Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 5 Issue 3

Propagators for a particle in a time-dependent linear potential and a free particle

Surarit Pepore, R Biswas

1Physics, Rajamangala, University of Technology Thanyaburi, Thailand
1Department of Physics, Tezpur University, India

Correspondence: Surarit Pepore, Physics, Rajamangala, University of Technology Thanyaburi, Thailand, Tel 0925202842

Received: May 30, 2021 | Published: October 19, 2021

Citation: Pepore S. Propagators for a particle in a time-dependent linear potential and a free particle. Phys Astron Int J. 2021;5(3):83-88. DOI: 10.15406/paij.2021.05.00238

Download PDF

Abstract

In this paper, the propagators for a particle moving in a time-dependent linear potential and a free particle with linear damping are calculated by the application of the integrals of the motion of a quantum system. The propagator for a charged harmonic oscillator is derived from the Feynman path integrals and the propagator for a damped harmonic oscillator is evaluated by the Schwinger method. The relation between the integrals of the motion, Feynman path integrals, and Schwinger method are also described.

Keywords: propagators, free particle, harmonic oscillator, integrals of the motion, feynman path integrals, schwinger method

Introduction

In quantum mechanics and quantum field theory, the propagator or Green function is represented as the transition probability amplitude for a particle to travel from initial space-time configuration to final space-time configuration. The standard method in calculating the propagator is Feynman path integral.1 In 2006, S.Pepore and et al.2 applied the Feynman path integral method to Calculate the propagator for a harmonic oscillator with time-dependent mass and frequency. The one aim of this paper is using the path integral method to derive the propagator for a charged harmonic oscillator in time-dependent electric field.

The another method in calculating the propagator is the Schwinger method.3 This method was first formulated by Schwinger in 1951 for solving the gauge invariance and vacuum polarization in QED. In 2015, the Schwinger method was used to derive the propagator for time-dependent harmonics oscillators by S.Pepore and B.Sukbot.4–6 The one purposes of this article is applying the Schwinger method to calculate the propagator for a damped harmonic oscillator.

In 1975, V.V. Dodonov, I.A. Malkin, and V.I. Man’ko7 presented the connection between the integrals of the motion of a quantum system and its propagator that is the eigenfunction of the integrals of the motion describing

initial points of the system trajectory in the phase space. In 2018, S. Pepore applied the integrals of the motion to calculate the propagators for time-dependent harmonic oscillators.8,9 The one aim of this article is applying the integrals of the motion to derive the propagators for a particle moving in a time-dependent linear potential and a free particle with linear damping. The organization of this paper are as follows. In Sec.2, the propagator for a particle in a time-dependent linear potential is derived. In Sec.3, the propagator for a free particle with linear damping is obtained with the aid of the integrals of the motion. In Sec 4, the Feynman path integrals is applied to evaluate the propagator for a charged harmonic oscillator in time-dependent electric field. In Sec.5, the procedures of the Schwinger method are described. In Sec.6, the propagator for a damped harmonic oscillator are derived by the Schwinger method. Finally, the conclusion is presented in Sec.8.

The propagator for a particle moving in a time-dependent linear potential

In this section, we will calculate the propagator for a particle moving in a

time-dependent linear potential described by the Hamiltonian operator.6

H ̂ ( t )= p ̂ 2 2m kt x ̂ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaapaqaamaaxacaba WdbiaadchaaSWdaeqabaWdbiablkWaKaaak8aadaahaaWcbeqaa8qa caaIYaaaaaGcpaqaa8qacaaIYaGaamyBaaaacqGHsislcaWGRbGaam iDa8aadaWfGaqaa8qacaWG4baal8aabeqaa8qacqWIcmajaaaaaa@4712@   (1)

Where k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@  is a constant and t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaaaa@3828@  is time.

The classical equation of motion for this system is

m x ¨ kt=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaiqadIhapaGbamaapeGaeyOeI0Iaam4AaiaadshacqGH9aqp caaIWaaaaa@3DDD@   (2)

The classical paths in the phase space under the initial conditions x( 0 )= x 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaeyypa0Ja amiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3DA5@ and P( 0 )= P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaeyypa0Ja amiua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3D55@ are given by

x( t )= x 0 + t m p 0 + k t 3 6m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWkdaWcaa WdaeaapeGaamiDaaWdaeaapeGaamyBaaaacaWGWbWdamaaBaaaleaa peGaaGimaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacaWGRbGaam iDa8aadaahaaWcbeqaa8qacaaIZaaaaaGcpaqaa8qacaaI2aGaamyB aaaaaaa@491A@   (3)

p( t )= p 0 + k t 2 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWkdaWcaa WdaeaapeGaam4AaiaadshapaWaaWbaaSqabeaapeGaaGOmaaaaaOWd aeaapeGaaGOmaaaacaGGUaaaaa@4387@   (4)

Now we consider the systems of Eqs.(3) and (4) as an algebraic system for unknown initial position x 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3940@  and initial momentum p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3938@ . The variables x,p, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiaacYcacaWGWbGaaiilaaaa@3A81@ and t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaaaa@3828@  are taken as the parameters. The solution of this system can be written as the operator in Hilbert space as

x ̂ 0 ( x ̂ , p ̂ ,t )= x ̂ t m p ̂ + k t 3 3m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWaaCbiaeaapeGaamiEaa WcpaqabeaapeGaeSOadqcaaOGaaiila8aadaWfGaqaa8qacaWGWbaa l8aabeqaa8qacqWIcmajaaGccaGGSaGaamiDaaGaayjkaiaawMcaai abg2da98aadaWfGaqaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGc cqGHsisldaWcaaWdaeaapeGaamiDaaWdaeaapeGaamyBaaaapaWaaC biaeaapeGaamiCaaWcpaqabeaapeGaeSOadqcaaOGaey4kaSYaaSaa a8aabaWdbiaadUgacaWG0bWdamaaCaaaleqabaWdbiaaiodaaaaak8 aabaWdbiaaiodacaWGTbaaaaaa@517F@   (5)

p ̂ 0 ( x ̂ , p ̂ ,t )= p ̂ k t 2 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWaaCbiaeaapeGaamiEaa WcpaqabeaapeGaeSOadqcaaOGaaiila8aadaWfGaqaa8qacaWGWbaa l8aabeqaa8qacqWIcmajaaGccaGGSaGaamiDaaGaayjkaiaawMcaai abg2da98aadaWfGaqaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGc cqGHsisldaWcaaWdaeaapeGaam4AaiaadshapaWaaWbaaSqabeaape GaaGOmaaaaaOWdaeaapeGaaGOmaaaacaGGUaaaaa@4BD2@   (6)

The operators x ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaaaaa@3A6C@  and p ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaaaaa@3A64@  are the integrals of the motion because theirs satisfy equation of

d I ̂ dt = I ̂ t + i ћ [ H ̂ , I ̂ ]=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgapaWaaCbiaeaapeGaamysaaWcpaqabeaa peGaeSOadqcaaaGcpaqaa8qacaWGKbGaamiDaaaacqGH9aqpdaWcaa WdaeaapeGaeyOaIy7damaaxacabaWdbiaadMeaaSWdaeqabaWdbiab lkWaKaaaaOWdaeaapeGaeyOaIyRaamiDaaaacqGHRaWkdaWcaaWdae aapeGaamyAaaWdaeaapeGaam4weaaadaWadaWdaeaadaWfGaqaa8qa caWGibaal8aabeqaa8qacqWIcmajaaGccaGGSaWdamaaxacabaWdbi aadMeaaSWdaeqabaWdbiablkWaKaaaaOGaay5waiaaw2faaiabg2da 9iaaicdacaGGSaaaaa@4FD8@   (7)

Where I ̂ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGjbaal8aabeqaa8qacqWIcmajaaaaaa@391F@  may be x ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaaaaa@3A6C@  and p ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaaaaa@3A64@ . Then these operatos must satisfy equations for the Green function or propagator,2,5,6

x ̂ 0 ( x )K( x, x ,t )= x ̂ ( x )K( x, x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhaaiaawIcaca GLPaaacaWGlbWaaeWaa8aabaWdbiaadIhacaGGSaGabmiEa8aagaqb a8qacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da98aadaWfGaqaa8 qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaapeGabmiE a8aagaqbaaWdbiaawIcacaGLPaaacaWGlbWaaeWaa8aabaWdbiaadI hacaGGSaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjkaiaawMca aaaa@5135@   (8)

p ̂ 0 ( x )K( x, x ,t )= p ̂ ( x )K( x, x ,t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhaaiaawIcaca GLPaaacaWGlbWaaeWaa8aabaWdbiaadIhacaGGSaGabmiEa8aagaqb a8qacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9iabgkHiT8aada WfGaqaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGabmiEa8aagaqbaaWdbiaawIcacaGLPaaacaWGlbWaaeWaa8aaba WdbiaadIhacaGGSaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjk aiaawMcaaiaacYcaaaa@52C2@   (9)

where the operators on the left-hand sides of the equations act on variables x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@ , and on the right-hand sides, on x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaqbaaaa@3847@ .

Now we write Eqs.(8) and (9) explicitly,

( x+ itћ m x + k t 3 3m )K( x, x ,t )= x K( x, x ,t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhacqGHRaWkdaWcaaWdaeaapeGaamyAaiaa dshacaWGBraapaqaa8qacaWGTbaaamaalaaapaqaa8qacqGHciITa8 aabaWdbiabgkGi2kaadIhaaaGaey4kaSYaaSaaa8aabaWdbiaadUga caWG0bWdamaaCaaaleqabaWdbiaaiodaaaaak8aabaWdbiaaiodaca WGTbaaaaGaayjkaiaawMcaaiaadUeadaqadaWdaeaapeGaamiEaiaa cYcaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGaayzkaaGaey ypa0JabmiEa8aagaqba8qacaWGlbWaaeWaa8aabaWdbiaadIhacaGG SaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjkaiaawMcaaiaacY caaaa@597D@   (10)

( iћ x k t 2 2 )K( x, x ,t )=iћ K( x, x ,t ) x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiaadMgacaWGBrWaaSaaa8aabaWdbiab gkGi2cWdaeaapeGaeyOaIyRaamiEaaaacqGHsisldaWcaaWdaeaape Gaam4AaiaadshapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGa aGOmaaaaaiaawIcacaGLPaaacaWGlbWaaeWaa8aabaWdbiaadIhaca GGSaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjkaiaawMcaaiab g2da9iaadMgacaWGBrWaaSaaa8aabaWdbiabgkGi2kaadUeadaqada WdaeaapeGaamiEaiaacYcaceWG4bWdayaafaWdbiaacYcacaWG0baa caGLOaGaayzkaaaapaqaa8qacqGHciITceWG4bWdayaafaaaaaaa@5995@ .  (11)

By modifying Eqs.(10) and (11), the system of equation for deriving the propagator are

K( x, x ,t ) x =[ im( x x ) ћt + ik t 2 3ћ ]K( x, x ,t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadUeadaqadaWdaeaapeGaamiEaiaa cYcaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGaayzkaaaapa qaa8qacqGHciITcaWG4baaaiabg2da9maadmaapaqaa8qadaWcaaWd aeaapeGaamyAaiaad2gadaqadaWdaeaapeGaamiEaiabgkHiTiqadI hapaGbauaaa8qacaGLOaGaayzkaaaapaqaa8qacaWGBrGaamiDaaaa cqGHRaWkdaWcaaWdaeaapeGaamyAaiaadUgacaWG0bWdamaaCaaale qabaWdbiaaikdaaaaak8aabaWdbiaaiodacaWGBraaaaGaay5waiaa w2faaiaadUeadaqadaWdaeaapeGaamiEaiaacYcaceWG4bWdayaafa WdbiaacYcacaWG0baacaGLOaGaayzkaaGaaiilaaaa@5C78@   (12)

K( x, x ,t ) x =[ im( x x ) ћt + ik t 2 6ћ ]K( x, x ,t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadUeadaqadaWdaeaapeGaamiEaiaa cYcaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGaayzkaaaapa qaa8qacqGHciITceWG4bWdayaafaaaa8qacqGH9aqpdaWadaWdaeaa peGaeyOeI0YaaSaaa8aabaWdbiaadMgacaWGTbWaaeWaa8aabaWdbi aadIhacqGHsislceWG4bWdayaafaaapeGaayjkaiaawMcaaaWdaeaa peGaam4weiaadshaaaGaey4kaSYaaSaaa8aabaWdbiaadMgacaWGRb GaamiDa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaI2aGa am4weaaaaiaawUfacaGLDbaacaWGlbWaaeWaa8aabaWdbiaadIhaca GGSaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjkaiaawMcaaiaa c6caaaa@5D95@   (13)

Now one can integrate Eq. (12) with respect to the variable x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@  to obtain

K( x, x ,t )=C( x ,t )expexp[ i ћ ( m ( x x ) 2 2ћ + k t 2 3 x ) ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaeWaa8aaba WdbiqadIhapaGbauaapeGaaiilaiaadshaaiaawIcacaGLPaaaciGG LbGaaiiEaiaacchaciGGLbGaaiiEaiaacchadaWadaWdaeaapeWaaS aaa8aabaWdbiaadMgaa8aabaWdbiaadUfbaaWaaeWaa8aabaWdbmaa laaapaqaa8qacaWGTbWaaeWaa8aabaWdbiaadIhacqGHsislceWG4b WdayaafaaapeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaa aaGcpaqaa8qacaaIYaGaam4weaaacqGHRaWkdaWcaaWdaeaapeGaam 4AaiaadshapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaG4m aaaacaWG4baacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiilaaaa@5F3C@   (14)

Substituting Eq.(14) into Eq.(13), we obtain the differential equation for C( x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qaceWG4bWdayaafaWdbiaacYcacaWG0baa caGLOaGaayzkaaaaaa@3C70@ as

