Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 8 Issue 2

Quantum chaos of the BKL scenario

Włodzimierz Piechocki

Department of Fundamental Research, National Centre for Nuclear Research, Poland

Correspondence: Włodzimierz Piechocki, Department of Fundamental Research, National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

Received: March 12, 2024 | Published: April 15, 2024

Citation: Piechocki W. Quantum chaos of the BKL scenario. Phys Astron Int J. 2024;8(2):84‒86. DOI: 10.15406/paij.2024.08.00334

Download PDF

Abstract

The Belinski-Khalatnikov-Lifshitz (BKL) scenario concerns the existence of generic singularity of general relativity. Evolving towards that singularity, spacetime enters a chaotic phase. We consider a model of the BKL scenario to get insight into the corresponding quantum dynamics. The integral quantization of the BKL model leads to quantum evolution devoid of singularity. The quantum fluctuations seem to be unable to suppress the classical chaos. These interesting features of quantum dynamics result from the never vanishing variance of considered quantum dynamics. We suggest that these results generalize to a quantum model (to be constructed) of the original BKL scenario.

Introduction

Based on the assumption that the universe is spatially isotropic and homogeneous, Alexander Friedmann in 1922 derived simple dynamics from Einstein’s field equations. The solution to this dynamics includes gravitational singularity. However, in 1946, Evgeny Lifshitz found that the isotropy in Friedmann’s universe is unstable in the evolution towards the singularity.1,2 This discovery initiated an extensive examination of the dynamics of anisotropic but homogeneous models, in particular the Bianchi IX (BIX), which is the most sophisticated in the class of the Bianchi-type models.3 The result of these investigations carried out by Belinski, Khalatnikov and Lifshitz (BKL), led to the conclusion that general relativity includes the generic solution with the singularity.4,5 That analytical result was supported, to some extent, by numerical simulations of the approach to the singularity in vacuum spacetimes with no symmetries.6 The BKL scenario was identified in string theory in the low energy limit of bosonic sectors of superstring models.7 Roughly speaking, by generic solution we mean that it corresponds to a non-zero measure subset of all initial data, is stable against perturbation of the initial data, and depends on arbitrary functions of space.

Quite independently, Roger Penrose proved that under some conditions spacetime may include incomplete geodesics.8 They are called singular despite they do not imply that the invariants diverge. This theorem states little about the dynamics of the gravitational field near the end points of such pathological geodesics. On the contrary, the BKL scenario describes the evolution towards the gravitational singularity characterized by both incomplete geodesics and diverging curvature invariants. In that dynamics, the terms with temporal derivatives dominate over the terms with spatial derivatives when approaching the singularity. Consequently, the points in space decouple and the dynamics become, to some extent, similar to the evolution of general Bianchi IX model.

The presence of the generic singularity in solutions to Einstein’s equations signals the existence of the limit of validity of general relativity and means that this classical theory is incomplete. It is expected that the imposition of quantum rules onto general relativity may lead to quantum theory devoid of singularities.

The BKL scenario presents highly complicated dynamics so to deal with it further we use models. There exist two satisfactory models of the BKL scenario. The vacuum BIX called the mixmaster universe,9,10 and the massive model11,12 derived from a general BIX. The former is an exact model, but its dynamics are the same far away and close to the singularity, and it is non-integrable.13 The latter presents asymptotic dynamics near the singularity, includes effectively some contribution from the matter field and has an analytical special solution.14 The massive model of the BKL scenario has support from the numerical simulations of the general BIX dynamics near the singularity,15,16 and analytical studies.17 The dynamics of both models were compared within the dynamical systems method, and it was found that the topologies of the corresponding spaces of critical points are quite different.18

