Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 2

On the synopsis of the Higgs boson

Manyika Kabuswa Davy, Likolo Anabiwa George, Katongo Judith

Mulungushi University, School of Natural and Applied Sciences, Department of Physics, Zambia

Correspondence: Manyika Kabuswa Davy, Mulungushi University, School of Natural and Applied Sciences, Department of Physics, Zambia

Received: April 17, 2023 | Published: May 12, 2023

Citation: Davy MK, George LA, Judith K. On the synopsis of the Higgs boson. Phys Astron Int J. 2023;7(2):113-116. DOI: 10.15406/paij.2023.07.00294

Download PDF

Abstract

In this paper, we analyze the Standard Model (SM) Higgs boson by computing both the partial width and the amplitude of a number of decay channels that the Higgs Boson can undergo. In our computations, we treat the Higgs boson as a free parameter despite its estimated mass of around 125GeV discovered at the Large Hadron Collider (LHC).1

Keywords: Higgs boson, decay channels, Standard Model, Large Hadron Collider.

Introduction

The Higgs boson can undergo several decays via a number of decay channels.2 The main decay channels that we are going to concentrate on in this paper are h 0 f. f ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkaadAgacaGGUaGabmOzayaaraaa aa@3E44@ , h 0 W + W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkaadEfadaahaaqabeaacqGHRaWk aaGaam4vamaaCaaabeqaaiabgkHiTaaaaaa@3F6F@ , h 0 Z 0 Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkaadQfadaahaaqabeaacaaIWaaa aiaadQfadaahaaqabeaacaaIWaaaaaaa@3F1A@ , h 0 gg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkaadEgacaWGNbaaaa@3D7C@ , and h 0 γγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkabeo7aNjabeo7aNbaa@3EF2@ .3 From the five decay channels listed, the first three occur at tree level while the other two at one-loop.

In this paper, we will calculate the decay widths by treating our decay system as a body of a final state system. Beginning with rotational symmetry and considering our momentum to be conserved, we parametrize our variables in the centre-of-mass (CM) frame as p 1 =( E,0,0,p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchada WgaaqaaKqzadGaaGymaaqcfayabaGaeyypa0ZaaeWaaeaacaWGfbGa aiilaiaaicdacaGGSaGaaGimaiaacYcacaWGWbaacaGLOaGaayzkaa aaaa@434D@   and p 2 =( E,0,0,p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchada Wgaaqaaiaaikdaaeqaaiabg2da9maabmaabaGaamyraiaacYcacaaI WaGaaiilaiaaicdacaGGSaGaeyOeI0IaamiCaaGaayjkaiaawMcaaa aa@427F@  , with E= 1 2 m h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweacq GH9aqpdaWcdaqaaiaaigdaaeaacaaIYaaaaiaad2gadaWgaaqaaiaa dIgaaeqaaaaa@3D48@ . Here we note that the amplitude will not depend on the angular parameters.4 Thus the integral of the phase space reads

d Π 2 | M | 2 = 1 4π p m h | M | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaapeaaba Gaamizaiabfc6aqnaaBaaabaGaaGOmaaqabaaabeqabiabgUIiYdWa aqWaaeaacaWGnbaacaGLhWUaayjcSdWaaWbaaeqabaGaaGOmaaaacq GH9aqpdaWcaaqaaiaaigdaaeaacaaI0aGaeqiWdahaamaalaaabaGa amiCaaqaaiaad2gadaWgaaqaaiaadIgaaeqaaaaadaabdaqaaiaad2 eaaiaawEa7caGLiWoadaahaaqabeaacaaIYaaaaaaa@4E0A@   (1)

From Equation 1, we determine the decay width as5

Γ= 1 2 m h d Π 2 | M | 2 = 1 8π p m h 2 | M | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo5ahj abg2da9maalaaabaGaaGymaaqaaiaaikdacaWGTbWaaSbaaeaacaWG ObaabeaaaaWaa8qaaeaacaWGKbGaeuiOda1aaSbaaeaacaaIYaaabe aaaeqabeGaey4kIipadaabdaqaaiaad2eaaiaawEa7caGLiWoadaah aaqabeaacaaIYaaaaiabg2da9maalaaabaGaaGymaaqaaiaaiIdacq aHapaCaaWaaSaaaeaacaWGWbaabaGaamyBamaaDaaabaGaamiAaaqa aiaaikdaaaaaamaaemaabaGaamytaaGaay5bSlaawIa7amaaCaaabe qaaiaaikdaaaaaaa@54C0@   (2)

Furthermore, the momenta of our final state particles becomes k 1 =( E,0,0,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada WgaaqaaKqzGcGaaGymaaqcfayabaGaeyypa0ZaaeWaaeaacaWGfbGa aiilaiaaicdacaGGSaGaaGimaiaacYcacaWGRbaacaGLOaGaayzkaa aaaa@4323@ and k 2 =( E,0,0,k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada Wgaaqaaiaaikdaaeqaaiabg2da9maabmaabaGaamyraiaacYcacaaI WaGaaiilaiaaicdacaGGSaGaeyOeI0Iaam4AaaGaayjkaiaawMcaaa aa@4275@  with E 2 = k 2 + m i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada ahaaqabeaacaaIYaaaaiabg2da9iaadUgadaahaaqabeaacaaIYaaa aiabgUcaRiaad2gadaqhaaqaaiaadMgaaeaacaaIYaaaaaaa@400A@  and 2E= m f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdaca WGfbGaeyypa0JaamyBamaaBaaabaGaamOzaaqabaaaaa@3C78@ .6 Thus, the cross section becomes

σ= 1 2βs d 3 p ( 2π ) 3 1 2 E p | M | 2 ( 2π ) 2 δ 4 ( p k 1 k 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZj abg2da9maalaaabaGaaGymaaqaaiaaikdacqaHYoGycaWGZbaaamaa peaabaWaaSaaaeaacaWGKbWaaWbaaeqabaGaaG4maaaacaWGWbaaba WaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaeqabaGa aG4maaaaaaaabeqabiabgUIiYdWaaSaaaeaacaaIXaaabaGaaGOmai aadweadaWgaaqaaiaadchaaeqaaaaadaabdaqaaiaad2eaaiaawEa7 caGLiWoadaahaaqabeaacaaIYaaaamaabmaabaGaaGOmaiabec8aWb GaayjkaiaawMcaamaaCaaabeqaaiaaikdaaaGaeqiTdq2aaWbaaeqa baGaaGinaaaadaqadaqaaiaadchacqGHsislcaWGRbWaaSbaaeaaca aIXaaabeaacqGHsislcaWGRbWaaSbaaeaacaaIYaaabeaaaiaawIca caGLPaaaaaa@5FF7@
= 1 4 m f βs | M | 2 ( 2π )δ( 2 k 1 m f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaaGymaaqaaiaaisdacaWGTbWaaSbaaeaacaWGMbaabeaa cqaHYoGycaWGZbaaamaaemaabaGaamytaaGaay5bSlaawIa7amaaCa aabeqaaiaaikdaaaWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzk aaGaeqiTdq2aaeWaaeaacaaIYaGaam4AamaaBaaabaGaaGymaaqaba GaeyOeI0IaamyBamaaBaaabaGaamOzaaqabaaacaGLOaGaayzkaaaa aa@5089@   

= π β m f 2 | M | 2 δ( s m f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaeqiWdahabaGaeqOSdiMaamyBamaaDaaabaGaamOzaaqa aiaaikdaaaaaamaaemaabaGaamytaaGaay5bSlaawIa7amaaCaaabe qaaiaaikdaaaGaeqiTdq2aaeWaaeaacaWGZbGaeyOeI0IaamyBamaa DaaabaGaamOzaaqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@4BBD@   (3)

with β= 1 ( 4 m i / m f ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIj abg2da9maakaaabaGaaGymaiabgkHiTmaabmaabaWaaSGbaeaacaaI 0aGaamyBamaaBaaabaGaamyAaaqabaaabaGaamyBamaaBaaabaGaam OzaaqabaaaaaGaayjkaiaawMcaamaaCaaabeqaaiaaikdaaaaabeaa aaa@4387@ being the initial particle’s velocity magnitude.