C( x ,t ) x =( ik t 2 6ћ )C( x ,t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadoeadaqadaWdaeaapeGabmiEa8aa gaqba8qacaGGSaGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaeyOaIy RabmiEa8aagaqbaaaapeGaeyypa0ZaaeWaa8aabaWdbmaalaaapaqa a8qacaWGPbGaam4AaiaadshapaWaaWbaaSqabeaapeGaaGOmaaaaaO WdaeaapeGaaGOnaiaadUfbaaaacaGLOaGaayzkaaGaam4qamaabmaa paqaa8qaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGaayzkaa GaaiOlaaaa@4F2E@   (15)

Solving Eq.(15), the function C( x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qaceWG4bWdayaafaWdbiaacYcacaWG0baa caGLOaGaayzkaaaaaa@3C70@ can be expressed as

C( x ,t )=C( t )expexp[ ik t 2 6ћ x ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qaceWG4bWdayaafaWdbiaacYcacaWG0baa caGLOaGaayzkaaGaeyypa0Jaam4qamaabmaapaqaa8qacaWG0baaca GLOaGaayzkaaGaciyzaiaacIhacaGGWbGaciyzaiaacIhacaGGWbWa amWaa8aabaWdbmaalaaapaqaa8qacaWGPbGaam4AaiaadshapaWaaW baaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOnaiaadUfbaaGabmiE a8aagaqbaaWdbiaawUfacaGLDbaacaGGUaaaaa@505B@   (16)

So, the propagator in Eq.(14) can be written as

K( x, x ,t )=C( t )expexp[ i ћ ( m ( x x ) 2 2t + k t 2 3 x+ k t 2 6 x ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaeWaa8aaba WdbiaadshaaiaawIcacaGLPaaaciGGLbGaaiiEaiaacchaciGGLbGa aiiEaiaacchadaWadaWdaeaapeWaaSaaa8aabaWdbiaadMgaa8aaba WdbiaadUfbaaWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGTbWaaeWa a8aabaWdbiaadIhacqGHsislceWG4bWdayaafaaapeGaayjkaiaawM caa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaamiD aaaacqGHRaWkdaWcaaWdaeaapeGaam4AaiaadshapaWaaWbaaSqabe aapeGaaGOmaaaaaOWdaeaapeGaaG4maaaacaWG4bGaey4kaSYaaSaa a8aabaWdbiaadUgacaWG0bWdamaaCaaaleqabaWdbiaaikdaaaaak8 aabaWdbiaaiAdaaaGabmiEa8aagaqbaaWdbiaawIcacaGLPaaaaiaa wUfacaGLDbaacaGGUaaaaa@638E@   (17)

To obtain C( t ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiilaaaa @3B47@ we must substitute the propagator of Eq. (17) into the Schrodinger’s equation

iћ K( x, x ,t ) t =( ћ 2 2m 2 K( x, x ,t ) x 2 ktxK( x, x ,t ) ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaapeGaaiilaiaadshaaiaawI cacaGLPaaaa8aabaWdbiabgkGi2kaadshaaaGaeyypa0ZaaeWaa8aa baWdbiabgkHiTmaalaaapaqaa8qacaWGBrWdamaaCaaaleqabaWdbi aaikdaaaaak8aabaWdbiaaikdacaWGTbaaamaalaaapaqaa8qacqGH ciITpaWaaWbaaSqabeaapeGaaGOmaaaakiaadUeadaqadaWdaeaape GaamiEaiaacYcaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGa ayzkaaaapaqaa8qacqGHciITcaWG4bWdamaaCaaaleqabaWdbiaaik daaaaaaOGaeyOeI0Iaam4AaiaadshacaWG4bGaam4samaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaapeGaaiilaiaadshaaiaawI cacaGLPaaaaiaawIcacaGLPaaacaGGUaaaaa@6443@   (18)

After some algebra, we obtain an equation

dC( t ) dt =( 1 2t + i k 2 t 4 18ћm )C( t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgacaWGdbWaaeWaa8aabaWdbiaadshaaiaa wIcacaGLPaaaa8aabaWdbiaadsgacaWG0baaaiabg2da9iabgkHiTm aabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaiaa dshaaaGaey4kaSYaaSaaa8aabaWdbiaadMgacaWGRbWdamaaCaaale qabaWdbiaaikdaaaGccaWG0bWdamaaCaaaleqabaWdbiaaisdaaaaa k8aabaWdbiaaigdacaaI4aGaam4weiaad2gaaaaacaGLOaGaayzkaa Gaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiOlaaaa @51A5@   (19)

Equation (19) can be simply integrated with respect to time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaaaa@3828@ ,and one obtains

C( t )= C t expexp( i ћ k 2 t 5 90m ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiaadoeaa8aabaWdbmaakaaapaqaa8qacaWG0baale qaaaaakiGacwgacaGG4bGaaiiCaiGacwgacaGG4bGaaiiCamaabmaa paqaa8qacqGHsisldaWcaaWdaeaapeGaamyAaaWdaeaapeGaam4wea aadaWcaaWdaeaapeGaam4Aa8aadaahaaWcbeqaa8qacaaIYaaaaOGa amiDa8aadaahaaWcbeqaa8qacaaI1aaaaaGcpaqaa8qacaaI5aGaaG imaiaad2gaaaaacaGLOaGaayzkaaGaaiilaaaa@4FD9@   (20)

where C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaaaa@37F7@  is a constant. Substituting Eq.(20) into Eq.(17) and applying the initial condition

lim t 0 + K( x, x ,t )=δ( x x ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaacMgacaGGTbWdamaaBaaaleaapeGaamiDaiabgkziUkaa icdapaWaaWbaaWqabeaapeGaey4kaScaaaWcpaqabaGcpeGaam4sam aabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGaaiilaiaa dshaaiaawIcacaGLPaaacqGH9aqpcqaH0oazdaqadaWdaeaapeGaam iEaiabgkHiTiqadIhapaGbauaaa8qacaGLOaGaayzkaaGaaiilaaaa @4E58@   (21)

we obtain

C= m 2πiћ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGaamyBaaWd aeaapeGaaGOmaiabec8aWjaadMgacaWGBraaaaWcbeaakiaac6caaa a@3F7E@   (22)

So, the propagator for a particle moving in time-dependent linear potential is

K( x, x ,t )= m 2πiћt expexp[ i ћ ( m ( x x ) 2 2t + k t 2 3 x+ k t 2 6 x k 2 t 5 90m ) ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiaadshaaiaawIcacaGLPaaacqGH9aqpdaGcaaWdaeaapeWaaS aaa8aabaWdbiaad2gaa8aabaWdbiaaikdacqaHapaCcaWGPbGaam4w eiaadshaaaaaleqaaOGaciyzaiaacIhacaGGWbGaciyzaiaacIhaca GGWbWaamWaa8aabaWdbmaalaaapaqaa8qacaWGPbaapaqaa8qacaWG Braaamaabmaapaqaa8qadaWcaaWdaeaapeGaamyBamaabmaapaqaa8 qacaWG4bGaeyOeI0IabmiEa8aagaqbaaWdbiaawIcacaGLPaaapaWa aWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOmaiaadshaaaGaey 4kaSYaaSaaa8aabaWdbiaadUgacaWG0bWdamaaCaaaleqabaWdbiaa ikdaaaaak8aabaWdbiaaiodaaaGaamiEaiabgUcaRmaalaaapaqaa8 qacaWGRbGaamiDa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qa caaI2aaaaiqadIhapaGbauaapeGaeyOeI0YaaSaaa8aabaWdbiaadU gapaWaaWbaaSqabeaapeGaaGOmaaaakiaadshapaWaaWbaaSqabeaa peGaaGynaaaaaOWdaeaapeGaaGyoaiaaicdacaWGTbaaaaGaayjkai aawMcaaaGaay5waiaaw2faaiaacYcaaaa@6EA5@   (23)

which is the same form as the result of S.Pepore and B.Sukbot calculated by the Schwinger method.6

The propagator for a free particle with linear damping

This section is the calculation of the propagator for a free particle with linear damping by the application of integrals of motion operators. Considering the motion of a free particle with constant mass  in a linear damping which has the damping coefficient β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@38D0@ , the Hamiltonian operator of this system can be written as10

H ̂ ( t )= e γt p ̂ 2 2m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaWGLb WdamaaCaaaleqabaWdbiabgkHiTiabeo7aNjaadshaaaGcpaWaaCbi aeaapeGaamiCaaWcpaqabeaapeGaeSOadqcaaOWdamaaCaaaleqaba Wdbiaaikdaaaaak8aabaWdbiaaikdacaWGTbaaaiaacYcaaaa@479A@   (24)

Where γ= β m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyypa0ZaaSaaa8aabaWdbiabek7aIbWdaeaapeGaamyB aaaacaGGUaaaaa@3D6F@

The Hamilton equation of motion for position and momentum are11

x ˙ = p m e γt , p ˙ =0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaGaa8qacqGH9aqpdaWcaaWdaeaapeGaamiCaaWdaeaa peGaamyBaaaacaWGLbWdamaaCaaaleqabaWdbiabgkHiTiabeo7aNj aadshaaaGccaGGSaGabmiCa8aagaGaa8qacqGH9aqpcaaIWaGaaiOl aaaa@449B@   (25)

The classical paths in the phase space under the initial conditions x( 0 )= x 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaeyypa0Ja amiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3DA5@ and p( 0 )= p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaeyypa0Ja amiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3D95@ are given by

x( t )= x 0 + ( 1 e γt ) mγ p 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWkdaWcaa WdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaa leqabaWdbiabgkHiTiabeo7aNjaadshaaaaakiaawIcacaGLPaaaa8 aabaWdbiaad2gacqaHZoWzaaGaamiCa8aadaWgaaWcbaWdbiaaicda a8aabeaak8qacaGGSaaaaa@4CB7@   (26)

p( t )= p 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGUaaaaa@3EA0@   (27)

Now we rewrite the systems of Eqs. (26) and (27) in terms of the initial position operator x ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaaaaa@3A6C@  and initial momentum operator p ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaaaaa@3A64@  5as

x ̂ 0 ( x ̂ , p ̂ ,t )= x ̂ [ 1 e γt mγ ] p ̂ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWaaCbiaeaapeGaamiEaa WcpaqabeaapeGaeSOadqcaaOGaaiila8aadaWfGaqaa8qacaWGWbaa l8aabeqaa8qacqWIcmajaaGccaGGSaGaamiDaaGaayjkaiaawMcaai abg2da98aadaWfGaqaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGc cqGHsisldaWadaWdaeaapeWaaSaaa8aabaWdbiaaigdacqGHsislca WGLbWdamaaCaaaleqabaWdbiabgkHiTiabeo7aNjaadshaaaaak8aa baWdbiaad2gacqaHZoWzaaaacaGLBbGaayzxaaWdamaaxacabaWdbi aadchaaSWdaeqabaWdbiablkWaKaaakiaacYcaaaa@5588@   (28)

p ̂ 0 ( x ̂ , p ̂ ,t )= p ̂ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWaaCbiaeaapeGaamiEaa WcpaqabeaapeGaeSOadqcaaOGaaiila8aadaWfGaqaa8qacaWGWbaa l8aabeqaa8qacqWIcmajaaGccaGGSaGaamiDaaGaayjkaiaawMcaai abg2da98aadaWfGaqaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGc caGGUaaaaa@46E0@   (29)

The operators x ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaaaaa@3A6C@  and p ̂ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaaaaa@3A64@  are the integrals of the motion because theirs satisfy Eq.(7). Then these operators must satisfy Eqs.(8), (9), and ( x+iћ( 1 e γt mγ ) x )K( x, x ,t )= x K( x, x ,t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhacqGHRaWkcaWGPbGaam4wemaabmaapaqa a8qadaWcaaWdaeaapeGaaGymaiabgkHiTiaadwgapaWaaWbaaSqabe aapeGaeyOeI0Iaeq4SdCMaamiDaaaaaOWdaeaapeGaamyBaiabeo7a NbaaaiaawIcacaGLPaaadaWcaaWdaeaapeGaeyOaIylapaqaa8qacq GHciITcaWG4baaaaGaayjkaiaawMcaaiaadUeadaqadaWdaeaapeGa amiEaiaacYcaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGaay zkaaGaeyypa0JabmiEa8aagaqba8qacaWGlbWaaeWaa8aabaWdbiaa dIhacaGGSaGabmiEa8aagaqba8qacaGGSaGaamiDaaGaayjkaiaawM caaiaacYcaaaa@5C6D@   (30)

iћ K( x, x ,t ) x =iћ K( x, x ,t ) x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaa bmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGaaiilaiaads haaiaawIcacaGLPaaaa8aabaWdbiabgkGi2kaadIhaaaGaeyypa0Ja amyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaabmaapaqaa8 qacaWG4bGaaiilaiqadIhapaGbauaapeGaaiilaiaadshaaiaawIca caGLPaaaa8aabaWdbiabgkGi2kqadIhapaGbauaaaaWdbiaac6caaa a@53BD@   (31)

By modifying Eqs.(30) and (31), the system of equation for calculating the propagator are

K( x, x ,t ) x =[ imγ( x x ) ћ( 1 e γt ) ]K( x, x ,t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadUeadaqadaWdaeaapeGaamiEaiaa cYcaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGaayzkaaaapa qaa8qacqGHciITcaWG4baaaiabg2da9maadmaapaqaa8qadaWcaaWd aeaapeGaamyAaiaad2gacqaHZoWzdaqadaWdaeaapeGaamiEaiabgk HiTiqadIhapaGbauaaa8qacaGLOaGaayzkaaaapaqaa8qacaWGBrWa aeWaa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbi abgkHiTiabeo7aNjaadshaaaaakiaawIcacaGLPaaaaaaacaGLBbGa ayzxaaGaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbau aapeGaaiilaiaadshaaiaawIcacaGLPaaacaGGSaaaaa@5E89@   (32)

