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Abstract

In this paper, the propagators for a particle moving in a time-dependent linear potential and
a free particle with linear damping are calculated by the application of the integrals of the
motion of a quantum system. The propagator for a charged harmonic oscillator is derived
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Introduction

In quantum mechanics and quantum field theory, the propagator or
Green function is represented as the transition probability amplitude
for a particle to travel from initial space-time configuration to final
space-time configuration. The standard method in calculating the
propagator is Feynman path integral.! In 2006, S.Pepore and et al.?
applied the Feynman path integral method to Calculate the propagator
for a harmonic oscillator with time-dependent mass and frequency.
The one aim of this paper is using the path integral method to derive
the propagator for a charged harmonic oscillator in time-dependent
electric field.

The another method in calculating the propagator is the Schwinger
method.? This method was first formulated by Schwinger in 1951 for
solving the gauge invariance and vacuum polarization in QED. In
2015, the Schwinger method was used to derive the propagator for
time-dependent harmonics oscillators by S.Pepore and B.Sukbot.**
The one purposes of this article is applying the Schwinger method to
calculate the propagator for a damped harmonic oscillator.

In 1975, V.V. Dodonov, I.A. Malkin, and V.I. Man’ko’ presented
the connection between the integrals of the motion of a quantum
system and its propagator that is the eigenfunction of the integrals
of the motion describing initial points of the system trajectory
in the phase space. In 2018, S. Pepore applied the integrals of the
motion to calculate the propagators for time-dependent harmonic
oscillators.*” The one aim of this article is applying the integrals of
the motion to derive the propagators for a particle moving in a time-
dependent linear potential and a free particle with linear damping. The
organization of this paper are as follows. In Sec.2, the propagator for
a particle in a time-dependent linear potential is derived. In Sec.3, the
propagator for a free particle with linear damping is obtained with
the aid of the integrals of the motion. In Sec 4, the Feynman path
integrals is applied to evaluate the propagator for a charged harmonic
oscillator in time-dependent electric field. In Sec.5, the procedures
of the Schwinger method are described. In Sec.6, the propagator for
a damped harmonic oscillator are derived by the Schwinger method.
Finally, the conclusion is presented in Sec.8.

The propagator for a particle moving in a
time-dependent linear potential
In this section, we will calculate the propagator for a particle

moving in a time-dependent linear potential described by the
Hamiltonian operator.®

~2

H(:):é’—m—ktx (1)
Where k is a constant and ¢ is time.
The classical equation of motion for this system is

mi—kt=0 )
The classical paths in the phase space under the initial conditions

x(0)=xyand P(0)=F, are given by

3

x(6) =%y + - py + o 3)
m 6m
kt?
p(t)=po +7~ “4)

Now we consider the systems of Egs.(3) and (4) as an algebraic
system for unknown initial position x, and initial momentum p, .
The variables x, p, and ¢ are taken as the parameters. The solution of
this system can be written as the operator in Hilbert space as

f s - - 3
X0 [x,p,tj = x—Lp+ kL %)
m 3m
N C ket
po(xsp’tjzp_T' (6)

The operators xo and p, are the integrals of the motion because
theirs satisfy equation of

ar_or iy 1)<, 7
dr ot

Where / may be xo and p,. Then these operatos must satisfy
equations for the Green function or propagator,>>°
xo(x)K(x,x',t)=x(x')K(x,x’,t) ®)

po(x)K(x,x',t):—p(x')K(x,x',t), )

where the operators on the left-hand sides of the equations act on
variables x , and on the right-hand sides, on x".
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Now we write Egs.(8) and (9) explicitly,

. 3
8kt L\ L. OK(x,xt
e n

By modifying Eqs.(10) and (11), the system of equation for
deriving the propagator are

B . . .72
aK(x,x,t){W(x x)+lkt:|[((x’x’,t), (12)
oxt z 3
K , . G .72
) (x:,x,t):{ ""(x x)ﬂ’“}]((x,x’,t). (13)
Ox't z

Now one can integrate Eq. (12) with respect to the variable x to
obtain

2z

. "2 2
K (x,x',t)= C(x’,t)expexp{lv{m(x_x)+ k;xﬂ, (14)

Substituting Eq.(14) into Eq.(13), we obtain the differential
equation for C(x',r)as

ac(xt) ([ ike?
—— L= — |C(x,2). 15
oF (6 J (1) ()
Solving Eq.(15), the function C (x',t) can be expressed as
, ikt®
C(x',t) = C(t)expexp vrad (16)
4

So, the propagator in Eq.(14) can be written as

. _ "2 2 2
K(x,x’,t)=C(t)expexp{lv[m(xx)+k;x+kéx'ﬂ. (17)
z

2t

To obtain C (t), we must substitute the propagator of Eq. (17) into
the Schrodinger’s equation

K r
; 0. (x,x,t) :[

32 62K(x,x',t)

2m ox?

