbWcpaWaaSbaaKqaGe aajugWa8qacaWGLbaajeaipaqabaqcLbsapeGaai4oaiaac+cacaWG lbWcpaWaaWbaaKqaGeqabaqcLbmapeGaey4kaScaaKqzGeGaeyypa0 JaaGyoaiaaiAdacaaI2aGaaiOlaiaaiodacaqGGaGaamyBaSWdamaa BaaajeaibaqcLbmapeGaamyzaaqcbaYdaeqaaaaa@5C3F@

Σ + =v+2p=2346.2 m e ;  Σ = v+2n=2351.4 m e ;  / Σ + ,  Σ =2327; 2342.6 m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeyOeI0Iaeu4Odm1cpaWaaWbaaKqaGeqa baqcLbmapeGaey4kaScaaKqzGeGaeyypa0JaamODaiabgUcaRiaaik dacaWGWbGaeyypa0JaaGOmaiaaiodacaaI0aGaaGOnaiaac6cacaaI YaGaamyBaSWdamaaBaaajeaibaqcLbmapeGaamyzaaqcbaYdaeqaaK qzGeWdbiaacUdacaGGGcGaeu4Odm1cpaWaaWbaaKqaGeqabaqcLbma peGaeyOeI0caaKqzGeGaeyypa0JaaiiOaiaadAhacqGHRaWkcaaIYa GaamOBaiabg2da9iaaikdacaaIZaGaaGynaiaaigdacaGGUaGaaGin aiaad2gajuaGpaWaaSbaaKqaGeaajugWa8qacaWGLbaal8aabeaaju gib8qacaGG7aGaaiiOaiaacckacaGGVaGaeu4Odm1cpaWaaWbaaKqa GeqabaqcLbmapeGaey4kaScaaKqzGeGaaiilaiaabccacqqHJoWul8 aadaahaaqcbasabeaajugWa8qacqGHsislaaqcLbsacqGH9aqpcaaI YaGaaG4maiaaikdacaaI3aGaai4oaiaabccacaaIYaGaaG4maiaais dacaaIYaGaaiOlaiaaiAdacaWGTbWcpaWaaSbaaKqaGeaajugWa8qa caWGLbaajeaipaqabaaaaa@7F70@

K o = m 2 + λ ¯ =989.6  m e ;/  K o =974.5  m e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saSWdamaaCaaajeaibeqaaKqzadWd biaad+gaaaqcLbsacqGH9aqpcaWGTbWcpaWaaSbaaKqaGeaajugWa8 qacaaIYaaajeaipaqabaqcLbsapeGaey4kaSIafq4UdWMbaebacqGH 9aqpcaaI5aGaaGioaiaaiMdacaGGUaGaaGOnaiaabccacaWGTbWcpa WaaSbaaKqaGeaajugWa8qacaWGLbaajeaipaqabaqcLbsapeGaai4o aiaac+cacaqGGaGaam4saSWdamaaCaaajeaibeqaaKqzadWdbiaad+ gaaaqcLbsacqGH9aqpcaaI5aGaaG4naiaaisdacaGGUaGaaGynaiaa bccacaWGTbWcpaWaaSbaaKqaGeaajugWa8qacaWGLbaajeaipaqaba aaaa@5E1C@

Σ o =v+n+p =2348.8  m e  / Σ 0 =2333  m e ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeyOeI0Iaeu4Odm1cpaWaaWbaaKqaGeqa baqcLbmapeGaam4Baaaajugibiabg2da9iaadAhacqGHRaWkcaWGUb Gaey4kaSIaamiCaiaabccacqGH9aqpcaaIYaGaaG4maiaaisdacaaI 4aGaaiOlaiaaiIdacaqGGaGaamyBaSWdamaaBaaajeaibaqcLbmape GaamyzaiaacckaaKqaG8aabeaajugib8qacaGGVaGaeu4Odm1cpaWa aWbaaKqaGeqabaqcLbmapeGaaGimaaaajugibiabg2da9iaaikdaca aIZaGaaG4maiaaiodacaqGGaGaamyBaSWdamaaBaaajeaibaqcLbma peGaamyzaaqcbaYdaeqaaKqzGeWdbiaacUdaaaa@5FBD@

η o = m 2 + s ¯  =1125.6  m e ;/  η 0 =1073  m e ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4TdG2cpaWaaWbaaKqaGeqabaqcLbma peGaam4Baaaajugibiabg2da9iaad2gajuaGpaWaaSbaaKqaGeaaju gWa8qacaaIYaaal8aabeaajugib8qacqGHRaWkceWGZbGbaebacaqG GaGaeyypa0JaaGymaiaaigdacaaIYaGaaGynaiaac6cacaaI2aGaae iiaiaad2gal8aadaWgaaqcbasaaKqzadWdbiaadwgaaKqaG8aabeaa jugib8qacaGG7aGaai4laiaabccacqaH3oaAl8aadaahaaqcbasabe aajugWa8qacaaIWaaaaKqzGeGaeyypa0JaaGymaiaaicdacaaI3aGa aG4maiaabccacaWGTbqcfa4damaaBaaajeaibaqcLbmapeGaamyzaa WcpaqabaqcLbsapeGaai4oaaaa@6190@

Ξ o =2s+p =2586.8  m e ;  Ξ =2s+n =2589.4  m e ; / Ξ 0 , Ξ =2572; 2587.7  m e ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeyOeI0IaeuONdG1cpaWaaWbaaKqaGeqa baqcLbmapeGaam4Baaaajugibiabg2da9iaaikdacaWGZbGaey4kaS IaamiCaiaabccacqGH9aqpcaaIYaGaaGynaiaaiIdacaaI2aGaaiOl aiaaiIdacaqGGaGaamyBaSWdamaaBaaajeaibaqcLbmapeGaamyzaa qcbaYdaeqaaKqzGeWdbiaacUdacaGGGcGaeuONdG1cpaWaaWbaaKqa GeqabaqcLbmapeGaeyOeI0caaKqzGeGaeyypa0JaaGOmaiaadohacq GHRaWkcaWGUbGaaeiiaiabg2da9iaaikdacaaI1aGaaGioaiaaiMda caGGUaGaaGinaiaabccacaWGTbWcpaWaaSbaaKqaGeaajugWa8qaca WGLbaajeaipaqabaqcLbsapeGaai4oaiaacckacaGGVaGaeuONdG1c paWaaWbaaKqaGeqabaqcLbmapeGaaGimaaaajugibiaacYcacqqHEo awl8aadaahaaqcbasabeaajugWa8qacqGHsislaaqcLbsacqGH9aqp caaIYaGaaGynaiaaiEdacaaIYaGaai4oaiaabccacaaIYaGaaGynai aaiIdacaaI3aGaaiOlaiaaiEdacaqGGaGaamyBaSWdamaaBaaajeai baqcLbmapeGaamyzaaqcbaYdaeqaaKqzGeWdbiaacUdaaaa@80B9@

Ω =3v=3371.4  m e ; /  Ω =3278  m e . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeyOeI0IaeuyQdC1cpaWaaWbaaKqaGeqa baqcLbmapeGaeyOeI0caaKqzGeGaeyypa0JaaG4maiaadAhacqGH9a qpcaaIZaGaaG4maiaaiEdacaaIXaGaaiOlaiaaisdacaqGGaGaamyB aSWdamaaBaaajeaibaqcLbmapeGaamyzaaqcbaYdaeqaaKqzGeWdbi aacUdacaGGGcGaai4laiaacckacqqHPoWvl8aadaahaaqcbasabeaa jugWa8qacqGHsislaaqcLbsacqGH9aqpcaaIZaGaaGOmaiaaiEdaca aI4aGaaeiiaiaad2gal8aadaWgaaqcbasaaKqzadWdbiaadwgaaKqa G8aabeaajugib8qacaGGUaaaaa@5E43@

Table 1 Elementary particles: (theoretic mass) / (experimentally determined mass)

The particles cold forming by pearlitizing supposes:
b1) the forming of a bigger BEC of gammons, with the concentration of particles: N 0 1/ a 3 =3.57x 10 44 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGobqcfa4damaaBaaajeaibaqc LbmapeGaaGimaaWcpaqabaqcLbsapeGaeyisISRaaGymaiaac+caca WGHbWcpaWaaWbaaKqaGeqabaqcLbmapeGaaG4maaaajugibiabg2da 9iaaiodacaGGUaGaaGynaiaaiEdacaWG4bGaaGymaiaaicdal8aada ahaaqcbasabeaajugWa8qacaaI0aGaaGinaaaaaaa@4E7A@ , (a=1.41 fm), in a strong gravitational or magnetic field: B γ =(2.2x 10 6 ÷8.3x 10 7 )T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGcbqcfa4damaaBaaajeaibaqc LbmapeGaeq4SdCgal8aabeaajugib8qacqGH9aqppaGaaiika8qaca aIYaGaaiOlaiaaikdacaWG4bGaaGymaiaaicdajuaGpaWaaWbaaSqa bKqaGeaajugWa8qacaaI2aaaaKqzGeGaey49aGRaaGioaiaac6caca aIZaGaamiEaiaaigdacaaIWaqcfa4damaaCaaaleqajeaibaqcLbma peGaaG4naaaajugib8aacaGGPaWdbiaadsfaaaa@54D2@ , at temperatures T= T p =(4.8x 10 11 ÷1.8x 10 10 )K< T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGubGaeyypa0JaamivaSWdamaa BaaajeaibaqcLbmapeGaamiCaaqcbaYdaeqaaKqzGeWdbiabg2da98 aacaGGOaWdbiaaisdacaGGUaGaaGioaiaadIhacaaIXaGaaGimaKqb a+aadaahaaWcbeqcbasaaKqzadWdbiabgkHiTiaaigdacaaIXaaaaK qzGeGaey49aGRaaGymaiaac6cacaaI4aGaamiEaiaaigdacaaIWaqc fa4damaaCaaaleqajeaibaqcLbmapeGaeyOeI0IaaGymaiaaicdaaa qcLbsapaGaaiyka8qacaWGlbGaeyipaWJaamivaKqba+aadaWgaaqc basaaKqzadWdbiaadkeaaSWdaeqaaaaa@5DD2@ , i.e.–Much lower than the transition temperature T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaKqba+aadaWgaaqcbasaaKqzadWd biaadkeaaSWdaeqaaaaa@3D4E@ –corresponding to a very low (neglijible) fraction N0/N; (N( T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaKqba+aadaWgaaqcbasaaKqzadWd biaadkeaaSWdaeqaaaaa@3D4E@ )–the initial concentration of particles, (for example, for N 10 24 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGobGaeyisISRaaGymaiaaicda l8aadaahaaqcKfaG=hqabaqcLbmapeGaaGOmaiaaisdaaaaaaa@426C@ , TBE(B=0)=1464K), the length along the B γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOqaKqba+aadaWgaaqcbasaaKqzadWd biabeo7aNbWcpaqabaaaaa@3E1C@ –field, of a gammonic BEC with the concentration N0 formed at T=Tp resulting of value: L2.5x 10 7 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGmbGaeyisISRaaGOmaiaac6ca caaI1aGaamiEaiaaigdacaaIWaWcpaWaaWbaaKqaGeqabaqcLbmape GaeyOeI0IaaG4naaaajugibiaad2gaaaa@4586@ ;8
b2) The pearlitizing of the resulted BEC by large temperature oscillation around the transition value T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaKqba+aadaWgaaqcbasaaKqzadWd biaadkeaaSWdaeqaaaaa@3D4E@ . The necessity of temperature oscillation around the transition value T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaKqba+aadaWgaaqcbasaaKqzadWd biaadkeaaSWdaeqaaaaa@3D4E@ for the BEC’s pearlitization results as consequence of the residual (reciprocal) magnetic interactions between gammons, which gives a superficial tension σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacqaHdpWCaaa@3B55@ .

For example, considering a radius rp of meta–stable equilibrium of a drop of BEC formed by the BEC’s pearlitization and maintained by the equilibrium between the force generated by the internal vibration (thermal) energy F t ( r p ) = V N 0 k B T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGgbWcpaWaaSbaaKqaGeaajugW a8qacaWG0baajeaipaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadkhal8 aadaWgaaqcbasaaKqzadWdbiaadchaaKqaG8aabeaaaOGaayjkaiaa wMcaaKqzGeWdbiaabccacqGH9aqpcaqGGaGaamOvaiabgwSixlaad6 eal8aadaWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugib8qa caWGRbWcpaWaaSbaaKqaGeaajugWa8qacaWGcbaajeaipaqabaqcLb sapeGaamivaSWdamaaBaaajeaibaqcLbmapeGaamyAaaqcbaYdaeqa aaaa@55B1@ and the force generated by the surface tension σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacqaHdpWCaaa@3B55@ :

dE dr = P 0 dV dr +σ dS dr =0  ; V= 4π 3 r 3  ; S=4π r 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGKbGaamyraaGcbaqcLbsacaWGKbGa amOCaaaacqGH9aqpcqGHsislcaWGqbqcfa4aaSbaaKazba4=baqcLb macaaIWaaaleqaaKqbaoaalaaakeaajugibiaadsgacaWGwbaakeaa jugibiaadsgacaWGYbaaaiabgUcaRiabeo8aZLqbaoaalaaakeaaju gibiaadsgacaWGtbaakeaajugibiaadsgacaWGYbaaaiabg2da9iaa icdacaqGGaGaaeiiaiaabUdacaqGGaGaaeOvaiabg2da9Kqbaoaala aakeaajugibiaabsdacqaHapaCaOqaaKqzGeGaae4maaaacaWGYbqc fa4aaWbaaSqabKazba4=baqcLbmacaaIZaaaaKqzGeGaaeiiaiaabU dacaqGGaGaae4uaiabg2da9iaabsdacqaHapaCcqGHflY1caqGYbWc daahaaqcbasabKazba4=baqcLbmacaqGYaaaaKqzGeGaai4oaaaa@7364@ (3)

Because σ=( ½ ) F λ /1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacqaHdpWCcqGH9aqpjuaGpaWaaeWa aOqaaKqzGeWdbiaac2laaOWdaiaawIcacaGLPaaajugib8qacaWGgb qcfa4damaaBaaajeaibaqcLbmapeGaeq4UdWgal8aabeaajugib8qa caGGVaGaaGymaaaa@47EF@ , (the force rectangular on unit length), for: N 0 1/ a 3 =3.57x 10 44 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGobWcpaWaaSbaaKqaGeaajugW a8qacaaIWaaajeaipaqabaqcLbsapeGaeyisISRaaGymaiaac+caca WGHbWcpaWaaWbaaKqaGeqabaqcLbmapeGaaG4maaaajugib8aacqGH 9aqppeGaaG4maiaac6cacaaI1aGaaG4naiaadIhacaaIXaGaaGimaS WdamaaCaaajeaibeqaaKqzadWdbiaaisdacaaI0aaaaaaa@4E35@ , (a=1.41fm–the metastable equilibrium inter–distance between gammons),8 the equilibrium radius is:
r p = 2σ P 0 = F l P 0 F γ l γ P 0 μ 0 2π μ γ 2 d e 3 l γ 1 N 0 k B T i    [m] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhalmaaBaaajeaibaqcLbmacaWGWbaajeaibeaajugi biabg2da9KqbaoaalaaakeaajugibiaaikdacqaHdpWCaOqaaKqzGe GaamiuaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaaaajugibiab g2da9KqbaoaalaaakeaajugibiaadAeaaOqaaKqzGeGaamiBaiabgw SixlaadcfajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaaqcLbsa cqGHijYUjuaGdaWcaaGcbaqcLbsacaWGgbWcdaWgaaqcbasaaKqzad Gaeq4SdCgajeaibeaaaOqaaKqzGeGaamiBaKqbaoaaBaaajeaqbaqc LboacqaHZoWzaSqabaqcLbsacqGHflY1caWGqbqcfa4aaSbaaKqaGe aajugWaiaaicdaaSqabaaaaKqzGeGaeyisISBcfa4aaSaaaOqaaKqz GeGaeqiVd02cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaakeaaju gibiaaikdacqaHapaCaaqcfa4aaSaaaOqaaKqzGeGaeqiVd02cdaqh aaqcbasaaKqzadGaeq4SdCgajeaibaqcLbmacaaIYaaaaaGcbaqcLb sacaWGKbWcdaqhaaqcbasaaKqzadGaamyzaaqcbasaaKqzadGaaG4m aaaajugibiabgwSixlaadYgalmaaBaaajeaibaqcLbmacqaHZoWzaK qaGeqaaaaajuaGdaWcaaGcbaqcLbsacaqGXaaakeaajugibiaab6ea lmaaBaaajeaibaqcLbmacaqGWaaajeaibeaajugibiaadUgajuaGda WgaaqcbasaaKqzadGaamOqaaWcbeaajugibiaadsfaaaWcdaWgaaqc basaaKqzadGaaeyAaaqcbasabaqcLbsacaqGGaGaaeiiaiaabccaca GGBbGaamyBaiaac2faaaa@97DC@  (4)

In which de is the inter–distance between adjacent gammons and l γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYgalmaaBaaajeaibaqcLbmacqaHZoWzaKqaGeqaaaaa @3D94@ is the length of a gammon. It is necessary in consequence–for estimate the value rp, to estimate the value of gammon’s length and magnetic moment μ γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacqaH8oqBl8aadaWgaaqcbasaaKqz adWdbiabeo7aNbqcbaYdaeqaaaaa@3ECB@ .

