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Introduction
In quantum mechanics and quantum field theory, the propagator or 

Green function is represented as the transition probability amplitude 
for a particle to travel from initial space-time configuration to final 
space-time configuration. The standard method in calculating the 
propagator is Feynman path integral.1 In 2006, S.Pepore and et al.2 
applied the Feynman path integral method to Calculate the propagator 
for a harmonic oscillator with time-dependent mass and frequency. 
The one aim of this paper is using the path integral method to derive 
the propagator for a charged harmonic oscillator in time-dependent 
electric field.

The another method in calculating the propagator is the Schwinger 
method.3 This method was first formulated by Schwinger in 1951 for 
solving the gauge invariance and vacuum polarization in QED. In 
2015, the Schwinger method was used to derive the propagator for 
time-dependent harmonics oscillators by S.Pepore and B.Sukbot.4–6 
The one purposes of this article is applying the Schwinger method to 
calculate the propagator for a damped harmonic oscillator.

In 1975, V.V. Dodonov, I.A. Malkin, and V.I. Man’ko7 presented 
the connection between the integrals of the motion of a quantum 
system and its propagator that is the eigenfunction of the integrals 
of the motion describing initial points of the system trajectory 
in the phase space. In 2018, S. Pepore applied the integrals of the 
motion to calculate the propagators for time-dependent harmonic 
oscillators.8,9 The one aim of this article is applying the integrals of 
the motion to derive the propagators for a particle moving in a time-
dependent linear potential and a free particle with linear damping. The 
organization of this paper are as follows. In Sec.2, the propagator for 
a particle in a time-dependent linear potential is derived. In Sec.3, the 
propagator for a free particle with linear damping is obtained with 
the aid of the integrals of the motion. In Sec 4, the Feynman path 
integrals is applied to evaluate the propagator for a charged harmonic 
oscillator in time-dependent electric field. In Sec.5, the procedures 
of the Schwinger method are described. In Sec.6, the propagator for 
a damped harmonic oscillator are derived by the Schwinger method. 
Finally, the conclusion is presented in Sec.8.

The propagator for a particle moving in a 
time-dependent linear potential

In this section, we will calculate the propagator for a particle 
moving in a time-dependent linear potential described by the 
Hamiltonian operator.6 
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Where k  is a constant and t  is time.

 The classical equation of motion for this system is

                                      0mx kt− =                                                    (2)

The classical paths in the phase space under the initial conditions 
( ) 00x x= and ( ) 00P P= are given by 
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Now we consider the systems of Eqs.(3) and (4) as an algebraic 
system for unknown initial position 0x  and initial momentum 0p . 
The variables , ,x p and t  are taken as the parameters. The solution of 
this system can be written as the operator in Hilbert space as
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The operators 0x


 and 0p


 are the integrals of the motion because 
theirs satisfy equation of
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Where I


 may be 0x


 and 0p


. Then these operatos must satisfy 
equations for the Green function or propagator,2,5,6 

                        ( ) ( ) ( ) ( )0 , , , ,x x K x x t x x K x x t=′ ′ ′
 

                                (8)

                       ( ) ( ) ( ) ( )0 , , , , ,p x K x x t p x K x x t= −′ ′ ′
 

                              (9)

where the operators on the left-hand sides of the equations act on 
variables x , and on the right-hand sides, on x′ . 
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 Now we write Eqs.(8) and (9) explicitly,
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By modifying Eqs.(10) and (11), the system of equation for 
deriving the propagator are
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Now one can integrate Eq. (12) with respect to the variable x  to 
obtain
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Substituting Eq.(14) into Eq.(13), we obtain the differential 
equation for ( ),C x t′ as
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Solving Eq.(15), the function ( ),C x t′ can be expressed as
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So, the propagator in Eq.(14) can be written as
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To obtain ( ),C t we must substitute the propagator of Eq. (17) into 
the Schrodinger’s equation
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After some algebra, we obtain an equation
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Equation (19) can be simply integrated with respect to time t ,and 
one obtains
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where C  is a constant. Substituting Eq.(20) into Eq.(17) and 
applying the initial condition
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So, the propagator for a particle moving in time-dependent linear 
potential is
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which is the same form as the result of S.Pepore and B.Sukbot 
calculated by the Schwinger method.6 