The h 0 f. f ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkaadAgacaGGUaGabmOzayaaraaa aa@3E44@ decay channel

This is the simplest channel to compute and its corresponding amplitude reads as

iM( h 0 f. f ¯ )= i m f v u ¯ ( p 1 )v( p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaeWaaeaacaWGObWaaWbaaeqabaGaaGimaaaacqGHsgIRcaWG MbGaaiOlaiqadAgagaqeaaGaayjkaiaawMcaaiabg2da9iabgkHiTm aalaaabaGaamyAaiaad2gadaWgaaqaaiaadAgaaeqaaaqaaiaadAha aaGabmyDayaaraWaaWbaaeqabaGaey4fIOcaamaabmaabaGaamiCam aaBaaabaGaaGymaaqabaaacaGLOaGaayzkaaGaamODamaabmaabaGa amiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaaaaa@514A@   (4)

It is easy to compute the square amplitude as

| M( h 0 f. f ¯ ) | 2 = m f 2 v 2 tr[ ( p 1 + m f )( p 2 m f ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqaeaba WaaqWaaeaacaWGnbWaaeWaaeaacaWGObWaaWbaaeqabaGaaGimaaaa cqGHsgIRcaWGMbGaaiOlaiqadAgagaqeaaGaayjkaiaawMcaaaGaay 5bSlaawIa7aaqabeqacqGHris5amaaCaaabeqaaiaaikdaaaGaeyyp a0ZaaSaaaeaacaWGTbWaa0baaeaacaWGMbaabaGaaGOmaaaaaeaaca WG2bWaaWbaaeqabaGaaGOmaaaaaaGaamiDaiaadkhadaWadaqaamaa bmaabaGabmiCayaawaWaaSbaaeaacaaIXaaabeaacqGHRaWkcaWGTb WaaSbaaeaacaWGMbaabeaaaiaawIcacaGLPaaadaqadaqaaiqadcha gaGfamaaBaaabaGaaGOmaaqabaGaeyOeI0IaamyBamaaBaaabaGaam OzaaqabaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@5CE1@
= 2 m f 2 v 2 ( m f 2 4 m f 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaaGOmaiaad2gadaqhaaqaaiaadAgaaeaacaaIYaaaaaqa aiaadAhadaahaaqabeaacaaIYaaaaaaadaqadaqaaiaad2gadaqhaa qaaiaadAgaaeaacaaIYaaaaiabgkHiTiaaisdacaWGTbWaa0baaeaa caWGMbaabaGaaGOmaaaaaiaawIcacaGLPaaaaaa@46FE@   (5)

Using the momenta for final states, the decay width becomes

Γ( h 0 f. f ¯ )= 1 8π p m h 2 | M | 2 = m h m f 2 8 v 2 ( 1 4 m f 2 m h 2 ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo5ahn aabmaabaGaamiAamaaCaaabeqaaiaaicdaaaGaeyOKH4QaamOzaiaa c6caceWGMbGbaebaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaig daaeaacaaI4aGaeqiWdahaamaalaaabaGaamiCaaqaaiaad2gadaqh aaqaaiaadIgaaeaacaaIYaaaaaaadaabdaqaaiaad2eaaiaawEa7ca GLiWoadaahaaqabeaacaaIYaaaaiabg2da9maalaaabaGaamyBamaa BaaabaGaamiAaaqabaGaamyBamaaDaaabaGaamOzaaqaaiaaikdaaa aabaGaaGioaiaadAhadaahaaqabeaacaaIYaaaaaaadaqadaqaaiaa igdacqGHsisldaWcaaqaaiaaisdacaWGTbWaa0baaeaacaWGMbaaba GaaGOmaaaaaeaacaWGTbWaa0baaeaacaWGObaabaGaaGOmaaaaaaaa caGLOaGaayzkaaWaaWbaaeqabaWaaSGbaeaacaaIZaaabaGaaGOmaa aaaaaaaa@61AD@   (6)

The h 0 W + W , Z 0 Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkaadEfadaahaaqabeaacqGHRaWk aaGaam4vamaaCaaabeqaaiabgkHiTaaacaGGSaGaamOwamaaCaaabe qaaiaaicdaaaGaamOwamaaCaaabeqaaiaaicdaaaaaaa@4395@ decay channels

In this section, we describe the amplitude for h 0 W + W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkaadEfadaahaaqabeaacqGHRaWk aaGaam4vamaaCaaabeqaaiabgkHiTaaaaaa@3F6F@  as

iM( h 0 W + W )= i g μν g 2 v 2 μ ( p 1 ) v ( p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaeWaaeaacaWGObWaaWbaaeqabaGaaGimaaaacqGHsgIRcaWG xbWaaWbaaeqabaGaey4kaScaaiaadEfadaahaaqabeaacqGHsislaa aacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGPbGaam4zamaaCaaa beqaaiabeY7aTjabe27aUbaacaWGNbWaaWbaaeqabaGaaGOmaaaaca WG2baabaGaaGOmaaaacqGHiiIZdaqhaaqaaiabeY7aTbqaaiabgEHi QaaadaqadaqaaiaadchadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawM caaiabgIGiopaaDaaabaGaamODaaqaaiabgEHiQaaadaqadaqaaiaa dchadaWgaaqaaiaaikdaaeqaaaGaayjkaiaawMcaaaaa@5B49@   (7)