It was argued in CGT,7 that is not logical to consider at an inter–distance d i < r λ =h/2π m e c=386fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGKbWcpaWaaSbaaKqaGeaajugW a8qacaWGPbaajeaipaqabaqcLbsapeGaeyipaWJaamOCaKqba+aada WgaaqcbasaaKqzadWdbiabeU7aSbWcpaqabaqcLbsacqGH9aqppeGa amiAaiaac+cacaaIYaGaeqiWdaNaamyBaKqba+aadaWgaaqcbasaaK qzadWdbiaadwgaaKqaG8aabeaajugib8qacaWGJbGaeyypa0JaaG4m aiaaiIdacaaI2aGaamOzaiaad2gaaaa@5475@ , a value of the electron’s magnetic moment radius: r μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGYbWcpaWaaSbaaKqaGeaajugW a8qacqaH8oqBaKqaG8aabeaaaaa@3E1B@ , higher than the inter–distance d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaaaa@3D21@ , resulting a value: r p 5.5x 10 9 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGYbqcfa4damaaBaaajeaibaqc LbmapeGaamiCaaWcpaqabaqcLbsapeGaeyisISRaaGynaiaac6caca aI1aGaamiEaiaaigdacaaIWaqcfa4damaaCaaaleqajeaibaqcLbma peGaeyOeI0IaaGyoaaaajugibiaad2gaaaa@4A13@ for T B 10 3 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGubqcfa4damaaBaaajeaibaqc LbmapeGaamOqaaWcpaqabaqcLbsapeGaeyisISRaaGymaiaaicdal8 aadaahaaqcbasabeaajugWa8qacaaIZaaaaKqzGeGaam4saaaa@44F7@ with r p ~1/ T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGYbWcpaWaaSbaaKqaGeaajugW a8qacaWGWbaajeaipaqabaqcLbsapeGaaiOFaiaaigdacaGGVaGaam ivaKqba+aadaWgaaWcbaqcLbsapeGaamyAaaWcpaqabaaaaa@43B2@ , by the use of equation (2) and with r μ d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGYbWcpaWaaSbaaKqaGeaajugW a8qacqaH8oqBaKqaG8aabeaajugib8qacqGHijYUcaWGKbWcpaWaaS baaKqaGeaajugWa8qacaWGPbaajeaipaqabaaaaa@441E@ .8

If we use the expression (2) of the B–field, because the magnetic moment radius r μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaSWdamaaBaaajeaibaqcLbmapeGa eqiVd0gajeaipaqabaaaaa@3DF7@ , represents in the etheronic, quantum–vortexial model of magnetic moment, the radius until which the B–field quanta have the light speed c, and because–for d i < r λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqzGeaeaaaaaaaaa8qacaWGKbWcpaWaaSbaaKqaGeaajugW a8qacaWGPbaajeaipaqabaqcLbsapeGaeyipaWJaamOCaKqbaoaaBa aajeaibaqcLbmacqaH7oaBaSqabaaaaa@43A5@ , for ( e e + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaibKqbaoaabmaakeaajugibabaaaaaaaaapeGaamyzaKqba+aa daahaaWcbeqcbasaaKqzadWdbiabgkHiTaaajugibiabgkHiTiaadw gal8aadaahaaqcbasabeaajugWa8qacqGHRaWkaaaak8aacaGLOaGa ayzkaaaaaa@44C1@ interaction is maintained the relation:B = E/c, we may re–write this relation in the form:

B(d) E(d) c = e 4π ε 0 d 2 c = μ 0 2π e r μ c 2 d 3 , a<d< r λ  ;  r μ d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkeacaGGOaGaamizaiaacMcacqGHijYUjuaGdaWcaaGc baqcLbsacaqGfbGaaeikaiaabsgacaqGPaaakeaajugibiaabogaaa Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyzaaGcbaqcLbsacaaI0aGa eqiWdaNaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLb sacaWGKbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWGJbaa aiabg2da9KqbaoaalaaakeaajugibiabeY7aTLqbaoaaBaaajeaiba qcLbmacaaIWaaaleqaaaGcbaqcLbsacaaIYaGaeqiWdahaaKqbaoaa laaakeaajugibiaadwgacqGHflY1caWGYbqcfa4aaSbaaKqaGeaaju gWaiabeY7aTbWcbeaajugibiaadogaaOqaaKqzGeGaaGOmaiabgwSi xlaadsgajuaGdaahaaWcbeqcbasaaKqzadGaaG4maaaaaaqcLbsaca GGSaGaaeiiaiaabggacqGH8aapcaqGKbGaeyipaWJaaeOCaKqbaoaa BaaajeaibaqcLbmacqaH7oaBaSqabaqcLbsacaqGGaGaae4oaiaabc cacqGHshI3caqGYbqcfa4aaSbaaKqaGeaajugWaiabeY7aTbWcbeaa jugibiabgIKi7kaadsgaaaa@864E@  (5)

Resulting in consequence, the expression of the electron’s magnetic moment at inter–distances d i r λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaKqzGeWdbiabgsMiJkaadkhajuaGdaWgaaqcba saaKqzadGaeq4UdWgaleqaaaaa@4432@ . The reciprocal equilibrium position of gammonic electrons, in the particular case of a semi–hard gamma quantum considered–in CGT, as gammonic pair: γ * =( e e + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdC2cpaWaaWbaaKqaGeqabaqcLbma peGaaiOkaaaajugibiabg2da9Kqba+aadaqadaGcbaqcLbsapeGaam yzaKqba+aadaahaaWcbeqcbasaaKqzadWdbiabgkHiTaaajugibiaa dwgajuaGpaWaaWbaaSqabKqaGeaajugWa8qacqGHRaWkaaaak8aaca GLOaGaayzkaaaaaa@4A7A@ , may be estimated by equation (5), imposing a correspondence with the conclusion of quantum mechanics regarding the ( e e + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyzaKqba+aadaahaaWcbeqcbasaaKqz adWdbiabgkHiTaaajugibiaadwgajuaGpaWaaWbaaSqabKqaGeaaju gWa8qacqGHRaWkaaaaaa@4204@ ) pair production, which indicates as minimal energy value of an external electric or magnetic field which may convert the gamma quantum into stable electrons, the value: E γ =2 m e c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraKqba+aadaWgaaqcbasaaKqzadWd biabeo7aNbWcpaqabaqcLbsapeGaeyypa0JaaGOmaiaad2gajuaGpa WaaSbaaKqaGeaajugWa8qacaWGLbaal8aabeaajugib8qacaWGJbWc paWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaaaa@4883@ . In CGT, based on the classical mechanics and relativity, this value E γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraKqba+aadaWgaaqcbasaaKqzadWd biabeo7aNbWcpaqabaaaaa@3E1F@ has the sense of the energy necessary to ‘split’ the gamma quantum into the component electrons with opposed charges:

E γ =2 m e c 2 = e 2 4π ε 0 a = e *2 4π ε 0 d e + B e μ e ( d e )= e *2 4π ε 0 d e + e *2 8π ε 0 d e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwealmaaBaaajeaibaqcLbmacqaHZoWzaKqaGeqaaKqz GeGaeyypa0JaaGOmaiaad2galmaaBaaajeaibaqcLbmacaWGLbaaje aibeaajugibiaadogalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugi biabg2da9KqbaoaalaaakeaajugibiaadwgajuaGdaahaaWcbeqcba saaKqzadGaaGOmaaaaaOqaaKqzGeGaaGinaiabec8aWjabew7aLTWa aSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaamyyaaaacqGH9a qpjuaGdaWcaaGcbaqcLbsacaqGLbqcfa4aaWbaaSqabKqaGeaajugW aiaabQcacaqGYaaaaaGcbaqcLbsacaaI0aGaeqiWdaNaeqyTdu2cda WgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacaWGKbWcdaWgaaqc basaaKqzadGaamyzaaqcbasabaaaaKqzGeGaey4kaSIaamOqaSWaaS baaKqaGeaajugWaiaadwgaaKqaGeqaaKqzGeGaeyyXICTaeqiVd0wc fa4aaSbaaKqaGeaajugWaiaadwgaaSqabaqcLbsacaGGOaGaamizaS WaaSbaaKqaGeaajugWaiaadwgaaKqaGeqaaKqzGeGaaiykaiabg2da 9KqbaoaalaaakeaajugibiaadwgalmaaCaaajeaibeqaaKqzadGaai OkaiaaikdaaaaakeaajugibiaaisdacqaHapaCcqaH1oqzjuaGdaWg aaqcbasaaKqzadGaaGimaaWcbeaajugibiaadsgajuaGdaWgaaqcba saaKqzadGaamyzaaWcbeaaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqc LbsacaqGLbqcfa4aaWbaaSqabKqaGeaajugWaiaabQcacaqGYaaaaa GcbaqcLbsacaaI4aGaeqiWdaNaeqyTduwcfa4aaSbaaKqaGeaajugW aiaaicdaaSqabaqcLbsacaWGKbWcdaWgaaqcbasaaKqzadGaamyzaa qcbasabaaaaaaa@9EEE@  (6)

In which we considered a possible degenerate charge, e * e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyzaSWdamaaCaaajeaibeqaaKqzadWd biaacQcaaaqcLbsacqGHKjYOcaWGLbaaaa@3FD8@ . This interpretation is logical by the fact that the nuclear E–field may split the γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdCgaaa@3B15@ –quantum only if it can act over internal e(e*)–charges of opposed sign.

Between e and (2/3)e, considering an electric permittivity ε= ε 0 ε r ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduMaeyypa0JaeqyTduwcfa4damaa BaaajeaibaqcLbmapeGaaGimaaWcpaqabaqcLbsapeGaeqyTduwcfa 4damaaBaaajeaibaqcLbmapeGaamOCaaWcpaqabaqcLbsapeGaeyis ISRaeqyTduwcfa4damaaBaaajeaibaqcLbmapeGaaGimaaWcpaqaba aaaa@4D2A@ , we have the next significant possibilities:

  1.   e * =e, d e =1.5 a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyzaSWdamaaCaaajeaibeqaaKqzadWd biaacQcaaaqcLbsacqGH9aqpcaWGLbGaaiilaiabgkDiElaadsgaju aGpaWaaSbaaKqaGeaajugWa8qacaWGLbaal8aabeaajugib8qacqGH 9aqpcaaIXaGaaiOlaiaaiwdacaqGGaGaamyyaaaa@4BA3@ ;
  2. d e a ,  e * ( 2 / 3 )e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaSWdamaaBaaajeaibaqcLbmapeGa amyzaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaadggacaqGGaGaaiilai abgkDiElaacckacaWGLbqcfa4damaaCaaajeaibeqaaKqzadWdbiaa cQcaaaqcLbsacqGHijYUjuaGdaGcaaGcbaqcfa4damaabmaakeaaju aGdaahaaWcbeqaaKqzGeWdbiaaikdaaaGaai4laKqba+aadaWgaaWc baqcLbsapeGaaG4maaWcpaqabaaakiaawIcacaGLPaaajugib8qaca WGLbaaleqaaaaa@54A4@ ;
  3. e * ( 2 / 3 )e ,  d e ( 2 / 3 )a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyzaSWdamaaCaaajeaibeqaaKqzadWd biaacQcaaaqcLbsacqGHijYUjuaGpaWaaeWaaOqaaKqbaoaaCaaale qabaqcLbsapeGaaGOmaaaacaGGVaqcfa4damaaBaaaleaajugib8qa caaIZaaal8aabeaaaOGaayjkaiaawMcaaKqzGeWdbiaadwgacaqGGa GaaiilaiabgkDiElaacckacaWGKbWcpaWaaSbaaKqaGeaajugWa8qa caWGLbaajeaipaqabaqcLbsapeGaeyisISBcfa4damaabmaakeaaju aGdaahaaWcbeqaaKqzGeWdbiaaikdaaaGaai4laKqba+aadaWgaaWc baqcLbsapeGaaG4maaWcpaqabaaakiaawIcacaGLPaaajugib8qaca WGHbaaaa@5B4F@ .

Because for a photon–like gammon its length must exceed its diameter proportional with the speed,9 it results that the case a) corresponds to a relativist gammon ( vc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamODaiabgkziUkaadogaaaa@3D3E@ ), which–in CGT, may have simultaneously rest mass and the c–speed, and the case c) correspond to a linked gammon, which is confined inside a bigger elementary particle (mesonic or baryonic), the degenerate charge e * ( 2 / 3 )e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyzaSWdamaaCaaajeaibeqaaKqzadWd biaacQcaaaqcLbsacqGHijYUjuaGpaWaaeWaaOqaaKqbaoaaCaaale qabaqcLbsapeGaaGOmaaaacaGGVaqcfa4damaaBaaaleaajugib8qa caaIZaaal8aabeaaaOGaayjkaiaawMcaaKqzGeWdbiaadwgaaaa@47B5@ being specific to the up–quark , (p–quark–in CGT).2–5 So the case b) corresponds to a gammonic pre–cluster, in accordance also with the quantum mechanics.

The degenerate charge’s radius: r e ( e * = ( 2 / 3 ) e) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaKqba+aadaWgaaqcbasaaKqzadWd biaadwgaaSWdaeqaaKqzGeGaaiika8qacaWGLbWcpaWaaWbaaKqaGe qabaqcLbmapeGaaiOkaaaajugibiabg2da9KqbaoaakaaakeaajuaG paWaaeWaaOqaaKqbaoaaCaaaleqabaqcLbsapeGaaGOmaaaacaGGVa qcfa4damaaBaaaleaajugib8qacaaIZaaal8aabeaaaOGaayjkaiaa wMcaaaWcpeqabaqcLbsacaWGLbWdaiaacMcaaaa@4DE5@  for d e a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaSWdamaaBaaajeaibaqcLbmapeGa amyzaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaadggaaaa@4053@  , results from (6), according to a CGT’s relation:

e * (a)= 2 S x e k 1 4π r e 2 k 1 =  e ( r e a ) 2 e ( r e d i ) 2 = 2 3 e ;   r e 0 .9d i ; S x =π (r e + r v ) 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwgalmaaCaaajeaibeqaaKqzadGaaiOkaaaajugibiaa cIcacaWGHbGaaiykaiabg2da9Kqbaoaalaaakeaajugibiaaikdaca WGtbWcdaqhaaqcbasaaKqzadGaamiEaaqcbasaaKqzadGaamyzaaaa aOqaaKqzGeGaam4AaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaa aajugibiabgIKi7MqbaoaalaaakeaajugibiaaisdacqaHapaCcqGH flY1caWGYbWcdaqhaaqcbasaaKqzadGaamyzaaqcbasaaKqzadGaaG OmaaaaaOqaaKqzGeGaam4AaSWaaSbaaKqaGeaajugWaiaaigdaaKqa Geqaaaaajugibiabg2da9iaabccacaqGGaGaamyzaKqbaoaabmaake aajuaGdaWcaaGcbaqcLbsacaWGYbqcfa4aaSbaaKqaGeaajugWaiaa dwgaaSqabaaakeaajugibiaadggaaaaakiaawIcacaGLPaaalmaaCa aajeaibeqaaKqzadGaaGOmaaaajugibiabgIKi7kaadwgajuaGdaqa daGcbaqcfa4aaSaaaOqaaKqzGeGaamOCaSWaaSbaaKqaGeaajugWai aadwgaaKqaGeqaaaGcbaqcLbsacaWGKbWcdaWgaaqcbasaaKqzadGa amyAaaqcbasabaaaaaGccaGLOaGaayzkaaWcdaahaaqcbasabeaaju gWaiaaikdaaaqcLbsacqGH9aqpjuaGdaGcaaGcbaqcfa4aaSaaaOqa aKqzGeGaaGOmaaGcbaqcLbsacaaIZaaaaaWcbeaajugibiaadwgaca qGGaGaai4oaiaabccacaqGGaGaeyO0H4TaamOCaKqbaoaaBaaajeai baqcLbmacaWGLbaaleqaaKqzGeGaeyisISRaaeimaiaab6cacaqG5a GaaeizaSWaaSbaaKqaGeaajugWaiaabMgaaKqaGeqaaKqzGeGaae4o aiaabccacaqGtbWcdaWgaaqcbasaaKqzadGaaeiEaaqcbasabaqcLb sacqGH9aqpcqaHapaCcaqGOaGaaeOCaSWaaSbaaKqaGeaajugWaiaa bwgaaKqaGeqaaKqzGeGaey4kaSIaaeOCaSWaaSbaaKqaGeaajugWai aabAhaaKqaGeqaaKqzGeGaaeykaKqbaoaaCaaaleqajeaibaqcLbma caqGYaaaaKqzGeGaae4oaaaa@ABF3@ (7)