Py —ktxK (x x't )J (18)

After some algebra, we obtain an equation

2.4
:_[1+”‘ d jC(t).
dm 2t 18

Equation (19) can be simply integrated with respect to time ¢ ,and
one obtains

(19)

c i K°f
C(t)=—=expexp| —— R 20
(t) N pp[ é90m] (20)
where C is a constant. Substituting Eq.(20) into Eq.(17) and
applying the initial condition

lim K(x,x',t):é'(x—x'),

10"

@n
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we obtain

(22)

==
27k

So, the propagator for a particle moving in time-dependent linear
potential is

; WAL 2 2 2,5
K (ot) = || expexp| 1| M=) K2 KR
2rEt z 2 3 6 90n

(23)

which is the same form as the result of S.Pepore and B.Sukbot
calculated by the Schwinger method.®

The propagator for a free particle with linear
damping

This section is the calculation of the propagator for a free particle
with linear damping by the application of integrals of motion
operators. Considering the motion of a free particle with constant
mass 1 in a linear damping which has the damping coefficient S,
the Hamiltonian operator of this system can be written as'’

)

. e p
H(t)= , 24
()= 24)
Where y = ﬁ
m
The Hamilton equation of motion for position and momentum are'!
i=Le7 p=o. (25)
m

The classical paths in the phase space under the initial conditions
x(0)=x,and p(0)= p, are given by

1
x<r>=xo+(,;)po,

(26)

p(t)=ro @7

Now we rewrite the systems of Egs. (26) and (27) in terms of the
initial position operator xo¢ and initial momentum operator p, Sas

(28)

29

po(xsp’tj =p.
The operators xo and p, are the integrals of the motion because
theirs satisfy Eq.(7). Then these operators must satisfy Egs.(8), (9),

and
- 1%
X+i t, " E XAt ",), 30
[z+z[ y Jax}x( x) xx( ) (30)
5 6K(x,x,t) s 6K(x,x,t). 31
Ox ox'

By modifying Egs.(30) and (31), the system of equation for
calculating the propagator are
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aK(x,x',t) B im;/(x - x')

_ K 8 "t s 32
. Z,(l_e—}/t) (x,x,) (32)

8K(x,x',t) __ im;/(x—x') K(x X [). (33)
o' ey |

Now one can integrate Eq.(32) with respect to the variable x to
obtain

K(x,x’,t)zC(x',t)eXpexpi; m}i (34)
Z(1-e"

Substituting Eq.(34) into Eq.(33), we obtain the differential
equation for C(x',¢) as

oc(xt) il my Y, ...
r :f[l_eﬂ,jxc(x,t). (35)
Solving Eq.(35), the function C(x',¢) can be express as
' i my 2
C =C . 36
()= clojes] {7} 6o
So, the propagator in Eq.(34) can be written as
imy (x - x')2
K (x,x,1) = C(t)exp| 2= 2)_ 37)
24(1 —e*“)

To find C(r), we must substitute the propagator of Eq.(37) into the
Schrodinger’s equation

K ’ V2 ZK ’
; 16} (x,x,t):_ie 0 (x;x,t)‘ (38)
ot 2m ox
After some algebra, we obtain an equation
ac)_ [ yer
=— C(t). 39
dt 2(1 _ ef}/[ ) ( ) ( )

Equation (39) can be simply integrated with respect to time ¢ , and
one obtains

C

Nl—e™ ’

where C is a constant. Substituting Eq.(40) into Eq.(37) and
applying the initial condition of Eq.(21), we obtain

c(t)= (40)

m

C= (41)

27F

So, the propagator for a free particle with linear damping is

mo -
+

E
v mg

Sa(xrx) = mTww’"’T("“z )= sinol
b mE
2(_()2 - mz)sian

quE2
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e \lzms (1<) Pz (1)