and the square amplitude reads

| M | 2 = g 4 v 2 4 ( g μv p 1μ p 1v m W 2 )( g μv p 2μ p 2v m W 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaqaeaba WaaqWaaeaacaWGnbaacaGLhWUaayjcSdaabeqabiabggHiLdWaaWba aeqabaGaaGOmaaaacqGH9aqpdaWcaaqaaiaadEgadaahaaqabeaaca aI0aaaaiaadAhadaahaaqabeaacaaIYaaaaaqaaiaaisdaaaWaaeWa aeaacaWGNbWaaSbaaeaacqaH8oqBcaWG2baabeaacqGHsisldaWcaa qaaiaadchadaWgaaqaaiaaigdacqaH8oqBaeqaaiaadchadaWgaaqa aiaaigdacaWG2baabeaaaeaacaWGTbWaa0baaeaacaWGxbaabaGaaG OmaaaaaaaacaGLOaGaayzkaaWaaeWaaeaacaWGNbWaaWbaaeqabaGa eqiVd0MaamODaaaacqGHsisldaWcaaqaaiaadchadaWgaaqaaiaaik dacqaH8oqBaeqaaiaadchadaWgaaqaaiaaikdacaWG2baabeaaaeaa caWGTbWaa0baaeaacaWGxbaabaGaaGOmaaaaaaaacaGLOaGaayzkaa aaaa@62BE@
= πα sin 2 θ w m h 4 m W 2 ( 1 4 m W 2 m h 2 + 12 m W 4 m h 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaeqiWdaNaeqySdegabaGaci4CaiaacMgacaGGUbWaaWba aeqabaGaaGOmaaaacqaH4oqCdaWgaaqaaiaadEhaaeqaaaaadaWcaa qaaiaad2gadaqhaaqaaiaadIgaaeaacaaI0aaaaaqaaiaad2gadaqh aaqaaiaadEfaaeaacaaIYaaaaaaadaqadaqaaiaaigdacqGHsislda WcaaqaaiaaisdacaWGTbWaa0baaeaacaWGxbaabaGaaGOmaaaaaeaa caWGTbWaa0baaeaacaWGObaabaGaaGOmaaaaaaGaey4kaSYaaSaaae aacaaIXaGaaGOmaiaad2gadaqhaaqaaiaadEfaaeaacaaI0aaaaaqa aiaad2gadaqhaaqaaiaadIgaaeaacaaIYaaaaaaaaiaawIcacaGLPa aaaaa@59A0@   (8)

Finally, the decay width becomes

Γ( h 0 W + W )= 1 8π p 1 m h 2 | M | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo5ahn aabmaabaGaamiAamaaCaaabeqaaiaaicdaaaGaeyOKH4Qaam4vamaa CaaabeqaaiabgUcaRaaacaWGxbWaaWbaaeqabaGaeyOeI0caaaGaay jkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaiIdacqaHapaC aaWaaSaaaeaacaWGWbWaaSbaaeaacaaIXaaabeaaaeaacaWGTbWaa0 baaeaacaWGObaabaGaaGOmaaaaaaWaaqWaaeaacaWGnbaacaGLhWUa ayjcSdWaaWbaaeqabaGaaGOmaaaaaaa@5020@   

= α m h 3 16π m W 2 sin 2 θ w ( 14 τ W 1 +12 τ W 2 ) ( 14 τ W 1 ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaeqySdeMaamyBamaaDaaabaGaamiAaaqaaiaaiodaaaaa baGaaGymaiaaiAdacqaHapaCcaWGTbWaa0baaeaacaWGxbaabaGaaG OmaaaaciGGZbGaaiyAaiaac6gadaahaaqabeaacaaIYaaaaiabeI7a XnaaBaaabaGaam4DaaqabaaaamaabmaabaGaaGymaiabgkHiTiaais dacqaHepaDdaqhaaqaaiaadEfaaeaacqGHsislcaaIXaaaaiabgUca RiaaigdacaaIYaGaeqiXdq3aa0baaeaacaWGxbaabaGaeyOeI0IaaG OmaaaaaiaawIcacaGLPaaadaqadaqaaiaaigdacqGHsislcaaI0aGa eqiXdq3aa0baaeaacaWGxbaabaGaeyOeI0IaaGymaaaaaiaawIcaca GLPaaadaahaaqabeaadaWcgaqaaiaaigdaaeaacaaIYaaaaaaaaaa@62F6@   (9)

where τ W ( m h / m W ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0n aaBaaabaGaam4vaaqabaGaeyyyIO7aaeWaaeaadaWcgaqaaiaad2ga daWgaaqaaiaadIgaaeqaaaqaaiaad2gadaWgaaqaaiaadEfaaeqaaa aaaiaawIcacaGLPaaadaahaaqabeaacaaIYaaaaaaa@42E5@ . In order to compute for h 0 Z 0 Z 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkaadQfadaahaaqabeaacaaIWaaa aiaadQfadaahaaqabeaacaaIWaaaaaaa@3F1A@ , we just swap the masses of the vector boson and add an extra factor of half and arrive at

Γ( h 0 Z 0 Z 0 )= α m h 3 32π m Z 2 sin 2 θ w ( 14 τ Z 1 +12 τ Z 2 ) ( 14 τ Z 1 ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo5ahn aabmaabaGaamiAamaaCaaabeqaaiaaicdaaaGaeyOKH4QaamOwamaa CaaabeqaaiaaicdaaaGaamOwamaaCaaabeqaaiaaicdaaaaacaGLOa GaayzkaaGaeyypa0ZaaSaaaeaacqaHXoqycaWGTbWaa0baaeaacaWG ObaabaGaaG4maaaaaeaacaaIZaGaaGOmaiabec8aWjaad2gadaqhaa qaaiaadQfaaeaacaaIYaaaaiGacohacaGGPbGaaiOBamaaCaaabeqa aiaaikdaaaGaeqiUde3aaSbaaeaacaWG3baabeaaaaWaaeWaaeaaca aIXaGaeyOeI0IaaGinaiabes8a0naaDaaabaGaamOwaaqaaiabgkHi TiaaigdaaaGaey4kaSIaaGymaiaaikdacqaHepaDdaqhaaqaaiaadQ faaeaacqGHsislcaaIYaaaaaGaayjkaiaawMcaamaabmaabaGaaGym aiabgkHiTiaaisdacqaHepaDdaqhaaqaaiaadQfaaeaacqGHsislca aIXaaaaaGaayjkaiaawMcaamaaCaaabeqaamaalyaabaGaaGymaaqa aiaaikdaaaaaaaaa@6D1D@   (10)

with  τ Z ( m h / m Z ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes8a0n aaBaaabaGaamOwaaqabaGaeyyyIO7aaeWaaeaadaWcgaqaaiaad2ga daWgaaqaaiaadIgaaeqaaaqaaiaad2gadaWgaaqaaiaadQfaaeqaaa aaaiaawIcacaGLPaaadaahaaqabeaacaaIYaaaaaaa@42EB@ .

The h 0 gg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkaadEgacaWGNbaaaa@3D7C@ decay channel

The amplitude takes the form

iM( h 0 gg )= i m q v ( i g s ) 2 μ ( p 1 ) v ( p 2 )tr( t a t b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaeWaaeaacaWGObWaaWbaaeqabaGaaGimaaaacqGHsgIRcaWG NbGaam4zaaGaayjkaiaawMcaaiabg2da9iabgkHiTmaalaaabaGaam yAaiaad2gadaWgaaqaaiaadghaaeqaaaqaaiaadAhaaaWaaeWaaeaa caWGPbGaam4zamaaBaaabaGaam4CaaqabaaacaGLOaGaayzkaaWaaW baaeqabaGaaGOmaaaacqGHiiIZdaqhaaqaaiabeY7aTbqaaiabgEHi QaaadaqadaqaaiaadchadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawM caaiabgIGiopaaDaaabaGaamODaaqaaiabgEHiQaaadaqadaqaaiaa dchadaWgaaqaaiaaikdaaeqaaaGaayjkaiaawMcaaiaadshacaWGYb WaaeWaaeaacaWG0bWaaWbaaeqabaGaamyyaaaacaWG0bWaaWbaaeqa baGaamOyaaaaaiaawIcacaGLPaaaaaa@6220@
× d d p ( 2π ) d { ( 1 )tr[ γ μ i q m q γ v i q + p 2 m q i q p 1 m q ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0o aapeaabaWaaSaaaeaacaWGKbWaaWbaaeqabaGaamizaaaacaWGWbaa baWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaeqaba GaamizaaaaaaaabeqabiabgUIiYdWaaiqaaeaadaqadaqaaiabgkHi TiaaigdaaiaawIcacaGLPaaacaWG0bGaamOCamaadmaabaGaeq4SdC 2aaWbaaeqabaGaeqiVd0gaamaalaaabaGaamyAaaqaaiqadghagaGf aiabgkHiTiaad2gadaWgaaqaaiaadghaaeqaaaaacqaHZoWzdaahaa qabeaacaWG2baaamaalaaabaGaamyAaaqaaiqadghagaGfaiabgUca RiqadchagaGfamaaBaaabaGaaGOmaaqabaGaeyOeI0IaamyBamaaBa aabaGaamyCaaqabaaaamaalaaabaGaamyAaaqaaiqadghagaGfaiab gkHiTiqadchagaGfamaaBaaabaGaaGymaaqabaGaeyOeI0IaamyBam aaBaaabaGaamyCaaqabaaaaaGaay5waiaaw2faaaGaay5Eaaaaaa@671F@  