In what follows we focus our attention on the dynamics of the massive model. It is defined by the following system of ordinary differential equations:11

d 2 lna d τ 2 = b a a 2 ,     d 2 lnb d τ 2 = a 2 b a + c b ,     d 2 lnc d τ 2 = a 2 c b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaSaaa8aabaWdbiaadsgapaWaaWbaaSqabeaa peGaaGOmaaaakiaabYgacaqGUbGaamyyaaWdaeaapeGaamizaiabes 8a09aadaahaaWcbeqaa8qacaaIYaaaaaaakiabg2da9maalaaapaqa a8qacaWGIbaapaqaa8qacaWGHbaaaiabgkHiTiaadggapaWaaWbaaS qabeaapeGaaGOmaaaakiaacYcacaqGGcGaaeiOaiaabckacaqGGcWa aSaaa8aabaWdbiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaakiaabY gacaqGUbGaamOyaaWdaeaapeGaamizaiabes8a09aadaahaaWcbeqa a8qacaaIYaaaaaaakiabg2da9iaadggapaWaaWbaaSqabeaapeGaaG OmaaaakiabgkHiTmaalaaapaqaa8qacaWGIbaapaqaa8qacaWGHbaa aiabgUcaRmaalaaapaqaa8qacaWGJbaapaqaa8qacaWGIbaaaiaacY cacaqGGcGaaeiOaiaabckacaqGGcWaaSaaa8aabaWdbiaadsgapaWa aWbaaSqabeaapeGaaGOmaaaakiaabYgacaqGUbGaam4yaaWdaeaape Gaamizaiabes8a09aadaahaaWcbeqaa8qacaaIYaaaaaaakiabg2da 9iaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTmaalaaapa qaa8qacaWGJbaapaqaa8qacaWGIbaaaaaa@7650@ ,  (1)

dlna dτ    dlnb dτ + dlna dτ    dlnc dτ + dlnb dτ    dlnc dτ = a 2 + b a + c b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaSaaa8aabaWdbiaadsgacaqGSbGaaeOBaiaa dggaa8aabaWdbiaadsgacqaHepaDaaGaaiiOaiaacckadaWcaaWdae aapeGaamizaiaabYgacaqGUbGaamOyaaWdaeaapeGaamizaiabes8a 0baacqGHRaWkdaWcaaWdaeaapeGaamizaiaabYgacaqGUbGaamyyaa WdaeaapeGaamizaiabes8a0baacaGGGcGaaiiOamaalaaapaqaa8qa caWGKbGaaeiBaiaab6gacaWGJbaapaqaa8qacaWGKbGaeqiXdqhaai abgUcaRmaalaaapaqaa8qacaWGKbGaaeiBaiaab6gacaWGIbaapaqa a8qacaWGKbGaeqiXdqhaaiaacckacaGGGcWaaSaaa8aabaWdbiaads gacaqGSbGaaeOBaiaadogaa8aabaWdbiaadsgacqaHepaDaaGaeyyp a0Jaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSYaaSaaa8 aabaWdbiaadkgaa8aabaWdbiaadggaaaGaey4kaSYaaSaaa8aabaWd biaadogaa8aabaWdbiaadkgaaaaaaa@75F3@ ,  (2)

where a=a( τ )>0, b=b( τ )>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamyyaiabg2da9iaadggadaqadaWdaeaapeGa eqiXdqhacaGLOaGaayzkaaGaeyOpa4JaaGimaiaacYcacaqGGcGaam Oyaiabg2da9iaadkgadaqadaWdaeaapeGaeqiXdqhacaGLOaGaayzk aaGaeyOpa4JaaGimaaaa@4E2C@ and c=c( τ )>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaam4yaiabg2da9iaadogadaqadaWdaeaapeGa eqiXdqhacaGLOaGaayzkaaGaeyOpa4JaaGimaaaa@445A@ are the so-called directional scale factors, and τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqiXdqhaaa@3E1A@ is a monotonic function of proper time. The scale factors depend implicitly on the matter field.11 Equations (1) and (2) define a highly nonlinear coupled system of equations. There exists an exact solution to this dynamics:14

a ˜ ( t )= 3 t t 0 ,    b ˜ ( t )= 30 (t t 0 ) 3 ,    c ˜ ( t )= 120 (t t 0 ) 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGabmyya8aagaaca8qadaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaaIZaaapaqaa8 qacaWG0bGaeyOeI0IaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaa aaGcpeGaaiilaiaabckacaqGGcGaaeiOaiqadkgapaGbaGaapeWaae Waa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaa peGaaG4maiaaicdaa8aabaWdbiaacIcacaWG0bGaeyOeI0IaamiDa8 aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGPaWdamaaCaaaleqa baWdbiaaiodaaaaaaOGaaiilaiaabckacaqGGcGaaeiOaiqadogapa GbaGaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqp daWcaaWdaeaapeGaaGymaiaaikdacaaIWaaapaqaa8qacaGGOaGaam iDaiabgkHiTiaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGa aiyka8aadaahaaWcbeqaa8qacaaI1aaaaaaaaaa@6901@ ,  (3)