but in the hypothesis: ε= ε 0 ε r ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduMaeyypa0JaeqyTdu2cpaWaaSba aKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLbsapeGaeqyTduwcfa 4damaaBaaajeaibaqcLbmapeGaamOCaaWcpaqabaqcLbsapeGaeyis ISRaeqyTdu2cpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqaba aaaa@4C62@ . However, the so–called “stopped light experiment”10,11 showed that a Bose–Einstein condensate determine a high slowing of the light passed through it, at a value v c << c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamODaSWdamaaBaaajeaibaqcLbmapeGa am4yaaqcbaYdaeqaaKqzGeWdbiabgYda8iabgYda8iaabccacaWGJb aaaa@415F@ , so for d e a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaSWdamaaBaaajeaibaqcLbmapeGa amyzaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaadggaaaa@4053@ , by the known relation: n=c/ v c ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOBaiabg2da9iaadogacaGGVaGaamOD aSWdamaaBaaajeaibaqcLbmapeGaam4yaaqcbaYdaeqaaKqzGeWdbi abgIKi7Mqbaoaakaaakeaajugibiabew7aLbWcbeaaaaa@45FA@  it results that we may consider the approximation: ε= ε 0 ε r ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduMaeyypa0JaeqyTdu2cpaWaaSba aKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLbsapeGaeqyTduwcfa 4damaaBaaajeaibaqcLbmapeGaamOCaaWcpaqabaqcLbsapeGaeyis ISRaeqyTdu2cpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqaba aaaa@4C62@ only in the case:de=1.5a, corresponding to a relativist gammon, for the case b) and c) resulting that ε r >1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduwcfa4damaaBaaajeaibaqcLbma peGaamOCaaWcpaqabaqcLbsapeGaeyOpa4JaaGymaaaa@40AE@ , so–the charge degeneration may be less accentuate, ( e * ( a )> ( 2 / 3 )  e) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaacIcaqaaaaaaaaaWdbiaadwgal8aadaahaaqcbasabeaa jugWa8qacaGGQaaaaKqba+aadaqadaGcbaqcLbsapeGaamyyaaGcpa GaayjkaiaawMcaaKqzGeWdbiabg6da+KqbaoaakaaakeaajuaGpaWa aeWaaOqaaKqbaoaaCaaaleqabaqcLbsapeGaaGOmaaaacaGGVaqcfa 4damaaBaaaleaajugib8qacaaIZaaal8aabeaaaOGaayjkaiaawMca aaWcpeqabaqcLbsacaqGGaGaamyza8aacaGGPaaaaa@4DA8@ , because the decreasing of the Ve–potential with ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTdugaaa@3B15@ . By the proportionality between n, ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTdugaaa@3B15@ and the quanta density, deduced in CGT: n, ε~ ρ c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduMaaiOFaiabeg8aYTWdamaaBaaa jeaibaqcLbmapeGaam4yaaqcbaYdaeqaaaaa@409B@ ,9 because the proportionality: ρ c ~ r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdixcfa4damaaBaaajeaibaqcLbma peGaam4yaaWcpaqabaqcLbsapeGaaiOFaiaadkhal8aadaahaaqcba sabeaajugWa8qacqGHsislcaaIYaaaaaaa@443B@ for r > a, it results that:

ρ c ~ r 2 , ( r >a )ε( a )/ε( d e ) ( d e /a ) 2 = 2.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa caWGJbaajeaipaqabaqcLbsapeGaaiOFaiaadkhal8aadaahaaqcba sabeaajugWa8qacqGHsislcaaIYaaaaKqzGeGaaiilaiaabccajuaG paWaaeWaaOqaaKqzGeWdbiaadkhacaqGGaGaeyOpa4JaamyyaaGcpa GaayjkaiaawMcaaKqzGeWdbiabgkDiElabew7aLLqba+aadaqadaGc baqcLbsapeGaamyyaaGcpaGaayjkaiaawMcaaKqzGeWdbiaac+cacq aH1oqzjuaGpaWaaeWaaOqaaKqzGeWdbiaadsgal8aadaWgaaqcbasa aKqzadWdbiaadwgaaKqaG8aabeaaaOGaayjkaiaawMcaaKqzGeWdbi abgIKi7Mqba+aadaqadaGcbaqcLbsapeGaamizaSWdamaaBaaajeai baqcLbmapeGaamyzaaqcbaYdaeqaaKqzGeWdbiaac+cacaWGHbaak8 aacaGLOaGaayzkaaWcdaahaaqcbasabeaajugWa8qacaaIYaaaaKqz GeGaeyypa0JaaeiiaiaaikdacaGGUaGaaGOmaaaa@6FED@ (8)

As consequence, the relation (6) must be re–written in the approximate form:

E γ =2 m e c 2 = e 2 4π ε 0 a = e *2 4π ε 0 d i + B e μ e ( d i )= e 2 4π ε 0 ε r d i + e 2 8π ε 0 d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadweajuaGdaWgaaqcbasaaKqzadGaeq4SdCgajeaibeaa jugibiabg2da9iaaikdacaWGTbqcfa4aaSbaaKqaGeaajugWaiaadw gaaSqabaqcLbsacaWGJbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyzaKqbaoaaCaaale qajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaaI0aGaeqiWdaNaeqyT duwcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaWGHbaaai abg2da9KqbaoaalaaakeaajugibiaabwgajuaGdaahaaqcbasabeaa jugWaiaabQcacaqGYaaaaaGcbaqcLbsacaaI0aGaeqiWdaNaeqyTdu wcfa4aaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaamizaKqb aoaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaqcLbsacqGHRaWkca WGcbqcfa4aaSbaaKqaGeaajugWaiaadwgaaSqabaqcLbsacqGHflY1 cqaH8oqBjuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaajugibiaacI cacaWGKbqcfa4aaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGa aiykaiabg2da9KqbaoaalaaakeaajugibiaadwgajuaGdaahaaWcbe qcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGinaiabec8aWjabew7a LLqbaoaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiabew7aLL qbaoaaBaaajeaibaqcLbmacaWGYbaajeaibeaajugibiaadsgajuaG daWgaaqcbasaaKqzadGaamyAaaqcbasabaaaaKqzGeGaey4kaSscfa 4aaSaaaOqaaKqzGeGaaeyzaKqbaoaaCaaaleqajeaibaqcLbmacaqG YaaaaaGcbaqcLbsacaaI4aGaeqiWdaNaeqyTduwcfa4aaSbaaKqaGe aajugWaiaaicdaaKqaGeqaaKqzGeGaamizaKqbaoaaBaaajeaibaqc LbmacaWGPbaajeaibeaaaaaaaa@A81F@  (9)

with ε r =ε( a )/ε( d e )2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTdu2cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaqcLbsapeGaeyypa0JaeqyTduwcfa4damaabm aakeaajugib8qacaWGHbaak8aacaGLOaGaayzkaaqcLbsapeGaai4l aiabew7aLLqba+aadaqadaGcbaqcLbsapeGaamizaKqba+aadaWgaa qcbasaaKqzadWdbiaadwgaaSWdaeqaaaGccaGLOaGaayzkaaqcLbsa peGaeyisISRaaGOmaaaa@51F3@ , resulting that: V e ( a ) V μ ( a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaSWdamaaBaaajeaibaqcLbmapeGa amyzaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGHbaak8aaca GLOaGaayzkaaqcLbsapeGaeyisISRaamOvaSWdamaaBaaajeaibaqc LbmapeGaeqiVd0gajeaipaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadg gaaOWdaiaawIcacaGLPaaaaaa@4B4A@ . This result explains also the possibility of particles forming by clusterizing, by the conclusion that–in a section plane of a preonic z 0* MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOEaSWdamaaCaaajeaibeqaaKqzadWd biaaicdacaGGQaaaaaaa@3D79@ –pre–cluster formed with hexagonal symmetry, the inter–distance of metastable equilibrium di =a results by the equality V e ( a ) V μ ( a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaSWdamaaBaaajeaibaqcLbmapeGa amyzaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGHbaak8aaca GLOaGaayzkaaqcLbsapeGaeyisISRaamOvaSWdamaaBaaajeaibaqc LbmapeGaeqiVd0gajeaipaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadg gaaOWdaiaawIcacaGLPaaaaaa@4B4A@ for the interaction with the central electron, either by electrostatic attraction and magnetic repelling or by magnetic attraction and electrostatic repelling (Figure 1) (Figure 4), the gammonic pre–cluster’s collapsing resulting by the attraction between adjacent circularly disposed gammonic electrons, the central chain of axially coupled gammons giving the z0–preon magnetic moment, which explains similarly the cold confining of a pre–cluster of z0–preons, and so on (Figure 5).

Figure 4 The forming of the z0–cluster’s kernel.

Figure 5 Parts of crystallized gammonic pre–cluster which may result by a BEC’s pearlitizing.8

The total collapse of the gammon is impeded–according to CGT, by a repulsive field and force with exponential variation, generated by the ‘zeroth’ vibrations of the electron’s kernel (centroid) and acting over a quantum volume of the electron: ue(re » d) with a force: F r ( d )2 S x ρ r ( d ) c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOraKqba+aadaWgaaqcbasaaKqzadWd biaadkhaaSWdaeqaaKqbaoaabmaakeaajugib8qacaWGKbaak8aaca GLOaGaayzkaaqcLbsapeGaeyisISRaaGOmaiaadofal8aadaWgaaqc basaaKqzadWdbiaadIhaaKqaG8aabeaajugib8qacqaHbpGCl8aada WgaaqcbasaaKqzadWdbiaadkhaaKqaG8aabeaajuaGdaqadaGcbaqc LbsapeGaamizaaGcpaGaayjkaiaawMcaaKqzGeWdbiaadogal8aada ahaaqcbasabeaajugWa8qacaaIYaaaaaaa@54CA@ , (which explains also the non–annihilation between eand e+ at low energies), deduced considering a quasi–elastic interaction of field quanta with the interaction surface S x =π d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4uaSWdamaaBaaajeaibaqcLbmapeGa amiEaaqcbaYdaeqaaKqzGeWdbiabg2da9iabec8aWjaadsgal8aada ahaaqcbasabeaajugWa8qacaaIYaaaaaaa@43CA@ of the repelled electron.

We may consider–in consequence, that the gammonic electrons have a remnant vibration of spin and of translation between the interdistances: de=1.5a and di’=(2/3)a , as consequence of the self–resonance induced by the repulsive potential Vr(d), the value de=a being a mean value, the equilibration between the attraction force Fa(d), of magnetic and electric type, and the repulsive force F r ( d )= V r ( d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOraSWdamaaBaaajeaibaqcLbmapeGa amOCaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGKbaak8aaca GLOaGaayzkaaqcLbsapeGaeyypa0JaeyOeI0Iaey4bIeTaamOvaSWd amaaBaaajeaibaqcLbmapeGaamOCaaqcbaYdaeqaaKqbaoaabmaake aajugib8qacaWGKbaak8aacaGLOaGaayzkaaaaaa@4C56@ , being realized at d £ di’ = (2/3)a, the action of magnetic potential V μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaSWdamaaBaaajeaibaqcLbmapeGa eqiVd0gajeaipaqabaaaaa@3DDB@  being diminished by Vr with a factor fd £1.

For the approximation of the superficial tension s γ = F γ /2 l γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4CaSWdamaaBaaajeaibaqcLbmapeGa eq4SdCgajeaipaqabaqcLbsapeGaeyypa0JaamOraSWdamaaBaaaje aibaqcLbmapeGaeq4SdCgajeaipaqabaqcLbsapeGaai4laiaaikda caWGSbqcfa4damaaBaaajeaibaqcLbmapeGaeq4SdCgal8aabeaaaa a@4AC2@ , according to the previous considerations, we may approximate that–at the gammonic pre–cluster’s surface with a mean interdistance de=a between adjacent gammons, the binding force F γ ( a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOraSWdamaaBaaajeaibaqcLbmapeGa eq4SdCgajeaipaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadggaaOWdai aawIcacaGLPaaaaaa@417B@ is given by the magnetic interaction between gammons, the electric interaction force between gammons (of inter–dipoles type) being considered compensated by the repulsive force Fr (d), in a simplified model.

At increased temperatures T i T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaKqzGeGaeyyzIm7dbiaadsfal8aadaWgaaqcba saaKqzadWdbiaadkeaaKqaG8aabeaaaaa@42F2@ , the linking (magnetic) energy resulted from equation (9): V μ ( a ) m e c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaSWdamaaBaaajeaibaqcLbmapeGa eqiVd0gajeaipaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadggaaOWdai aawIcacaGLPaaajugib8qacqGHijYUcaWGTbWcpaWaaSbaaKqaGeaa jugWa8qacaWGLbaajeaipaqabaqcLbsapeGaam4yaSWdamaaCaaaje aibeqaaKqzadWdbiaaikdaaaaaaa@4B89@ , is diminished by the vibration energy according to a relation of the total binding energy of the form: V T ( a ) = f d · V μ ( a ) k B T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaSWdamaaBaaajeaibaqcLbmapeGa amivaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGHbaak8aaca GLOaGaayzkaaqcLbsapeGaaeiiaiabg2da9iaadAgal8aadaWgaaqc basaaKqzadWdbiaadsgaaKqaG8aabeaajugib8qacaGG3cGaamOvaS WdamaaBaaajeaibaqcLbmapeGaeqiVd0gajeaipaqabaqcfa4aaeWa aOqaaKqzGeWdbiaadggaaOWdaiaawIcacaGLPaaajugib8qacaGGta Iaam4AaSWdamaaBaaajeaibaqcLbmapeGaamOqaaqcbaYdaeqaaKqz GeWdbiaadsfal8aadaWgaaqcbasaaKqzadWdbiaadMgaaKqaG8aabe aaaaa@59E6@ , ( f d ~ T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaSWdamaaBaaajeaibaqcLbmapeGa amizaaqcbaYdaeqaaKqzGeWdbiaac6hacaWGubWcpaWaaSbaaKqaGe aajugWa8qacaWGPbaajeaipaqabaaaaa@4262@ –diminishing factor), the binding force being in this case:

F T (a)= F μ (a)( 1 T i T C ) f d m e c 2 a ( 1 T i T C ) ; T C = f d m e c 2 k B    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAealmaaBaaajeaibaqcLbmacaWGubaajeaibeaajugi biaacIcacaWGHbGaaiykaiabg2da9iaabAealmaaBaaajeaibaqcLb macqaH8oqBaKqaGeqaaKqzGeGaaiikaiaadggacaGGPaqcfa4aaeWa aOqaaKqzGeGaaGymaiabgkHiTKqbaoaalaaakeaajugibiaadsfalm aaBaaajeaibaqcLbmacaqGPbaajeaibeaaaOqaaKqzGeGaamivaSWa aSbaaKqaGeaajugWaiaadoeaaKqaGeqaaaaaaOGaayjkaiaawMcaaK qzGeGaeyisISRaaeOzaKqbaoaaBaaajeaibaqcLbmacaqGKbaaleqa aKqbaoaalaaakeaajugibiaad2galmaaBaaajeaibaqcLbmacaWGLb aajeaibeaajugibiaadogajuaGdaahaaWcbeqcbasaaKqzadGaaGOm aaaaaOqaaKqzGeGaamyyaaaajuaGdaqadaGcbaqcLbsacaaIXaGaey OeI0scfa4aaSaaaOqaaKqzGeGaamivaSWaaSbaaKqaGeaajugWaiaa dMgaaKqaGeqaaaGcbaqcLbsacaWGubWcdaWgaaqcbasaaKqzadGaam 4qaaqcbasabaaaaaGccaGLOaGaayzkaaqcLbsacaqG7aGaaeiiaiaa bsfalmaaBaaajeaibaqcLbmacaqGdbaajeaibeaajugibiabg2da9i aabAgajuaGdaWgaaqcbasaaKqzadGaaeizaaWcbeaajuaGdaWcaaGc baqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaamyzaaqcbasabaqcLb sacaWGJbWcdaahaaqcbasabeaajugWaiaaikdaaaaakeaajugibiaa dUgalmaaBaaajeaibaqcLbmacaWGcbaajeaibeaaaaqcLbsacaqGGa Gaaeiiaaaa@8AFF@  (10)