+( 1 )tr[ γ v i q m q γ μ i q + p 1 m q i q p 2 m q ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaciaaba Gaey4kaSYaaeWaaeaacqGHsislcaaIXaaacaGLOaGaayzkaaGaamiD aiaadkhadaWadaqaaiabeo7aNnaaCaaabeqaaiaadAhaaaWaaSaaae aacaWGPbaabaGabmyCayaawaGaeyOeI0IaamyBamaaBaaabaGaamyC aaqabaaaaiabeo7aNnaaCaaabeqaaiabeY7aTbaadaWcaaqaaiaadM gaaeaaceWGXbGbaybacqGHRaWkceWGWbGbaybadaWgaaqaaiaaigda aeqaaiabgkHiTiaad2gadaWgaaqaaiaadghaaeqaaaaadaWcaaqaai aadMgaaeaaceWGXbGbaybacqGHsislceWGWbGbaybadaWgaaqaaiaa ikdaaeqaaiabgkHiTiaad2gadaWgaaqaaiaadghaaeqaaaaaaiaawU facaGLDbaaaiaaw2haaaaa@5C04@   (11)

From Equation 11, we can simplify the trace as

tr[ γ v i q m q γ μ i q + p 2 m q i q p 1 m q ]= itr[ ( q + m q )( q + p 2 m q )( q p 1 m q ) ] ( q 2 m q 2 )[ ( q+ p 2 ) 2 m q 2 ][ ( q p 1 ) 2 m q 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadshaca WGYbWaamWaaeaacqaHZoWzdaahaaqabeaacaWG2baaamaalaaabaGa amyAaaqaaiqadghagaGfaiabgkHiTiaad2gadaWgaaqaaiaadghaae qaaaaacqaHZoWzdaahaaqabeaacqaH8oqBaaWaaSaaaeaacaWGPbaa baGabmyCayaawaGaey4kaSIabmiCayaawaWaaSbaaeaacaaIYaaabe aacqGHsislcaWGTbWaaSbaaeaacaWGXbaabeaaaaWaaSaaaeaacaWG PbaabaGabmyCayaawaGaeyOeI0IabmiCayaawaWaaSbaaeaacaaIXa aabeaacqGHsislcaWGTbWaaSbaaeaacaWGXbaabeaaaaaacaGLBbGa ayzxaaGaeyypa0ZaaSaaaeaacqGHsislcaWGPbGaamiDaiaadkhada WadaqaamaabmaabaGabmyCayaawaGaey4kaSIaamyBamaaBaaabaGa amyCaaqabaaacaGLOaGaayzkaaWaaeWaaeaaceWGXbGbaybacqGHRa WkceWGWbGbaybadaWgaaqaaiaaikdaaeqaaiabgkHiTiaad2gadaWg aaqaaiaadghaaeqaaaGaayjkaiaawMcaamaabmaabaGabmyCayaawa GaeyOeI0IabmiCayaawaWaaSbaaeaacaaIXaaabeaacqGHsislcaWG TbWaaSbaaeaacaWGXbaabeaaaiaawIcacaGLPaaaaiaawUfacaGLDb aaaeaadaqadaqaaiaadghadaahaaqabeaacaaIYaaaaiabgkHiTiaa d2gadaqhaaqaaiaadghaaeaacaaIYaaaaaGaayjkaiaawMcaamaadm aabaWaaeWaaeaacaWGXbGaey4kaSIaamiCamaaBaaabaGaaGOmaaqa baaacaGLOaGaayzkaaWaaWbaaeqabaGaaGOmaaaacqGHsislcaWGTb Waa0baaeaacaWGXbaabaGaaGOmaaaaaiaawUfacaGLDbaadaWadaqa amaabmaabaGaamyCaiabgkHiTiaadchadaWgaaqaaiaaigdaaeqaaa GaayjkaiaawMcaamaaCaaabeqaaiaaikdaaaGaeyOeI0IaamyBamaa DaaabaGaamyCaaqaaiaaikdaaaaacaGLBbGaayzxaaaaaaaa@9284@
=2i 0 1 dx 0 1x dy N μν ( q 2 Δ ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9i abgkHiTiaaikdacaWGPbWaa8qmaeaacaWGKbGaamiEaaqaaiaaicda aeaacaaIXaaacqGHRiI8amaapedabaGaamizaiaadMhaaeaacaaIWa aabaGaaGymaiabgkHiTiaadIhaaiabgUIiYdWaaSaaaeaacaWGobWa aWbaaeqabaGaeqiVd0MaeqyVd4gaaaqaamaabmaabaGabmyCayaafa WaaWbaaeqabaGaaGOmaaaacqGHsislcqqHuoaraiaawIcacaGLPaaa daahaaqabeaacaaIZaaaaaaaaaa@535C@   (12)

where

q μ = q μ x p 1μ +y p 2μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadghaga qbamaaBaaabaGaeqiVd0gabeaacqGH9aqpcaWGXbWaaSbaaeaacqaH 8oqBaeqaaiabgkHiTiaadIhacaWGWbWaaSbaaeaacaaIXaGaeqiVd0 gabeaacqGHRaWkcaWG5bGaamiCamaaBaaabaGaaGOmaiabeY7aTbqa baaaaa@4973@   (13)

Δ= m q 2 x( 1x ) p 1 2 y( 1y ) p 2 2 2xy p 1 p 2 = m q 2 xy m h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aej abg2da9iaad2gadaqhaaqaaiaadghaaeaacaaIYaaaaiabgkHiTiaa dIhadaqadaqaaiaaigdacqGHsislcaWG4baacaGLOaGaayzkaaGaam iCamaaDaaabaGaaGymaaqaaiaaikdaaaGaeyOeI0IaamyEamaabmaa baGaaGymaiabgkHiTiaadMhaaiaawIcacaGLPaaacaWGWbWaa0baae aacaaIYaaabaGaaGOmaaaacqGHsislcaaIYaGaamiEaiaadMhacaWG WbWaaSbaaeaacaaIXaaabeaacqGHflY1caWGWbWaaSbaaeaacaaIYa aabeaacqGH9aqpcaWGTbWaa0baaeaacaWGXbaabaGaaGOmaaaacqGH sislcaWG4bGaamyEaiaad2gadaqhaaqaaiaadIgaaeaacaaIYaaaaa aa@6171@   (14)