K( x, x ,t ) x =[ imγ( x x ) ћ( 1 e γt ) ]K( x, x ,t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadUeadaqadaWdaeaapeGaamiEaiaa cYcaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGaayzkaaaapa qaa8qacqGHciITceWG4bWdayaafaaaa8qacqGH9aqpcqGHsisldaWa daWdaeaapeWaaSaaa8aabaWdbiaadMgacaWGTbGaeq4SdC2aaeWaa8 aabaWdbiaadIhacqGHsislceWG4bWdayaafaaapeGaayjkaiaawMca aaWdaeaapeGaam4wemaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyza8 aadaahaaWcbeqaa8qacqGHsislcqaHZoWzcaWG0baaaaGccaGLOaGa ayzkaaaaaaGaay5waiaaw2faaiaadUeadaqadaWdaeaapeGaamiEai aacYcaceWG4bWdayaafaWdbiaacYcacaWG0baacaGLOaGaayzkaaGa aiOlaaaa@5FA3@   (33)

Now one can integrate Eq.(32) with respect to the variable x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@  to obtain

K( x, x ,t )=C( x ,t )expexp[ i ћ ( mγ 1 e γt ( x 2 2 x x ) ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaeWaa8aaba WdbiqadIhapaGbauaapeGaaiilaiaadshaaiaawIcacaGLPaaaciGG LbGaaiiEaiaacchaciGGLbGaaiiEaiaacchadaWadaWdaeaapeWaaS aaa8aabaWdbiaadMgaa8aabaWdbiaadUfbaaWaaeWaa8aabaWdbmaa laaapaqaa8qacaWGTbGaeq4SdCgapaqaa8qacaaIXaGaeyOeI0Iaam yza8aadaahaaWcbeqaa8qacqGHsislcqaHZoWzcaWG0baaaaaakmaa bmaapaqaa8qadaWcaaWdaeaapeGaamiEa8aadaahaaWcbeqaa8qaca aIYaaaaaGcpaqaa8qacaaIYaaaaiabgkHiTiaadIhaceWG4bWdayaa faaapeGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faai aac6caaaa@61DC@    (34)

Substituting Eq.(34) into Eq.(33), we obtain the differential equation for C( x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qaceWG4bWdayaafaWdbiaacYcacaWG0baa caGLOaGaayzkaaaaaa@3C70@   as

C( x ,t ) x = i ћ ( mγ 1 e γt ) x C( x ,t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadoeadaqadaWdaeaapeGabmiEa8aa gaqba8qacaGGSaGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaeyOaIy RabmiEa8aagaqbaaaapeGaeyypa0ZaaSaaa8aabaWdbiaadMgaa8aa baWdbiaadUfbaaWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGTbGaeq 4SdCgapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8qa cqGHsislcqaHZoWzcaWG0baaaaaaaOGaayjkaiaawMcaaiqadIhapa GbauaapeGaam4qamaabmaapaqaa8qaceWG4bWdayaafaWdbiaacYca caWG0baacaGLOaGaayzkaaGaaiOlaaaa@55F7@   (35)

Solving Eq.(35), the function C( x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qaceWG4bWdayaafaWdbiaacYcacaWG0baa caGLOaGaayzkaaaaaa@3C70@ can be express as

C( x ,t )=C( t )exp[ i 2ћ ( mγ 1 e γt ) x 2 ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qaceWG4bWdayaafaWdbiaacYcacaWG0baa caGLOaGaayzkaaGaeyypa0Jaam4qamaabmaapaqaa8qacaWG0baaca GLOaGaayzkaaGaciyzaiaacIhacaGGWbWaamWaa8aabaWdbmaalaaa paqaa8qacaWGPbaapaqaa8qacaaIYaGaam4weaaadaqadaWdaeaape WaaSaaa8aabaWdbiaad2gacqaHZoWza8aabaWdbiaaigdacqGHsisl caWGLbWdamaaCaaaleqabaWdbiabgkHiTiabeo7aNjaadshaaaaaaa GccaGLOaGaayzkaaGabmiEa8aagaqbamaaCaaaleqabaWdbiaaikda aaaakiaawUfacaGLDbaacaGGUaaaaa@5678@   (36)

So, the propagator in Eq.(34) can be written as

K( x, x ,t )=C( t )exp[ imγ ( x x ) 2 2ћ( 1 e γt ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaeWaa8aaba WdbiaadshaaiaawIcacaGLPaaaciGGLbGaaiiEaiaacchadaWadaWd aeaapeWaaSaaa8aabaWdbiaadMgacaWGTbGaeq4SdC2aaeWaa8aaba WdbiaadIhacqGHsislceWG4bWdayaafaaapeGaayjkaiaawMcaa8aa daahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaGaam4wemaabm aapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaaWcbeqaa8qacqGH sislcqaHZoWzcaWG0baaaaGccaGLOaGaayzkaaaaaaGaay5waiaaw2 faaiaac6caaaa@5B90@   (37)

To find C( t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiilaaaa @3B48@ we must substitute the propagator of Eq.(37) into the Schrodinger’s equation

iћ K( x, x ,t ) t = ћ 2 2m e γt 2 K( x, x ,t ) x 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaapeGaaiilaiaadshaaiaawI cacaGLPaaaa8aabaWdbiabgkGi2kaadshaaaGaeyypa0JaeyOeI0Ya aSaaa8aabaWdbiaadUfbpaWaaWbaaSqabeaapeGaaGOmaaaaaOWdae aapeGaaGOmaiaad2gaaaGaamyza8aadaahaaWcbeqaa8qacqGHsisl cqaHZoWzcaWG0baaaOWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbe qaa8qacaaIYaaaaOGaam4samaabmaapaqaa8qacaWG4bGaaiilaiqa dIhapaGbauaapeGaaiilaiaadshaaiaawIcacaGLPaaaa8aabaWdbi abgkGi2kaadIhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaGGUaaa aa@5C9F@   (38)

After some algebra, we obtain an equation

dC( t ) dt =[ γ e γt 2( 1 e γt ) ]C( t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgacaWGdbWaaeWaa8aabaWdbiaadshaaiaa wIcacaGLPaaaa8aabaWdbiaadsgacaWG0baaaiabg2da9iabgkHiTm aadmaapaqaa8qadaWcaaWdaeaapeGaeq4SdCMaamyza8aadaahaaWc beqaa8qacqGHsislcqaHZoWzcaWG0baaaaGcpaqaa8qacaaIYaWaae Waa8aabaWdbiaaigdacqGHsislcaWGLbWdamaaCaaaleqabaWdbiab gkHiTiabeo7aNjaadshaaaaakiaawIcacaGLPaaaaaaacaGLBbGaay zxaaGaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiOl aaaa@556B@   (39)

Equation (39) can be simply integrated with respect to time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaaaa@3828@ , and one obtains

C( t )= C 1 e γt , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Za aSaaa8aabaWdbiaadoeaa8aabaWdbmaakaaapaqaa8qacaaIXaGaey OeI0Iaamyza8aadaahaaWcbeqaa8qacqGHsislcqaHZoWzcaWG0baa aaqabaaaaOGaaiilaaaa@4408@   (40)

where C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaaaa@37F7@  is a constant. Substituting Eq.(40) into Eq.(37) and applying the initial condition of Eq.(21), we obtain

C= m 2πiћ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGaamyBaaWd aeaapeGaaGOmaiabec8aWjaadMgacaWGBraaaaWcbeaakiaac6caaa a@3F7E@   (41)

So, the propagator for a free particle with linear damping is

K( x, x ,t )= mγ 2πiћ( 1 e γt ) exp( imγ ( x x ) 2 2ћ( 1 e γt ) ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiaadshaaiaawIcacaGLPaaacqGH9aqpdaGcaaWdaeaapeWaaS aaa8aabaWdbiaad2gacqaHZoWza8aabaWdbiaaikdacqaHapaCcaWG PbGaam4wemaabmaapaqaa8qacaaIXaGaeyOeI0Iaamyza8aadaahaa Wcbeqaa8qacqGHsislcqaHZoWzcaWG0baaaaGccaGLOaGaayzkaaaa aaWcbeaakiGacwgacaGG4bGaaiiCamaabmaapaqaa8qadaWcaaWdae aapeGaamyAaiaad2gacqaHZoWzdaqadaWdaeaapeGaamiEaiabgkHi TiqadIhapaGbauaaa8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbi aaikdaaaaak8aabaWdbiaaikdacaWGBrWaaeWaa8aabaWdbiaaigda cqGHsislcaWGLbWdamaaCaaaleqabaWdbiabgkHiTiabeo7aNjaads haaaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaGaaiOlaaaa@6751@   (42)

The propagator for a charged harmonic oscillator in time-dependent electric field

The aim of this section is to derive the propagator for a charged harmonic oscillator in time-dependent electric field by Feynman path integral method.1 Considering the motion of a charged harmonic oscillator which has mass m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaaaa@3821@  and positive charge q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCaaaa@3825@  moving in time-dependent electric field Ecost, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiaadogacaWGVbGaam4CamXvP5wqSX2qVrwzqf2zLnharyqt HX2z15gih9gDOL2yaGqbciaa=zsicaWG0bGaaiilaaaa@480B@ the Lagrangian of this system can be written as

L= 1 2 m x ˙ 2 1 2 m ω 2 x 2 qEcostx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamitaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaa aiaad2gaceWG4bWdayaacaWaaWbaaSqabeaapeGaaGOmaaaakiabgk HiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaaaiaad2gacqaH jpWDpaWaaWbaaSqabeaapeGaaGOmaaaakiaadIhapaWaaWbaaSqabe aapeGaaGOmaaaakiabgkHiTiaadghacaWGfbGaam4yaiaad+gacaWG ZbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8 NjHiaadshacaWG4baaaa@5973@ .  (43)

By using the Euler-Lagrange equation for the Lagrangian in Eq.(43), the equation of motion can be written as

x ¨ + ω 2 x+qEcost=0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaWaa8qacqGHRaWkcqaHjpWDpaWaaWbaaSqabeaapeGa aGOmaaaakiaadIhacqGHRaWkcaWGXbGaamyraiaadogacaWGVbGaam 4CamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbciaa =zsicaWG0bGaeyypa0JaaGimaiaac6caaaa@5189@   (44)

The general solution of Eq.(44) is

x( t )=Acosωt+Bsinωt+ qE ( 2 ω 2 ) cost, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyqaiaadogacaWGVbGaam4CaiabeM8a3jaadshacqGHRaWkcaWGcb Gaam4CaiaadMgacaWGUbGaeqyYdCNaamiDaiabgUcaRmaalaaapaqa a8qacaWGXbGaamyraaWdaeaapeWaaeWaa8aabaWexLMBbXgBd9gzLb vyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiWdbiaa=zsipaWaaWbaaSqa beaapeGaaGOmaaaakiabgkHiTiabeM8a39aadaahaaWcbeqaa8qaca aIYaaaaaGccaGLOaGaayzkaaaaaiaadogacaWGVbGaam4Caiaa=zsi caWG0bGaaiilaaaa@63CB@   (45)

Where A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqaaaa@37F5@  and B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaaaa@37F6@  are constants. The constants A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqaaaa@37F5@ and B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaaaa@37F6@ in Eq.(45) can be determined by imposing the boundary conditions of x( t )= x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qaceWG0bWdayaafaaapeGaayjkaiaawMca aiabg2da9iqadIhapaGbauaaaaa@3D16@ and x( t '' )= x '' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaaGccaGLOaGaayzkaaGaeyypa0JaamiEa8aadaahaaWcbe qaa8qacaGGNaGaai4jaaaaaaa@401E@ . The classical path that connects the point of ( x ' , t ' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhapaWaaWbaaSqabeaapeGaai4jaiaacEca aaGccaGGSaGaamiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaaaO GaayjkaiaawMcaaaaa@3ED4@  and ( x '' , t '' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhapaWaaWbaaSqabeaapeGaai4jaiaacEca aaGccaGGSaGaamiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaaaO GaayjkaiaawMcaaaaa@3ED4@  can be written as

x cl ( t )=[ sinω( t t ) sinωT ] x '' [ sinω( t t '' ) sinωT ] x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaadogacaWGSbaapaqabaGcpeWaaeWa a8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqpdaWadaWdaeaape WaaSaaa8aabaWdbiaadohacaWGPbGaamOBaiabeM8a3naabmaapaqa a8qacaWG0bGaeyOeI0IabmiDa8aagaqbaaWdbiaawIcacaGLPaaaa8 aabaWdbiaadohacaWGPbGaamOBaiabeM8a3jaadsfaaaaacaGLBbGa ayzxaaGaamiEa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaakiabgk HiTmaadmaapaqaa8qadaWcaaWdaeaapeGaam4CaiaadMgacaWGUbGa eqyYdC3aaeWaa8aabaWdbiaadshacqGHsislcaWG0bWdamaaCaaale qabaWdbiaacEcacaGGNaaaaaGccaGLOaGaayzkaaaapaqaa8qacaWG ZbGaamyAaiaad6gacqaHjpWDcaWGubaaaaGaay5waiaaw2faaiqadI hapaGbauaaaaa@66BB@  

qE ( 2 ω 2 )sinωT [ cos t '' sinω( t+ t )cos t sinω( t+ t '' )sinωTcost ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadghacaWGfbaapaqaa8qadaqadaWd aeaatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuGape Gaa8NjH8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyOeI0IaeqyYdC3d amaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaacaWGZbGaam yAaiaad6gacqaHjpWDcaWGubaaamaadmaapaqaa8qacaWGJbGaam4B aiaadohacaWFMeIaamiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaa aakiaadohacaWGPbGaamOBaiabeM8a3naabmaapaqaa8qacaWG0bGa ey4kaSIabmiDa8aagaqbaaWdbiaawIcacaGLPaaacqGHsislcaWGJb Gaam4BaiaadohacaWFMeIabmiDa8aagaqba8qacaWGZbGaamyAaiaa d6gacqaHjpWDdaqadaWdaeaapeGaamiDaiabgUcaRiaadshapaWaaW baaSqabeaapeGaai4jaiaacEcaaaaakiaawIcacaGLPaaacqGHsisl caWGZbGaamyAaiaad6gacqaHjpWDcaWGubGaam4yaiaad+gacaWGZb Gaa8NjHiaadshaaiaawUfacaGLDbaacaGGUaaaaa@7F91@   (46)

The action can be calculated from the time-integration of the Lagrangian from t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiDa8aagaqbaaaa@3843@  to t " MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaahaa Wcbeqaaiaackcaaaaaaa@38DB@

S( x '' , t '' ; x , t )= t t '' L( x ˙ ,x,t)dt. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uamaabmaapaqaa8qacaWG4bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiaadshapaWaaWbaaSqabeaapeGaai4jaiaacE caaaGccaGG7aGabmiEa8aagaqba8qacaGGSaGabmiDa8aagaqbaaWd biaawIcacaGLPaaacqGH9aqpdaGfWbqabSWdaeaapeGabmiDa8aaga qbaaqaa8qacaWG0bWdamaaCaaameqabaWdbiaacEcacaGGNaaaaaqd paqaa8qacqGHRiI8aaGccaWGmbGaaiikaiqadIhapaGbaiaapeGaai ilaiaadIhacaGGSaGaamiDaiaacMcacaWGKbGaamiDaiaac6caaaa@5420@   (47)

For the action of our system, the Lagrangian in Eq.(43) is substituted into Eq.(47), and then integrated by parts of the first term on the right hand side of Eq.(43) and using the equation of motion in Eq.(44).