In consequence, we may approximate the expression of the superficial tension σ γ = F γ /2 l γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4Wdmxcfa4damaaBaaajeaibaqcLbma peGaeq4SdCgal8aabeaajugib8qacqGH9aqpcaWGgbqcfa4damaaBa aajeaibaqcLbmapeGaeq4SdCgajeaipaqabaqcLbsapeGaai4laiaa ikdacaWGSbqcfa4damaaBaaajeaibaqcLbmapeGaeq4SdCgajeaipa qabaaaaa@4C93@ as being given by the magnetic interaction force between two adjacent gammonic electrons, according to the approximation relation:

σ γ = F γ 2l F μ e 2a = f d m e c 2 2 a 2 ( 1 T i T C ) ; T C = f d m e c 2 k B = f d 5 .9x10 9  K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiabeo7aNbqcbasabaqc LbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaqGgbWcdaWgaaqcbasaaK qzadGaeq4SdCgajeaibeaaaOqaaKqzGeGaaeOmaiabgwSixlaabYga aaGaeyisISBcfa4aaSaaaOqaaKqzGeGaamOraSWaa0baaKqaGeaaju gWaiabeY7aTbqcbasaaKqzadGaamyzaaaaaOqaaKqzGeGaaGOmaiaa dggaaaGaeyypa0JaaeOzaKqbaoaaBaaajeaibaqcLbmacaqGKbaale qaaKqbaoaalaaakeaajugibiaad2gajuaGdaWgaaqcbasaaKqzadGa amyzaaWcbeaajugibiaadogajuaGdaahaaWcbeqcbasaaKqzadGaaG OmaaaaaOqaaKqzGeGaaGOmaiaadggajuaGdaahaaWcbeqcbasaaKqz adGaaGOmaaaaaaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHiTKqbao aalaaakeaajugibiaadsfalmaaBaaajeaibaqcLbmacaWGPbaajeai beaaaOqaaKqzGeGaamivaSWaaSbaaKqaGeaajugWaiaadoeaaKqaGe qaaaaaaOGaayjkaiaawMcaaKqzGeGaae4oaiaabccacaqGubWcdaWg aaqcbasaaKqzadGaae4qaaqcbasabaqcLbsacqGH9aqpcaqGMbWcda WgaaqcbasaaKqzadGaaeizaaqcbasabaqcfa4aaSaaaOqaaKqzGeGa amyBaKqbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaKqzGeGaam4yaK qbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaWGRbqc fa4aaSbaaKqaGeaajugWaiaadkeaaSqabaaaaKqzGeGaeyypa0Jaam OzaSWaaSbaaKqaGeaajugWaiaadsgaaKqaGeqaaKqzGeGaeyyXICTa aeynaiaab6cacaqG5aGaaeiEaiaabgdacaqGWaqcfa4aaWbaaSqabK qaGeaajugWaiaabMdaaaqcLbsacaqGGaGaae4saaaa@9EF6@  (11)

with f d  (1  F r ( a )/ F μ ( a ))1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqba+aadaWgaaqcbasaaKqzadWd biaadsgacaGGGcaajeaipaqabaqcLbsapeGaeyisIS7daiaacIcape GaaGymaiabgkHiTiaabccacaWGgbqcfa4damaaBaaajeaibaqcLbma peGaamOCaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGHbaak8 aacaGLOaGaayzkaaqcLbsapeGaai4laiaadAeajuaGpaWaaSbaaKqa GeaajugWa8qacqaH8oqBaKqaG8aabeaajuaGdaqadaGcbaqcLbsape GaamyyaaGcpaGaayjkaiaawMcaaKqzGeGaaiyka8qacqGHKjYOcaaI Xaaaaa@59B8@ . The equilibrium radius rp of the pearlitic gammonic pre–cluster results in this case according to the approximate relation:

r p = 2 σ γ P 0 = f d m e c 2 k B a T i ( 1 T i T C ) T C T i a  f d 8 .3x10 6 T i  [m] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhalmaaBaaajeaibaqcLbmacaWGWbaajeaibeaajugi biabg2da9KqbaoaalaaakeaajugibiaaikdacqaHdpWCjuaGdaWgaa qcbasaaKqzadGaeq4SdCgaleqaaaGcbaqcLbsacaWGqbWcdaWgaaqc basaaKqzadGaaGimaaqcbasabaaaaKqzGeGaeyypa0JaamOzaKqbao aaBaaajeaibaqcLbmacaWGKbaaleqaaKqbaoaalaaakeaajugibiaa d2galmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugibiaadogaju aGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaam4AaKqb aoaaBaaajeaibaqcLbmacaWGcbaaleqaaaaajuaGdaWcaaGcbaqcLb sacaWGHbaakeaajugibiaadsfalmaaBaaajeaibaqcLbmacaWGPbaa jeaibeaaaaqcfa4aaeWaaOqaaKqzGeGaaGymaiabgkHiTKqbaoaala aakeaajugibiaadsfalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaa aOqaaKqzGeGaamivaKqbaoaaBaaajeaibaqcLbmacaWGdbaaleqaaa aaaOGaayjkaiaawMcaaKqzGeGaeyisISBcfa4aaSaaaOqaaKqzGeGa amivaKqbaoaaBaaajeaibaqcLbmacaWGdbaaleqaaaGcbaqcLbsaca WGubWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaaaKqzGeGaaeyy aiabgIKi7kaabccacaWGMbWcdaWgaaqcbasaaKqzadGaamizaaqcba sabaqcfa4aaSaaaOqaaKqzGeGaaeioaiaab6cacaqGZaGaaeiEaiaa bgdacaqGWaqcfa4aaWbaaeqajuaibaqcLbmacqGHsislcaaI2aaaaa GcbaqcLbsacaqGubWcdaWgaaqcbasaaKqzadGaaeyAaaqcbasabaaa aKqzGeGaaeiiaiaacUfacaWGTbGaaiyxaaaa@940E@  (12)

For T i = T B 10 3 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaKqzGeWdbiabg2da9iaadsfal8aadaWgaaqcba saaKqzadWdbiaadkeaaKqaG8aabeaajugib8qacqGHijYUcaaIXaGa aGimaSWdamaaCaaajeaibeqaaKqzadWdbiaaiodaaaqcLbsacaWGlb aaaa@49B7@ and f d 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqba+aadaWgaaqcbasaaKqzadWd biaadsgaaSWdaeqaaKqzGeWdbiabgIKi7kaaigdaaaa@408D@ , it results: r p 8x 10 9 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaSWdamaaBaaajeaibaqcLbmapeGa amiCaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaaiIdacaWG4bGaaGymai aaicdal8aadaahaaqcbasabeaajugWa8qacqGHsislcaaI5aaaaKqz GeGaamyBaaaa@478F@ . When T i > T B ( r p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaKqba+aadaWgaaqcbasaaKqzadWd biaadMgaaSWdaeqaaKqzGeWdbiabg6da+iaadsfajuaGpaWaaSbaaK qaGeaajugWa8qacaWGcbaal8aabeaajuaGdaqadaGcbaqcLbsapeGa amOCaKqba+aadaWgaaqcbasaaKqzadWdbiaadchaaSWdaeqaaaGcca GLOaGaayzkaaaaaa@49F2@ , the (metastable) equilibrium radius results smaller, according to (12), (rp’< rp), but because the equilibrium inter–distance cannot decrease when the internal energy kBTi increases, according to equation (4), it results that the equilibrium radius of the BEC may be re–obtained at the specific decreased value only by the decreasing of the particles number of the BEC, so the pearlitization with the forming of quasi–cylindrical pre–clusters of baryonic neutral particles corresponding to a radius: r b < r a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaSWdamaaBaaajeaibaqcLbmapeGa amOyaaqcbaYdaeqaaKqzGeWdbiabgYda8iaadkhal8aadaWgaaqcba saaKqzadWdbiaadggaaKqaG8aabeaaaaa@4284@  may be formed by large oscillations of the internal temperature Ti–given by the boson’s vibrations, around the value T i * =  T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaSWaaWbaaKqaGeqabaqcLbmapeGaaiOkaaaaju gibiabg2da9iaabccacaWGubWcpaWaaSbaaKqaGeaajugWa8qacaWG cbaajeaipaqabaaaaa@4508@ .

On the radial direction, for a pre–cluster with the radius rc< rp , the electric interaction between gammons having the electron’s charge in surface, may be neglected for di< a and we may consider that the magnetic potential V μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaSWdamaaBaaajeaibaqcLbmapeGa eqiVd0gajeaipaqabaaaaa@3DDB@ between gammons is partially equilibrated by the vibration energy kBTi and by the repulsive potential Vr(d) acting over a quantum volume of the electron: υ e e ( r e d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyXdu3cdaqhaaqcbasaaKqzadGaamyz aaqcbasaaKqzadGaamyzaaaajugib8aacaGGOaWdbiaadkhajuaGpa WaaSbaaKqaGeaajugWa8qacaWGLbaal8aabeaajugib8qacqGHKjYO caWGKbWdaiaacMcaaaa@495A@ .7

For conformity with the general electrogravitic form of CGT,2–4 we will take for the repulsive force Fr(d), the form correspondent with equation (2):

F r (d)= V r '= q s E s = S x 2 ρ r 0 c 2 e d i η r ;  S x =π  r c 2 ; r e d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeajuaGdaWgaaqcbasaaKqzadGaamOCaaWcbeaajugi biaacIcacaWGKbGaaiykaiabg2da9iabgkHiTiabgEGirlaadAfalm aaBaaajeaibaqcLbmacaWGYbaajeaibeaajugWaiaacEcajugibiab g2da9iaadghalmaaBaaajeaibaqcLbmacaWGZbaajeaibeaajugibi abgwSixlaadwealmaaBaaajeaibaqcLbmacaWGZbaajeaibeaajugi biabg2da9iaadofalmaaBaaajeaibaqcLbmacaWG4baajeaibeaaju gibiabgwSixlaaikdacqaHbpGClmaaDaaajeaibaqcLbmacaWGYbaa jeaibaqcLbmacaaIWaaaaKqzGeGaam4yaKqbaoaaCaaaleqajeaiba qcLbmacaaIYaaaaKqzGeGaeyyXICTaamyzaKqbaoaaCaaaleqajeai baqcLbmacqGHsisllmaalaaajeaibaqcLbmacaWGKbWcdaWgaaqcca saaKqzadGaamyAaaqccasabaaajeaibaqcLbmacqaH3oaAlmaaBaaa jiaibaqcLbmacaWGYbaajiaibeaaaaaaaKqzGeGaai4oaiaabccaca qGtbWcdaWgaaqcbasaaKqzadGaaeiEaaqcbasabaqcLbsacqGH9aqp cqaHapaCcaqGGaGaaeOCaSWaa0baaKqaGeaajugWaiaabogaaKqaGe aajugWaiaabkdaaaqcLbsacaqG7aGaaeiiaiaabkhajuaGdaWgaaqc basaaKqzadGaaeyzaaWcbeaajugibiabgsMiJkaadsgalmaaBaaaje aibaqcLbmacaWGPbaajeaibeaaaaa@9362@ (13)

i.e.–considering an exponential variation of the quanta density and a quasi–elastic interaction of Vr–field quanta (approximated with small radius–in report with the radius rc of the static qs–charge) with the interaction surface:

S x ( r c + r h ) S x ( r c ) =π r c 2 ½ S x * ( e * ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4uaSWdamaaBaaajeaibaqcLbmapeGa amiEaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGYbWcpaWaaS baaKqaGeaajugWa8qacaWGJbaajeaipaqabaqcLbsapeGaey4kaSIa amOCaSWdamaaBaaajeaibaqcLbmapeGaamiAaaqcbaYdaeqaaaGcca GLOaGaayzkaaqcLbsapeGaeyisISRaam4uaSWdamaaBaaajeaibaqc LbmapeGaamiEaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGYb qcfa4damaaBaaajeaibaqcLbmapeGaam4yaaWcpaqabaaakiaawIca caGLPaaajugib8qacaqGGaGaeyypa0JaeqiWdaNaamOCaSWdamaaBa aajeaibaqcLbmapeGaam4yaaqcbaYdaeqaaSWaaWbaaKqaGeqabaqc LbmapeGaaGOmaaaajugibiabgIKi7kaac2lacaWGtbWcpaWaaSbaaK qaGeaajugWa8qacaWG4baajeaipaqabaWcdaahaaqcbasabeaajugW a8qacaGGQaaaaKqba+aadaqadaGcbaqcLbsapeGaamyzaSWdamaaCa aajeaibeqaaKqzadWdbiaacQcaaaaak8aacaGLOaGaayzkaaqcLbsa peGaaiOlaaaa@70CA@ (14)

Considering the effective action of the Vr–field quanta over the qs–pseudo–charge in a quasi–constant solid angle Αs,rc may be approximated as given by the result of equations (6)+(7): r c d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaSWdamaaBaaajeaibaqcLbmapeGa am4yaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaadsgal8aadaWgaaqcba saaKqzadWdbiaadMgaaKqaG8aabeaaaaa@432C@ , which may be used also for approximate the value of the reciprocal magnetic moment : μ r =½  e * c d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd02cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaqcLbsapeGaeyypa0JaaiyVaiaabccacaWGLb WcpaWaaWbaaKqaGeqabaqcLbmapeGaaiOkaaaajugibiaadogacqGH flY1caWGKbWcpaWaaSbaaKqaGeaajugWa8qacaWGPbaajeaipaqaba aaaa@4C30@ .

Because the magnetic force results from the gradient of quanta density ρ μ ( d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdixcfa4damaaBaaajeaibaqcLbma peGaeqiVd0gal8aabeaajuaGdaqadaGcbaqcLbsapeGaamizaaGcpa GaayjkaiaawMcaaaaa@42E6@ which gives by equation (2), the magnetic induction B(d), we must deduce the magnetic force considering that the magnetic moment μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd02cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaaaaa@3DF7@ of the attracted electron is quasi–constant to a short derivation interval δ d i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaamizaSWdamaaBaaajeaibaqc LbmapeGaamyAaaqcbaYdaeqaaaaa@3EC6@ , retrieving the expression of the magnetic force between two degenerate electrons in the form:7