where t> t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamiDaiabg6da+iaadshapaWaaSbaaSqaa8qa caaIWaaapaqabaaaaa@4063@ , and where t 0 <0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaa k8qacqGH8aapcaaIWaaaaa@403A@ is an arbitrary real number.

However, the special solution (3) is unstable against small perturbations:

a( t )= a ˜ ( t )+ϵα( t ),   b( t )= b ˜ ( t )+ϵβ( t ),   c( t )= c ˜ ( t )+ϵγ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamyyamaabmaapaqaa8qacaWG0baacaGLOaGa ayzkaaGaeyypa0Jabmyya8aagaaca8qadaqadaWdaeaapeGaamiDaa GaayjkaiaawMcaaiabgUcaRmrr1ngBPrwtHrhAXaqeguuDJXwAKbst HrhAG8KBLbacfiGae8x9diVaeqySde2aaeWaa8aabaWdbiaadshaai aawIcacaGLPaaacaGGSaGaaeiOaiaabckacaqGGcGaamOyamaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0JabmOya8aagaaca8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgUcaRiab=v=a Ylabek7aInaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiilai aabckacaqGGcGaaeiOaiaadogadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaiabg2da9iqadogapaGbaGaapeWaaeWaa8aabaWdbiaads haaiaawIcacaGLPaaacqGHRaWkcqWF1pG8cqaHZoWzdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@7D9C@ .  (4)

We have found an explicit form of α,β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqySdeMaaiilaiabek7aIbaa@4045@ , and γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeq4SdCgaaa@3DFC@ .14

Intriguingly, the relative perturbations α/ a ˜ ,β/ b ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqySdeMaai4laiqadggapaGbaGaapeGaaiil aiabek7aIjaac+caceWGIbWdayaaiaaaaa@43C4@  and γ/ c ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeq4SdCMaai4laiqadogapaGbaGaaaaa@3FB5@ all grow as exp( 1 2 θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaeyzaiaabIhacaqGWbWaaeWaa8aabaWdbmaa laaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaiabeI7aXbGaayjkai aawMcaaaaa@444E@ , where θ=ln( t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqiUdeNaeyypa0JaaeiBaiaab6gadaqadaWd aeaapeGaamiDaiabgkHiTiaadshapaWaaSbaaSqaa8qacaaIWaaapa qabaaak8qacaGLOaGaayzkaaaaaa@46A6@ . The multiplier 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaGymaiaac+cacaaIYaaaaa@3E7F@ plays the role of the Lyapunov exponent, describing the rate of divergences. Since it is positive, the evolution of the system towards the gravitational singularity (θ+) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaiaacIcaqaaaaaaaaaWdbiabeI7aXjabgkziUkabgUcaRiabg6Hi L+aacaGGPaaaaa@43B2@ is likely to be chaotic. In general, the positivity of the Lyapunov exponent supports the chaoticity of the dynamics, but does not guarantee its occurrence.19 Further examination is needed (see, e.g.,20- 22).

The space M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaa aaaaa8qacqWFZestaaa@4705@ of the constants parameterizing the perturbations α,β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqySdeMaaiilaiabek7aIbaa@4045@ and γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeq4SdCgaaa@3DFC@ is a submanifold of 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaa aaaaa8qacqWFDeIupaWaaWbaaSqabeaapeGaaGynaaaaaaa@4818@ , which is the space of all the initial data for the dynamics (1)–(2). Thus, the perturbations are general as the measure of M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaa aaaaa8qacqWFZestaaa@4705@ is nonzero.14 The instability results from strong nonlinearity of the dynamics and growing curvature of spacetime (increasing effectively the nonlinearity) in the evolution towards the singularity. This result is consistent with the original BKL scenario.4,5