The propagator for a charged harmonic
oscillator in time-dependent electric field

The aim of this section is to derive the propagator for a charged
harmonic oscillator in time-dependent electric field by Feynman path
integral method.! Considering the motion of a charged harmonic
oscillator which has mass m and positive charge ¢ moving in time-
dependent electric field Ecos(2t, the Lagrangian of this system can
be written as

1, 1
L=—mx* —Emwzx2 —qEcosQtx . (43)
By using the Euler-Lagrange equation for the Lagrangian in

Eq.(43), the equation of motion can be written as

¥+ w’x + qEcosQt = 0. (44)
The general solution of Eq.(44) is
E
x(t) = Acoswt + Bsinwt + %COSOI, (45)
(@)

Where 4 and B are constants. The constants B and B in Eq.(45)
can be determined by imposing the boundary conditions of x(¢') = x’
and x(¢)=x". The classical path that connects the point of {x".£"}

and (x",t") can be written as

. (t):{sina)(t—t')}x.._ sinao(t—1') p

sinoT sinoT

—W[cos()twsinw@ + t') - cos()l'sina)(t + t") - siancoth}.
(46)

The action can be calculated from the time-integration of the
Lagrangian from ¢ to ¢

;
S(x",t";x’,t') = LGt x, 1)t A7
o
For the action of our system, the Lagrangian in Eq.(43) is
substituted into Eq.(47), and then integrated by parts of the first term
on the right hand side of Eq.(43) and using the equation of motion in
Eq.(44).

The classical action can be written as

" on my v oo v
Scl (X >t ;x',t,) = E(xclxcl - xclxcl)' (48)

Substituting the classical paths of Eq.(46) into Eq.(48), the
classical action becomes

[wcosf)t‘ (sin 20t — cusa)(t' + t’)) + wcnsf)t’(cos 20t — sinw(t' + t’)) + (ucutmT(wat’sin 201" - uos()t“sino)(r" + t')) + a)('onTcnsf)t“]x“

[wcost’ (cos 201" —sin 2ot'cotoT — cosw(t” + t')csch) - a)cosf)t'(cosw (t" + t') - sinw(t“ + t')cota)T —cos2at’ ) + QsinQt'sinwT + wcoswTcosQt' — QsinQt' |x'

M5 [ peos® Of (2cosa)t"sina)t'cosa)(t" + t') —sin2ot’ cos Za)t’) — wcos? Ot'(2sina)t"cosa)t’cosa)(t" + t') —sin2wt cos Za)t') +

2(02 - )Z sin® ol

(sin_()l" + sinOt')cath'sina)(t" + t') -
QsinoT
sinQt cosQt'sin2wt — sinQt'cosQt sin2wt’

} = cosOfeosOr [(sin 20t —sin Zwt’)casa)(t" + t') -

cos2at’ +cos 2a)t’) sinwT
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—%(Sin 201 +sin 2.Ot')sin2 oT (49)

The quadratic Lagrangian propagator can be separated into a pure
function of time F (t“,t’) and the exponential function of classical

action S, (x",t";x’,t') as suggested in Ref.!

K@ﬂﬁfﬁ):F@ﬂﬂgMPV&wy. (50)

Calculation of the function F(¢,f') presented by Pauli,
Morette,'* or Jones and Papadoupoulos'* can be performed by the
semi classical approximation of path integral formula

. 1
P ’t):\/sz

By substituting the classical action of Eq.(49) into Eq.(51), the
pre-exponential factor can be obtained as

F(fJ):

From Eqs.(49),(50) and (52), the propagator for a charged harmonic
oscillator in time-dependent electric field can be expressed by

s,
ox'ox

(51)

ma

_. 52
2rEsin d (52)

W meo iS‘C](x",t";x',t')/
K(x ,t ;x',t') =,|—0e

53
2rgsin d (53)

The procedures of the Schwinger method in
calculating the non-relativistic propagator

~ Begin by considering a time-dependent Hamiltonian operator

H (1) , the propagator is defined by

~ RS
K(x,x';t):<x|Texp[—iv_[H(t)dt]|x'>, (54)
Z%
wherei" is the time-ordering operator and |x>,|x'> are the

eigenvectors of the position operator x (in the Schrodinger picture)
with eigenvalues x and x", respectively.