F μ = μ r ( d i )x B e (a) e a d i η ( 1 T i T C ) f μ e 2 d i 2 8π ε 0 a 4 ( d i η ) e a-d i η ; μ r = e * c d i 2 = ecd i 3 2a 2 ; e * = 4π r e 2 k 1 ( d i a ) 2 eη0.96fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamOraKqbaoaaBaaajeaibaqcLbmacqaH8oqBaSqa baqcLbsacqGH9aqpcqaH8oqBjuaGdaWgaaqcbasaaKqzadGaamOCaa WcbeaajugibiaacIcacaWGKbWcdaWgaaqcbasaaKqzadGaamyAaaqc basabaqcLbsacaGGPaGaamiEaiabgEGirlaadkeajuaGdaWgaaqcba saaKqzadGaamyzaaWcbeaajugibiaacIcacaWGHbGaaiykaiabgwSi xlaadwgajuaGdaahaaWcbeqcbasaaSWaaSaaaKqaGeaajugWaiaadg gacqGHsislcaWGKbWcdaWgaaqccasaaKqzadGaamyAaaqccasabaaa jeaibaqcLbmacqaH3oaAaaaaaKqzGeGaeyyXICDcfa4aaeWaaOqaaK qzGeGaaGymaiabgkHiTKqbaoaalaaakeaajugibiaadsfalmaaBaaa jeaibaqcLbmacaWGPbaajeaibeaaaOqaaKqzGeGaamivaKqbaoaaBa aajeaibaqcLbmacaWGdbaaleqaaaaaaOGaayjkaiaawMcaaKqzGeGa eyisISRaeyOeI0IaamOzaSWaaSbaaKqaGeaajugWaiabeY7aTbqcba sabaqcfa4aaSaaaOqaaKqzGeGaaeyzaKqbaoaaCaaaleqajeaibaqc LbmacaqGYaaaaKqzGeGaamizaSWaa0baaKqaGeaajugWaiaadMgaaK qaGeaajugWaiaaikdaaaaakeaajugibiaaiIdacqaHapaCcqaH1oqz lmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiaadggajuaGda ahaaWcbeqcbasaaKqzadGaaGinaaaaaaqcfa4aaeWaaOqaaKqbaoaa laaakeaajugibiaabsgalmaaBaaajeaibaqcLbmacaqGPbaajeaibe aaaOqaaKqzGeGaeq4TdGgaaaGccaGLOaGaayzkaaqcLbsacqGHflY1 caqGLbqcfa4aaWbaaSqabKqaGeaajuaGdaWcaaqcbasaaKqzadGaae yyaiaab2cacaqGKbqcfa4aaSbaaKGaGeaajugWaiaabMgaaKGaGeqa aaqcbasaaKqzadGaeq4TdGgaaaaajugibiaabUdaaOqaaKqzGeGaeq iVd0wcfa4aaSbaaKqaGeaajugWaiaabkhaaSqabaqcLbsacqGH9aqp juaGdaWcaaGcbaqcLbsacaqGLbqcfa4aaWbaaKqaGeqabaqcLbmaca qGQaaaaKqzGeGaam4yaiabgwSixlaadsgajuaGdaWgaaqcbasaaKqz adGaamyAaaqcbasabaaakeaajugibiaaikdaaaGaeyypa0tcfa4aaS aaaOqaaKqzGeGaaeyzaiaabogacaqGKbqcfa4aa0baaKqaGeaajugW aiaabMgaaKqaGeaajugWaiaabodaaaaakeaajugibiaabkdacaqGHb qcfa4aaWbaaKqaGeqabaqcLbmacaqGYaaaaaaajugibiaabUdacaqG GaGaaeyzaKqbaoaaCaaaleqajeaibaqcLbmacaqGQaaaaKqzGeGaey ypa0tcfa4aaSaaaOqaaKqzGeGaaGinaiabec8aWjaadkhajuaGdaqh aaqcbasaaKqzadGaamyzaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGe Gaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaaajeaibeaaaaqcLbsa cqGHijYUjuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaKqbao aaBaaajeaibaqcLbmacaWGPbaajeaibeaaaOqaaKqzGeGaamyyaaaa aOGaayjkaiaawMcaaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaaju gibiaadwgacaqG7aGaaeiiaiabeE7aOjabgIKi7kaabcdacaqGUaGa aeyoaiaabAdacaqGMbGaaeyBaaaaaa@FACE@ (15)

which results from the exponential variation of the B–field quanta density inside the electron’s quantum volume, f μ ~ T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqba+aadaWgaaqcbasaaKqzadWd biabeY7aTbWcpaqabaqcLbsapeGaaiOFaiaadsfajuaGpaWaaSbaaS qaaKqzGeWdbiaadMgaaSWdaeqaaaaa@4339@  being a diminishing factor resulted by the periodically partial destroying of the internal etherono–quantonic vortex Γ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeu4KdC0cpaWaaSbaaKqaGeaajugWa8qa cqaH8oqBaKqaG8aabeaaaaa@3E68@ of the magnetic moment by the vibration energy: ε v k B T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTdu2cpaWaaSbaaKqaGeaajugWa8qa caWG2baajeaipaqabaqcLbsapeGaeyisISRaam4AaSWdamaaBaaaje aibaqcLbmapeGaamOqaaqcbaYdaeqaaKqzGeWdbiaadsfal8aadaWg aaqcbasaaKqzadWdbiaadMgaaKqaG8aabeaaaaa@4811@ . By (15) the equality: F r ( d i )= F μ ( d i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOraSWdamaaBaaajeaibaqcLbmapeGa amOCaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGKbqcfa4dam aaBaaajeaibaqcLbmapeGaamyAaaWcpaqabaaakiaawIcacaGLPaaa jugib8qacqGH9aqpcaWGgbqcfa4damaaBaaajeaibaqcLbmapeGaeq iVd0gal8aabeaajuaGdaqadaGcbaqcLbsapeGaamizaKqba+aadaWg aaWcbaqcLbsapeGaamyAaaWcpaqabaaakiaawIcacaGLPaaaaaa@5076@ , for T i << T C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaKqba+aadaWgaaqcbasaaKqzadWd biaadMgaaKqaG8aabeaajugib8qacqGH8aapcqGH8aapcaWGubqcfa 4damaaBaaajeaibaqcLbmapeGaam4qaaqcbaYdaeqaaaaa@443B@ , gives:

F μ f μ e 2 d i 2 8π ε 0 a 4 ( d i η ) e a-d i η = 2 S x ρ r ( d i ) c 2  2π d i 2 ρ r ( d i ) c 2 ; ρ r ( d i )= ρ r 0 ( T i ) e d i η r = f μ ρ e (a)( d i η ) e a-d i η ρ e (a)= μ 0 k 1 2 ;  f μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamOraKqbaoaaBaaajeaibaqcLbmacqaH8oqBaSqa baqcLbsacqGHijYUcaqGMbqcfa4aaSbaaKqaGeaajugWaiabeY7aTb WcbeaajuaGdaWcaaGcbaqcLbsacaqGLbqcfa4aaWbaaSqabKqaGeaa jugWaiaabkdaaaqcLbsacaWGKbWcdaqhaaqcbasaaKqzadGaamyAaa qcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGioaiabec8aWjabew7a LLqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaamyyaKqbao aaCaaaleqajeaibaqcLbmacaaI0aaaaaaajuaGdaqadaGcbaqcfa4a aSaaaOqaaKqzGeGaaeizaSWaaSbaaKqaGeaajugWaiaabMgaaKqaGe qaaaGcbaqcLbsacqaH3oaAaaaakiaawIcacaGLPaaajugibiabgwSi xlaabwgajuaGdaahaaWcbeqcbasaaSWaaSaaaKqaGeaajugWaiaabg gacaqGTaGaaeizaSWaaSbaaKGaGeaajugWaiaabMgaaKGaGeqaaaqc basaaKqzadGaeq4TdGgaaaaajugibiabg2da9iaabccacaaIYaGaam 4uaSWaaSbaaKqaGeaajugWaiaadIhaaKqaGeqaaKqzGeGaeqyWdi3c daWgaaqcbasaaKqzadGaamOCaaqcbasabaqcLbsacaGGOaGaamizaS WaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaaiykaiaadoga juaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabgIKi7kaabc cacaqGYaGaeqiWdaNaaeizaSWaa0baaKqaGeaajugWaiaabMgaaKqa GeaajugWaiaabkdaaaqcLbsacqGHflY1cqaHbpGCjuaGdaWgaaqcba saaKqzadGaamOCaaqcbasabaqcLbsacaGGOaGaamizaKqbaoaaBaaa jeaibaqcLbmacaWGPbaajeaibeaajugibiaacMcacaWGJbqcfa4aaW baaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaae4oaaGcbaqcLbsacqGH shI3cqaHbpGCjuaGdaWgaaqcbasaaKqzadGaamOCaaqcbasabaqcLb sacaGGOaGaamizaKqbaoaaBaaajeaibaqcLbmacaWGPbaajeaibeaa jugibiaacMcacqGH9aqpcqaHbpGCjuaGdaqhaaqcbasaaKqzadGaam OCaaqcbasaaKqzadGaaGimaaaajugibiaacIcacaWGubqcfa4aaSba aKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaaiykaiabgwSixlaadw gajuaGdaahaaWcbeqcbasaaKqzadGaeyOeI0scfa4aaSaaaKqaGeaa jugWaiaadsgajuaGdaWgaaqccasaaKqzadGaamyAaaqccasabaaaje aibaqcLbmacqaH3oaAjuaGdaWgaaqccasaaKqzadGaamOCaaqccasa baaaaaaajugibiabg2da9iaadAgajuaGdaWgaaqcbasaaKqzadGaeq iVd0gajeaibeaajugibiabeg8aYLqbaoaaBaaajeaibaqcLbmacaWG LbaajeaibeaajugibiaacIcacaWGHbGaaiykaKqbaoaabmaakeaaju aGdaWcaaGcbaqcLbsacaqGKbqcfa4aaSbaaKqaGeaajugWaiaabMga aKqaGeqaaaGcbaqcLbsacqaH3oaAaaaakiaawIcacaGLPaaajugibi abgwSixlaabwgajuaGdaahaaqcbasabeaajuaGdaWcaaqcbasaaKqz adGaaeyyaiaab2cacaqGKbqcfa4aaSbaaKGaGeaajugWaiaabMgaaK GaGeqaaaqcbasaaKqzadGaeq4TdGgaaaaajugibiaabUdacaqGGaGa eqyWdixcfa4aaSbaaKqaGeaajugWaiaabwgaaSqabaqcLbsacaGGOa GaamyyaiaacMcacqGH9aqpjuaGdaWcaaGcbaqcLbsacqaH8oqBjuaG daWgaaqcbasaaKqzadGaaGimaaWcbeaaaOqaaKqzGeGaam4AaKqbao aaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaIYaaaaaaajugi biaacUdacaqGGaGaaeOzaKqbaoaaBaaajeaibaqcLbmacqaH8oqBaK qaGeqaaKqzGeGaeyizImQaaGymaaaaaa@1CD2@ (16)

with ρ e ( a ) = μ 0 / k 1 2 = 5.17x 10 13 kg/ m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdixcfa4damaaBaaajeaibaqcLbma peGaamyzaaWcpaqabaqcfa4aaeWaaOqaaKqzGeWdbiaadggaaOWdai aawIcacaGLPaaajugib8qacaqGGaGaeyypa0JaeqiVd02cpaWaaSba aKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLbsapeGaai4laiaadU gal8aadaWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaalmaaCaaa jeaibeqaaKqzadWdbiaaikdaaaqcLbsacqGH9aqpcaqGGaGaaGynai aac6cacaaIXaGaaG4naiaadIhacaaIXaGaaGimaSWdamaaCaaajeai beqaaKqzadWdbiaaigdacaaIZaaaaKqzGeGaam4AaiaadEgacaGGVa GaamyBaSWdamaaCaaajeaibeqaaKqzadWdbiaaiodaaaaaaa@60F9@ 1 and with: ρ r 0 ( T i )=  f μ ( d i /η) ρ e 0 ;  ρ e 0 = ρ e ( a )· e a/ η = 2.22x 10 14 kg/ m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qacaaIWaaaaK qba+aadaqadaGcbaqcLbsapeGaamivaSWdamaaBaaajeaibaqcLbma peGaamyAaaqcbaYdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaeyypa0 JaaeiiaiaadAgal8aadaWgaaqcbasaaKqzadWdbiabeY7aTbqcbaYd aeqaaKqzGeGaaiika8qacaWGKbWcpaWaaSbaaKqaGeaajugWa8qaca WGPbaajeaipaqabaqcLbsapeGaai4laiabeE7aO9aacaGGPaWdbiab eg8aYTWdamaaBaaajeaibaqcLbmapeGaamyzaaqcbaYdaeqaaSWaaW baaKqaGeqabaqcLbmapeGaaGimaaaajugibiaacUdacaGGGcGaeqyW di3cpaWaaSbaaKqaGeaajugWa8qacaWGLbaajeaipaqabaWcdaahaa qcbasabeaajugWa8qacaaIWaaaaKqzGeGaeyypa0JaeqyWdi3cpaWa aSbaaKqaGeaajugWa8qacaWGLbaajeaipaqabaqcfa4aaeWaaOqaaK qzGeWdbiaadggaaOWdaiaawIcacaGLPaaajugib8qacaGG3cGaamyz aSWdamaaCaaajeaibeqaaKqzadWdbiaadggacaGGVaaaaSWdamaaCa aajeaibeqaaKqzadWdbiabeE7aObaajugibiabg2da9iaabccacaaI YaGaaiOlaiaaikdacaaIYaGaamiEaiaaigdacaaIWaWcpaWaaWbaaK qaGeqabaqcLbmapeGaaGymaiaaisdaaaqcLbsacaWGRbGaam4zaiaa c+cacaWGTbWcpaWaaWbaaKqaGeqabaqcLbmapeGaaG4maaaaaaa@8ABE@ 1 resulting that: ( d i /η)~ T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaacIcaqaaaaaaaaaWdbiaadsgal8aadaWgaaqcbasaaKqz adWdbiaadMgaaKqaG8aabeaajugib8qacaGGVaGaeq4TdG2daiaacM capeGaaiOFaiaadsfal8aadaWgaaqcbasaaKqzadWdbiaadMgaaKqa G8aabeaaaaa@463C@ .

At low temperatures, because the magnetic moment results–according to CGT–by the energy of etherono–quantonic winds of the quantum vacuum, we may take f μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqba+aadaWgaaqcbasaaKqzadWd biabeY7aTbWcpaqabaqcLbsapeGaeyisISRaaGymaaaa@415A@ . For the kernel of a formed particle, because the superdense centroids of quasi–electrons are contained (quasi)integrally inside its impenetrable quantum volume ui , we may approximate that–for a protonic m–quark with N q 756 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOtaSWdamaaBaaajeaibaqcLbmapeGa amyCaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaaiEdacaaI1aGaaGOnaa aa@41A3@ quasi–electrons with the centroids included in the quark’s impenetrable quantum volume of radius r q 0.21fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaKqba+aadaWgaaqcbasaaKqzadWd biaadghaaSWdaeqaaKqzGeWdbiabgIKi7kaaicdacaGGUaGaaGOmai aaigdacaWGMbGaamyBaaaa@44AB@ , we have d e ( T i )0.02 fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaSWdamaaBaaajeaibaqcLbmapeGa amyzaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGubWcpaWaaS baaKqaGeaajugWa8qacaWGPbaajeaipaqabaaakiaawIcacaGLPaaa jugib8qacqGHijYUcaaIWaGaaiOlaiaaicdacaaIYaGaaeiiaiaadA gacaWGTbaaaa@4B3C@ at T i T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaadsfal8aadaWgaaqcba saaKqzadWdbiaadkeaaKqaG8aabeaaaaa@42DD@ .

Considering that at T i << T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaKqzGeWdbiabgYda8iabgYda8iaadsfajuaGpa WaaSbaaKqaGeaajugWa8qacaWGcbaal8aabeaaaaa@4398@  , (for example–at T i p 1K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaSWaaWbaaKqaGeqabaqcLbmapeGaamiCaaaaju gibiabgIKi7kaaigdacaWGlbaaaa@4366@ ), the pre–cluster’s collapse is stopped at d i 0.02 fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaaicdacaGGUaGaaGimai aaikdacaqGGaGaamOzaiaad2gaaaa@44D3@ , with f μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaSWdamaaBaaajeaibaqcLbmapeGa eqiVd0gajeaipaqabaqcLbsapeGaeyisISRaaGymaaaa@40F6@ it results that ρ r 0 ( T i )/ ρ e 0 = ρ r p ( T e )/ ρ e 0 ( d i p /η)0.02 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qacaaIWaaaaK qba+aadaqadaGcbaqcLbsapeGaamivaSWdamaaBaaajeaibaqcLbma peGaamyAaaqcbaYdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaai4lai abeg8aYTWdamaaBaaajeaibaqcLbmapeGaamyzaaqcbaYdaeqaaSWa aWbaaKqaGeqabaqcLbmapeGaaGimaaaajugibiabg2da9iabeg8aYL qba+aadaWgaaqcbasaaKqzadWdbiaadkhaaKqaG8aabeaajuaGdaah aaqcbasabeaajugWa8qacaWGWbaaaKqba+aadaqadaGcbaqcLbsape GaamivaKqba+aadaWgaaqcbasaaKqzadWdbiaadwgaaKqaG8aabeaa aOGaayjkaiaawMcaaKqzGeWdbiaac+cacqaHbpGCjuaGpaWaaSbaaK qaGeaajugWa8qacaWGLbaajeaipaqabaqcfa4aaWbaaKqaGeqabaqc LbmapeGaaGimaaaajugibiabgIKi7+aacaGGOaWdbiaadsgajuaGpa WaaSbaaKqaGeaajugWa8qacaWGPbaajeaipaqabaqcfa4aaWbaaKqa GeqabaqcLbmapeGaamiCaaaajugibiaac+cacqaH3oaApaGaaiyka8 qacqGHijYUcaaIWaGaaiOlaiaaicdacaaIYaaaaa@7B6E@ . Because ρ r 0 ( T i )/ ρ e 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qacaaIWaaaaK qba+aadaqadaGcbaqcLbsapeGaamivaSWdamaaBaaajeaibaqcLbma peGaamyAaaqcbaYdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaai4lai abeg8aYTWdamaaBaaajeaibaqcLbmapeGaamyzaaqcbaYdaeqaaSWa aWbaaKqaGeqabaqcLbmapeGaaGimaaaajugibiabgsMiJkaaigdaaa a@51F2@ , it results that the cluster cannot be equilibrated at an inter–distance d i η=0.96 fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaKqzGeGaeyyzIm7dbiabeE7aOjabg2da9iaaic dacaGGUaGaaGyoaiaaiAdacaqGGaGaamOzaiaad2gaaaa@47A7@ ,2–4 (< d i =η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaKqzGeWdbiabg2da9iabeE7aObaa@4072@  being close to but higher than d i ( 2 / 3 )a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamizaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaKqzGeWdbiabgIKi7Mqba+aadaqadaGcbaqcfa 4aaWbaaSqabeaajugib8qacaaIYaaaaiaac+cajuaGpaWaaSbaaSqa aKqzGeWdbiaaiodaaSWdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaam yyaaaa@4838@ –corresponding to c)–case), so the conclusion that the mean inter–distance di=a between the electrons of the gammonic pre–cluster is one of un–stable equilibrium, is justified.