In what follows, we quantize the massive model of the BKL scenario by making use of the so-called integral quantization method (IQM). Roughly speaking, the IQM method consists in ascribing to a phase space of the considered system the affine group Aff ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaeWaa8aabaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiuaapeGae8xhHifacaGLOaGaayzkaaaaaa@48B5@  (or Cartesian product of such groups). It is essential that this group has an irreducible unitary representation in the Hilbert space H= L 2 ( + ,dν( x ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaa aaaaa8qacqWFlecscqGH9aqpcaWGmbWdamaaCaaaleqabaWdbiaaik daaaGcdaqadaWdaeaatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0Hgi uD3BaGGba8qacqGFDeIupaWaaSbaaSqaa8qacqGHRaWka8aabeaak8 qacaGGSaGaamizaiabe27aUnaabmaapaqaa8qacaWG4baacaGLOaGa ayzkaaaacaGLOaGaayzkaaaaaa@5D6E@ , where dν( x )=dx/x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamizaiabe27aUnaabmaapaqaa8qacaWG4baa caGLOaGaayzkaaGaeyypa0JaamizaiaadIhacaGGVaGaamiEaaaa@4637@ , and where + ={ x |  x0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaa aaaaa8qacqWFDeIupaWaaSbaaSqaa8qacqGHRaWka8aabeaak8qacq GH9aqpdaGadaWdaeaapeGaamiEaiabgIGiolab=1risjab=bkaGoaa EiaabeWdaeaapeGae8hOaaQaamiEaaGaay5bSlaawQYiaiaaicdaai aawUhacaGL9baaaaa@5744@ . That representation enables us to define the family of coherent states in H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaa aaaaa8qacqWFlecsaaa@46D7@ . The irreducibility of that representation leads to the resolution of the unity operator in H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaa aaaaa8qacqWFlecsaaa@46D7@ , which can be used for ascribing a Hermitian operator to almost any classical observable.23 The IQM applies both to cosmology24-26 and astrophysics.27,28

We already quantized Hamilton’s dynamics29 of that model ignoring its chaotic phase.24,25 Our results strongly suggest that the classical singularity turns into the quantum bounce and quantum evolution is unitary across quantum bounce. Here, we are mainly concerned with the issue of the imposition of quantum rules onto the presumably classical chaotic dynamics of that model. There are two novelties in our approach: (i) we do not quantize Hamilton’s dynamics, but the explicit solution to that dynamics both unperturbed (3) and perturbed (4), and (ii) we quantize temporal and spatial variables to support the general covariance of general relativity. We already applied successfully that approach to the quantization of the Schwarzschild spacetime,27 showing that the quantum operator corresponding to the scalar curvature called the Kretschmann invariant, does not diverge at the quantum level. We have also quantized, using the IQM method, a thin matter shell in a vacuum, obtaining the result that the quantum shell bounces above the horizon.28

There are two basic characteristics of a quantum observable: (i) expectation value - which corresponds to classical values of measured observable, and (ii) variance - which describes quantum smearing of observable. The first feature leads directly to the conditions for a family of quantum states | Ψ η H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaiiFaiaabI6apaWaaSbaaSqaa8qacqaH3oaA a8aabeaak8qacqGHQms8cqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySL gzG0uy0Hgip5wzaGqbaiab=Tqiibaa@4E73@ parameterized by a set η=( η 1 , η 2 , ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeq4TdGMaeyypa0ZaaeWaa8aabaWdbiabeE7a O9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaeq4TdG2dam aaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacYcacqGHMacVaiaawIca caGLPaaaaaa@4954@ . We require the states | Ψ η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaiiFaiaabI6apaWaaSbaaSqaa8qacqaH3oaA a8aabeaak8qacqGHQms8aaa@426D@ to satisfy:26