          The classical action can be written as

S cl ( x '' , t '' ; x , t )= m 2 ( x cl '' x ˙ cl '' x cl ' x ˙ cl ' ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadogacaWGSbaapaqabaGcpeWaaeWa a8aabaWdbiaadIhapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaGcca GGSaGaamiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaakiaacUda ceWG4bWdayaafaWdbiaacYcaceWG0bWdayaafaaapeGaayjkaiaawM caaiabg2da9maalaaapaqaa8qacaWGTbaapaqaa8qacaaIYaaaamaa bmaapaqaa8qacaWG4bWdamaaDaaaleaapeGaam4yaiaadYgaa8aaba WdbiaacEcacaGGNaaaaOGabmiEa8aagaGaamaaDaaaleaapeGaam4y aiaadYgaa8aabaWdbiaacEcacaGGNaaaaOGaeyOeI0IaamiEa8aada qhaaWcbaWdbiaadogacaWGSbaapaqaa8qacaGGNaaaaOGabmiEa8aa gaGaamaaDaaaleaapeGaam4yaiaadYgaa8aabaWdbiaacEcaaaaaki aawIcacaGLPaaacaGGUaaaaa@5D3E@   (48)

Substituting the classical paths of Eq.(46) into Eq.(48), the classical action becomes

S cl ( x '' , t '' ; x , t )= mω 2 cotωT( x '' 2 + x 2 ) mω sinωT x '' x + mqE 2( 2 ω 2 )sinωT [ ωcos t '' ( sin2ω t cosω( t '' + t ) )+ωcos t ( cos2ω t sinω( t '' + t ) ) +ωcotωT( cos t sin2ω t cos t '' sinω( t '' + t ) )+ωcosTcos t '' ] x '' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGtbWdamaaBaaaleaapeGaam4yaiaadYgaa8aabeaak8qa daqadaWdaeaapeGaamiEa8aadaahaaWcbeqaa8qacaGGNaGaai4jaa aakiaacYcacaWG0bWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOGa ai4oaiqadIhapaGbauaapeGaaiilaiqadshapaGbauaaa8qacaGLOa GaayzkaaGaeyypa0ZaaSaaa8aabaWdbiaad2gacqaHjpWDa8aabaWd biaaikdaaaGaam4yaiaad+gacaWG0bGaeqyYdCNaamivamaabmaapa qaa8qacaWG4bWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOWdamaa CaaaleqabaWdbiaaikdaaaGccqGHRaWkceWG4bWdayaafaWaaWbaaS qabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaiabgkHiTmaalaaapaqa a8qacaWGTbGaeqyYdChapaqaa8qacaWGZbGaamyAaiaad6gacqaHjp WDcaWGubaaaiaadIhapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaGc ceWG4bWdayaafaaapeqaaiabgUcaRmaalaaapaqaa8qacaWGTbGaam yCaiaadweaa8aabaWdbiaaikdadaqadaWdaeaatCvAUfeBSn0BKvgu HDwzZbqeg0uySDwDUbYrVrhAPngaiuGapeGaa8NjH8aadaahaaWcbe qaa8qacaaIYaaaaOGaeyOeI0IaeqyYdC3damaaCaaaleqabaWdbiaa ikdaaaaakiaawIcacaGLPaaacaWGZbGaamyAaiaad6gacqaHjpWDca WGubaaamaadmaapaabaeqabaWdbiabeM8a3jaadogacaWGVbGaam4C aiaa=zsicaWG0bWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOWaae Waa8aabaWdbiGacohacaGGPbGaaiOBaiaaikdacqaHjpWDceWG0bWd ayaafaWdbiabgkHiTiaadogacaWGVbGaam4CaiabeM8a3naabmaapa qaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOGaey4k aSIabmiDa8aagaqbaaWdbiaawIcacaGLPaaaaiaawIcacaGLPaaacq GHRaWkcqaHjpWDcaWGJbGaam4BaiaadohacaWFMeIabmiDa8aagaqb a8qadaqadaWdaeaapeGaci4yaiaac+gacaGGZbGaaGOmaiabeM8a3j qadshapaGbauaapeGaeyOeI0Iaam4CaiaadMgacaWGUbGaeqyYdC3a aeWaa8aabaWdbiaadshapaWaaWbaaSqabeaapeGaai4jaiaacEcaaa GccqGHRaWkceWG0bWdayaafaaapeGaayjkaiaawMcaaaGaayjkaiaa wMcaaaqaaiabgUcaRiabeM8a3jaadogacaWGVbGaamiDaiabeM8a3j aadsfadaqadaWdaeaapeGaam4yaiaad+gacaWGZbGaa8NjHiqadsha paGbauaapeGaci4CaiaacMgacaGGUbGaaGOmaiabeM8a3jqadshapa GbauaapeGaeyOeI0Iaam4yaiaad+gacaWGZbGaa8NjHiaadshapaWa aWbaaSqabeaapeGaai4jaiaacEcaaaGccaWGZbGaamyAaiaad6gacq aHjpWDdaqadaWdaeaapeGaamiDa8aadaahaaWcbeqaa8qacaGGNaGa ai4jaaaakiabgUcaRiqadshapaGbauaaa8qacaGLOaGaayzkaaaaca GLOaGaayzkaaGaey4kaSIaeqyYdCNaam4yaiaad+gacaWGZbGaa8Nj HiaadsfacaWGJbGaam4BaiaadohacaWFMeIaamiDa8aadaahaaWcbe qaa8qacaGGNaGaai4jaaaaaaGccaGLBbGaayzxaaGaamiEa8aadaah aaWcbeqaa8qacaGGNaGaai4jaaaaaaaa@F2DB@
  + mqE 2( 2 ω 2 )sinωT [ωcos t '' ( cos2ω t sin2ω t cotωTcosω( t '' + t )cscωT ) ωcos t ( cosω( t '' + t )sinω( t '' + t )cotωTcos2ω t '' ) +sin t sinωT+ωcosωTcos t sin t '' ] x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacqGHRaWkdaWcaaWdaeaapeGaamyBaiaadghacaWGfbaapaqa a8qacaaIYaWaaeWaa8aabaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNv NBGC0B0HwAJbacfiWdbiaa=zsipaWaaWbaaSqabeaapeGaaGOmaaaa kiabgkHiTiabeM8a39aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOa GaayzkaaGaam4CaiaadMgacaWGUbGaeqyYdCNaamivaaaacaGGBbGa eqyYdCNaam4yaiaad+gacaWGZbGaa8NjHiaadshapaWaaWbaaSqabe aapeGaai4jaiaacEcaaaGcdaqadaWdaeaapeGaci4yaiaac+gacaGG ZbGaaGOmaiabeM8a3jqadshapaGbauaapeGaeyOeI0Iaci4CaiaacM gacaGGUbGaaGOmaiabeM8a3jqadshapaGbauaapeGaam4yaiaad+ga caWG0bGaeqyYdCNaamivaiabgkHiTiaadogacaWGVbGaam4CaiabeM 8a3naabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEcacaGG NaaaaOGaey4kaSIabmiDa8aagaqbaaWdbiaawIcacaGLPaaacaWGJb Gaam4CaiaadogacqaHjpWDcaWGubaacaGLOaGaayzkaaaabaGaeyOe I0IaeqyYdCNaam4yaiaad+gacaWGZbGaa8NjHiqadshapaGbauaape WaaeWaa8aabaWdbiaadogacaWGVbGaam4CaiabeM8a3naabmaapaqa a8qacaWG0bWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOGaey4kaS IabmiDa8aagaqbaaWdbiaawIcacaGLPaaacqGHsislcaWGZbGaamyA aiaad6gacqaHjpWDdaqadaWdaeaapeGaamiDa8aadaahaaWcbeqaa8 qacaGGNaGaai4jaaaakiabgUcaRiqadshapaGbauaaa8qacaGLOaGa ayzkaaGaam4yaiaad+gacaWG0bGaeqyYdCNaamivaiabgkHiTiGaco gacaGGVbGaai4CaiaaikdacqaHjpWDcaWG0bWdamaaCaaaleqabaWd biaacEcacaGGNaaaaaGccaGLOaGaayzkaaaabaGaey4kaSIaa8NjHi aadohacaWGPbGaamOBaiaa=zsiceWG0bWdayaafaWdbiaadohacaWG PbGaamOBaiabeM8a3jaadsfacqGHRaWkcqaHjpWDcaWGJbGaam4Bai aadohacqaHjpWDcaWGubGaam4yaiaad+gacaWGZbGaa8NjHiqadsha paGbauaapeGaeyOeI0Iaa8NjHiaadohacaWGPbGaamOBaiaa=zsica WG0bWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOGaaiyxaiqadIha paGbauaaaaaa@D3EF@
  + m q 2 E 2 2 ( 2 ω 2 ) 2 sin 2 ωT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaad2gacaWGXbWdamaaCaaaleqabaWd biaaikdaaaGccaWGfbWdamaaCaaaleqabaWdbiaaikdaaaaak8aaba WdbiaaikdadaqadaWdaeaatCvAUfeBSn0BKvguHDwzZbqeg0uySDwD UbYrVrhAPngaiuGapeGaa8NjH8aadaahaaWcbeqaa8qacaaIYaaaaO GaeyOeI0IaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaaakiaawIca caGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiGacohacaGGPbGaai OBa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeqyYdCNaamivaaaaaaa@57AE@ [ ω cos 2 t '' ( 2cosω t '' sinω t cosω( t '' + t )sin2ω t cos2ω t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaci4yaiaac+gacaGGZbWdamaaCaaaleqabaWdbiaaikda aaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGcca WFMeIaamiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaakmaabmaa paqaa8qacaaIYaGaam4yaiaad+gacaWGZbGaeqyYdCNaamiDa8aada ahaaWcbeqaa8qacaGGNaGaai4jaaaakiaadohacaWGPbGaamOBaiab eM8a3jqadshapaGbauaapeGaam4yaiaad+gacaWGZbGaeqyYdC3aae Waa8aabaWdbiaadshapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaGc cqGHRaWkceWG0bWdayaafaaapeGaayjkaiaawMcaaiabgkHiTiGaco hacaGGPbGaaiOBaiaaikdacqaHjpWDceWG0bWdayaafaWdbiGacoga caGGVbGaai4CaiaaikdacqaHjpWDceWG0bWdayaafaaapeGaayjkai aawMcaaiabgkHiTaaa@7461@
  ω cos 2 t ( 2sinω t '' cosω t cosω( t '' + t )sin2ω t '' cos2ω t )+ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaci4yaiaac+gacaGGZbWdamaaCaaaleqabaWdbiaaikda aaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGcca WFMeIabmiDa8aagaqba8qadaqadaWdaeaapeGaaGOmaiaadohacaWG PbGaamOBaiabeM8a3jaadshapaWaaWbaaSqabeaapeGaai4jaiaacE caaaGccaWGJbGaam4BaiaadohacqaHjpWDceWG0bWdayaafaWdbiaa dogacaWGVbGaam4CaiabeM8a3naabmaapaqaa8qacaWG0bWdamaaCa aaleqabaWdbiaacEcacaGGNaaaaOGaey4kaSIabmiDa8aagaqbaaWd biaawIcacaGLPaaacqGHsislciGGZbGaaiyAaiaac6gacaaIYaGaeq yYdCNaamiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaakiGacoga caGGVbGaai4CaiaaikdacqaHjpWDceWG0bWdayaafaaapeGaayjkai aawMcaaiabgUcaRaaa@7456@ sinωT( ( sin t '' +sin t )cos t sinω( t '' + t ) sin t '' cos t sin2ω t '' sin t cos t '' sin2ω t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamXvP5wqSX2qVr wzqf2zLnharyqtHX2z15gih9gDOL2yaGqbcabaaaaaaaaapeGaa8Nj HiaadohacaWGPbGaamOBaiabeM8a3jaadsfadaqadaWdaqaabeqaa8 qadaqadaWdaeaapeGaam4CaiaadMgacaWGUbGaa8NjHiaadshapaWa aWbaaSqabeaapeGaai4jaiaacEcaaaGccqGHRaWkcaWGZbGaamyAai aad6gacaWFMeIabmiDa8aagaqbaaWdbiaawIcacaGLPaaacaWGJbGa am4BaiaadohacaWFMeIabmiDa8aagaqba8qacaWGZbGaamyAaiaad6 gacqaHjpWDdaqadaWdaeaapeGaamiDa8aadaahaaWcbeqaa8qacaGG NaGaai4jaaaakiabgUcaRiqadshapaGbauaaa8qacaGLOaGaayzkaa GaeyOeI0cabaGaam4CaiaadMgacaWGUbGaa8NjHiaadshapaWaaWba aSqabeaapeGaai4jaiaacEcaaaGccaWGJbGaam4BaiaadohacaWFMe IabmiDa8aagaqba8qaciGGZbGaaiyAaiaac6gacaaIYaGaeqyYdCNa amiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaakiabgkHiTiaado hacaWGPbGaamOBaiaa=zsiceWG0bWdayaafaWdbiaadogacaWGVbGa am4Caiaa=zsicaWG0bWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaO Gaci4CaiaacMgacaGGUbGaaGOmaiabeM8a3jqadshapaGbauaaaaWd biaawIcacaGLPaaacqGHsislaaa@8E9D@
  ωcos t cos t '' ( ( sin2ω t '' sin2ω t )cosω( t '' + t ) ( cos2ω t '' +cos2ω t )sinωT ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdCNaam4yaiaad+gacaWGZbWexLMBbXgBd9gzLbvyNv2CaeHb nfgBNvNBGC0B0HwAJbacfiGaa8NjHiqadshapaGbauaapeGaam4yai aad+gacaWGZbGaa8NjHiaadshapaWaaWbaaSqabeaapeGaai4jaiaa cEcaaaGcdaqadaWdaqaabeqaa8qadaqadaWdaeaapeGaci4CaiaacM gacaGGUbGaaGOmaiabeM8a3jaadshapaWaaWbaaSqabeaapeGaai4j aiaacEcaaaGccqGHsislciGGZbGaaiyAaiaac6gacaaIYaGaeqyYdC NabmiDa8aagaqbaaWdbiaawIcacaGLPaaacaWGJbGaam4Baiaadoha cqaHjpWDdaqadaWdaeaapeGaamiDa8aadaahaaWcbeqaa8qacaGGNa Gaai4jaaaakiabgUcaRiqadshapaGbauaaa8qacaGLOaGaayzkaaGa eyOeI0cabaWaaeWaa8aabaWdbiGacogacaGGVbGaai4Caiaaikdacq aHjpWDcaWG0bWdamaaCaaaleqabaWdbiaacEcacaGGNaaaaOGaey4k aSIaci4yaiaac+gacaGGZbGaaGOmaiabeM8a3jqadshapaGbauaaa8 qacaGLOaGaayzkaaGaam4CaiaadMgacaWGUbGaeqyYdCNaamivaaaa caGLOaGaayzkaaaaaa@8403@   2 ( sin2 t '' +sin2 t ) sin 2 ωT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNB GC0B0HwAJbacfiWdbiaa=zsia8aabaWdbiaaikdaaaWaaeWaa8aaba WdbiGacohacaGGPbGaaiOBaiaaikdacaWFMeIaamiDa8aadaahaaWc beqaa8qacaGGNaGaai4jaaaakiabgUcaRiGacohacaGGPbGaaiOBai aaikdacaWFMeIabmiDa8aagaqbaaWdbiaawIcacaGLPaaaciGGZbGa aiyAaiaac6gapaWaaWbaaSqabeaapeGaaGOmaaaakiabeM8a3jaads faaaa@5A55@   (49)