The differential equation for the propagator in Eq.(54) can be
written as

K t
£ GL (55)

- e <4 o)

Applying the relation between the operators in the Heisenberg and
Schrodinger pictures, we obtain the equation for the propagator in the
Heisenberg picture

e s X0

)> and |x’(

x(t) and x(O), respectively, with the corresponding eigenvalues

(56)
) where|x£t

0)> are the eigenvectors of the operators

x and x'. Besides, x(7)and p(t) satisfy the Heisenberg equations
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L dx(0) ap(r)

—F=|x jZ = .
W i 220y |

The main idea of the Schwinger method consists in the following
steps.

(7

1. The first step is solving the Heisenberg equations for x(t) and
}Av(t), and writing the solution for ]A)(t), only in terms of the
operators x(t) and x(O)

2. The next step is substituting AtheA solutions obtained in step
(1) into the expression for H x(t),p(t) in Eq.(56) and

empl9ying the commutator ;c(O),x(t) to rewrite eagh term

of H(t) in a time ordered form with all operators x(z) to

the left and all operators x(O). to the right. The time ordered
Hamiltonian can be defined as H o4 (x(t),x(O)].

3. After this ordering, Eq.(56) can be written in the form

! (58)
with H (x,x';t) being an ordinary function defined as
<x(t) Hona [&(r),é(o)) x’(0)>
H(x.x5t) = OO (59
Integrating Eq.(58) over £, the propagator takes the form
K (x,x";t) = C(x,x")expexp {—é;[H(x,x';t)dt}, (60)

where C(x,x') is an integration constant.

4. The last step is the calculating of C(x,x") This is obtained by
using the following conditions

+ HEE ) o). )
¢ FEE b 0k ) (6
ox' ’
and the initial condition
lim K (x,x'5t)=5(x—x"). (63)

The Schwinger method for a damped
harmonic oscillator

The Hamiltonian for a damped harmonic oscillator is described by®

2r12

1
—+—mwe’x
2

H —rt p
()=

(64)

Where r is the damping constant coefficient.
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The equation of motion corresponding to the Hamiltonian in Eq.
(64) is

¥+rk+o’x=0. (65)
The classical solution of Eq.(65) can be written in the form
_rt
rt ? .
- r e 2sin(t
x(t)=e 2| cosQt +——sin(t |x'+| —— |p’, 66
()= [costare psintn |+ 222 (s

where we impose the initial conditions x'=x(0) and p'= p(0).

[ 2
The reduced frequency € in Eq.(66) is defined by Q2 =, |@* —%
2

. The reduced frequency Q is real when @” ~_ 0. That is, we will
be concerned with the under-damped case.

By solving the Heisenberg equation in Eq. (57), the position
operators x(t) can be written similarly to Eq.(66) as
rt

e 2sin(t |
_— 0).
o5 1P

rt

x(l) —e 2 (cosOt + isinﬂtj;c(O) + (67)

The momentum operator p(¢)=m(t)e’" x(¢) can be written by
using Eq.(67) as

rt
2,2 i - "
ma”e? sin(t
Q0 x(0)+e? (cos()t—

plt)=-

rsin()tj ) 68)

20 »(0)

By using Eq.(67), we can eliminate p(O) from Eq.(68) by

~ ~ rt

p(t) =me" (.Ocot.()t —%)x(r) - (mﬁezcsc_ot];c(O). (69)

Substituting x(t) and p(t) into the Hamiltonian operator

)
R 2
H(t)=e™" P, lma)ze" x with the aid of
2m 2

[)}(o),;(t)} _EsinQ

mQ2

the ordered Hamiltonian operator can be expressed as

(70)

~ rt
Hora (t) = me

2\ -2
((22 csc? Qt — rQcot Ot + g]x (¢)

rt

" . 2
—mQe? [Ocsc()tcot()t - %cscOt)x(t)x(O) + %m()2 csc? Qe x

(0)

—Z—(OcotQt —Cj . (71
2 2

Applying Eqs.(58)-(60), the propagator takes the form

.t 2
K(x,x';t)= C(x,x')exp[—éj{%me” (QZ csc? Qt — rQcot 2t + r2]
0

Copyright:
©2021 Pepore 87

rt

+%m.02 cse? Q> —mQe? (chc.thotQt - %csc_(?tjxx'