Ψ η | t ^ | Ψ η =t,    Ψ η | a ^ | Ψ η =a( t ),    Ψ η | b ^ | Ψ η =b( t ),    Ψ η | c ^ | Ψ η =c( t )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeyykJeUaaeiQd8aadaWgaaWcbaWdbiabeE7a ObWdaeqaaOWdbmaaemaapaqaa8qaceWG0bWdayaajaWdbmaaemaapa qaa8qacaqGOoWdamaaBaaaleaapeGaeq4TdGgapaqabaGcpeGaeyOk JeVaeyypa0JaamiDaiaacYcacaqGGcGaaeiOaiaabckacqGHPms4ca qGOoWdamaaBaaaleaapeGaeq4TdGgapaqabaaak8qacaGLhWUaayjc SdGabmyya8aagaqca8qadaabdaWdaeaapeGaaeiQd8aadaWgaaWcba WdbiabeE7aObWdaeqaaOWdbiabgQYiXlabg2da9iaadggadaqadaWd aeaapeGaamiDaaGaayjkaiaawMcaaiaacYcacaqGGcGaaeiOaiaabc kacqGHPms4caqGOoWdamaaBaaaleaapeGaeq4TdGgapaqabaaak8qa caGLhWUaayjcSdGabmOya8aagaqca8qadaabdaWdaeaapeGaaeiQd8 aadaWgaaWcbaWdbiabeE7aObWdaeqaaOWdbiabgQYiXlabg2da9iaa dkgadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacYcacaqGGc GaaeiOaiaabckacqGHPms4caqGOoWdamaaBaaaleaapeGaeq4TdGga paqabaaak8qacaGLhWUaayjcSdGabm4ya8aagaqcaaWdbiaawEa7ca GLiWoacaqGOoWdamaaBaaaleaapeGaeq4TdGgapaqabaGcpeGaeyOk JeVaeyypa0Jaam4yamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaa GaaiiOaaaa@9357@ ,  (5)

where the mark “hat” over an observable denotes the corresponding quantum operator. The above equations represent the constraints to be satisfied. The parametershould be a function of timeas the right-hand sides of equations (5) depend on time. The solution to (5) allows constructing the vector state dependent on classical time, | Ψ η( t ) H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaiiFaiaabI6apaWaaSbaaSqaa8qacqaH3oaA daqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeqaaOWdbiabgQ YiXlabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faGae83cHGeaaa@5115@ . Therefore, Eqs. (5) define effectively the “quantum equations of motion”, i.e., the quantum dynamics of our system. Choosing in Eq. (5) unperturbed (3) and perturbed (4) solutions enables finding the corresponding vector states. For the purpose of characteristics of the considered quantum system, we calculate the variances of the quantum observables. The variance is a stochastic deviation from the expectation value of quantum observable. It determines the value of smearing of quantum observable and can be used to define quantum fluctuations. In the quantum state |ψH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaiiFaiabeI8a5jabgQYiXlabgIGioprr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83cHGeaaa@4CF4@ , the variance of an operatoris defined as follows:

var( B ^ ;ψ )= B ^ 2 ;ψ B ^ ;ψ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaamODaiaadggacaWGYbWaaeWaa8aabaWdbiqa dkeapaGbaKaapeGaai4oaiabeI8a5bGaayjkaiaawMcaaiabg2da9i abgMYiHlqadkeapaGbaKaadaahaaWcbeqaa8qacaaIYaaaaOGaai4o aiabeI8a5jabgQYiXlabgkHiTiabgMYiHlqadkeapaGbaKaapeGaai 4oaiabeI8a5jabgQYiX=aadaahaaWcbeqaa8qacaaIYaaaaaaa@5652@ ,  (6)

where B ^ ;ψ=ψ| B ^ |ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeyykJeUabmOqa8aagaqca8qacaGG7aGaeqiY dKNaeyOkJeVaeyypa0JaeyykJeUaeqiYdK3aaqWaa8aabaWdbiqadk eapaGbaKaaa8qacaGLhWUaayjcSdGaeqiYdKNaeyOkJepaaa@4FB7@ .