The quadratic Lagrangian propagator can be separated into a pure function of time F( t '' , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiqadshapaGbauaaa8qacaGLOaGaayzkaaaaaa@3E1B@ and the exponential function of classical action S cl ( x '' , t '' ; x , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadogacaWGSbaapaqabaGcpeWaaeWa a8aabaWdbiaadIhapaWaaWbaaSqabeaapeGaai4jaiaacEcaaaGcca GGSaGaamiDa8aadaahaaWcbeqaa8qacaGGNaGaai4jaaaakiaacUda ceWG4bWdayaafaWdbiaacYcaceWG0bWdayaafaaapeGaayjkaiaawM caaaaa@45B5@ as suggested in Ref.1

K( x '' , t '' ; x , t )=F( t '' , t ) e i S cl ( x '' , t '' ; x , t )/ћ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiaadshapaWaaWbaaSqabeaapeGaai4jaiaacE caaaGccaGG7aGabmiEa8aagaqba8qacaGGSaGabmiDa8aagaqbaaWd biaawIcacaGLPaaacqGH9aqpcaWGgbWaaeWaa8aabaWdbiaadshapa WaaWbaaSqabeaapeGaai4jaiaacEcaaaGccaGGSaGabmiDa8aagaqb aaWdbiaawIcacaGLPaaacaWGLbWdamaaCaaaleqabaWdbiaadMgaca WGtbWdamaaBaaameaapeGaam4yaiaadYgaa8aabeaal8qadaqadaWd aeaapeGaamiEa8aadaahaaadbeqaa8qacaGGNaGaai4jaaaaliaacY cacaWG0bWdamaaCaaameqabaWdbiaacEcacaGGNaaaaSGaai4oaiqa dIhapaGbauaapeGaaiilaiqadshapaGbauaaa8qacaGLOaGaayzkaa Gaai4laiaadUfbaaaaaa@5D99@ .  (50)

Calculation of the function F( t '' , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiqadshapaGbauaaa8qacaGLOaGaayzkaaaaaa@3E1B@  presented by Pauli,12 Morette,13 or Jones and Papadoupoulos14 can be performed by the semi classical approximation of path integral formula

F( t '' , t )= 1 2πiћ | 2 S cl x x '' | MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiqadshapaGbauaaa8qacaGLOaGaayzkaaGaey ypa0ZaaOaaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaI YaGaeqiWdaNaamyAaiaadUfbaaWaaqWaa8aabaWdbmaalaaapaqaa8 qacqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaakiaadofapaWaaSba aSqaa8qacaWGJbGaamiBaaWdaeqaaaGcbaWdbiabgkGi2kqadIhapa GbauaapeGaeyOaIyRaamiEa8aadaahaaWcbeqaa8qacaGGNaGaai4j aaaaaaaakiaawEa7caGLiWoaaSqabaaaaa@5459@ .  (51)

By substituting the classical action of Eq.(49) into Eq.(51), the pre-exponential factor can be obtained as

F( t '' , t )= mω 2πiћsinωT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaa8qacaWG0bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiqadshapaGbauaaa8qacaGLOaGaayzkaaGaey ypa0ZaaOaaa8aabaWdbmaalaaapaqaa8qacaWGTbGaeqyYdChapaqa a8qacaaIYaGaeqiWdaNaamyAaiaadUfbcaWGZbGaamyAaiaad6gacq aHjpWDcaWGubaaaaWcbeaaaaa@4C32@ .  (52)

From Eqs.(49),(50) and (52), the propagator for a charged harmonic oscillator in time-dependent electric field can be expressed by

K( x '' , t '' ; x , t )= mω 2πiћsinωT e i S cl ( x '' , t '' ; x , t )/ћ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bWdamaaCaaaleqabaWdbiaacEca caGGNaaaaOGaaiilaiaadshapaWaaWbaaSqabeaapeGaai4jaiaacE caaaGccaGG7aGabmiEa8aagaqba8qacaGGSaGabmiDa8aagaqbaaWd biaawIcacaGLPaaacqGH9aqpdaGcaaWdaeaapeWaaSaaa8aabaWdbi aad2gacqaHjpWDa8aabaWdbiaaikdacqaHapaCcaWGPbGaam4weiaa dohacaWGPbGaamOBaiabeM8a3jaadsfaaaaaleqaaOGaamyza8aada ahaaWcbeqaa8qacaWGPbGaam4ua8aadaWgaaadbaWdbiaadogacaWG SbaapaqabaWcpeWaaeWaa8aabaWdbiaadIhapaWaaWbaaWqabeaape Gaai4jaiaacEcaaaWccaGGSaGaamiDa8aadaahaaadbeqaa8qacaGG NaGaai4jaaaaliaacUdaceWG4bWdayaafaWdbiaacYcaceWG0bWday aafaaapeGaayjkaiaawMcaaiaac+cacaWGBraaaaaa@63C8@ .  (53)

The procedures of the Schwinger method in calculating the non-relativistic propagator

Begin by considering a time-dependent Hamiltonian operator H ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BC9@ , the propagator is defined by

K( x, x ;t )=x| T ̂ exp( i ћ 0 t H ̂ ( t )dt )| x , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiaadshaaiaawIcacaGLPaaacqGH9aqpdaGhbaWdaeaapeGaam iEaaqabiaawMYicaGLhWoapaWaaCbiaeaapeGaamivaaWcpaqabeaa peGaeSOadqcaaOGaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiabgk HiTmaalaaapaqaa8qacaWGPbaapaqaa8qacaWGBraaamaawahabeWc paqaa8qacaaIWaaapaqaa8qacaWG0baan8aabaWdbiabgUIiYdaak8 aadaWfGaqaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcdaqadaWd aeaapeGaamiDaaGaayjkaiaawMcaaiaadsgacaWG0baacaGLOaGaay zkaaWaa4Haaeqapaqaa8qaceWG4bWdayaafaaapeGaay5bSlaawQYi aiaacYcaaaa@5C51@   (54)

where T ̂ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGubaal8aabeqaa8qacqWIcmajaaaaaa@392A@  is the time-ordering operator and |x,| x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa4Haaeqapaqaa8qacaWG4baacaGLhWUaayPkJaGaaiilamaaEiaa beWdaeaapeGabmiEa8aagaqbaaWdbiaawEa7caGLQmcaaaa@3F6E@  are the eigenvectors of the position operator x ̂ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaaaaa@394E@  (in the Schrodinger picture) with eigenvalues x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380C@  and x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaqbaaaa@3847@ , respectively.

The differential equation for the propagator in Eq.(54) can be written as

iћ K( x, x ;t ) t =x| H ̂ T ̂ exp( i ћ 0 t H ̂ ( t )dt )| x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaapeGaai4oaiaadshaaiaawI cacaGLPaaaa8aabaWdbiabgkGi2kaadshaaaGaeyypa0Zaa4raa8aa baWdbiaadIhaaeqacaGLPmIaay5bSdWdamaaxacabaWdbiaadIeaaS WdaeqabaWdbiablkWaKaaak8aadaWfGaqaa8qacaWGubaal8aabeqa a8qacqWIcmajaaGcciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaey OeI0YaaSaaa8aabaWdbiaadMgaa8aabaWdbiaadUfbaaWaaybCaeqa l8aabaWdbiaaicdaa8aabaWdbiaadshaa0WdaeaapeGaey4kIipaaO WdamaaxacabaWdbiaadIeaaSWdaeqabaWdbiablkWaKaaakmaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaGaamizaiaadshaaiaawIcaca GLPaaadaGhcaqab8aabaWdbiqadIhapaGbauaaa8qacaGLhWUaayPk JaGaaiOlaaaa@6450@   (55)

Applying the relation between the operators in the Heisenberg and Schrodinger pictures, we obtain the equation for the propagator in the Heisenberg picture

iћ K( x, x ;t ) t = x( t )| H ̂ ( x ̂ ( t ), p ̂ ( t ) ) | x ( 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaapeGaai4oaiaadshaaiaawI cacaGLPaaaa8aabaWdbiabgkGi2kaadshaaaGaeyypa0ZaaaWaa8aa baWdbiaadIhadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaamaaem aapaqaamaaxacabaWdbiaadIeaaSWdaeqabaWdbiablkWaKaaakmaa bmaapaqaamaaxacabaWdbiaadIhaaSWdaeqabaWdbiablkWaKaaakm aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiila8aadaWfGaqa a8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaapeGaam iDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiqa dIhapaGbauaapeWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaaai aawMYicaGLQmcacaGGSaaaaa@6023@   (56)

where | x( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa4Haaeqapaqaa8qacaWG4bWaaeWaa8aabaWdbiaadshaaiaawIca caGLPaaaaiaawEa7caGLQmcaaaa@3D82@  and | x ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa4Haaeqapaqaa8qaceWG4bWdayaafaWdbmaabmaapaqaa8qacaaI WaaacaGLOaGaayzkaaaacaGLhWUaayPkJaaaaa@3D6E@  are the eigenvectors of the operators x ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF9@  and x ̂ ( 0 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaaGimaaGaayjkaiaawMcaaiaacYcaaaa@3C6A@  respectively, with the corresponding eigenvalues x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382C@  and x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaqbaaaa@3847@ . Besides, x ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF9@ and p ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF1@  satisfy the Heisenberg equations

iћ d x ̂ ( t ) dt =[ x ̂ ( t ), H ̂ ],iћ d p ̂ ( t ) dt =[ p ̂ ( t ), H ̂ ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaamiza8aadaWfGaqaa8qacaWG 4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaapeGaamiDaaGaay jkaiaawMcaaaWdaeaapeGaamizaiaadshaaaGaeyypa0ZaamWaa8aa baWaaCbiaeaapeGaamiEaaWcpaqabeaapeGaeSOadqcaaOWaaeWaa8 aabaWdbiaadshaaiaawIcacaGLPaaacaGGSaWdamaaxacabaWdbiaa dIeaaSWdaeqabaWdbiablkWaKaaaaOGaay5waiaaw2faaiaacYcaca WGPbGaam4wemaalaaapaqaa8qacaWGKbWdamaaxacabaWdbiaadcha aSWdaeqabaWdbiablkWaKaaakmaabmaapaqaa8qacaWG0baacaGLOa Gaayzkaaaapaqaa8qacaWGKbGaamiDaaaacqGH9aqpdaWadaWdaeaa daWfGaqaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdae aapeGaamiDaaGaayjkaiaawMcaaiaacYcapaWaaCbiaeaapeGaamis aaWcpaqabeaapeGaeSOadqcaaaGccaGLBbGaayzxaaGaaiOlaaaa@617B@   (57)

The main idea of the Schwinger method consists in the following steps.