The propagator for a free particle with linear 
damping

This section is the calculation of the propagator for a free particle 
with linear damping by the application of integrals of motion 
operators. Considering the motion of a free particle with constant 
mass  in a linear damping which has the damping coefficient β , 
the Hamiltonian operator of this system can be written as10 
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The Hamilton equation of motion for position and momentum are11
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The classical paths in the phase space under the initial conditions 
( ) 00x x= and ( ) 00p p= are given by
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Now we rewrite the systems of Eqs. (26) and (27) in terms of the 
initial position operator 0x
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The operators 0x


 and 0p


 are the integrals of the motion because 
theirs satisfy Eq.(7). Then these operators must satisfy Eqs.(8), (9), 
and
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By modifying Eqs.(30) and (31), the system of equation for 
calculating the propagator are
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Now one can integrate Eq.(32) with respect to the variable x  to 
obtain
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Substituting Eq.(34) into Eq.(33), we obtain the differential 
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Solving Eq.(35), the function ( ),C x t′ can be express as
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So, the propagator in Eq.(34) can be written as
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To find ( ),C t we must substitute the propagator of Eq.(37) into the 
Schrodinger’s equation
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Equation (39) can be simply integrated with respect to time t , and 
one obtains
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where C  is a constant. Substituting Eq.(40) into Eq.(37) and 
applying the initial condition of Eq.(21), we obtain
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So, the propagator for a free particle with linear damping is
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The propagator for a charged harmonic 
oscillator in time-dependent electric field

The aim of this section is to derive the propagator for a charged 
harmonic oscillator in time-dependent electric field by Feynman path 
integral method.1 Considering the motion of a charged harmonic 
oscillator which has mass m  and positive charge q  moving in time-
dependent electric field ,Ecos tΩ the Lagrangian of this system can 
be written as
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Where A  and B  are constants. The constants B and B in Eq.(45) 
can be determined by imposing the boundary conditions of ( )x t x′ = ′
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The action can be calculated from the time-integration of the 
Lagrangian from t′  to "t
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For the action of our system, the Lagrangian in Eq.(43) is 
substituted into Eq.(47), and then integrated by parts of the first term 
on the right hand side of Eq.(43) and using the equation of motion in 
Eq.(44).
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The quadratic Lagrangian propagator can be separated into a pure 
function of time ( )'',F t t′ and the exponential function of classical 
action ( )'' '', ; ,clS x t x t′ ′ as suggested in Ref.1 

                     ( ) ( ) ( )'' '', ; , /'' '' '', ; , ,
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′=′ ′ .                     (50)

Calculation of the function ( )'',F t t′  presented by Pauli,12 
Morette,13 or Jones and Papadoupoulos14 can be performed by the 
semi classical approximation of path integral formula

                               
( )

2
''

''
1,

2
clSF t t

iž x xπ ∂ ′
∂

=
∂

′ .                              (51)

By substituting the classical action of Eq.(49) into Eq.(51), the 
pre-exponential factor can be obtained as
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From Eqs.(49),(50) and (52), the propagator for a charged harmonic 
oscillator in time-dependent electric field can be expressed by
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The procedures of the Schwinger method in 
calculating the non-relativistic propagator

Begin by considering a time-dependent Hamiltonian operator
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, the propagator is defined by

               
( ) ( )

0

, ; exp ,
tiK x x t x T H t dt x

ž
 

= −  
 

′ ′∫
 

                     (54)

where T


 is the time-ordering operator and ,x x′  are the 

eigenvectors of the position operator x


 (in the Schrodinger picture) 
with eigenvalues x  and x′ , respectively.

The differential equation for the propagator in Eq.(54) can be 
written as

           

( ) ( )
0

, ;
exp .

tK x x t iiž x H T H t dt x
tž

 ∂
= − 



′
′∂ 

∫
  

             (55)

Applying the relation between the operators in the Heisenberg and 
Schrodinger pictures, we obtain the equation for the propagator in the 
Heisenberg picture
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The main idea of the Schwinger method consists in the following 
steps.

1.	 The first step is solving the Heisenberg equations for ( )x t


 and 

( ),p t


 and writing the solution for ( ),p t


 only in terms of the 

operators ( )x t


 and ( )0 .x


2.	 The next step is substituting the solutions obtained in step 

(1) into the expression for ( ) ( ),H x t p t 
 
 

  

 in Eq.(56) and 

employing the commutator ( ) ( )0 ,x x t 
  

 

 to rewrite each term 

of  ( )H t


 in a time ordered form with all operators ( )x t


 to 

the left and all operators ( )0 .x


 to the right. The time ordered 

Hamiltonian can be defined as ( ) ( ), 0 .ordH x t x 
 
 

  

3.	 After this ordering, Eq.(56) can be written in the form

                       

( ) ( ) ( ), ;
, ; , ; ,

K x x t
iž H x x t K x x t

t
′

′ ′
∂

=
∂

                 (58)

with ( ), ;H x x t′  being an ordinary function defined as

                 
( )

( ) ( ) ( ) ( )

( ) ( )

, 0 0
, ; .