To be more specific, we consider a model of vector states to be the Gaussian wave packets:

Ψ n ( x;τ, γ k )= N k x n exp[ iτx γ k 2 x 2 2 ] ,     N k 2 = 2 γ k n ( n1 )!  ,   n=1,2, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaeiQd8aadaWgaaWcbaWdbiaad6gaa8aabeaa k8qadaqadaWdaeaapeGaamiEaiaacUdacqaHepaDcaGGSaGaeq4SdC 2damaaBaaaleaapeGaam4AaaWdaeqaaaGcpeGaayjkaiaawMcaaiab g2da9iaad6eapaWaaSbaaSqaa8qacaWGRbaapaqabaGcpeGaamiEa8 aadaahaaWcbeqaa8qacaWGUbaaaOGaaeyzaiaabIhacaqGWbWaamWa a8aabaWdbiaadMgacqaHepaDcaWG4bGaeyOeI0YaaSaaa8aabaWdbi abeo7aN9aadaqhaaWcbaWdbiaadUgaa8aabaWdbiaaikdaaaGccaWG 4bWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaaikdaaaaaca GLBbGaayzxaaGaaiiOaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGa amOta8aadaqhaaWcbaWdbiaadUgaa8aabaWdbiaaikdaaaGccqGH9a qpdaWcaaWdaeaapeGaaGOmaiabeo7aN9aadaqhaaWcbaWdbiaadUga a8aabaWdbiaad6gaaaaak8aabaWdbmaabmaapaqaa8qacaWGUbGaey OeI0IaaGymaaGaayjkaiaawMcaaiaacgcaaaGaaiiOaiaacYcacaqG GcGaaeiOaiaabckacaWGUbGaeyypa0JaaGymaiaacYcacaaIYaGaai ilaiabgAci8caa@7DA0@   (7)

which are dense in considered Hilbert space H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaa aaaaa8qacqWFlecsaaa@46D8@ . The subscript k=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaam4Aaiabg2da9iaaigdacaGGSaGaaGOmaiaa cYcacaaIZaaaaa@41DF@ correspond to the three scale factors of the dynamics (1)–(2). In this case η=( τ, γ 1 , γ 2 , γ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeq4TdGMaeyypa0ZaaeWaa8aabaWdbiabes8a 0jaacYcacqaHZoWzpaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaai ilaiabeo7aN9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGa eq4SdC2damaaBaaaleaapeGaaG4maaWdaeqaaaGcpeGaayjkaiaawM caaaaa@4D09@ . One can verify that the constraints (5) are satisfied if τ=t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqiXdqNaeyypa0JaamiDaaaa@4019@ and γ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeq4SdC2damaaBaaaleaapeGaam4AaaWdaeqa aaaa@3F46@ are proportional to the unperturbed (3) or perturbed (4) solutions.26 The corresponding variances of the scale factors in the states (7) are proportional to the squares of the solutions (3) and (4). Having calculated the variances of quantum observables corresponding to perturbed { a,b,c } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaiWaa8aabaWdbiaadggacaGGSaGaamOyaiaa cYcacaWGJbaacaGL7bGaayzFaaaaaa@42BA@ and unperturbed { a ˜ , b ˜ , c ˜ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeWaaiWaa8aabaWdbiqadggapaGbaGaapeGaaiil aiqadkgapaGbaGaapeGaaiilaiqadogapaGbaGaaa8qacaGL7bGaay zFaaaaaa@4344@ solutions, we can define the quantum fluctuations as follows:26

κ k = var( ξ ^ k ; Ψ p )var( ξ ^ k ; Ψ unp ) var( ξ ^ k ; Ψ unp ) ,     k=1,2,3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqOUdS2damaaBaaaleaapeGaam4AaaWdaeqa aOWdbiabg2da9maalaaapaqaa8qacaWG2bGaamyyaiaadkhadaqada WdaeaapeGafqOVdG3dayaajaWaaSbaaSqaa8qacaWGRbaapaqabaGc peGaai4oaiaabI6apaWaaSbaaSqaa8qacaWGWbaapaqabaaak8qaca GLOaGaayzkaaGaeyOeI0IaamODaiaadggacaWGYbWaaeWaa8aabaWd biqbe67a49aagaqcamaaBaaaleaapeGaam4AaaWdaeqaaOWdbiaacU dacaqGOoWdamaaBaaaleaapeGaamyDaiaad6gacaWGWbaapaqabaaa k8qacaGLOaGaayzkaaaapaqaa8qacaWG2bGaamyyaiaadkhadaqada WdaeaapeGafqOVdG3dayaajaWaaSbaaSqaa8qacaWGRbaapaqabaGc peGaai4oaiaabI6apaWaaSbaaSqaa8qacaWG1bGaamOBaiaadchaa8 aabeaaaOWdbiaawIcacaGLPaaaaaGaaiilaiaabckacaqGGcGaaeiO aiaabckacaqGGcGaam4Aaiabg2da9iaaigdacaGGSaGaaGOmaiaacY cacaaIZaaaaa@7296@   (8)