(1). The first step is solving the Heisenberg equations for x ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF9@  and p ̂ ( t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiaacYcaaaa@3CA1@  and writing the solution for p ̂ ( t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiaacYcaaaa@3CA1@  only in terms of the operators x ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF9@  and x ̂ ( 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaaGimaaGaayjkaiaawMcaaiaac6caaaa@3C6C@

(2). The next step is substituting the solutions obtained in step (1) into the expression for H ̂ ( x ̂ ( t ), p ̂ ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa daWfGaqaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdae aapeGaamiDaaGaayjkaiaawMcaaiaacYcapaWaaCbiaeaapeGaamiC aaWcpaqabeaapeGaeSOadqcaaOWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaaaiaawIcacaGLPaaaaaa@452B@  in Eq.(56) and employing the commutator [ x ̂ ( 0 ), x ̂ ( t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWaaCbiaeaapeGaamiEaaWcpaqabeaapeGaeSOadqca aOWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacaGGSaWdamaaxa cabaWdbiaadIhaaSWdaeqabaWdbiablkWaKaaakmaabmaapaqaa8qa caWG0baacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@4364@  to rewrite each term of H ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BC9@   in a time ordered form with all operators x ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF9@  to the left and all operators x ̂ ( 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaaGimaaGaayjkaiaawMcaaiaac6caaaa@3C6C@  to the right. The time ordered Hamiltonian can be defined as H ̂ ord ( x ̂ ( t ), x ̂ ( 0 ) ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaWGVbGaamOCaiaadsgaa8aabeaak8qadaqadaWdaeaadaWfGa qaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaiaacYcapaWaaCbiaeaapeGaamiEaaWcpa qabeaapeGaeSOadqcaaOWaaeWaa8aabaWdbiaaicdaaiaawIcacaGL PaaaaiaawIcacaGLPaaacaGGUaaaaa@48EE@

(3). After this ordering, Eq.(56) can be written in the form

iћ K( x, x ;t ) t =H( x, x ;t )K( x, x ;t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaapeGaai4oaiaadshaaiaawI cacaGLPaaaa8aabaWdbiabgkGi2kaadshaaaGaeyypa0Jaamisamaa bmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGaai4oaiaads haaiaawIcacaGLPaaacaWGlbWaaeWaa8aabaWdbiaadIhacaGGSaGa bmiEa8aagaqba8qacaGG7aGaamiDaaGaayjkaiaawMcaaiaacYcaaa a@53D6@   (58)

with H( x, x ;t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiaadshaaiaawIcacaGLPaaaaaa@3E31@  being an ordinary function defined as

H( x, x ;t )= x( t )| H ̂ ord ( x ̂ ( t ), x ̂ ( 0 ) ) | x ( 0 ) x( t )| x ( 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiaadshaaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeWaaa Waa8aabaWdbiaadIhadaqadaWdaeaapeGaamiDaaGaayjkaiaawMca amaaemaapaqaamaaxacabaWdbiaadIeaaSWdaeqabaWdbiablkWaKa aak8aadaWgaaWcbaWdbiaad+gacaWGYbGaamizaaWdaeqaaOWdbmaa bmaapaqaamaaxacabaWdbiaadIhaaSWdaeqabaWdbiablkWaKaaakm aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiila8aadaWfGaqa a8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaapeGaaG imaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5bSlaawIa7aiqa dIhapaGbauaapeWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaaai aawMYicaGLQmcaa8aabaWdbmaaEeaapaqaa8qacaWG4bWaaeWaa8aa baWdbiaadshaaiaawIcacaGLPaaaaeqacaGLPmIaay5bSdGabmiEa8 aagaqba8qadaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabgQYi XdaacaGGUaaaaa@6940@   (59)

Integrating Eq.(58) over , the propagator takes the form

K( x, x ;t )=C( x, x )expexp{ i ћ 0 t H( x, x ;t )dt }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaeWaa8aaba WdbiaadIhacaGGSaGabmiEa8aagaqbaaWdbiaawIcacaGLPaaaciGG LbGaaiiEaiaacchaciGGLbGaaiiEaiaacchadaGadaWdaeaapeGaey OeI0YaaSaaa8aabaWdbiaadMgaa8aabaWdbiaadUfbaaWaaybCaeqa l8aabaWdbiaaicdaa8aabaWdbiaadshaa0WdaeaapeGaey4kIipaaO Gaamisamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiaadshaaiaawIcacaGLPaaacaWGKbGaamiDaaGaay5Eaiaaw2 haaiaacYcaaaa@5DB1@   (60)

where C( x, x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaaa8qa caGLOaGaayzkaaaaaa@3C74@  is an integration constant.

(4). The last step is the calculating of C( x, x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaaa8qa caGLOaGaayzkaaaaaa@3C74@ This is obtained by using the following conditions

iћ K( x, x ;t ) x = x( t )| p ̂ ( t ) | x ( 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaa bmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGaai4oaiaads haaiaawIcacaGLPaaaa8aabaWdbiabgkGi2kaadIhaaaGaeyypa0Za aaWaa8aabaWdbiaadIhadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caamaaemaapaqaamaaxacabaWdbiaadchaaSWdaeqabaWdbiablkWa Kaaakmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGLhWUaay jcSdGabmiEa8aagaqba8qadaqadaWdaeaapeGaaGimaaGaayjkaiaa wMcaaaGaayzkJiaawQYiaiaacYcaaaa@57DA@   (61)

iћ K( x, x ;t ) x = x( t )| p ̂ ( 0 ) | x ( 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4samaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaapeGaai4oaiaadshaaiaawI cacaGLPaaaa8aabaWdbiabgkGi2kqadIhapaGbauaaaaWdbiabg2da 9maaamaapaqaa8qacaWG4bWaaeWaa8aabaWdbiaadshaaiaawIcaca GLPaaadaabdaWdaeaadaWfGaqaa8qacaWGWbaal8aabeqaa8qacqWI cmajaaGcdaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaaGaay5bSl aawIa7aiqadIhapaGbauaapeWaaeWaa8aabaWdbiaaicdaaiaawIca caGLPaaaaiaawMYicaGLQmcacaGGSaaaaa@56D9@   (62)

and the initial condition

lim t 0 + K( x, x ;t )=δ( x x ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaacMgacaGGTbWdamaaBaaaleaapeGaamiDaiabgkziUkaa icdapaWaaWbaaWqabeaapeGaey4kaScaaaWcpaqabaGcpeGaam4sam aabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGaai4oaiaa dshaaiaawIcacaGLPaaacqGH9aqpcqaH0oazdaqadaWdaeaapeGaam iEaiabgkHiTiqadIhapaGbauaaa8qacaGLOaGaayzkaaGaaiOlaaaa @4E69@   (63)

The Schwinger method for a damped harmonic oscillator

The Hamiltonian for a damped harmonic oscillator is described by8

H( t )= e rt p 2 2m + 1 2 m ω 2 e rt x 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamisamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyza8aadaahaaWcbeqaa8qacqGHsislcaWGYbGaamiDaaaakmaala aapaqaa8qacaWGWbWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWd biaaikdacaWGTbaaaiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8 qacaaIYaaaaiaad2gacqaHjpWDpaWaaWbaaSqabeaapeGaaGOmaaaa kiaadwgapaWaaWbaaSqabeaapeGaamOCaiaadshaaaGccaWG4bWdam aaCaaaleqabaWdbiaaikdaaaGccaGGSaaaaa@502A@   (64)

Where r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaaaa@3826@  is the damping constant coefficient.

The equation of motion corresponding to the Hamiltonian in Eq. (64) is

x ¨ +r x ˙ + ω 2 x=0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaWaa8qacqGHRaWkcaWGYbGabmiEa8aagaGaa8qacqGH RaWkcqaHjpWDpaWaaWbaaSqabeaapeGaaGOmaaaakiaadIhacqGH9a qpcaaIWaGaaiOlaaaa@4283@   (65)

The classical solution of Eq.(65) can be written in the form

x( t )= e rt 2 ( cost+ r 2 sint ) x +( e rt 2 sint m ) p , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyza8aadaahaaWcbeqaa8qacqGHsisldaWcaaWdaeaapeGaamOCai aadshaa8aabaWdbiaaikdaaaaaaOWaaeWaa8aabaWdbiaadogacaWG VbGaam4CamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaG qbciaa=zsicaWG0bGaey4kaSYaaSaaa8aabaWdbiaadkhaa8aabaWd biaaikdacaWFMecaaiaadohacaWGPbGaamOBaiaa=zsicaWG0baaca GLOaGaayzkaaGabmiEa8aagaqba8qacqGHRaWkdaqadaWdaeaapeWa aSaaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaeyOeI0YaaSaaa8 aabaWdbiaadkhacaWG0baapaqaa8qacaaIYaaaaaaakiaadohacaWG PbGaamOBaiaa=zsicaWG0baapaqaa8qacaWGTbGaa8NjHaaaaiaawI cacaGLPaaaceWGWbWdayaafaWdbiaacYcaaaa@6B94@   (66)

where we impose the initial conditions x =x( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiEa8aagaqba8qacqGH9aqpcaWG4bWaaeWaa8aabaWdbiaaicda aiaawIcacaGLPaaaaaa@3CBC@  and p =p( 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmiCa8aagaqba8qacqGH9aqpcaWGWbWaaeWaa8aabaWdbiaaicda aiaawIcacaGLPaaacaGGUaaaaa@3D5E@

The reduced frequency Ω in Eq.(66) is defined by = ω 2 r 2 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamXvP5wqSX2qVr wzqf2zLnharyqtHX2z15gih9gDOL2yaGqbcabaaaaaaaaapeGaa8Nj Hiabg2da9maakaaapaqaa8qacqaHjpWDpaWaaWbaaSqabeaapeGaaG OmaaaakiabgkHiTmaalaaapaqaa8qacaWGYbWdamaaCaaaleqabaWd biaaikdaaaaak8aabaWdbiaaisdaaaaaleqaaaaa@4AE5@ . The reduced frequency Ω is real when ω 2 r 2 4 >0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaGccqGHsisldaWcaaWd aeaapeGaamOCa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qaca aI0aaaaiabg6da+iaaicdacaGGUaaaaa@4084@ That is, we will be concerned with the under-damped case.

By solving the Heisenberg equation in Eq. (57), the position operators x ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF9@  can be written similarly to Eq.(66) as

x ̂ ( t )= e rt 2 ( cost+ r 2 sint ) x ̂ ( 0 )+( e rt 2 sint m ) p ̂ ( 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiabg2da9iaadwgapaWaaWbaaSqabe aapeGaeyOeI0YaaSaaa8aabaWdbiaadkhacaWG0baapaqaa8qacaaI Yaaaaaaakmaabmaapaqaa8qacaWGJbGaam4BaiaadohatCvAUfeBSn 0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuGacaWFMeIaamiDaiab gUcaRmaalaaapaqaa8qacaWGYbaapaqaa8qacaaIYaGaa8NjHaaaca WGZbGaamyAaiaad6gacaWFMeIaamiDaaGaayjkaiaawMcaa8aadaWf Gaqaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaape GaaGimaaGaayjkaiaawMcaaiabgUcaRmaabmaapaqaa8qadaWcaaWd aeaapeGaamyza8aadaahaaWcbeqaa8qacqGHsisldaWcaaWdaeaape GaamOCaiaadshaa8aabaWdbiaaikdaaaaaaOGaam4CaiaadMgacaWG UbGaa8NjHiaadshaa8aabaWdbiaad2gacaWFMecaaaGaayjkaiaawM caa8aadaWfGaqaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqa daWdaeaapeGaaGimaaGaayjkaiaawMcaaiaac6caaaa@73C6@   (67)

The momentum operator p ̂ ( t )=m( t ) e rt x ˙ ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiabg2da9iaad2gadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaiaadwgapaWaaWbaaSqabeaapeGaamOC aiaadshaaaGcpaWaaCbiaeaapeGabmiEa8aagaGaaaWcbeqaa8qacq WIcmajaaGcdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@48AC@  can be written by using Eq.(67) as

p ̂ ( t )=( m ω 2 e rt 2 sint ) x ̂ ( 0 )+ e rt 2 ( cost rsint 2 ) p ̂ ( 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiabg2da9iabgkHiTmaabmaapaqaa8 qadaWcaaWdaeaapeGaamyBaiabeM8a39aadaahaaWcbeqaa8qacaaI YaaaaOGaamyza8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaamOCai aadshaa8aabaWdbiaaikdaaaaaaOGaam4CaiaadMgacaWGUbWexLMB bXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjHiaads haa8aabaWdbiaa=zsiaaaacaGLOaGaayzkaaWdamaaxacabaWdbiaa dIhaaSWdaeqabaWdbiablkWaKaaakmaabmaapaqaa8qacaaIWaaaca GLOaGaayzkaaGaey4kaSIaamyza8aadaahaaWcbeqaa8qadaWcaaWd aeaapeGaamOCaiaadshaa8aabaWdbiaaikdaaaaaaOWaaeWaa8aaba WdbiaadogacaWGVbGaam4Caiaa=zsicaWG0bGaeyOeI0YaaSaaa8aa baWdbiaadkhacaWGZbGaamyAaiaad6gacaWFMeIaamiDaaWdaeaape GaaGOmaiaa=zsiaaaacaGLOaGaayzkaaWdamaaxacabaWdbiaadcha aSWdaeqabaWdbiablkWaKaaakmaabmaapaqaa8qacaaIWaaacaGLOa GaayzkaaGaaiOlaaaa@75BB@   (68)