N μν =4 m q ( p 1 v p 2 v p 1 μ p 2 v +2 p 2 v q μ 2 p 1 μ q v +4 q μ q v +( m q 2 p 1 p 2 q 2 ) η μν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6eada ahaaqabeaacqaH8oqBcqaH9oGBaaGaeyypa0JaaGinaiaad2gadaWg aaqaaiaadghaaeqaamaabmaabaGaamiCamaaDaaabaGaaGymaaqaai aadAhaaaGaamiCamaaDaaabaGaaGOmaaqaaiaadAhaaaGaeyOeI0Ia amiCamaaDaaabaGaaGymaaqaaiabeY7aTbaacaWGWbWaa0baaeaaca aIYaaabaGaamODaaaacqGHRaWkcaaIYaGaamiCamaaDaaabaGaaGOm aaqaaiaadAhaaaGaamyCamaaCaaabeqaaiabeY7aTbaacqGHsislca aIYaGaamiCamaaDaaabaGaaGymaaqaaiabeY7aTbaacaWGXbWaaWba aeqabaGaamODaaaacqGHRaWkcaaI0aGaamyCamaaCaaabeqaaiabeY 7aTbaacaWGXbWaaWbaaeqabaGaamODaaaacqGHRaWkdaqadaqaaiaa d2gadaqhaaqaaiaadghaaeaacaaIYaaaaiabgkHiTiaadchadaWgaa qaaiaaigdaaeqaaiabgwSixlaadchadaWgaaqaaiaaikdaaeqaaiab gkHiTiaadghadaahaaqabeaacaaIYaaaaaGaayjkaiaawMcaaiabeE 7aOnaaCaaabeqaaiabeY7aTjabe27aUbaaaiaawIcacaGLPaaaaaa@778C@   (15)

After rigorous computations, the final decay width becomes

Γ( h 0 gg )=( α m h 8 sin 2 θ w ) m h 2 m w 2 α s 2 9 π 2 | I f ( τ q ) | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo5ahn aabmaabaGaamiAamaaCaaabeqaaiaaicdaaaGaeyOKH4Qaam4zaiaa dEgaaiaawIcacaGLPaaacqGH9aqpdaqadaqaamaalaaabaGaeqySde MaamyBamaaBaaabaGaamiAaaqabaaabaGaaGioaiGacohacaGGPbGa aiOBamaaCaaabeqaaiaaikdaaaGaeqiUde3aaSbaaeaacaWG3baabe aaaaaacaGLOaGaayzkaaGaeyyXIC9aaSaaaeaacaWGTbWaa0baaeaa caWGObaabaGaaGOmaaaaaeaacaWGTbWaa0baaeaacaWG3baabaGaaG OmaaaaaaGaeyyXIC9aaSaaaeaacqaHXoqydaqhaaqaaiaadohaaeaa caaIYaaaaaqaaiaaiMdacqaHapaCdaahaaqabeaacaaIYaaaaaaacq GHflY1daabdaqaaiaadMeadaWgaaqaaiaadAgaaeqaamaabmaabaGa eqiXdq3aaSbaaeaacaWGXbaabeaaaiaawIcacaGLPaaaaiaawEa7ca GLiWoadaahaaqabeaacaaIYaaaaaaa@6B8F@   (16)

Generally, for Nq quarks, the decay width takes the form

Γ( h 0 gg )=( α m h 8 sin 2 θ w ) m h 2 m W 2 α s 2 9 π 2 | q I f ( τ q ) | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo5ahn aabmaabaGaamiAamaaCaaabeqaaiaaicdaaaGaeyOKH4Qaam4zaiaa dEgaaiaawIcacaGLPaaacqGH9aqpdaqadaqaamaalaaabaGaeqySde MaamyBamaaBaaabaGaamiAaaqabaaabaGaaGioaiGacohacaGGPbGa aiOBamaaCaaabeqaaiaaikdaaaGaeqiUde3aaSbaaeaacaWG3baabe aaaaaacaGLOaGaayzkaaGaeyyXIC9aaSaaaeaacaWGTbWaa0baaeaa caWGObaabaGaaGOmaaaaaeaacaWGTbWaa0baaeaacaWGxbaabaGaaG OmaaaaaaGaeyyXIC9aaSaaaeaacqaHXoqydaqhaaqaaiaadohaaeaa caaIYaaaaaqaaiaaiMdacqaHapaCdaahaaqabeaacaaIYaaaaaaacq GHflY1daabdaqaamaaqafabaGaamysamaaBaaabaGaamOzaaqabaWa aeWaaeaacqaHepaDdaWgaaqaaiaadghaaeqaaaGaayjkaiaawMcaaa qaaiaadghaaeqacqGHris5aaGaay5bSlaawIa7amaaCaaabeqaaiaa ikdaaaaaaa@6E70@   (17)

The cross section for gg h 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEgaca WGNbGaeyOKH4QaamiAamaaCaaabeqaaiaaicdaaaaaaa@3D7C@

By using the results in section 4 as well comparing Equations 2 and 3, we deduce that

σ( gg h 0 )= π 2 8 m h δ( s ^ m h 2 )Γ( h 0 gg ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZn aabmaabaGaam4zaiaadEgacqGHsgIRcaWGObWaaWbaaeqabaGaaGim aaaaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabec8aWnaaCaaabe qaaiaaikdaaaaabaGaaGioaiaad2gadaWgaaqaaiaadIgaaeqaaaaa cqaH0oazdaqadaqaaiqadohagaqcaiabgkHiTiaad2gadaqhaaqaai aadIgaaeaacaaIYaaaaaGaayjkaiaawMcaaiabfo5ahnaabmaabaGa amiAamaaCaaabeqaaiaaicdaaaGaeyOKH4Qaam4zaiaadEgaaiaawI cacaGLPaaaaaa@579A@   (18)

By using Equation 17, we obtain

σ( gg h 0 )= α α s 2 576 sin 2 θ w m h 2 m W 2 | q I f ( τ q ) | 2 δ( s ^ m h 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZn aabmaabaGaam4zaiaadEgacqGHsgIRcaWGObWaaWbaaeqabaGaaGim aaaaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeg7aHjabeg7aHn aaDaaabaGaam4CaaqaaiaaikdaaaaabaGaaGynaiaaiEdacaaI2aGa ci4CaiaacMgacaGGUbWaaWbaaeqabaGaaGOmaaaacqaH4oqCdaWgaa qaaiaadEhaaeqaaaaacqGHflY1daWcaaqaaiaad2gadaqhaaqaaiaa dIgaaeaacaaIYaaaaaqaaiaad2gadaqhaaqaaiaadEfaaeaacaaIYa aaaaaadaabdaqaamaaqafabaGaamysamaaBaaabaGaamOzaaqabaWa aeWaaeaacqaHepaDdaWgaaqaaiaadghaaeqaaaGaayjkaiaawMcaaa qaaiaadghaaeqacqGHris5aaGaay5bSlaawIa7amaaCaaabeqaaiaa ikdaaaGaeqiTdq2aaeWaaeaaceWGZbGbaKaacqGHsislcaWGTbWaa0 baaeaacaWGObaabaGaaGOmaaaaaiaawIcacaGLPaaaaaa@6C9E@   (19)