0

ordx t H x t x x
H x x t

x t x

 
  ′

′
′

 =
〉

  

            (59)

Integrating Eq.(58) over , the propagator takes the form

( ) ( ) ( )
0

, ; , expexp , ; ,
tiK x x t C x x H x x t dt

ž
  = − 


′ ′ ′


∫                     (60)

where ( ),C x x′  is an integration constant.

4.	 The last step is the calculating of ( ),C x x′ This is obtained by 
using the following conditions

                    

( ) ( ) ( ) ( ), ;
0 ,

K x x t
iž x t p t x

x
∂

− =
∂

′
′



                    (61)

                      

( ) ( ) ( ) ( ), ;
0 0 ,

K x x t
iž x t p x

x
′

′
′

∂
=

∂



                   (62)

and the initial condition

                               
( ) ( )

0
lim , ; .

t
K x x t x xδ+→

′ ′= −
                            

  (63)

The Schwinger method for a damped 
harmonic oscillator

The Hamiltonian for a damped harmonic oscillator is described by8 

                                 
( )

2
2 21 ,

2 2
rt rtpH t e m e x

m
ω−= +                             (64)

Where r  is the damping constant coefficient.
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The equation of motion corresponding to the Hamiltonian in Eq. 
(64) is

                                             
2 0.x rx xω+ + =                                (65)

The classical solution of Eq.(65) can be written in the form

       

( )
2

2 ,
2

rt
rt r e sin tx t e cos t sin t x p

m

−
−

′
 
  = + +      
 

′Ω
Ω Ω

Ω Ω
        (66)

where we impose the initial conditions ( )0x x′ =  and ( )0 .p p′ =

The reduced frequency Ω in Eq.(66) is defined by 
2

2

4
rω= −Ω

. The reduced frequency Ω is real when 
2

2 0.
4
rω − > That is, we will 

be concerned with the under-damped case.

By solving the Heisenberg equation in Eq. (57), the position 

operators ( )x t


 can be written similarly to Eq.(66) as

    

( ) ( ) ( )
2

2 0 0 .
2

rt
rt r e sin tx t e cos t sin t x p

m

−
−

 
  = + +      
 

  Ω
Ω Ω

Ω Ω
          (67) 

The momentum operator ( ) ( ) ( )rtp t m t e x t=
 

  can be written by 
using Eq.(67) as

( ) ( ) ( )
2 2

20 0 .
2

rt
rtm e sin t rsin tp t x e cos t pω

 
   = − + −     
 

  Ω Ω
Ω

Ω Ω
            (68)

By using Eq.(67), we can eliminate ( )0p


 from Eq.(68) by

  
( ) ( ) ( )2 0 .

2

rt
rt rp t me cot t x t m e csc t x

  = − −        

  

Ω Ω Ω Ω                (69)

Substituting ( )x t


 and ( )p t


 into the Hamiltonian operator 

                     
( )

2
2

21
2 2

rt rtpH t e m e x
m

ω−= +



 

with the aid of

                                 
( ) ( ) /20 , ,rtižsin tx x t e

m
−  =  

  Ω
Ω

                                  (70)

the ordered Hamiltonian operator can be expressed as

( ) ( )
22

2 2csc
2 2

rt

ord
me rH t t r cot t x t

 
= − +  

 

 

Ω Ω Ω Ω

( ) ( ) ( )
2

2 22 10 csc 0
2 2

rt rm e csc tcot t csc t x t x m t x − − + 
 

  

Ω Ω Ω Ω Ω Ω Ω

                                    2 2
iž rcot t − − 
 
Ω Ω .                                   (71)          

Applying Eqs.(58)-(60), the propagator takes the form

( ) ( )
2

2 2

0

1, ; , exp[ { csc
2 2

t
rti rK x x t C x x me t r cot t

ž
 

= − − +  
 

′ ′ ∫ Ω Ω Ω Ω

2 2 2 21 csc
2 2

rt rm tx m e csc tcot t csc t xx + − − 


′ ′


Ω Ω Ω Ω Ω Ω Ω

                                     
} ].

