Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 3 Issue 4

Potts model on directed complex networks

FWS Lima

Departamento de Física, Universidade Federal do Piauí, Brazil

Correspondence: FWS Lima, Departamento de Física, Dietrich Stauffer Computational Physics Lab, Universidade Federal do Piauí, 64049-550, Teresina - PI, Brazil

Received: August 08, 2019 | Published: August 29, 2019

Citation: Lima F. Potts model on directed complex networks. Phys Astron Int J. 2019;3(4):156-157. DOI: 10.15406/paij.2019.03.00175

Download PDF

Abstract

It is known from the literature that the Ising and Potts models in one dimension =1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaaaaaaaape Gaeyypa0JaeyymaeZdaiabgMcaPaaa@3A4F@  do not present phase transitions at finite temperature T, for any number of states q. However, in two dimension (d=2,) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibiaacIcacaWGKb aeaaaaaaaaa8qacqGH9aqpcqGHYaGmcqGHSaalpaGaeyykaKcaaa@3CCA@ there are a second-order phase transition and a first-order transition for 𝑞≤4 and 𝑞≥5, respectively. On directed Barabási-Albert networks, the Potts model with  q=2  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamyCaiabg2da9iabgkdaYiaacckaaaa@3B7E@ states (Ising model) no presents a phase transition. On the other hand, the Potts with q=3 presents a first-order phase transition well defined on these networks. This behavior is different from the Potts model with  q=2  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibabaaaaaaaaape GaamyCaiabg2da9iabgkdaYiaacckaaaa@3B7E@ and 3 states on a square lattice where the phase transition is of the second-order. Here, we will briefly discuss the critical behavior of the Potts model on directed complex networks as the Barabási-Albert network also known as free scale networks.

Keywords: potts, networks, spins, ising model, scale networks, square lattice, two dimension, temperature, elementary models, statistical physics

Introduction

A large amount of information about the behavior of real, physical systems can be described using simple models supplied from statistical physics. This is occur due to the phenomenon of universality near a second-order phase transition where the behavior critical of the system only depends on a few parameters like the dimensionality and global symmetries of the system. Because of this, elementary models like the Ising model remain of great importance. The Potts model is a generalization of the simplest Ising model in statistical mechanics for systems with more than two opinions (yes or not).

The Potts model in two-dimension (2D) present phase transition well defined at finite temperature T, for any number of states q>1. However, in 2D the phase transition presents a second-order phase transition for q4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaqcLbsacaWGXbGaey izImQaeyinaqdaaaa@3AEE@ and a first-order transition for q4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaqcLbsacaWGXbGaey izImQaeyinaqdaaaa@3AEE@ and q5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaqcLbsacaWGXbGaey yzImRaeyynaudaaaa@3B01@ , respectivelly.1

Édio et al.,2 studied the Potts model on a directed one-dimension on Small-World network . They found that for q=3  the Potts model presents a second-order phase transition for rewiring probability p in the range of 0<𝑝<0.15  and first-order phase transition for 1>𝑝>0.15. In the particular case of 𝑝=0.1 the critical exponent ratios 1/𝜈, 𝛽/𝜈  and 𝛾/𝜈  fall into a different universality class than the model on a regular two-dimensional lattice neglecting or not corrections to scaling. For the case 𝑞=8 our results indicate only first-order phase transition for 𝑝>0. One possible explanation for this behavior is the influence of long range interactions that occur in the presence of p directed bonds and also the number of the Potts model states on the directed SW network.

Lima3,4 studied the q=3 states ferromagnetic Potts model on Erdös-Rènyí random graphs and Solomon networks. Unlike the results presented for the Potts model on a square lattice, their results showed that this model presents only a first-order phase transition. The Ising model no presents phase transition on directed Barabási-Albert (BA) network.5 Lima6 studied the Potts model on directed BA networks. The results show that for the Potts model with  states presents again only a first-order phase transition.

Potts model

To study the behavior critical of the Potts model, we need to evolve the hamiltonian this model defined below

H=J i=1 N E i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaqcLbsacaWGibGaam ypaiabgkHiTiaadQeakmaaqahabaqcLbsacaWGfbGcdaWgaaWcbaqc LbmacaWGPbaaleqaaaqaaKqzGeGaamyAaiaad2dacaqGXaaaleaaju gibiaad6eaaiabggHiLdaaaaa@44E4@ , (1)

with

Ei= j=1 k δ S i S j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbqcLbmacaWGPb GccaWG9aWaaabCaeaajugibiaads7akmaaBaaaleaajugibiaadofa kmaaBaaaleaajugWaiaadMgaaSqabaqcLbsacaWGtbGcdaWgaaWcba qcLbmacaWGQbaaleqaaaGcbeaaaSqaaKqzGeGaamOAaiaad2dacaqG XaaaleaajugibiaadUgaaiabggHiLdaaaa@4AB8@  (2)

where the sum is carried out over the k neighbors of site i . In the above equation J is the exchange coupling. The energy per spin is given by,

e= E i N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaqcLbsacaWGLbGaam ypaOWaaSaaaeaajugibiaadweakmaaBaaaleaajugWaiaadMgaaSqa baaakeaajugibiaad6eaaaaaaaa@3E37@  (3)

and the magnetization,

M= ( q.max[ n i ]N ) q1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaqcLbsacaWGnbGaam ypaOWaaSaaaeaadaqadaqaaKqzGeGaamyCaiaab6cacaWGTbGaamyy aiaadIhakmaadmaabaqcLbsacaWGUbGcdaWgaaWcbaqcLbmacaWGPb aaleqaaaGccaGLBbGaayzxaaqcLbsacqGHsislcaWGobaakiaawIca caGLPaaaaeaajugibiaadghacqGHsislcaqGXaaaaaaaaa@4AF5@

where the magzation per spins m=M/N was evaluated. Here, n i N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaqcLbsacaWGUbGcda WgaaWcbaqcLbmacaWGPbaaleqaaKqzGeGaeyizImQaamOtaaaaaa@3DB6@ denotes the number of spins with ``orientation" i=1,...,q.

Conclusion

The two-dimensional Potts model presents two phase transition types, one of second-order and one of first- order.. For q4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaqcLbsacaWGXbGaey izImQaeyinaqdaaaa@3AEE@ the transition is of second-order and for larger q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaqcLbsacaWGXbaaaa a@3845@  we have a first order phase transition. The reason for this behavior so far has not been explained in the literature.

Here, we have shown that by considering the q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8EKe9Vze9Vze9pk0xbba9q8 WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0d meaabaqaciGacaGaaeqabaWaaeaaeaaakeaabaqcLbsacaWGXbaaaa a@3845@ -states ferromagnetic Potts model on directed Erdös-Rènyí random graphs, Solomon, and BA networks, there is only a first-order phase transition. Unfortunately, so far, we have no plausible reason to justify this behavior of the Potts model on the directed networks mentioned here.

Acknowledgments

The author would like to thank the Brazilian agencies CNPq and Capes.

Conflict of interest

The author states that there is no conflict of interest.

References

Creative Commons Attribution License

©2019 Lima. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.