It results that–at temperatures T i < T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaSWdamaaBaaajqwaa+FaaKqzadWd biaadMgaaKazba4=paqabaqcLbsapeGaeyipaWJaamivaSWaaSbaaK qbGeaajugWaiaadkeaaKqbGeqaaaaa@4590@ , the resulted pearlitic pre–clusters with radius r c < r p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaSWdamaaBaaajeaibaqcLbmapeGa am4yaaqcbaYdaeqaaKqzGeWdbiabgYda8iaadkhal8aadaWgaaqcba saaKqzadWdbiaadchaaKqaG8aabeaaaaa@4294@ may collapse because the residual (reciprocal) magnetic moments of the gammons and because the decreasing of the internal energy: P 0 V( r c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiuaSWdamaaBaaajeaibaqcLbmapeGa aGimaaqcbaYdaeqaaKqzGeWdbiaadAfajuaGpaWaaeWaaOqaaKqzGe WdbiaadkhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGJbaal8aabeaa aOGaayjkaiaawMcaaaaa@454B@ more than the superficial energy: σ γ S( r c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4Wdmxcfa4damaaBaaajeaibaqcLbma peGaeq4SdCgal8aabeaajugib8qacaWGtbqcfa4damaabmaakeaaju gib8qacaWGYbqcfa4damaaBaaajeaibaqcLbmapeGaam4yaaWcpaqa baaakiaawIcacaGLPaaaaaa@4787@ , from equation (3) resulting that: ( r c / r p )<1 P 0 V'< σ γ S', ('=d/dr) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqadaGcbaqcLbsaqaaaaaaaaaWdbiaadkhal8aadaWgaaqc basaaKqzadWdbiaadogaaKqaG8aabeaajugib8qacaGGVaGaamOCaS WdamaaBaaajeaibaqcLbmapeGaamiCaaqcbaYdaeqaaaGccaGLOaGa ayzkaaqcLbsapeGaeyipaWJaaGymaiabgkDiElaadcfal8aadaWgaa qcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugib8qacqGHflY1caWG wbGaai4jaiabgYda8iabeo8aZTWdamaaBaaajeaibaqcLbmapeGaeq 4SdCgajeaipaqabaqcLbsapeGaam4uaiaacEcacaGGSaGaaeiia8aa caGGOaWdbiaacEcacqGH9aqpcaWGKbGaai4laiaadsgacaWGYbWdai aacMcaaaa@6176@ . Because the electron is a very stable particle, its negentropy being maintained by the energy of the etherono–quantonic winds according to CGT and in concordance with the particle’s “hidden thermodynamics”,12 it results a slow variation of ρ r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qacaaIWaaaaa aa@4050@ with the internal temperature Ti , of the fraction ρ r 0 ( T i )/ ρ e 0 ( d i /η) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qacaaIWaaaaK qba+aadaqadaGcbaqcLbsapeGaamivaSWdamaaBaaajeaibaqcLbma peGaamyAaaqcbaYdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaai4lai abeg8aYTWdamaaBaaajeaibaqcLbmapeGaamyzaaqcbaYdaeqaaSWa aWbaaKqaGeqabaqcLbmapeGaaGimaaaajugibiabgIKi7+aacaGGOa Wdbiaadsgal8aadaWgaaqcbasaaKqzadWdbiaadMgaaKqaG8aabeaa jugib8qacaGGVaGaeq4TdG2daiaacMcaaaa@596B@ , but with the consequence of inflation generating or of collapsing of the gammonic pre–cluster, at high variation.

The repulsive force increasing with the temperature Ti may be approximated by a relation specific to metals. Considering that the value ρ r 0 ( T i ) ρ e 0   2.22x 10 14 kg/ m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qacaaIWaaaaK qba+aadaqadaGcbaqcLbsapeGaamivaKqba+aadaWgaaWcbaqcLbsa peGaamyAaaWcpaqabaaakiaawIcacaGLPaaajugib8qacqGHijYUcq aHbpGCl8aadaWgaaqcbasaaKqzadWdbiaadwgaaKqaG8aabeaalmaa CaaajeaibeqaaKqzadWdbiaaicdaaaWcpaWaaWbaaKqaGeqabaqcLb mapeGaaiiOaaaajugibiabgIKi7kaaikdacaGGUaGaaGOmaiaaikda caWG4bGaaGymaiaaicdal8aadaahaaqcbasabeaajugWa8qacaaIXa GaaGinaaaajugibiaadUgacaWGNbGaai4laiaad2gal8aadaahaaqc basabeaajugWa8qacaaIZaaaaaaa@6385@ is attained at a temperature close to those of quarks deconfining: T q 2x 10 12 K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaSWdamaaBaaajeaibaqcLbmapeGa amyCaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaaikdacaWG4bGaaGymai aaicdal8aadaahaaqcbasabeaajugWa8qacaaIXaGaaGOmaaaajugi biaadUeaaaa@4711@ , it results an approximation relation of ρ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaaaaa@3E01@ –density variation with the temperature:

Δ ρ r ( d i ) ρ r p ( d i p ) α c ΔT;   ρ e 0 ρ r p = f μ d i η e 1 0.02 = α c (T q -T i p ) α c T q T i p 1K ;  T q =2x 10 12 K; α c 2 .5x10 -11 K 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqbaoaalaaakeaajugibiabfs5aejabeg8aYLqbaoaaBaaa jeaibaqcLbmacaWGYbaaleqaaKqzGeGaaiikaiaadsgajuaGdaWgaa qcbasaaKqzadGaamyAaaWcbeaajugibiaacMcaaOqaaKqzGeGaeqyW di3cdaqhaaqcbasaaKqzadGaamOCaaqcbasaaKqzadGaamiCaaaaju gibiaacIcacaWGKbWcdaqhaaqcbasaaKqzadGaamyAaaqcbasaaKqz adGaamiCaaaajugibiaacMcaaaGaeyisISRaeqySdewcfa4aaSbaaK qaGeaajugWaiaadogaaSqabaqcLbsacqqHuoarcaWGubGaae4oaiaa bccacaqGGaqcfa4aaSaaaOqaaKqzGeGaeqyWdi3cdaqhaaqcbasaaK qzadGaamyzaaqcbasaaKqzadGaaGimaaaaaOqaaKqzGeGaeqyWdi3c daqhaaqcbasaaKqzadGaamOCaaqcbasaaKqzadGaamiCaaaaaaqcLb sacqGH9aqpcaWGMbWcdaWgaaqcbasaaKqzadGaeqiVd0gajeaibeaa juaGdaWcaaGcbaqcLbsacaWGKbWcdaWgaaqcbasaaKqzadGaamyAaa qcbasabaaakeaajugibiabeE7aOTWaaSbaaKqaGeaajugWaiaadwga aKqaGeqaaaaajugibiabgIKi7MqbaoaalaaakeaajugibiaabgdaaO qaaKqzGeGaaeimaiaab6cacaqGWaGaaeOmaaaacqGH9aqpcqaHXoqy juaGdaWgaaqcbasaaKqzadGaae4yaaWcbeaajugibiaabIcacaqGub qcfa4aaSbaaKqaGeaajugWaiaabghaaSqabaqcLbsacaqGTaGaaeiv aSWaa0baaKqaGeaajugWaiaabMgaaKqaGeaajugWaiaabchaaaqcLb sacaqGPaGaeyisISRaeqySdewcfa4aaSbaaKqaGeaajugWaiaadoga aKqaGeqaaKqzGeGaeyyXICTaamivaKqbaoaaBaaajeaibaqcLbmaca WGXbaajeaibeaaaOqaaKqzGeGaaeivaKqbaoaaDaaajeaibaqcLbma caqGPbaajeaibaqcLbmacaqGWbaaaKqzGeGaeyisISRaaeymaiaabU eacaqGGaGaae4oaiaabccacaWGubqcfa4aaSbaaKqaGeaajugWaiaa dghaaKqaGeqaaKqzGeGaeyypa0JaaGOmaiaadIhacaaIXaGaaGimaK qbaoaaCaaajeaibeqaaKqzadGaaGymaiaaikdaaaqcLbsacaWGlbGa ae4oaiabgkDiElabeg7aHLqbaoaaBaaajeaibaqcLbmacaqGJbaaje aibeaajugibiabgIKi7kaabkdacaqGUaGaaeynaiaabIhacaqGXaGa aeimaKqbaoaaCaaajeaibeqaaKqzadGaaeylaiaabgdacaqGXaaaaK qzGeGaam4saKqbaoaaCaaajeaibeqaaKqzadGaeyOeI0IaaGymaaaa aaaa@D86A@ (17)

with ρ r p ( T B )0.02 ρ e 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qacaWGWbaaaK qba+aadaqadaGcbaqcLbsapeGaamivaKqba+aadaWgaaqcbasaaKqz adWdbiaadkeaaSWdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaeyisIS RaaGimaiaac6cacaaIWaGaaGOmaiabeg8aYTWdamaaBaaajeaibaqc LbmapeGaamyzaaqcbaYdaeqaaSWaaWbaaKqaGeqabaqcLbmapeGaaG imaaaaaaa@534B@ resulting: α c 2.5x 10 11 K 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySde2cpaWaaSbaaKqaGeaajugWa8qa caWGJbaajeaipaqabaqcLbsapeGaeyisISRaaGOmaiaac6cacaaI1a GaamiEaiaaigdacaaIWaWcpaWaaWbaaKqaGeqabaqcLbmapeGaeyOe I0IaaGymaiaaigdaaaqcLbsacaWGlbqcfa4damaaCaaaleqajeaiba qcLbmapeGaeyOeI0IaaGymaaaaaaa@4E00@ . So, we may approximate that f d (1 ( F r / F μ ) a )0.98 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaSWdamaaBaaajeaibaqcLbmapeGa amizaaqcbaYdaeqaaKqzGeWdbiabgIKi7+aacaGGOaWdbiaaigdacq GHsislpaGaaiika8qacaWGgbWcpaWaaSbaaKqaGeaajugWa8qacaWG YbaajeaipaqabaqcLbsapeGaai4laiaadAeal8aadaWgaaqcbasaaK qzadWdbiabeY7aTbqcbaYdaeqaaKqzGeGaaiykaKqbaoaaBaaajeai baqcLbmapeGaamyyaaWcpaqabaqcLbsacaGGPaWdbiabgIKi7kaaic dacaGGUaGaaGyoaiaaiIdaaaa@563A@ . At very low temperatures Ti the repulsive force Fr is maintained–according to equations (7), (13) & (17), because the maintaining of the ‘zeroth’ vibrations of the electronic superdense kernels (centroids) which creates the disturbance which generates the scalar density part: ρ r 0 ( T i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa caWGYbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qacaaIWaaaaK qba+aadaqadaGcbaqcLbsapeGaamivaSWdamaaBaaajeaibaqcLbma peGaamyAaaqcbaYdaeqaaaGccaGLOaGaayzkaaaaaa@46CC@ , according to CGT. This phenomenon explains the fact that the quasi–crystallin cluster of electronic centroids of the particle’s kernel not collapses neither at very low temperatures, explaining the particle’s lifetime increasing with the temperature’s decreasing.2–5

If the internal pre–cluster’s temperature Ti is maintained close to the metastable equilibrium value T i e = T B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaSWaaWbaaKqaGeqabaqcLbmapeGaamyzaaaaju gibiabg2da9iaadsfal8aadaWgaaqcbasaaKqzadWdbiaadkeaaKqa G8aabeaaaaa@44A1@  , the pre–cluster’s collapsing may still occur in a strong magnetic field, by the aid of the magneto–gravitic potential V MG ( r ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaSWdamaaBaaajeaibaqcLbmapeGa amytaiaadEeaaKqaG8aabeaajugibiaacIcapeGaamOCaSWdamaaBa aajeaibaqcLbmapeGaeqy1dygajeaipaqabaqcLbsacaGGPaaaaa@44E5@ , according to CGT.8

This conclusion may be argued by the hypothesis of the magnetic fluxon ϕ 0 =h/2e2x 10 15 Wb MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqy1dywcfa4damaaBaaajeaibaqcLbma peGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iaadIgacaGGVaGaaG OmaiaadwgacqGHijYUcaaIYaGaamiEaiaaigdacaaIWaqcfa4damaa CaaajeaibeqaaKqzadWdbiabgkHiTiaaigdacaaI1aaaaKqzGeGaam 4vaiaadkgaaaa@4EF9@ , considering that the ξ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOVdGxcfa4damaaBaaajeaibaqcLbma peGaamOqaaWcpaqabaaaaa@3E38@ –vortex–tubes of the B–field are fluxon ϕ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqy1dy2cpaWaaSbaaKqaGeaajugWa8qa caaIWaaajeaipaqabaaaaa@3DCC@ with a section radius r ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaKqba+aadaWgaaqcbasaaKqzadWd biabew9aMbWcpaqabaaaaa@3E6D@  , with a linear decreasing of the impulse density: p c =ρ( r )·(ω·r) =ρ( r )·c~ r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiCaSWdamaaBaaajeaibaqcLbmapeGa am4yaaqcbaYdaeqaaKqzGeWdbiabg2da9iabeg8aYLqba+aadaqada GcbaqcLbsapeGaamOCaaGcpaGaayjkaiaawMcaaKqzGeWdbiaacEla paGaaiika8qacqaHjpWDcaGG3cGaamOCa8aacaGGPaWdbiaabccacq GH9aqpcqaHbpGCjuaGpaWaaeWaaOqaaKqzGeWdbiaadkhaaOWdaiaa wIcacaGLPaaajugib8qacaGG3cGaam4yaiaac6hacaWGYbWcpaWaaW baaKqaGeqabaqcLbmapeGaeyOeI0IaaGymaaaaaaa@5B2A@ , for r r ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaiabgsMiJkaadkhajuaGpaWaaSba aKqaGeaajugWa8qacqaHvpGzaSWdaeqaaaaa@4119@ , (which is specific to vortex–tubes) and with the mean density: ρ ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdi3cpaWaaSbaaKqaGeaajugWa8qa cqaHvpGzaKqaG8aabeaaaaa@3ED2@ approximate equal with those resulted from the local Bl–field value given by equation (2).