Finally, the gluon-gluon fusion cross section at proton level becomes

σ GGF ( p( P 1 )p( P 2 ) h 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZn aaBaaabaGaam4raiaadEeacaWGgbaabeaadaqadaqaaiaadchadaqa daqaaiaadcfadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiaadc hadaqadaqaaiaadcfadaWgaaqaaiaaikdaaeqaaaGaayjkaiaawMca aiabgkziUkaadIgadaahaaqabeaacaaIWaaaaaGaayjkaiaawMcaaa aa@49D3@   

= 0 1 d x 1 0 1 d x 2 f g ( x 1 ) f g ( x 2 )σ( g( x 1 P 1 )g( x 2 P 2 ) h 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aapedabaGaamizaiaadIhadaWgaaqaaiaaigdaaeqaaaqaaiaaicda aeaacaaIXaaacqGHRiI8amaapedabaGaamizaiaadIhadaWgaaqaai aaikdaaeqaaiaadAgadaWgaaqaaiaadEgaaeqaamaabmaabaGaamiE amaaBaaabaGaaGymaaqabaaacaGLOaGaayzkaaaabaGaaGimaaqaai aaigdaaiabgUIiYdGaamOzamaaBaaabaGaam4zaaqabaWaaeWaaeaa caWG4bWaaSbaaeaacaaIYaaabeaaaiaawIcacaGLPaaacqaHdpWCda qadaqaaiaadEgadaqadaqaaiaadIhadaWgaaqaaiaaigdaaeqaaiaa dcfadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiaadEgadaqada qaaiaadIhadaWgaaqaaiaaikdaaeqaaiaadcfadaWgaaqaaiaaikda aeqaaaGaayjkaiaawMcaaiabgkziUkaadIgadaahaaqabeaacaaIWa aaaaGaayjkaiaawMcaaaaa@633C@   

= d M 2 Y| ( x 1 , x 2 ) ( M 2 ,Y ) | f g ( x 1 ) f g ( x 2 )σ( g( x 1 P 1 )g( x 2 P 2 ) h 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aapeaabaGaamizaiaad2eadaahaaqabeaacaaIYaaaaiaadMfadaab daqaamaalaaabaGaeyOaIy7aaeWaaeaacaWG4bWaaSbaaeaacaaIXa aabeaacaGGSaGaamiEamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzk aaaabaGaeyOaIy7aaeWaaeaacaWGnbWaaWbaaeqabaGaaGOmaaaaca GGSaGaamywaaGaayjkaiaawMcaaaaaaiaawEa7caGLiWoaaeqabeGa ey4kIipacaWGMbWaaSbaaeaacaWGNbaabeaadaqadaqaaiaadIhada WgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiaadAgadaWgaaqaaiaa dEgaaeqaamaabmaabaGaamiEamaaBaaabaGaaGOmaaqabaaacaGLOa GaayzkaaGaeq4Wdm3aaeWaaeaacaWGNbWaaeWaaeaacaWG4bWaaSba aeaacaaIXaaabeaacaWGqbWaaSbaaeaacaaIXaaabeaaaiaawIcaca GLPaaacaWGNbWaaeWaaeaacaWG4bWaaSbaaeaacaaIYaaabeaacaWG qbWaaSbaaeaacaaIYaaabeaaaiaawIcacaGLPaaacqGHsgIRcaWGOb WaaWbaaeqabaGaaGimaaaaaiaawIcacaGLPaaaaaa@6CB6@   

= d M 2 Y 1 M 2 x 1 f g ( x 1 ) x 2 f g ( x 2 )σ( g( x 1 P 1 )g( x 2 P 2 ) h 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aapeaabaGaamizaiaad2eadaahaaqabeaacaaIYaaaaiaadMfadaWc aaqaaiaaigdaaeaacaWGnbWaaWbaaeqabaGaaGOmaaaaaaaabeqabi abgUIiYdGaamiEamaaBaaabaGaaGymaaqabaGaamOzamaaBaaabaGa am4zaaqabaWaaeWaaeaacaWG4bWaaSbaaeaacaaIXaaabeaaaiaawI cacaGLPaaacaWG4bWaaSbaaeaacaaIYaaabeaacaWGMbWaaSbaaeaa caWGNbaabeaadaqadaqaaiaadIhadaWgaaqaaiaaikdaaeqaaaGaay jkaiaawMcaaiabeo8aZnaabmaabaGaam4zamaabmaabaGaamiEamaa BaaabaGaaGymaaqabaGaamiuamaaBaaabaGaaGymaaqabaaacaGLOa GaayzkaaGaam4zamaabmaabaGaamiEamaaBaaabaGaaGOmaaqabaGa amiuamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaGaeyOKH4Qaam iAamaaCaaabeqaaiaaicdaaaaacaGLOaGaayzkaaaaaa@6233@   (20)

The h 0 2γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIgada ahaaqabeaacaaIWaaaaiabgkziUkaaikdacqaHZoWzaaa@3E07@ decay channel

In this decay channel, the contribution is as a result of both the W boson and the fermion loop. It is easier to compute for the later contribution and our beginning point is to pick the result in Equation 17. By including the internal fermion electric charge to our result we arrive at

iM( h 0 2γ )=( α m h 8 sin 2 θ w ) m h 2 m w 2 α s 2 18 π 2 | f Q f 2 N c ( f ) I f ( τ f ) | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaeWaaeaacaWGObWaaWbaaeqabaGaaGimaaaacqGHsgIRcaaI YaGaeq4SdCgacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaadaWcaaqaai abeg7aHjaad2gadaWgaaqaaiaadIgaaeqaaaqaaiaaiIdaciGGZbGa aiyAaiaac6gadaahaaqabeaacaaIYaaaaiabeI7aXnaaBaaabaGaam 4DaaqabaaaaaGaayjkaiaawMcaaiabgwSixpaalaaabaGaamyBamaa DaaabaGaamiAaaqaaiaaikdaaaaabaGaamyBamaaDaaabaGaam4Daa qaaiaaikdaaaaaaiabgwSixpaalaaabaGaeqySde2aa0baaeaacaWG ZbaabaGaaGOmaaaaaeaacaaIXaGaaGioaiabec8aWnaaCaaabeqaai aaikdaaaaaaiabgwSixpaaemaabaWaaabuaeaacaWGrbWaa0baaeaa caWGMbaabaGaaGOmaaaacaWGobWaaSbaaeaacaWGJbaabeaadaqada qaaiaadAgaaiaawIcacaGLPaaacaWGjbWaaSbaaeaacaWGMbaabeaa daqadaqaaiabes8a0naaBaaabaGaamOzaaqabaaacaGLOaGaayzkaa aabaGaamOzaaqabiabggHiLdaacaGLhWUaayjcSdWaaWbaaeqabaGa aGOmaaaaaaa@7706@   (21)

For the W boson contribution, we have to compute for all the thirteen loop diagrams.