By using Eq.(67), we can eliminate p ̂ ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaaGimaaGaayjkaiaawMcaaaaa@3BB2@  from Eq.(68) by

p ̂ ( t )=m e rt ( cott r 2 ) x ̂ ( t )( m e rt 2 csct ) x ̂ ( 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiabg2da9iaad2gacaWGLbWdamaaCa aaleqabaWdbiaadkhacaWG0baaaOWaaeWaa8aabaWexLMBbXgBd9gz LbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiWdbiaa=zsicaWGJbGaam 4BaiaadshacaWFMeIaamiDaiabgkHiTmaalaaapaqaa8qacaWGYbaa paqaa8qacaaIYaaaaaGaayjkaiaawMcaa8aadaWfGaqaa8qacaWG4b aal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaiabgkHiTmaabmaapaqaa8qacaWGTbGaa8NjHiaadwgapa WaaWbaaSqabeaapeWaaSaaa8aabaWdbiaadkhacaWG0baapaqaa8qa caaIYaaaaaaakiaadogacaWGZbGaam4yaiaa=zsicaWG0baacaGLOa GaayzkaaWdamaaxacabaWdbiaadIhaaSWdaeqabaWdbiablkWaKaaa kmaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaaiOlaaaa@6D31@   (69)

Substituting x ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF9@  and p ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF1@  into the Hamiltonian operator

H ̂ ( t )= e rt p ̂ 2 2m + 1 2 m ω 2 e rt x ̂ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiabg2da9iaadwgapaWaaWbaaSqabe aapeGaeyOeI0IaamOCaiaadshaaaGcdaWcaaWdaeaadaWfGaqaa8qa caWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaWbaaSqabeaapeGaaG OmaaaaaOWdaeaapeGaaGOmaiaad2gaaaGaey4kaSYaaSaaa8aabaWd biaaigdaa8aabaWdbiaaikdaaaGaamyBaiabeM8a39aadaahaaWcbe qaa8qacaaIYaaaaOGaamyza8aadaahaaWcbeqaa8qacaWGYbGaamiD aaaak8aadaWfGaqaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpa WaaWbaaSqabeaapeGaaGOmaaaaaaa@5313@ with the aid of

[ x ̂ ( 0 ), x ̂ ( t ) ]= iћsint m e rt/2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWaaCbiaeaapeGaamiEaaWcpaqabeaapeGaeSOadqca aOWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacaGGSaWdamaaxa cabaWdbiaadIhaaSWdaeqabaWdbiablkWaKaaakmaabmaapaqaa8qa caWG0baacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0ZaaSaaa8 aabaWdbiaadMgacaWGBrGaam4CaiaadMgacaWGUbWexLMBbXgBd9gz LbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjHiaadshaa8aaba Wdbiaad2gacaWFMecaaiaadwgapaWaaWbaaSqabeaapeGaeyOeI0Ia amOCaiaadshacaGGVaGaaGOmaaaakiaacYcaaaa@5DE7@   (70)

the ordered Hamiltonian operator can be expressed as

H ̂ ord ( t )= m e rt 2 ( 2 csc 2 trcott+ r 2 2 ) x ̂ 2 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGibaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaWGVbGaamOCaiaadsgaa8aabeaak8qadaqadaWdaeaapeGaam iDaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacaWGTbGaamyz a8aadaahaaWcbeqaa8qacaWGYbGaamiDaaaaaOWdaeaapeGaaGOmaa aadaqadaWdaeaatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhA PngaiuGapeGaa8NjH8aadaahaaWcbeqaa8qacaaIYaaaaOGaci4yai aacohacaGGJbWdamaaCaaaleqabaWdbiaaikdaaaGccaWFMeIaamiD aiabgkHiTiaadkhacaWFMeIaam4yaiaad+gacaWG0bGaa8NjHiaads hacqGHRaWkdaWcaaWdaeaapeGaamOCa8aadaahaaWcbeqaa8qacaaI YaaaaaGcpaqaa8qacaaIYaaaaaGaayjkaiaawMcaa8aadaWfGaqaa8 qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaWbaaSqabeaapeGa aGOmaaaakmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@6A5E@
m e rt 2 ( csctcott r 2 csct ) x ̂ ( t ) x ̂ ( 0 )+ 1 2 m 2 csc 2 t x ̂ 2 ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0IaamyBamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gD OL2yaGqbciaa=zsicaWGLbWdamaaCaaaleqabaWdbmaalaaapaqaa8 qacaWGYbGaamiDaaWdaeaapeGaaGOmaaaaaaGcdaqadaWdaeaapeGa a8NjHiaadogacaWGZbGaam4yaiaa=zsicaWG0bGaam4yaiaad+gaca WG0bGaa8NjHiaadshacqGHsisldaWcaaWdaeaapeGaamOCaaWdaeaa peGaaGOmaaaacaWGJbGaam4CaiaadogacaWFMeIaamiDaaGaayjkai aawMcaa8aadaWfGaqaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGc daqadaWdaeaapeGaamiDaaGaayjkaiaawMcaa8aadaWfGaqaa8qaca WG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaapeGaaGimaaGa ayjkaiaawMcaaiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qaca aIYaaaaiaad2gacaWFMeYdamaaCaaaleqabaWdbiaaikdaaaGcciGG JbGaai4CaiaacogapaWaaWbaaSqabeaapeGaaGOmaaaakiaa=zsica WG0bWdamaaxacabaWdbiaadIhaaSWdaeqabaWdbiablkWaKaaak8aa daahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaicdaaiaawI cacaGLPaaaaaa@763F@
iћ 2 ( cott r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadMgacaWGBraapaqaa8qacaaIYaaa amaabmaapaqaamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL 2yaGqbc8qacaWFMeIaam4yaiaad+gacaWG0bGaa8NjHiaadshacqGH sisldaWcaaWdaeaapeGaamOCaaWdaeaapeGaaGOmaaaaaiaawIcaca GLPaaaaaa@4FB9@ .  (71)

          Applying Eqs.(58)-(60), the propagator takes the form

K( x, x ;t )=C( x, x )exp[ i ћ 0 t { 1 2 m e rt ( 2 csc 2 trcott+ r 2 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaeWaa8aaba WdbiaadIhacaGGSaGabmiEa8aagaqbaaWdbiaawIcacaGLPaaaciGG LbGaaiiEaiaacchacaGGBbGaeyOeI0YaaSaaa8aabaWdbiaadMgaa8 aabaWdbiaadUfbaaWaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaa dshaa0WdaeaapeGaey4kIipaaOGaai4Eamaalaaapaqaa8qacaaIXa aapaqaa8qacaaIYaaaaiaad2gacaWGLbWdamaaCaaaleqabaWdbiaa dkhacaWG0baaaOWaaeWaa8aabaWexLMBbXgBd9gzLbvyNv2CaeHbnf gBNvNBGC0B0HwAJbacfiWdbiaa=zsipaWaaWbaaSqabeaapeGaaGOm aaaakiGacogacaGGZbGaai4ya8aadaahaaWcbeqaa8qacaaIYaaaaO Gaa8NjHiaadshacqGHsislcaWGYbGaa8NjHiaadogacaWGVbGaamiD aiaa=zsicaWG0bGaey4kaSYaaSaaa8aabaWdbiaadkhapaWaaWbaaS qabeaapeGaaGOmaaaaaOWdaeaapeGaaGOmaaaaaiaawIcacaGLPaaa aaa@75D7@
+ 1 2 m 2 csc 2 t x 2 m e rt 2 ( csctcott r 2 csct )x x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaamyB amXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbciaa=z sipaWaaWbaaSqabeaapeGaaGOmaaaakiGacogacaGGZbGaai4ya8aa daahaaWcbeqaa8qacaaIYaaaaOGaa8NjHiaadshaceWG4bWdayaafa WaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiaad2gacaWFMeIaamyz a8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaamOCaiaadshaa8aaba WdbiaaikdaaaaaaOWaaeWaa8aabaWdbiaa=zsicaWGJbGaam4Caiaa dogacaWFMeIaamiDaiaadogacaWGVbGaamiDaiaa=zsicaWG0bGaey OeI0YaaSaaa8aabaWdbiaadkhaa8aabaWdbiaaikdaaaGaam4yaiaa dohacaWGJbGaa8NjHiaadshaaiaawIcacaGLPaaacaWG4bGabmiEa8 aagaqbaaaa@6B20@
iћ 2 ( cott r 2 )}dt]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadMgacaWGBraapaqaa8qacaaIYaaa amaabmaapaqaamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL 2yaGqbc8qacaWFMeIaam4yaiaad+gacaWG0bGaa8NjHiaadshacqGH sisldaWcaaWdaeaapeGaamOCaaWdaeaapeGaaGOmaaaaaiaawIcaca GLPaaacaGG9bGaamizaiaadshacaGGDbGaaiOlaaaa@542F@   (72)

Now, we will integrate each term of Eq.(72) with respect to time. The first term of Eq.(72) can be integrated as

im 2ћ x 2 0 t e rt ( 2 csc 2 trcott+ r 2 2 )dt= im 2ћ e rt cott x 2 imr 4ћ e rt x 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadMgacaWGTbaapaqaa8qacaaIYaGa am4weaaacaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGcdaGfWbqabS WdaeaapeGaaGimaaWdaeaapeGaamiDaaqdpaqaa8qacqGHRiI8aaGc caWGLbWdamaaCaaaleqabaWdbiaadkhacaWG0baaaOWaaeWaa8aaba WexLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiWdbiaa =zsipaWaaWbaaSqabeaapeGaaGOmaaaakiGacogacaGGZbGaai4ya8 aadaahaaWcbeqaa8qacaaIYaaaaOGaa8NjHiaadshacqGHsislcaWG YbGaa8NjHiaadogacaWGVbGaamiDaiaa=zsicaWG0bGaey4kaSYaaS aaa8aabaWdbiaadkhapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaa peGaaGOmaaaaaiaawIcacaGLPaaacaWGKbGaamiDaiabg2da9maala aapaqaa8qacaWGPbGaamyBaiaa=zsia8aabaWdbiaaikdacaWGBraa aiaadwgapaWaaWbaaSqabeaapeGaamOCaiaadshaaaGccaWGJbGaam 4BaiaadshacaWFMeIaamiDaiaadIhapaWaaWbaaSqabeaapeGaaGOm aaaakiabgkHiTmaalaaapaqaa8qacaWGPbGaamyBaiaadkhaa8aaba WdbiaaisdacaWGBraaaiaadwgapaWaaWbaaSqabeaapeGaamOCaiaa dshaaaGccaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccaGGUaaaaa@81CC@   (73)

      The second term of Eq.(72) can be calculated by

im 2 2ћ x 2 0 t csc 2 tdt= im 2ћ cott x 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaSaaa8aabaWdbiaadMgacaWGTbWexLMBbXgBd9gzLbvy Nv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjH8aadaahaaWcbeqaa8 qacaaIYaaaaaGcpaqaa8qacaaIYaGaam4weaaaceWG4bWdayaafaWa aWbaaSqabeaapeGaaGOmaaaakmaawahabeWcpaqaa8qacaaIWaaapa qaa8qacaWG0baan8aabaWdbiabgUIiYdaakiGacogacaGGZbGaai4y a8aadaahaaWcbeqaa8qacaaIYaaaaOGaa8NjHiaadshacaWGKbGaam iDaiabg2da9maalaaapaqaa8qacaWGPbGaamyBaiaa=zsia8aabaWd biaaikdacaWGBraaaiaadogacaWGVbGaamiDaiaa=zsicaWG0bGabm iEa8aagaqbamaaCaaaleqabaWdbiaaikdaaaGccaGGUaaaaa@63B2@   (74)

The third term of Eq.(72) can be derived by

im ћ x x 0 t e rt 2 ( csctcott r 2 csct )dt= im ћ e rt 2 csctx x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadMgacaWGTbWexLMBbXgBd9gzLbvyNv2CaeHb nfgBNvNBGC0B0HwAJbacfiGaa8NjHaWdaeaapeGaam4weaaacaWG4b GabmiEa8aagaqba8qadaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGa amiDaaqdpaqaa8qacqGHRiI8aaGccaWGLbWdamaaCaaaleqabaWdbm aalaaapaqaa8qacaWGYbGaamiDaaWdaeaapeGaaGOmaaaaaaGcdaqa daWdaeaapeGaa8NjHiaadogacaWGZbGaam4yaiaa=zsicaWG0bGaam 4yaiaad+gacaWG0bGaa8NjHiaadshacqGHsisldaWcaaWdaeaapeGa amOCaaWdaeaapeGaaGOmaaaacaWGJbGaam4CaiaadogacaWFMeIaam iDaaGaayjkaiaawMcaaiaadsgacaWG0bGaeyypa0JaeyOeI0YaaSaa a8aabaWdbiaadMgacaWGTbGaa8NjHaWdaeaapeGaam4weaaacaWGLb WdamaaCaaaleqabaWdbmaalaaapaqaa8qacaWGYbGaamiDaaWdaeaa peGaaGOmaaaaaaGccaWGJbGaam4CaiaadogacaWFMeIaamiDaiaadI haceWG4bWdayaafaWdbiaac6caaaa@770F@   (75)

Finally, integrating the last term of Eq.(72), the result is

0 t ( 2 cott r 4 )dt= 1 2 lnln( sint )+ rt 4 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0YaaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaadshaa0Wd aeaapeGaey4kIipaaOWaaeWaa8aabaWdbmaalaaapaqaamXvP5wqSX 2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbc8qacaWFMecapaqa a8qacaaIYaaaaiaadogacaWGVbGaamiDaiaa=zsicaWG0bGaeyOeI0 YaaSaaa8aabaWdbiaadkhaa8aabaWdbiaaisdaaaaacaGLOaGaayzk aaGaamizaiaadshacqGH9aqpcqGHsisldaWcaaWdaeaapeGaaGymaa WdaeaapeGaaGOmaaaaciGGSbGaaiOBaiGacYgacaGGUbWaaeWaa8aa baWdbiaadohacaWGPbGaamOBaiaa=zsicaWG0baacaGLOaGaayzkaa Gaey4kaSYaaSaaa8aabaWdbiaadkhacaWG0baapaqaa8qacaaI0aaa aiaac6caaaa@66A8@   (76)