Assuming–by CGT,2–4 that the vortex–tubes ξ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOVdGxcfa4damaaBaaajeaibaqcLbma peGaamOqaaWcpaqabaaaaa@3E38@ of the magnetic B–field are formed around vectorial photons (vectons) of 2.7K microwave radiation of the quantum vacuum–identified in CGT as electric field quanta having a gauge radius: r v 0.41a=0.578 fm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaSWdamaaBaaajeaibaqcLbmapeGa amODaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaaicdacaGGUaGaaGinai aaigdacaWGHbGaeyypa0JaaGimaiaac6cacaaI1aGaaG4naiaaiIda caqGGaGaamOzaiaad2gaaaa@4A8B@ 4 and that the electron has a small impenetrable quantum volume: υ i e =1.15x 10 4 f m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyXdu3cpaWaaSbaaKqaGeaajugWa8qa caWGPbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qacaWGLbaaaK qzGeGaeyypa0JaaGymaiaac6cacaaIXaGaaGynaiaadIhacaaIXaGa aGimaSWdamaaCaaajeaibeqaaKqzadWdbiabgkHiTiaaisdaaaqcLb sacaWGMbGaamyBaSWdamaaCaaajeaibeqaaKqzadWdbiaaiodaaaaa aa@4F88@ ,5 from CGT8 it results that:

V MG (r)  =  υ i 2   ρ φ (r) c 2 = υ i c 2 4π r m φ B(R) k 1 c = υ i c 4π  k 1 r φ 0 B(R) ρ φ (r)= ρ φ 0 r v r = m φ 2π r φ 1 r  ; m φ =2π ρ φ 0 r v r φ ; V MG (r)= K M B(R) r  ; K M = υ i e c 4π  k 1 φ 0  =7 .87x10 -40 ( Jm T ) ; r φ = m φ k 1 c B(R) = φ 0 B(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaaeOvaSWaaSbaaKqaGeaajugWaiaab2eacaqGhbaa jeaibeaajugibiaabIcacaqGYbGaaeykaiaabccacaqGGaGaeyypa0 JaaeiiaKqbaoaalaaakeaajugibiabew8a1TWaaSbaaKqaGeaajugW aiaadMgaaKqaGeqaaaGcbaqcLbsacaqGYaaaaiaabccacqaHbpGClm aaBaaajeaibaqcLbmacqaHgpGAaKqaGeqaaKqzGeGaaiikaiaadkha caGGPaGaeyyXICTaam4yaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaK qzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaeqyXduxcfa4aaSbaaKqa GeaajugWaiaadMgaaSqabaqcLbsacaWGJbWcdaahaaqcbasabeaaju gWaiaaikdaaaaakeaajugibiaabsdacqaHapaCcaqGGaGaaeOCaaaa juaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGaamyBaKqbaoaaBaaaje aibaqcLbmacqaHgpGAaSqabaqcLbsacqGHflY1caWGcbGaaiikaiaa dkfacaGGPaaakeaajugibiaadUgajuaGdaWgaaqcbasaaKqzadGaaG ymaaWcbeaajugibiabgwSixlaadogaaaaaleqaaKqzGeGaeyypa0tc fa4aaSaaaOqaaKqzGeGaeqyXdu3cdaWgaaqcbasaaKqzadGaamyAaa qcbasabaqcLbsacqGHflY1caWGJbaakeaajugibiaabsdacqaHapaC caqGGaGaam4AaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGe GaeyyXICTaaeOCaaaajuaGdaGcaaGcbaqcLbsacqaHgpGAlmaaBaaa jeaibaqcLbmacaaIWaaajeaibeaajugibiaadkeacaGGOaGaamOuai aacMcaaSqabaqcLbsacaqG7aGaaeiiaiabeg8aYLqbaoaaBaaajeai baqcLbmacqaHgpGAaSqabaqcLbsacaqGOaGaaeOCaiaabMcacqGH9a qpcqaHbpGClmaaDaaajeaibaqcLbmacqaHgpGAaKqaGeaajugWaiaa bcdaaaqcfa4aaSaaaOqaaKqzGeGaaeOCaKqbaoaaBaaajeaibaqcLb macaqG2baaleqaaaGcbaqcLbsacaqGYbaaaiabg2da9Kqbaoaalaaa keaajugibiaad2gajuaGdaWgaaqcbasaaKqzadGaeqOXdOgaleqaaa GcbaqcLbsacaaIYaGaeqiWdaNaeyyXICTaamOCaKqbaoaaBaaajeai baqcLbmacqaHgpGAaSqabaaaaKqbaoaalaaakeaajugibiaabgdaaO qaaKqzGeGaaeOCaaaacaqGGaGaae4oaiaabccacaqGTbqcfa4aaSba aKqaGeaajugWaiabeA8aQbWcbeaajugibiabg2da9iaaikdacqaHap aCcqaHbpGClmaaDaaajeaibaqcLbmacqaHgpGAaKqaGeaajugWaiaa icdaaaqcLbsacaWGYbqcfa4aaSbaaKqaGeaajugWaiaadAhaaSqaba qcLbsacaWGYbWcdaWgaaqcbasaaKqzadGaeqOXdOgajeaibeaajugi biaabUdaaOqaaKqzGeGaaeOvaKqbaoaaBaaajeaibaqcLbmacaqGnb Gaae4raaqcbasabaqcLbsacaqGOaGaaeOCaiaabMcacqGH9aqpcaqG lbqcfa4aaSbaaKqaGeaajugWaiaab2eaaKqaGeqaaKqbaoaalaaake aajuaGdaGcaaGcbaqcLbsacaqGcbGaaeikaiaabkfacaqGPaaaleqa aaGcbaqcLbsacaqGYbaaaiaabccacaqG7aGaaeiiaiaabUeajuaGda WgaaqcbasaaKqzadGaaeytaaqcbasabaqcLbsacqGH9aqpjuaGdaWc aaGcbaqcLbsacqaHfpqDjuaGdaqhaaqcbasaaKqzadGaaeyAaaqcba saaKqzadGaaeyzaaaajugibiabgwSixlaadogaaOqaaKqzGeGaaein aiabec8aWjaabccacaWGRbqcfa4aaSbaaKqaGeaajugWaiaaigdaaK qaGeqaaaaajuaGdaGcaaGcbaqcLbsacqaHgpGAjuaGdaWgaaqcbasa aKqzadGaaGimaaqcbasabaaaleqaaKqzGeGaaeiiaiabg2da9iaabE dacaqGUaGaaeioaiaabEdacaqG4bGaaeymaiaabcdajuaGdaahaaqc basabeaajugWaiaab2cacaqG0aGaaeimaaaajuaGdaqadaGcbaqcfa 4aaSaaaOqaaKqzGeGaaeOsaiabgwSixlaab2gaaOqaaKqbaoaakaaa keaajugibiaabsfaaSqabaaaaaGccaGLOaGaayzkaaqcLbsacaqG7a GaaeiiaiaabkhajuaGdaWgaaqcbasaaKqzadGaeqOXdOgajeaibeaa jugibiabg2da9KqbaoaakaaakeaajuaGdaWcaaGcbaqcLbsacaWGTb qcfa4aaSbaaKqaGeaajugWaiabeA8aQbWcbeaajugibiaadUgajuaG daWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGHflY1caWGJb aakeaajugibiaadkeacaGGOaGaamOuaiaacMcaaaaaleqaaKqzGeGa eyypa0tcfa4aaOaaaOqaaKqbaoaalaaakeaajugibiabeA8aQLqbao aaBaaajeaibaqcLbmacaaIWaaajeaibeaaaOqaaKqzGeGaamOqaiaa cIcacaWGsbGaaiykaaaaaSqabaaaaaa@55D4@ (18)

with ( m ϕ =4.27x 10 14 kg/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyBaSWdamaaBaaajeaibaqcLbmapeGa eqy1dygajeaipaqabaqcLbsapeGaeyypa0JaaGinaiaac6cacaaIYa GaaG4naiaadIhacaaIXaGaaGimaSWdamaaCaaajeaibeqaaKqzadWd biabgkHiTiaaigdacaaI0aaaaKqzGeGaam4AaiaadEgacaGGVaGaam yBaaaa@4D22@ –the fluxon’s mass on unit lengt). For l i = N 1/3 = r ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiBaSWdamaaBaaajeaibaqcLbmapeGa amyAaaqcbaYdaeqaaKqzGeWdbiabg2da9iaad6eajuaGpaWaaWbaaS qabKqaGeaajugWa8qacqGHsislcaaIXaGaai4laiaaiodaaaqcLbsa cqGH9aqpcaWGYbqcfa4damaaBaaajeaibaqcLbmapeGaeqy1dygal8 aabeaaaaa@4B7F@ , we have: V MG ( r ϕ ) = ( υ i e ·c)B( R )/4π k 1 =1.76x 10 32 B( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaSWdamaaBaaajeaibaqcLbmapeGa amytaiaadEeaaKqaG8aabeaajugibiaacIcapeGaamOCaSWdamaaBa aajeaibaqcLbmapeGaeqy1dygajeaipaqabaqcLbsacaGGPaWdbiaa bccacqGH9aqpcaqGGaWdaiaacIcapeGaeqyXdu3cpaWaaSbaaKqaGe aajugWa8qacaWGPbaajeaipaqabaWcdaahaaqcbasabeaajugWa8qa caWGLbaaaKqzGeGaai4TaiaadogapaGaaiyka8qacaWGcbqcfa4dam aabmaakeaajugib8qacaWGsbaak8aacaGLOaGaayzkaaqcLbsapeGa ai4laiaaisdacqaHapaCcaWGRbWcpaWaaSbaaKqaGeaajugWa8qaca aIXaaajeaipaqabaqcLbsapeGaeyypa0JaaGymaiaac6cacaaI3aGa aGOnaiaadIhacaaIXaGaaGimaSWdamaaCaaajeaibeqaaKqzadWdbi abgkHiTiaaiodacaaIYaaaaKqzGeGaamOqaKqba+aadaqadaGcbaqc LbsapeGaamOuaaGcpaGaayjkaiaawMcaaaaa@6E98@ –a neglijible value comparative to: V μ = μ e xB, ( μ e = μ PB ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaSWdamaaBaaajeaibaqcLbmapeGa eqiVd0gajeaipaqabaqcLbsapeGaeyypa0JaeqiVd0wcfa4damaaBa aajeaibaqcLbmapeGaamyzaaWcpaqabaqcLbsapeGaamiEaiaadkea caGGSaGaaiiOa8aacaGGOaWdbiabeY7aTTWdamaaBaaajeaibaqcLb mapeGaamyzaaqcbaYdaeqaaKqzGeWdbiabg2da9iabeY7aTTWdamaa BaaajeaibaqcLbmapeGaamiuaiaadkeaaKqaG8aabeaajugibiaacM caaaa@55ED@ , but which can initiates the clusterizing process of a preonic z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOEaSWdamaaCaaajeaibeqaaKqzadWd biaaicdaaaaaaa@3CCB@ –pre–cluster forming or of an photon or of an electron forming–around a superdense kernel (half of an electronic neutrino–in the electron’s case, according to CGT),1–3 but at high values of the B–field or of magnetic field–like etherono–quantonic vortexes formed in the quantum vacuum as chiral fluctuations.

The necessity of a high value of the B–field–like chiral fluctuations intensity in the process of particles cold forming directly from the primordial “dark energy”, results in accordance with a particle–like sub–solitons forming condition13 which specifies that the energy E Γ = m Γ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraSWdamaaBaaajeaibaqcLbmapeGa eu4KdCeajeaipaqabaqcLbsapeGaeyypa0JaamyBaKqba+aadaWgaa qcbasaaKqzadWdbiabfo5ahbWcpaqabaqcLbsapeGaam4yaKqba+aa daahaaWcbeqcbasaaKqzadWdbiaaikdaaaaaaa@4830@ of the mass–generating chiral soliton field, (given–in this case by a sinergono–quantonic vortex Γ μ = Γ A + Γ B =2πrc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeu4KdC0cpaWaaSbaaKqaGeaajugWa8qa cqaH8oqBaKqaG8aabeaajugib8qacqGH9aqpcqqHtoWrl8aadaWgaa qcbasaaKqzadWdbiaadgeaaKqaG8aabeaajugib8qacqGHRaWkcqqH toWrl8aadaWgaaqcbasaaKqzadWdbiaadkeaaKqaG8aabeaajugib8 qacqGH9aqpcaaIYaGaeqiWdaNaamOCaiabgwSixlaadogaaaa@51EA@ ), should be double, at least, comparing to the mass energy: E m =m c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraSWdamaaBaaajeaibaqcLbmapeGa amyBaaqcbaYdaeqaaKqzGeWdbiabg2da9iaad2gacaWGJbWcpaWaaW baaKqaGeqabaqcLbmapeGaaGOmaaaaaaa@42E5@ of the generated sub–solitons; ( E Γ 2 E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraSWdamaaBaaajeaibaqcLbmapeGa eu4KdCeajeaipaqabaqcLbsapeGaeyyzImRaaGOmaiaadweal8aada WgaaqcbasaaKqzadWdbiaad2gaaKqaG8aabeaaaaa@4435@ ).

The generalization to the scale of an atomic nucleus permits to consider an atomic nucleus as a (non–collapsed) fermionic condensate with quasi–crystallin arrangement of nucleons, which may explain the nucleonic “magic” numbers of maximal stability,2–4 the nuclear fission reactions–well described by the droplet nuclear model, being explained by a nuclear local phase transformation at the internal temperature increasing–determined by the nucleons’ vibrations.

Mathematically this phenomenon may be equated by equation (11), by modifying the volume term: E V = a v A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraSWdamaaBaaajeaibaqcLbmapeGa amOvaaqcbaYdaeqaaKqzGeWdbiabg2da9iaadggal8aadaWgaaqcba saaKqzadWdbiaadAhaaKqaG8aabeaajugib8qacaWGbbaaaa@43B6@  and the surface term E σ = a S A 2/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraKqba+aadaWgaaqcbasaaKqzadWd biabeo8aZbWcpaqabaqcLbsapeGaeyypa0JaamyyaSWdamaaBaaaje aibaqcLbmapeGaam4uaaqcbaYdaeqaaKqzGeWdbiaadgeal8aadaah aaqcbasabeaajugWa8qacaaIYaGaai4laiaaiodaaaaaaa@48AF@ from the Bethe–Weizsäcker semi–empiric formula of the nuclear binding energy, based on the liquid drop model proposed by George Gamow, in which A is the atomic number and a V  = E b ( 3 / 5 ) ε F 15.8MeV a S =17.8MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyyaSWdamaaBaaajeaibaqcLbmapeGa amOvaiaacckaaKqaG8aabeaajugib8qacqGH9aqpcaWGfbWcpaWaaS baaKqaGeaajugWa8qacaWGIbaajeaipaqabaqcLbsapeGaai4eGKqb a+aadaqadaGcbaqcfa4aaWbaaSqabeaajugib8qacaaIZaaaaiaac+ cajuaGpaWaaSbaaSqaaKqzGeWdbiaaiwdaaSWdaeqaaaGccaGLOaGa ayzkaaqcLbsapeGaeqyTduwcfa4damaaBaaajeaibaqcLbmapeGaam OraaWcpaqabaqcLbsapeGaeyisISRaaGymaiaaiwdacaGGUaGaaGio aiaad2eacaWGLbGaamOvaiabgIKi7kaadggal8aadaWgaaqcbasaaK qzadWdbiaadofaaKqaG8aabeaajugib8qacqGH9aqpcaaIXaGaaG4n aiaac6cacaaI4aGaamytaiaadwgacaWGwbaaaa@6599@ –the volume and the surface term coefficiens, given as difference between the binding energy of the nucleons to their neighbours: E b 40 MeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraKqba+aadaWgaaqcbasaaKqzadWd biaadkgaaSWdaeqaaKqzGeWdbiabgIKi7kaaisdacaaIWaGaaeiiai aad2eacaWGLbGaamOvaaaa@4461@  and E k =( 3 / 5 ) ε F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraSWdamaaBaaajeaibaqcLbmapeGa am4AaaqcbaYdaeqaaKqzGeWdbiabg2da9Kqba+aadaqadaGcbaqcfa 4aaWbaaSqabeaajugib8qacaaIZaaaaiaac+cajuaGpaWaaSbaaSqa aKqzGeWdbiaaiwdaaSWdaeqaaaGccaGLOaGaayzkaaqcLbsapeGaeq yTduwcfa4damaaBaaajeaibaqcLbmapeGaamOraaWcpaqabaaaaa@4B3F@ –the kinetic energy per nucleon, depending on its Fermi energy.