Thus, we have

i M ( a ) = 1 2 i g ρσ g 2 v 2 ( i e 2 )( 2 η μν η ρσ η μρ η νσ η μσ η νρ ) μ ( p 1 ) v ( p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaWbaaeqabaWaaeWaaeaacaWGHbaacaGLOaGaayzkaaaaaiab g2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaSaaaeaacaWGPbGaam 4zamaaBaaabaGaeqyWdiNaeq4WdmhabeaacaWGNbWaaWbaaeqabaGa aGOmaaaacaWG2baabaGaaGOmaaaadaqadaqaaiabgkHiTiaadMgaca WGLbWaaWbaaeqabaGaaGOmaaaaaiaawIcacaGLPaaadaqadaqaaiaa ikdacqaH3oaAdaahaaqabeaacqaH8oqBcqaH9oGBaaGaeq4TdG2aaW baaeqabaGaeqyWdiNaeq4WdmhaaiabgkHiTiabeE7aOnaaCaaabeqa aiabeY7aTjabeg8aYbaacqaH3oaAdaahaaqabeaacqaH9oGBcqaHdp WCaaGaeyOeI0Iaeq4TdG2aaWbaaeqabaGaeqiVd0Maeq4Wdmhaaiab eE7aOnaaCaaabeqaaiabe27aUjabeg8aYbaaaiaawIcacaGLPaaacq GHiiIZdaqhaaqaaiabeY7aTbqaaiabgEHiQaaadaqadaqaaiaadcha daWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiabgIGiopaaDaaaba GaamODaaqaaiabgEHiQaaadaqadaqaaiaadchadaWgaaqaaiaaikda aeqaaaGaayjkaiaawMcaaaaa@7F5D@   

× d d q ( 2π ) d D W ( q ) D W ( kq ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0o aapeaabaWaaSaaaeaacaWGKbWaaWbaaeqabaGaamizaaaacaWGXbaa baWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaeqaba GaamizaaaaaaaabeqabiabgUIiYdGaamiramaaBaaabaGaam4vaaqa baWaaeWaaeaacaWGXbaacaGLOaGaayzkaaGaamiramaaBaaabaGaam 4vaaqabaWaaeWaaeaacaWGRbGaeyOeI0IaamyCaaGaayjkaiaawMca aaaa@4E56@   

= 2i ( 4π ) d/2 e 2 m W 2 v ( p 1 ) ( p 2 )( d1 )Γ( 2d/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9i abgkHiTmaalaaabaGaaGOmaiaadMgaaeaadaqadaqaaiaaisdacqaH apaCaiaawIcacaGLPaaadaahaaqabeaadaWcgaqaaiaadsgaaeaaca aIYaaaaaaaaaWaaSaaaeaacaWGLbWaaWbaaeqabaGaaGOmaaaacaWG TbWaa0baaeaacaWGxbaabaGaaGOmaaaaaeaacaWG2baaaiabgIGiop aaCaaabeqaaiabgEHiQaaadaqadaqaaiaadchadaWgaaqaaiaaigda aeqaaaGaayjkaiaawMcaaiabgwSixlabgIGiopaaCaaabeqaaiabgE HiQaaadaqadaqaaiaadchadaWgaaqaaiaaikdaaeqaaaGaayjkaiaa wMcaamaabmaabaGaamizaiabgkHiTiaaigdaaiaawIcacaGLPaaacq qHtoWrdaqadaqaaiaaikdacqGHsisldaWcgaqaaiaadsgaaeaacaaI YaaaaaGaayjkaiaawMcaaaaa@5F93@
× 0 1 dx [ m W 2 x( 1x ) m h 2 ] 2d/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0o aapedabaWaaSaaaeaacaWGKbGaamiEaaqaamaadmaabaGaamyBamaa DaaabaGaam4vaaqaaiaaikdaaaGaeyOeI0IaamiEamaabmaabaGaaG ymaiabgkHiTiaadIhaaiaawIcacaGLPaaacaWGTbWaa0baaeaacaWG ObaabaGaaGOmaaaaaiaawUfacaGLDbaadaahaaqabeaacaaIYaGaey OeI0YaaSGbaeaacaWGKbaabaGaaGOmaaaaaaaaaaqaaiaaicdaaeaa caaIXaaacqGHRiI8aaaa@507A@   (22)

i M ( b ) = 1 2 ( 2iλv )( 2i e 2 ) ( p 1 ) ( p 2 ) d d q ( 2π ) d D s ( q ) D s ( kq ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaWbaaeqabaWaaeWaaeaacaWGIbaacaGLOaGaayzkaaaaaiab g2da9maalaaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacqGHsislca aIYaGaamyAaiabeU7aSjaadAhaaiaawIcacaGLPaaadaqadaqaaiaa ikdacaWGPbGaamyzamaaCaaabeqaaiaaikdaaaaacaGLOaGaayzkaa GaeyicI48aaWbaaeqabaGaey4fIOcaamaabmaabaGaamiCamaaBaaa baGaaGymaaqabaaacaGLOaGaayzkaaGaeyyXICTaeyicI48aaWbaae qabaGaey4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGOmaaqabaaa caGLOaGaayzkaaWaa8qaaeaadaWcaaqaaiaadsgadaahaaqabeaaca WGKbaaaiaadghaaeaadaqadaqaaiaaikdacqaHapaCaiaawIcacaGL PaaadaahaaqabeaacaWGKbaaaaaaaeqabeGaey4kIipacaWGebWaaS baaeaacaWGZbaabeaadaqadaqaaiaadghaaiaawIcacaGLPaaacaWG ebWaaSbaaeaacaWGZbaabeaadaqadaqaaiaadUgacqGHsislcaWGXb aacaGLOaGaayzkaaaaaa@6D49@   

= i ( 4π ) d/2 e 2 m W 2 v ( p 1 ) ( p 2 )Γ( 2d/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9i abgkHiTmaalaaabaGaamyAaaqaamaabmaabaGaaGinaiabec8aWbGa ayjkaiaawMcaamaaCaaabeqaamaalyaabaGaamizaaqaaiaaikdaaa aaaaaadaWcaaqaaiaadwgadaahaaqabeaacaaIYaaaaiaad2gadaqh aaqaaiaadEfaaeaacaaIYaaaaaqaaiaadAhaaaGaeyicI48aaWbaae qabaGaey4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGymaaqabaaa caGLOaGaayzkaaGaeyyXICTaeyicI48aaWbaaeqabaGaey4fIOcaam aabmaabaGaamiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaGa eu4KdC0aaeWaaeaacaaIYaGaeyOeI0YaaSGbaeaacaWGKbaabaGaaG OmaaaaaiaawIcacaGLPaaaaaa@5ABD@   

× 0 1 dx [ m W 2 x( 1x ) m h 2 ] 2d/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0o aapedabaWaaSaaaeaacaWGKbGaamiEaaqaamaadmaabaGaamyBamaa DaaabaGaam4vaaqaaiaaikdaaaGaeyOeI0IaamiEamaabmaabaGaaG ymaiabgkHiTiaadIhaaiaawIcacaGLPaaacaWGTbWaa0baaeaacaWG ObaabaGaaGOmaaaaaiaawUfacaGLDbaadaahaaqabeaacaaIYaGaey OeI0YaaSGbaeaacaWGKbaabaGaaGOmaaaaaaaaaaqaaiaaicdaaeaa caaIXaaacqGHRiI8aaaa@507A@   (23)