Combining the results of Eqs.(73)-(76), the propagator can be written as

K( x, x ;t )=C( x, x ) e rt 2 sint exp( imr 4ћ e rt x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaeWaa8aaba WdbiaadIhacaGGSaGabmiEa8aagaqbaaWdbiaawIcacaGLPaaadaGc aaWdaeaapeWaaSaaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeWaaS aaa8aabaWdbiaadkhacaWG0baapaqaa8qacaaIYaaaaaaaaOWdaeaa peGaam4CaiaadMgacaWGUbWexLMBbXgBd9gzLbvyNv2CaeHbnfgBNv NBGC0B0HwAJbacfiGaa8NjHiaadshaaaaaleqaaOGaciyzaiaacIha caGGWbWaaeWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacaWGPbGaam yBaiaadkhaa8aabaWdbiaaisdacaWGBraaaiaadwgapaWaaWbaaSqa beaapeGaamOCaiaadshaaaGccaWG4bWdamaaCaaaleqabaWdbiaaik daaaaakiaawIcacaGLPaaaaaa@6828@
×exp[ im 2ћsint ( e rt cost x 2 +cost x 2 2 e rt 2 x x ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaamWaa8aabaWdbmaalaaapaqa a8qacaWGPbGaamyBamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9 gDOL2yaGqbciaa=zsia8aabaWdbiaaikdacaWGBrGaam4CaiaadMga caWGUbGaa8NjHiaadshaaaWaaeWaa8aabaWdbiaadwgapaWaaWbaaS qabeaapeGaamOCaiaadshaaaGccaWGJbGaam4BaiaadohacaWFMeIa amiDaiaadIhapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaado gacaWGVbGaam4Caiaa=zsicaWG0bGabmiEa8aagaqbamaaCaaaleqa baWdbiaaikdaaaGccqGHsislcaaIYaGaamyza8aadaahaaWcbeqaa8 qadaWcaaWdaeaapeGaamOCaiaadshaa8aabaWdbiaaikdaaaaaaOGa amiEaiqadIhapaGbauaaa8qacaGLOaGaayzkaaaacaGLBbGaayzxaa aaaa@6D45@ .  (77)

The final step is deriving the function C( x, x ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaaa8qa caGLOaGaayzkaaGaaiOlaaaa@3D26@ Substituting Eq.(77) into Eq.(62), its can be obtained that

iћ C( x, x ) x = mr 2 x C( x, x ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaadUfbdaWcaaWdaeaapeGaeyOaIyRaam4qamaabmaapaqa a8qacaWG4bGaaiilaiqadIhapaGbauaaa8qacaGLOaGaayzkaaaapa qaa8qacqGHciITceWG4bWdayaafaaaa8qacqGH9aqpcqGHsisldaWc aaWdaeaapeGaamyBaiaadkhaa8aabaWdbiaaikdaaaGabmiEa8aaga qba8qacaWGdbWaaeWaa8aabaWdbiaadIhacaGGSaGabmiEa8aagaqb aaWdbiaawIcacaGLPaaacaGGUaaaaa@4E8D@   (78)

The solution of Eq.(78) can be written as

C( x, x )=C( x )expexp( imr 4ћ x 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaaa8qa caGLOaGaayzkaaGaeyypa0Jaam4qamaabmaapaqaa8qacaWG4baaca GLOaGaayzkaaGaciyzaiaacIhacaGGWbGaciyzaiaacIhacaGGWbWa aeWaa8aabaWdbmaalaaapaqaa8qacaWGPbGaamyBaiaadkhaa8aaba WdbiaaisdacaWGBraaaiqadIhapaGbauaadaahaaWcbeqaa8qacaaI YaaaaaGccaGLOaGaayzkaaGaaiilaaaa@4FD7@   (79)

Where C( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@3A9C@ is a position function

 The propagator in Eq.(77) can be expressed as

K( x, x ;t )=C( x ) e rt 2 sint exp( imr 4ћ ( e rt x 2 x 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGdbWaaeWaa8aaba WdbiaadIhaaiaawIcacaGLPaaadaGcaaWdaeaapeWaaSaaa8aabaWd biaadwgapaWaaWbaaSqabeaapeWaaSaaa8aabaWdbiaadkhacaWG0b aapaqaa8qacaaIYaaaaaaaaOWdaeaapeGaam4CaiaadMgacaWGUbWe xLMBbXgBd9gzLbvyNv2CaeHbnfgBNvNBGC0B0HwAJbacfiGaa8NjHi aadshaaaaaleqaaOGaciyzaiaacIhacaGGWbWaaeWaa8aabaWdbiab gkHiTmaalaaapaqaa8qacaWGPbGaamyBaiaadkhaa8aabaWdbiaais dacaWGBraaamaabmaapaqaa8qacaWGLbWdamaaCaaaleqabaWdbiaa dkhacaWG0baaaOGaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaey OeI0IabmiEa8aagaqbamaaCaaaleqabaWdbiaaikdaaaaakiaawIca caGLPaaaaiaawIcacaGLPaaaaaa@6B00@
×expexp[ im 2ћsint ( e rt cost x 2 +cost x 2 2 e rt 2 x x ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbGaciyzaiaacIhacaGGWbWaamWa a8aabaWdbmaalaaapaqaa8qacaWGPbGaamyBamXvP5wqSX2qVrwzqf 2zLnharyqtHX2z15gih9gDOL2yaGqbciaa=zsia8aabaWdbiaaikda caWGBrGaam4CaiaadMgacaWGUbGaa8NjHiaadshaaaWaaeWaa8aaba WdbiaadwgapaWaaWbaaSqabeaapeGaamOCaiaadshaaaGccaWGJbGa am4BaiaadohacaWFMeIaamiDaiaadIhapaWaaWbaaSqabeaapeGaaG OmaaaakiabgUcaRiaadogacaWGVbGaam4Caiaa=zsicaWG0bGabmiE a8aagaqbamaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIYaGaam yza8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaamOCaiaadshaa8aa baWdbiaaikdaaaaaaOGaamiEaiqadIhapaGbauaaa8qacaGLOaGaay zkaaaacaGLBbGaayzxaaGaaiOlaaaa@70D2@   (80)

The next step is calculating C( x ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaaiOlaaaa @3B4E@ Substituting Eq.(80) into Eq.(61), the result is

C( x ) x =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabgkGi2kaadoeadaqadaWdaeaapeGaamiEaaGa ayjkaiaawMcaaaWdaeaapeGaeyOaIyRaamiEaaaacqGH9aqpcaaIWa Gaaiilaaaa@4123@   (81)

which implies that C( x ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaGaaiOlaaaa @3B4E@ is a constant independent of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380C@ .

          After applying Eq.(63), it can be obtained that

C= m 2πiћ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiabg2da9maakaaapaqaa8qadaWcaaWdaeaapeGaamyBamXv P5wqSX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbciaa=zsia8 aabaWdbiaaikdacqaHapaCcaWGPbGaam4weaaaaSqabaGccaGGUaaa aa@4B13@   (82)

So, the propagator for a damped harmonic oscillator can be written as

K( x, x ;t )= m e rt 2 2πiћsint exp( imr 4ћ ( e rt x 2 x 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa ai4oaiaadshaaiaawIcacaGLPaaacqGH9aqpdaGcaaWdaeaapeWaaS aaa8aabaWdbiaad2gatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYr VrhAPngaiuGacaWFMeIaamyza8aadaahaaWcbeqaa8qadaWcaaWdae aapeGaamOCaiaadshaa8aabaWdbiaaikdaaaaaaaGcpaqaa8qacaaI YaGaeqiWdaNaamyAaiaadUfbcaWGZbGaamyAaiaad6gacaWFMeIaam iDaaaaaSqabaGcciGGLbGaaiiEaiaacchadaqadaWdaeaapeGaeyOe I0YaaSaaa8aabaWdbiaadMgacaWGTbGaamOCaaWdaeaapeGaaGinai aadUfbaaWaaeWaa8aabaWdbiaadwgapaWaaWbaaSqabeaapeGaamOC aiaadshaaaGccaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsi slceWG4bWdayaafaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaa wMcaaaGaayjkaiaawMcaaaaa@6D98@
×exp[ im 2ћsint ( e rt cost x 2 +cost x 2 2 e rt 2 x x ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaciyzaiaacIhacaGGWbWaamWaa8aabaWdbmaalaaapaqa a8qacaWGPbGaamyBamXvP5wqSX2qVrwzqf2zLnharyqtHX2z15gih9 gDOL2yaGqbciaa=zsia8aabaWdbiaaikdacaWGBrGaam4CaiaadMga caWGUbGaa8NjHiaadshaaaWaaeWaa8aabaWdbiaadwgapaWaaWbaaS qabeaapeGaamOCaiaadshaaaGccaWGJbGaam4BaiaadohacaWFMeIa amiDaiaadIhapaWaaWbaaSqabeaapeGaaGOmaaaakiabgUcaRiaado gacaWGVbGaam4Caiaa=zsicaWG0bGabmiEa8aagaqbamaaCaaaleqa baWdbiaaikdaaaGccqGHsislcaaIYaGaamyza8aadaahaaWcbeqaa8 qadaWcaaWdaeaapeGaamOCaiaadshaa8aabaWdbiaaikdaaaaaaOGa amiEaiqadIhapaGbauaaa8qacaGLOaGaayzkaaaacaGLBbGaayzxaa aaaa@6D45@ .  (83)

This propagator is the same as the result of S.Pepore,8 found by applying the integrals of motion of a quantum systems.

Conclusion

 In this paper we have successfully calculated the exact propagators for time-dependent Hamiltonian systems. The method for deriving the propagators with the helping of integrals of motion of quantum systems presented in this paper can be successfully applied in solving a time-dependent linear potential and a free particle with linear damping problems. This method has the important steps in finding the constant of motion x 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3940@  and p 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3938@  and implying that the propagator K( x, x ,t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaabmaapaqaa8qacaWG4bGaaiilaiqadIhapaGbauaapeGa aiilaiaadshaaiaawIcacaGLPaaaaaa@3E25@ is the eigen functions of the operators x ̂ 0 ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhaaiaawIcaca GLPaaaaaa@3D2B@  and p ̂ 0 ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcpaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbiaadIhaaiaawIcaca GLPaaaaaa@3D23@ . The exact propagator for a charged harmonic oscillator in time-dependent electric field was calculated by the Feynman path integral method. The crucial result in our calculation is to derive the classical action as mentioned in E.(49). The propagator for a damped harmonic oscillator has calculated by the Schwinger method. The important step in the Schwinger formalism is to find the solution of the Heisenberg equation in Eq.(67) and to express the Hamiltonian operator in an appropriate order with the aid of the commutator in Eq.(70). The advantage of the Schwinger method in this paper is that it requires only fundamental operator algebra and some basic integration. In fact, the application of the integrals of the motion method has many common features with the Schwinger method, but the Schwinger method requires the operators x ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWG4baal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF9@  and p ̂ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaaeaa aaaaaaa8qacaWGWbaal8aabeqaa8qacqWIcmajaaGcdaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3BF1@  in deriving the matrix element of Hamiltonian operator in calculating the propagator in Eq.(72). In the Feynman path integrals, the pre-exponential function C( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3A98@ comes from sum over all fluctuating paths that depend on calculation of the functional integration while in the integrals of the motion method this term appears from solving the Schrodinger equation of propagator. In the Schwinger formalism, the pre-exponential function C( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3A98@ arises from the commutation relation of [ x ̂ ( t ), x ̂ ( 0 ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWaaCbiaeaapeGaamiEaaWcpaqabeaapeGaeSOadqca aOWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGSaWdamaaxa cabaWdbiaadIhaaSWdaeqabaWdbiablkWaKaaakmaabmaapaqaa8qa caaIWaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaiOlaaaa@4416@  These different points of view may show the connection between classical mechanics and quantum mechanics.

Finally, we have presented simple techniques in calculating the propagator. It is preferable to have many methods in deriving the propagators in the field of time-dependent Hamiltonian systems and the Feynman path integrals, Schwinger method, and integrals of the motion method are effective and appropriate techniques.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1.  RP Feynman, AR Hibbs. Quantum Mechanics and Path Integral. McGraw–Hill, New York. 1965.
  2. S Pepore, P Winotai, T Osotchan, et al. Path integral for a harmonic oscillator with time–dependent mass and frequency. Science Asia. 2006;32:173.
  3. J Schwinger. The theory of quantized field. Phys Rev. 1951;82.
  4. S Pepore, B Sukbot. Schwinger method and Feynman path integral for a harmonic oscillator with mass growing with time. Chinese. J Phys. 2015;53(7).
  5. S Pepore,  B Sukbot. Schwinger method for a dual damped oscillator. Chinese J Phys. 2015;53(7).
  6. S Pepore, B Sukbot. Schwinger method for coupled harmonic oscillators and time–dependent linear potential. Chinese. J Phys. 2015;53(7).
  7. VV Dodonov, IA Malkin, VI Man’ko. Integrals of the motion, green functions, and coherent states of dynamical systems. Int J Theor Phys. 1975;14:37–54.
  8. S Pepore. Integrals of the motion and green functions for time–dependent mass harmonic oscillators. Rev Mex Fis. 2018;64:30–35.
  9. S Pepore. Integrals of the motion and green functions for dual damped oscillators and coupled harmonic oscillators. Rev Mex Fis. 2018;64:150.
  10. D Jain, A Das, S Kar. Path integrals and wave packet evolution for damped mechanical systems. Am J Phys. 2006;75:259.
  11. H Goldstein, C Poole, J Safko. Classical Mechanics, Addison–Wesley, San Fransisc. 2000.
  12. W Pauli.  AusgewalteKapitel der Feld Quantiseirung. Zuricc ETH. 1952.
  13. C Morette. On the definition and approximation of Feynman’s path integral. Phys Rev. 1951;81:848.
  14. AV Jones, GJ Papadoupoulos. On the exact propagator. J Phys A. 1971;4:L86.
Creative Commons Attribution License

©2021 Pepore, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.