4 r
—5[.0601‘.01‘ - Ej}dt]. (72)

Now, we will integrate each term of Eq.(72) with respect to time.
The first term of Eq.(72) can be integrated as

. t 2 . .
S J.e" [02 csc? Qt —rQcot Ot + rJ dt= ﬂe“cot()tx2 I e,
22 2 z 4 )
The second term of Eq.(72) can be calculated by
. 02 t . 0
_m - x'zj.csc2 QOudt = zmv cotQn'”. (74)
Z zZ

0

The third term of Eq.(72) can be derived by

t

xx'.fe? (chcOtcotQt - %csc.(?tj dt=—

0

im(2 im(2

rt
e2eseQxx'. (75)

z z

Finally, integrating the last term of Eq.(72), the result is
t
Q 1
—J(—cotﬂt—ijdt =——In ln(sinOt)+r—t. (76)
o\ 2 4 2 4

Combining the results of Eqs.(73)-(76), the propagator can be

written as
imr
exp| ———e"'x?
4

- "
Xexp ﬂ ecosQux? + cosQu’* —2e2 xx' ||. (77)
2Zsin(t

The final step is deriving the function C (x,x'). Substituting
Eq.(77) into Eq.(62), its can be obtained that

ocC (x, x') mr
f ———=——=xC ). 78
o' TR 79
The solution of Eq.(78) can be written as
C(x,x")=C(x) expexp[l:‘n—fx'zj, (79)
Z

Where C(x) is a position function
The propagator in Eq.(77) can be expressed as

rt

e? imr ,
———exp ——(e”x2 —-x 2)
£inOt 4

rt
e cosQu® + cosQu'* - 2e? xx'ﬂ. (80)

K(x,x';t) = C(x)

imQ
XEXPEXp 2zsin(dt

The next step is calculating C(x). Substituting Eq.(80) into
Eq.(61), the result is

6C(x)
Ox

=0, (81)
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which implies that C (x) is a constant independent of x .

After applying Eq.(63), it can be obtained that

C= /'"Q.
27k

So, the propagator for a damped harmonic oscillator can be written
as

(82)

rt

De?
T ex ( m (e"x2 x’z)j
2xEsin (2
im Z
xexp| ———| e"cosQt* + cosQux'* —2e2xx' ||, (83)
2Zsin(t

This propagator is the same as the result of S.Pepore,® found by
applying the integrals of motion of a quantum systems.

Conclusion

In this paper we have successfully calculated the exact propagators
for time-dependent Hamiltonian systems. The method for deriving
the propagators with the helping of integrals of motion of quantum
systems presented in this paper can be successfully applied in solving
a time-dependent linear potential and a free particle with linear
damping problems. This method has the important steps in finding
the constant of motion x, and p, and implying that the propagator

K (x,x',t)is the eigen functions of the operators xo(x) and p,(x)
. The exact propagator for a charged harmonic oscillator in time-
dependent electric field was calculated by the Feynman path integral
method. The crucial result in our calculation is to derive the classical
action as mentioned in E.(49). The propagator for a damped harmonic
oscillator has calculated by the Schwinger method. The important step
in the Schwinger formalism is to find the solution of the Heisenberg
equation in Eq.(67) and to express the Hamiltonian operator in an
appropriate order with the aid of the commutator in Eq.(70). The
advantage of the Schwinger method in this paper is that it requires only
fundamental operator algebra and some basic integration. In fact, the
application of the integrals of the motion method has many common
features with the Schwinger method, but the Schwinger method

requires the operators x(¢) and p(7) in deriving the matrix element
of Hamiltonian operator in calculating the propagator in Eq.(72). In
the Feynman path integrals, the pre-exponential function C (t) comes
from sum over all fluctuating paths that depend on calculation of the
functional integration while in the integrals of the motion method this
term appears from solving the Schrodinger equation of propagator.
In the Schwinger formalism, the pre-exponential function C (t) arises

from the commutation relation of | x(¢),x(0) |. These different points

of view may show the connection between Classical mechanics and
quantum mechanics.
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Finally, we have presented simple techniques in calculating the
propagator. It is preferable to have many methods in deriving the
propagators in the field of time-dependent Hamiltonian systems and
the Feynman path integrals, Schwinger method, and integrals of the
motion method are effective and appropriate techniques.
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