where ξ ^ 1 = a ^ ,  ξ ^ 2 = b ^ ,  ξ ^ 3 = c ^ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGafqOVdG3dayaajaWaaSbaaSqaa8qacaaIXaaa paqabaGcpeGaeyypa0Jabmyya8aagaqca8qacaGGSaGaaeiOaiqbe6 7a49aagaqcamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9iqa dkgapaGbaKaapeGaaiilaiaabckacuaH+oaEpaGbaKaadaWgaaWcba Wdbiaaiodaa8aabeaak8qacqGH9aqpceWGJbWdayaajaWdbiaacYca aaa@5008@ and where Ψ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaeiQd8aadaWgaaWcbaWdbiaadchaa8aabeaa aaa@3ED2@ and Ψ unp MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaaeiQd8aadaWgaaWcbaWdbiaadwhacaWGUbGa amiCaaWdaeqaaaaa@40BF@ denote perturbed and unperturbed wave packets, respectively.

It turns out that in the linear approximation in, these quantum instabilities read:26

κ 1 =2ϵ α( t )/ a ˜ ( t ),    κ 2 =2ϵ β( t )/ b ˜ ( t ),    κ 3 =2ϵ γ( t )/ c ˜ ( t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKc9yrVq0xXdbba91rFfpec8Eeeu0x Xdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs 0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO qaaabaaaaaaaaapeGaeqOUdS2damaaBaaaleaapeGaaGymaaWdaeqa aOWdbiabg2da9iaaikdatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab=v=aYlaacckacqaHXoqydaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaiaac+caceWGHbWdayaaiaWdbmaabmaapaqaa8 qacaWG0baacaGLOaGaayzkaaGaaiilaiaabckacaqGGcGaaeiOaiab eQ7aR9aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaaIYa Gae8x9diVaaiiOaiabek7aInaabmaapaqaa8qacaWG0baacaGLOaGa ayzkaaGaai4laiqadkgapaGbaGaapeWaaeWaa8aabaWdbiaadshaai aawIcacaGLPaaacaGGSaGaaeiOaiaabckacaqGGcGaeqOUdS2damaa BaaaleaapeGaaG4maaWdaeqaaOWdbiabg2da9iaaikdacqWF1pG8ca GGGcGaeq4SdC2aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGG VaGabm4ya8aagaaca8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaiaac6caaaa@816F@   (9)

Therefore, the instabilities (9) are proportional to the relative classical perturbations describing classical chaos.

One can show that the relative perturbations (8) for considered Gaussian wave packets and the vector states defined in terms of coherent states packets are the same.26

The conclusions are the following:

  1. The quantum instability reproduces classical instability in the lowest order of perturbation.
  2. The structure of classical dynamics is likely to create deterministic chaos. Never vanishing variances of observables of the corresponding quantum dynamics enhance that classical chaos.
  3. The relative quantum and classical perturbations have similar time evolutions. Thus, it is likely that quantization will not suppress the chaos implied by the original BKL scenario.4,5
  4. As calculated variances are always non-zero, the probability of obtaining divergencies of quantum observables corresponding to classical gravitational singularity equals zero.26 This confirms the result obtained within quantized Hamilton’s dynamics of the massive model of the BKL scenario.24,25
  5. Our integral quantization method seems to be powerful enough to suppress gravitational singularity, but preserve the chaotic instability which occurs at the classical level.

We suggest that our quantum description of the massive model of the BKL scenario may be generalized to the quantum model of the original BKL scenario.