A generalized form of the binding energy formula for a gammonic BEC, may be obtained writing the kinetic term Ek in the form: kBTv, which gives:

 E N E b ( AA   2 3 )( 1 E k E b );  E k E b = T v T C ; E= k B T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaabccacaqGfbWcdaWgaaqcbasaaKqzadGaamOtaaqcbasa baqcLbsacqGHijYUcaWGfbWcdaWgaaqcbasaaKqzadGaamOyaaqcba sabaqcLbsacqGHflY1juaGdaqadaGcbaqcLbsacaWGbbGaeyOeI0Ia amyqaKqzadGaaeiiaSWaaWbaaKqaGeqabaWcdaWcaaqcbasaaKqzad GaaGOmaaqcbasaaKqzadGaaG4maaaaaaaakiaawIcacaGLPaaajuaG daqadaGcbaqcLbsacaaIXaGaeyOeI0scfa4aaSaaaOqaaKqzGeGaam yraKqbaoaaBaaajeaibaqcLbmacaWGRbaaleqaaaGcbaqcLbsacaWG fbWcdaWgaaqcbasaaKqzadGaamOyaaqcbasabaaaaaGccaGLOaGaay zkaaqcLbsacaGG7aGaaeiiaKqbaoaalaaakeaajugibiaadwealmaa BaaajeaibaqcLbmacaWGRbaajeaibeaaaOqaaKqzGeGaamyraSWaaS baaKqaGeaajugWaiaadkgaaKqaGeqaaaaajugibiabg2da9Kqbaoaa laaakeaajugibiaabsfajuaGdaWgaaqcbasaaKqzadGaaeODaaWcbe aaaOqaaKqzGeGaaeivaKqbaoaaBaaajeaibaqcLbmacaqGdbaaleqa aaaajugibiaabUdacaqGGaGaaeyraiabg2da9iaabUgalmaaBaaaje aibaqcLbmacaqGcbaajeaibeaajugibiaabsfaaaa@7CB1@  (19)

with TC=Eb/kB and Ev=kBTv–the mean vibration energy of the particles and Eb–the binding energy per particle. The vibrations induced by interaction particles such as a neutron which can split an uranium nucleus, may explain by equation (19), the fact that the nuclear fission is explained by the “drop” nuclear model, even if the nuclear properties and even the nuclear “magic” numbers of nucleons which gives the maximal nuclear stability: 2, 8, 20, 28, (40), 50, 82, 126, may be explained also by a solid rotator type of nuclear model , particularly–of quasi–crystallin type, as those deduced in CGT2–4 which explains the “magic” nuclear numbers as resulting from quasi–crystalline forms of alpha particles, with Z = ( 2 n 2 ), (nN) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOwaiaabccacqGH9aqpjuaGdaaeabGc baqcfa4damaabmaakeaajugib8qacaaIYaGaamOBaSWdamaaCaaaje aibeqaaKqzadWdbiaaikdaaaaak8aacaGLOaGaayzkaaqcLbsapeGa aiilaiaabccapaGaaiika8qacaWGUbGaeyicI4SaamOta8aacaGGPa aal8qabeqabKqzGeGaeyyeIuoaaaa@4CEE@ .

In CGT, this phenomenon is equated by multiplying the binding energy between two nucleons with a term depending on the vibration “liberty” (amplitude) of the nucleon, in the form: E b ( T v )= E b 0 · e v l / η*   E b 0 ·( 1 k B T v /  E b 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraSWdamaaBaaajeaibaqcLbmapeGa amOyaaqcbaYdaeqaaKqbaoaabmaakeaajugib8qacaWGubqcfa4dam aaBaaajeaibaqcLbmapeGaamODaaWcpaqabaaakiaawIcacaGLPaaa jugib8qacqGH9aqpcaWGfbWcdaqhaaqcfayaaKqzadGaamOyaaqcfa yaaKqzadGaaGimaaaajugibiaacElacaWGLbWcdaqhaaqcbasaaKqz adGaamODaaqcbasaaSWdamaaCaaajiaibeqaaKqzadWdbiabgkHiTi aadYgaaaWcpaWaaWbaaKGaGeqabaqcLbmapeGaai4laaaal8aadaah aaqccasabeaajugWa8qacqaH3oaAcaGGQaaaaaaajugibiabgIKi7k aacckacaWGfbWcdaqhaaqcfayaaKqzadGaamOyaaqcfayaaKqzadGa aGimaaaajugibiaacElajuaGpaWaaeWaaOqaaKqzGeWdbiaaigdacq GHsislcaWGRbWcpaWaaSbaaKqaGeaajugWa8qacaWGcbaajeaipaqa baqcLbsapeGaamivaSWdamaaBaaajeaibaqcLbmapeGaamODaaqcba YdaeqaaKqzGeWdbiaac+cacaqGGaGaamyraSWaa0baaKqbagaajugW aiaadkgaaKqbagaajugWaiaaicdaaaaak8aacaGLOaGaayzkaaaaaa@7A7B@ , with l v ~ k B T v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiBaSWdamaaBaaajeaibaqcLbmapeGa amODaaqcbaYdaeqaaKqzGeWdbiaac6hacaWGRbWcpaWaaSbaaKqaGe aajugWa8qacaWGcbaajeaipaqabaqcLbsapeGaamivaSWdamaaBaaa jeaibaqcLbmapeGaamODaaqcbaYdaeqaaaaa@46B9@  .

For a gammonic BEC, the number A of degenerate electrons results in the form:

A e (4π r p 3 /3)· N 0 = (4π/3) ( r p /a ) 3 ,  ( N 0 = 1/ a 3 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyqaSWdamaaBaaajeaibaqcLbmapeGa amyzaaqcbaYdaeqaaKqzGeWdbiabgIKi7+aacaGGOaWdbiaaisdacq aHapaCcaWGYbWcpaWaaSbaaKqaGeaajugWa8qacaWGWbaajeaipaqa baWcdaahaaqcbasabeaajugWa8qacaaIZaaaaKqzGeGaai4laiaaio dapaGaaiyka8qacaGG3cGaamOtaSWdamaaBaaajeaibaqcLbmapeGa aGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iaabccapaGaaiika8qaca aI0aGaeqiWdaNaai4laiaaiodapaGaaiykaKqbaoaabmaakeaajugi b8qacaWGYbWcpaWaaSbaaKqaGeaajugWa8qacaWGWbaajeaipaqaba qcLbsapeGaai4laiaadggaaOWdaiaawIcacaGLPaaalmaaCaaajeai beqaaKqzadWdbiaaiodaaaqcLbsapaGaaiila8qacaGGGcGaaiiOaK qba+aadaqadaGcbaqcLbsapeGaamOtaSWdamaaBaaajeaibaqcLbma peGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iaabccacaaIXaGaai 4laiaadggal8aadaahaaqcbasabeaajugWa8qacaaIZaaaaaGcpaGa ayjkaiaawMcaaKqzGeWdbiaacYcaaaa@7541@

the equations (12) & (19) , for a metastable gammonic BEC, giving the binding energy in the form:

E N E b { 4π 3 [ T C T v ( 1 T v T C ) ] 3 ( 4π 3 ) 2 3 [ T C T v ( 1 T v T C ) ] 2 }( 1 T v T C ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaabwealmaaBaaajeaibaqcLbmacaWGobaajeaibeaajugi biabgIKi7kaadwealmaaBaaajeaibaqcLbmacaWGIbaajeaibeaaju gibiabgwSixNqbaoaacmaakeaajuaGdaWcaaGcbaqcLbsacaaI0aGa eqiWdahakeaajugibiaaiodaaaqcfa4aamWaaOqaaKqbaoaalaaake aajugibiaadsfajuaGdaWgaaqcbasaaKqzadGaam4qaaWcbeaaaOqa aKqzGeGaamivaSWaaSbaaKqaGeaajugWaiaadAhaaKqaGeqaaaaaju aGdaqadaGcbaqcLbsacaaIXaGaeyOeI0scfa4aaSaaaOqaaKqzGeGa amivaSWaaSbaaKqaGeaajugWaiaadAhaaKqaGeqaaaGcbaqcLbsaca WGubqcfa4aaSbaaKqaGeaajugWaiaadoeaaSqabaaaaaGccaGLOaGa ayzkaaaacaGLBbGaayzxaaWcdaahaaqcbasabeaajugWaiaaiodaaa qcLbsacqGHsisljuaGdaqadaGcbaqcfa4aaSaaaOqaaKqzGeGaaGin aiabec8aWbGcbaqcLbsacaaIZaaaaaGccaGLOaGaayzkaaWcdaahaa qcbasabeaalmaalaaajeaibaqcLbmacaaIYaaajeaibaqcLbmacaaI ZaaaaaaajuaGdaWadaGcbaqcfa4aaSaaaOqaaKqzGeGaamivaSWaaS baaKqaGeaajugWaiaadoeaaKqaGeqaaaGcbaqcLbsacaWGubWcdaWg aaqcbasaaKqzadGaamODaaqcbasabaaaaKqbaoaabmaakeaajugibi aaigdacqGHsisljuaGdaWcaaGcbaqcLbsacaWGubqcfa4aaSbaaKqa GeaajugWaiaadAhaaSqabaaakeaajugibiaadsfajuaGdaWgaaqcba saaKqzadGaam4qaaWcbeaaaaaakiaawIcacaGLPaaaaiaawUfacaGL DbaalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOGaay5Eaiaaw2haaK qbaoaabmaakeaajugibiaaigdacqGHsisljuaGdaWcaaGcbaqcLbsa caWGubqcfa4aaSbaaKqaGeaajugWaiaadAhaaSqabaaakeaajugibi aadsfalmaaBaaajeaibaqcLbmacaWGdbaajeaibeaaaaaakiaawIca caGLPaaajugibiaacUdaaaa@9F58@ (20)

with E b E m f d · m e c 2 ;  T C f d · m e c 2 / k B,  ( f d 0.98) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraKqba+aadaWgaaqcbasaaKqzadWd biaadkgaaKqaG8aabeaajugib8qacqGHijYUcaWGfbqcfa4damaaBa aajeaibaqcLbmapeGaamyBaaqcbaYdaeqaaKqzGeWdbiabgIKi7kaa dAgajuaGpaWaaSbaaKqaGeaajugWa8qacaWGKbaajeaipaqabaqcLb sapeGaai4Taiaad2gajuaGpaWaaSbaaKqaGeaajugWa8qacaWGLbaa jeaipaqabaqcLbsapeGaam4yaKqba+aadaahaaqcbasabeaajugWa8 qacaaIYaaaaKqzGeGaai4oaiaacckacaWGubqcfa4damaaBaaajeai baqcLbmapeGaam4qaaWcpaqabaqcLbsapeGaeyisISRaamOzaKqba+ aadaWgaaqcbasaaKqzadWdbiaadsgaaKqaG8aabeaajugib8qacaGG 3cGaamyBaKqba+aadaWgaaqcbasaaKqzadWdbiaadwgaaSWdaeqaaK qzGeWdbiaadogajuaGpaWaaWbaaSqabKqaGeaajugWa8qacaaIYaaa aKqzGeGaai4laiaadUgajuaGpaWaaSbaaSqaaKqzadWdbiaadkeaju gibiaacYcaaSWdaeqaaKqzGeWdbiaacckapaGaaiika8qacaWGMbqc fa4damaaBaaajeaibaqcLbmapeGaamizaaqcbaYdaeqaaKqzGeWdbi abgIKi7kaaicdacaGGUaGaaGyoaiaaiIdapaGaaiykaaaa@7F43@ , the relation (20) showing that the increasing of the BEC’s temperature determines transition to a liquid/like phase and thereafter–pearlitization, as consequence of the internal temperature increasing over the equilibrium value.

Conclusion

By the paper it is argued that the particles cold forming from quantum vacuum fluctuations–considered in the quantum mechanics, is possible at T0K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaiabgkziUkaaicdacaWGlbaaaa@3DBE@ , but usually by clusterizing, in specific conditions, as a “step–by–step” process in which the intrinsic rest mass/energy necessary for the particles forming: mc2, is acquired either by an initial quantum vortex corresponding to an intense magnetic–like field, with vortexial energy comparable with those of the ulterior formed particle and with the producing of a dense kernel which may stabilize the quantum vortex, or by a less intense vortex but enough strong for increase locally the density of formed gammons or z0(34me) preons.

The vortex was identified as the logical way to explain the fermions pairs forming also in other theoretical models,13 but a vortex of etherons with the mass of 10 60 ÷ 10 69 kg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGymaiaaicdal8aadaahaaqcbasabeaa jugWa8qacqGHsislcaaI2aGaaGimaaaajugibiabgEpa4kaaigdaca aIWaqcfa4damaaCaaaleqajeaibaqcLbmapeGaeyOeI0IaaGOnaiaa iMdaaaqcLbsacaWGRbGaam4zaaaa@4A3A@ –considered as particles of the sub–quantum medium, (corresponding to the ‘dark energy’ concept), is not enough to explain the possibility of fermion forming from quantum vacuum, without a quantonic component, with quantons of energy ε= h·1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduMaeyypa0JaaeiiaiaadIgacaGG 3cGaaGymaaaa@3FA1@ 14 and having superdense centroids which–by vortexial confining, can form a superdense centroid and a rest mass of the formed fermion. According to CGT,1–5 this mechanism may explain the background radiation (2.7K) photons forming as pairs of vectorial photons, in the Cold ProtoUniverse.

The possibility to explain the masses and the magnetic and electric properties of the elementary particles resulted from the cosmic radiation, in a preonic model, by a cold clusterizing process and with only two quasi–crystallin basic bosons: z2=4z0 =136me; zp=7z0 =238me, indicates–in our opinion, that after the electrons (negatrons and positrons) cold forming, the clusterizing was the main process of the particles forming in the Universe, by at least two steps: a)–the quasi–crystallin pre–cluster forming (of gammons or of formed z0–preons or z2–and zp–zerons) and b)–the pre–cluster’s cold collapsing, without destruction, with the maintaining of a quasi–crystallin arrangement of electronic centroids at the kernel’s level, as consequence of their ‘zeroth’ vibrations–which determines an internal scalar repulsive field.

As secondary, particular possibility, the particles forming by pearlitizing supposes the forming of a bigger BEC of gammons, with the concentration of particles: N 0 1/ a 3 =3.57x 10 44 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOtaKqba+aadaWgaaqcbasaaKqzadWd biaaicdaaSWdaeqaaKqzGeWdbiabgIKi7kaaigdacaGGVaGaamyyaS WdamaaCaaajeaibeqaaKqzadWdbiaaiodaaaqcLbsacqGH9aqpcaaI ZaGaaiOlaiaaiwdacaaI3aGaamiEaiaaigdacaaIWaWcpaWaaWbaaK qaGeqabaqcLbmapeGaaGinaiaaisdaaaaaaa@4E56@ , (a=1.41 fm), in a strong gravitational or magnetic field and at very low temperature and the BEC’s fragmenting by the temperature oscillation around the transition value TB. and thereafter–the cold collapsing of the resulted pre–clusters, without their destruction. We suppose that this model of particles cold forming may explain a part of the dark matter.

In conclusion, the resulted explicative model of particles cold genesis may explain the existence of a huge number of material particles in the Universe, by the conclusion of cold (“dark”) photons and thereafter–of electronic neutrinos and cold electrons genesis in the Cold Proto–Universe’s period, by chiral (vortexial) fluctuations in the ‘primordial dark energy’–considered in CGT as omnidirectional fluxes of etherons and quantons circulated through a brownian part of etherons and quantons.

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

  1. Arghirescu M. The Cold Genesis– A New Scenario of Particles Forming. Physics & Astronomy International Journal. 2017;1(5):1–5.
  2. Arghirescu M. A Cold Genesis: Theory of Fields and Particles. viXra; 2012. p. 1–108.
  3. Arghirescu M. The Cold Genesis of Matter and Fields. USA: Science Publishing Group; 2015. p. 1– 222.
  4. Arghirescu M. A Quasi–Unitary Pre–Quantum theory of Particles and Fields and some Theoretical Implications. International Journal of High Energy Physics. 2015;2(1):80–103.
  5. Arghirescu M. A preonic quasi–crystal quark model based on a cold genesis theory and on the experimentally evidenced neutral boson of 34me. Global Journal of Physics. 2016;5(1):496–504.
  6. Krasznahorkay JA, Csatlós M, Csige L, et al. Observation of Anomalous Internal Pair Creation in 8Be: A Possible Signature of a Light, Neutral Boson. UAS: Cornell University Library; 2015. p. 1–5.
  7. Arghirescu M. The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi–Crystal Model of Quarks and a Pre–Quantum Theory of Fields. International Journal of High Energy Physics. 2018;5(1):12–22.
  8. Arghirescu M. The Possibility of Particles Forming from a Bose–Einstein Condensate, in an Intense Magnetic or Gravitational Field. International Journal of High Energy Physics. 2018;5(1):55–62.
  9. Arghirescu M. A Revised Model of Photon Resulted by an Etherono–Quantonic Theory of Fields. Open Access Library Journal. 2015;2(10):1–9.
  10. Hau LV, Harris SE, Dutton Z, et al. Ultra–slow, stopped, and compressed light in Bose–Einstein condensates gas. Nature. 1999;397(594):1–368.
  11. Harris SE, Hau LV. Nonlinear Optics at Low Light Levels. Physical Review Letters. 1999;82(23).
  12. de Broglie L. La thermodynamique“cachee” des particules. Ann de l’IHP Secttion A. 1964;1(1):1–20.
  13. Kiehn RM. The Falaco Effect, A Topological Soliton.USA: Talk at ’87 Dynamics Days; 1987.
  14. Şomăcescu L. Electromagnetism and gravity in a unitary theory. Sweden: International Conf. of Gravitation; 1986.
Creative Commons Attribution License

©2018 Arghirescu. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.