2 2
iž rcot t dt − − 
 
Ω Ω                                                               (72)

Now, we will integrate each term of Eq.(72) with respect to time. 
The first term of Eq.(72) can be integrated as

2
2 2 2 2 2

0

csc .
2 2 2 4

t
rt rt rtim r im imrx e t r cot t dt e cot tx e x

ž ž ž
 

− − + = −  
 

∫
Ω

Ω Ω Ω Ω Ω

                                                                                                      (73)
The second term of Eq.(72) can be calculated by

                      

2
2 2 2

0

csc .
2 2

tim imx tdt cot tx
ž ž

− =′ ′∫
Ω Ω

Ω Ω                        (74)

The third term of Eq.(72) can be derived by

2 2

0

.
2

rt rttim r imxx e csc tcot t csc t dt e csc txx
ž ž

 − = − ′ ′
 ∫

Ω Ω
Ω Ω Ω Ω Ω  (75)

Finally, integrating the last term of Eq.(72), the result is

                
( )

0

1 ln ln .
2 4 2 4

t r rtcot t dt sin t − − = − + 
 ∫
Ω

Ω Ω             (76)

Combining the results of Eqs.(73)-(76), the propagator can be 
written as

             
( ) ( )

2
2, ; , exp

4

rt

rte imrK x x t C x x e x
sin tž

 = − 


′ ′
Ω

           

2 2 2exp 2
2

rt
rtim e cos tx cos tx e xx

žsin t

  
 ×  + −    

′


′


Ω
Ω Ω

Ω
.    (77) 

The final step is deriving the function ( ), .C x x′ Substituting 
Eq.(77) into Eq.(62), its can be obtained that

                                

( ) ( ),
, .

2
C x x mriž x C x x

x
∂

= − ′ ′
′∂

′
                    (78)

The solution of Eq.(78) can be written as

                               
( ) ( ) 2, expexp ,

4
imrC x x C x x
ž

 =  ′ 
 

′                 (79)

Where ( )C x is a position function

 The propagator in Eq.(77) can be expressed as

         

          
( ) ( ) ( )

2
2 2, ; exp

4

rt

rte imrK x x t C x e x x
sin tž

 = − −′ ′ 
 Ω

      

2 2 2expexp 2 .
2

rt
rtim e cos tx cos tx e xx

žsin t
′ ′

  
 ×  + −     

Ω
Ω Ω

Ω
    (80)

The next step is calculating ( ).C x Substituting Eq.(80) into 
Eq.(61), the result is

                                                  

( ) 0,
C x

x
∂

=
∂

                                          (81)
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which implies that ( ).C x is a constant independent of x .

      After applying Eq.(63), it can be obtained that

                                                      
.

2
mC

ižπ
=

Ω                                                   (82)

So, the propagator for a damped harmonic oscillator can be written 
as

         
( ) ( )

2
2 2, ; exp

2 4

rt

rtm e imrK x x t e x x
ižsin t žπ

 = − − 


′ ′


Ω
Ω

         

2 2 2exp 2
2

rt
rtim e cos tx cos tx e xx

žsin t

  
 ×  + −    

′


′


Ω
Ω Ω

Ω
.      (83)

This propagator is the same as the result of S.Pepore,8 found by 
applying the integrals of motion of a quantum systems.

Conclusion
 In this paper we have successfully calculated the exact propagators 

for time-dependent Hamiltonian systems. The method for deriving 
the propagators with the helping of integrals of motion of quantum 
systems presented in this paper can be successfully applied in solving 
a time-dependent linear potential and a free particle with linear 
damping problems. This method has the important steps in finding 
the constant of motion 0x  and 0p  and implying that the propagator 

( ), ,K x x t′ is the eigen functions of the operators ( )0x x


 and ( )0p x


. The exact propagator for a charged harmonic oscillator in time-
dependent electric field was calculated by the Feynman path integral 
method. The crucial result in our calculation is to derive the classical 
action as mentioned in E.(49). The propagator for a damped harmonic 
oscillator has calculated by the Schwinger method. The important step 
in the Schwinger formalism is to find the solution of the Heisenberg 
equation in Eq.(67) and to express the Hamiltonian operator in an 
appropriate order with the aid of the commutator in Eq.(70). The 
advantage of the Schwinger method in this paper is that it requires only 
fundamental operator algebra and some basic integration. In fact, the 
application of the integrals of the motion method has many common 
features with the Schwinger method, but the Schwinger method 

requires the operators ( )x t


 and ( )p t


 in deriving the matrix element 
of Hamiltonian operator in calculating the propagator in Eq.(72). In 
the Feynman path integrals, the pre-exponential function ( )C t comes 
from sum over all fluctuating paths that depend on calculation of the 
functional integration while in the integrals of the motion method this 
term appears from solving the Schrodinger equation of propagator. 
In the Schwinger formalism, the pre-exponential function ( )C t arises 

from the commutation relation of ( ) ( ), 0 .x t x 
  

 

 These different points 
of view may show the connection between classical mechanics and 
quantum mechanics.

Finally, we have presented simple techniques in calculating the 
propagator. It is preferable to have many methods in deriving the 
propagators in the field of time-dependent Hamiltonian systems and 
the Feynman path integrals, Schwinger method, and integrals of the 
motion method are effective and appropriate techniques.
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