Data Available Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This article concerns entirely theoretical research.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Lifshitz EM. On the gravitational stability of the expanding universe. J Phys (USSR).1946;10:116. Republished as a Golden Oldie in: Gen. Relativ. 2017;49:18, with an editorial note by G. F. R. Ellis.
  2. Lifshitz EM, Khalatnikov IM. Investigations in Relativistic Cosmology. Adv Phys. 1963;12:185.
  3. Belinski VA. On the cosmological singularity. Int J Mod Phys D. 2014;23:1430016.
  4. Belinskii VA, Khalatnikov IM, Lifshitz EM. Oscillatory Approach to a Singular Point in the Relativistic Cosmology. Adv Phys.1970;19:525.
  5. Belinskii VA, Khalatnikov IM, Lifshitz EM. A general solution of the Einstein equations with a time singularity. Adv Phys.1982;31:639.
  6. Garfinkle D. Numerical simulations of generic singularities. Phys Rev Lett. 2004;93:161101.
  7. Damour T, Henneaux M, H Nicolai. Cosmological billiards. Class Quantum Grav. 2003;20:145.
  8. Penrose R. Gravitational collapse and space-time singularities. Phys Rev Lett. 1965;14:57.
  9. Belinski V, Khalatnikov I. On the nature of the singularities in the general solution of the gravitational equations. Soviet Phys JETP. 1969;29:911.
  10. Misner CW. Mixmaster Universe. Phys Rev Lett. 1969;22:1071.
  11. Belinskii VA, Khalatnikov IM, Ryan MP. The oscillatory regime near the singularity in Bianchi-type IX universes”, Preprint  469,1971. Landau Institute for Theoretical Physics, Moscow (unpublished); the work due to VA Belinskii, IM Khalatnikov is published as sections 1 and 2 in M. P. Ryan. Ann Phys. 1971;70:301.
  12. Belinski V, Henneaux M. The Cosmological Singularity (Cambridge University Press, Cambridge, 2017).
  13. Latifi M, Musette, Conte R. The Bianchi IX (mixmaster) cosmological model is not integrable. Physics Letters A. 1994;194:83.
  14. Goldstein P, Piechocki W. Generic instability of the dynamics underlying the Belinski–Khalatnikov–Lifshitz scenario. Eur Phys J C. 2022;82:216.
  15. Kiefer C, Kwidzinski N, Piechocki W. On the dynamics of the general Bianchi IX space time near the singularity. Eur Phys J C. 2018;78:691.
  16. Kwidzinski N, Piechocki W. Curvature invariants for the Bianchi IX space time filled with tilted dust. Eur Phys J C. 2019;79:199.
  17. Parnovsky S L. The dynamics of general Bianchi IX model near the cosmological singularity.
  18. Czuchry E, Kwidzinski N, Piechocki W. Comparing the dynamics of diagonal and general Bianchi IX spacetime. Eur Phys J C. 2019;79:173.
  19. Leonov GA, Kuznetsov NV. Time-Varying Linearization and the Perron effects. IJ. Bifurcation and Chaos.  2007;17:1079.
  20. Ruelle D. Chance and Chaos (Princeton University Press, 1993).
  21. Haake F. Quantum Signatures and Chaos, 2010.
  22. Lasota, MC Mackey,  Chaos, Fractals, and Noise (Springer, 1994).
  23. Góźdź, Piechocki W, Schmitz T. Dependence of the affine coherent states quantization on the parametrization of the affine group. Eur Phys J Plus. 2021;136:18.
  24. Góźdź, Piechocki W, Plewa G. Quantum Belinski–Khalatnikov–Lifshitz scenario. Eur Phys J C.  2019;79:45.
  25. Góźdź, Piechocki W. Robustness of the quantum BKL scenario. Eur Phys J C. 2020;80:142.
  26. Góźdź, Pedrak A, Piechocki W. Quantum dynamics corresponding to chaotic BKL scenario. Eur Phys J C. 2023;83:150.
  27. Góźdź, Pedrak A, Piechocki W. Ascribing quantum system to Schwarzschild space time with naked singularity. Class Quantum Grav.  2022;39:145005.
  28. Góźdź, Kisielowski M, Piechocki W. Quantum dynamics of gravitational massive shell. Phys Rev D. 2023;107:046019.
  29. Czuchry E, Piechocki W. Bianchi IX model: Reducing phase space. Phys Rev D.  2013;87:084021.
Creative Commons Attribution License

©2024 Piechocki. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.