i M ( c ) =i M ( d ) = i g 2 sin θ w 2 i g 2 vsin θ w 2 1 2 ( p 1 ) ( p 2 ) d d q ( 2π ) d D s ( q ) D W ( p 2 q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Pr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaWbaaeqabaWaaeWaaeaacaWGJbaacaGLOaGaayzkaaaaaiab g2da9iaadMgacaWGnbWaaWbaaeqabaWaaeWaaeaacaWGKbaacaGLOa Gaayzkaaaaaiabg2da9maalaaabaGaamyAaiaadEgadaahaaqabeaa caaIYaaaaiGacohacaGGPbGaaiOBaiabeI7aXnaaBaaabaGaam4Daa qabaaabaGaaGOmaaaacqGHflY1daWcaaqaaiaadMgacaWGNbWaaWba aeqabaGaaGOmaaaacaWG2bGaci4CaiaacMgacaGGUbGaeqiUde3aaS baaeaacaWG3baabeaaaeaacaaIYaaaamaalaaabaGaaGymaaqaaiaa ikdaaaGaeyicI48aaWbaaeqabaGaey4fIOcaamaabmaabaGaamiCam aaBaaabaGaaGymaaqabaaacaGLOaGaayzkaaGaeyyXICTaeyicI48a aWbaaeqabaGaey4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGOmaa qabaaacaGLOaGaayzkaaWaa8qaaeaadaWcaaqaaiaadsgadaahaaqa beaacaWGKbaaaiaadghaaeaadaqadaqaaiaaikdacqaHapaCaiaawI cacaGLPaaadaahaaqabeaacaWGKbaaaaaaaeqabeGaey4kIipacaWG ebWaaSbaaeaacaWGZbaabeaadaqadaqaaiaadghaaiaawIcacaGLPa aacaWGebWaaSbaaeaacaWGxbaabeaadaqadaqaaiaadchadaWgaaqa aiaaikdaaeqaaiabgkHiTiaadghaaiaawIcacaGLPaaaaaa@7D43@
= i ( 4π ) d/2 e 2 m W 2 v ( p 1 ) ( p 2 )Γ( 2d/2 ) 1 ( m W 2 ) 2d/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9i abgkHiTmaalaaabaGaamyAaaqaamaabmaabaGaaGinaiabec8aWbGa ayjkaiaawMcaamaaCaaabeqaamaalyaabaGaamizaaqaaiaaikdaaa aaaaaadaWcaaqaaiaadwgadaahaaqabeaacaaIYaaaaiaad2gadaqh aaqaaiaadEfaaeaacaaIYaaaaaqaaiaadAhaaaGaeyicI48aaWbaae qabaGaey4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGymaaqabaaa caGLOaGaayzkaaGaeyyXICTaeyicI48aaWbaaeqabaGaey4fIOcaam aabmaabaGaamiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaGa eu4KdC0aaeWaaeaacaaIYaGaeyOeI0YaaSGbaeaacaWGKbaabaGaaG OmaaaaaiaawIcacaGLPaaadaWcaaqaaiaaigdaaeaadaqadaqaaiaa d2gadaqhaaqaaiaadEfaaeaacaaIYaaaaaGaayjkaiaawMcaamaaCa aabeqaaiaaikdacqGHsisldaWcgaqaaiaadsgaaeaacaaIYaaaaaaa aaaaaa@6321@   (24)

i M ( e ) = i g 2 v 2 ( ie ) 2 η ρσ μ ( p 1 ) v ( p 2 ) d d q ( 2π ) d D W ( q ) D W ( q p 1 ) D W ( q p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaWbaaeqabaWaaeWaaeaacaWGLbaacaGLOaGaayzkaaaaaiab g2da9maalaaabaGaamyAaiaadEgadaahaaqabeaacaaIYaaaaiaadA haaeaacaaIYaaaamaabmaabaGaeyOeI0IaamyAaiaadwgaaiaawIca caGLPaaadaahaaqabeaacaaIYaaaaiabeE7aOnaaBaaabaGaeqyWdi Naeq4WdmhabeaacqGHiiIZdaqhaaqaaiabeY7aTbqaaiabgEHiQaaa daqadaqaaiaadchadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaai abgIGiopaaDaaabaGaamODaaqaaiabgEHiQaaadaqadaqaaiaadcha daWgaaqaaiaaikdaaeqaaaGaayjkaiaawMcaamaapeaabaWaaSaaae aacaWGKbWaaWbaaeqabaGaamizaaaacaWGXbaabaWaaeWaaeaacaaI YaGaeqiWdahacaGLOaGaayzkaaWaaWbaaeqabaGaamizaaaaaaaabe qabiabgUIiYdGaamiramaaBaaabaGaam4vaaqabaWaaeWaaeaacaWG XbaacaGLOaGaayzkaaGaamiramaaBaaabaGaam4vaaqabaWaaeWaae aacaWGXbGaeyOeI0IaamiCamaaBaaabaGaaGymaaqabaaacaGLOaGa ayzkaaGaamiramaaBaaabaGaam4vaaqabaWaaeWaaeaacaWGXbGaey OeI0IaamiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaaaaa@76E8@   

×[ η ρλ ( 2q p 1 ) μ + η μρ ( 2 p 1 q ) λ η λμ ( p 1 +q ) ρ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0o aadmaabaGaeq4TdG2aaWbaaeqabaGaeqyWdiNaeq4UdWgaamaabmaa baGaaGOmaiaadghacqGHsislcaWGWbWaaSbaaeaacaaIXaaabeaaai aawIcacaGLPaaadaahaaqabeaacqaH8oqBaaGaey4kaSIaeq4TdG2a aWbaaeqabaGaeqiVd0MaeqyWdihaamaabmaabaGaaGOmaiaadchada WgaaqaaiaaigdaaeqaaiabgkHiTiaadghaaiaawIcacaGLPaaadaah aaqabeaacqaH7oaBaaGaeyOeI0Iaeq4TdG2aaWbaaeqabaGaeq4UdW MaeqiVd0gaamaabmaabaGaamiCamaaBaaabaGaaGymaaqabaGaey4k aSIaamyCaaGaayjkaiaawMcaamaaCaaabeqaaiabeg8aYbaaaiaawU facaGLDbaaaaa@6416@   

×[ η λ σ ( 2q p 2 ) v η λ v ( q p 2 ) σ η σv ( 2 p 2 +q ) λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0o aadmaabaGaeq4TdG2aa0baaeaacqaH7oaBaeaacqaHdpWCaaWaaeWa aeaacaaIYaGaamyCaiabgkHiTiaadchadaWgaaqaaiaaikdaaeqaaa GaayjkaiaawMcaamaaCaaabeqaaiaadAhaaaGaeyOeI0Iaeq4TdG2a a0baaeaacqaH7oaBaeaacaWG2baaamaabmaabaGaamyCaiabgkHiTi aadchadaWgaaqaaiaaikdaaeqaaaGaayjkaiaawMcaamaaCaaabeqa aiabeo8aZbaacqGHsislcqaH3oaAdaahaaqabeaacqaHdpWCcaWG2b aaamaabmaabaGaaGOmaiaadchadaWgaaqaaiaaikdaaeqaaiabgUca RiaadghaaiaawIcacaGLPaaadaahaaqabeaacqaH7oaBaaaacaGLBb Gaayzxaaaaaa@61FC@   

= i ( 4π ) d/2 e 2 m W 2 v ( p 1 ) ( p 2 ) [ dxdy ( πxy+4xy ) m h 2 m W 2 xy m h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaamyAaaqaamaabmaabaGaaGinaiabec8aWbGaayjkaiaa wMcaamaaCaaabeqaamaalyaabaGaamizaaqaaiaaikdaaaaaaaaada WcaaqaaiaadwgadaahaaqabeaacaaIYaaaaiaad2gadaqhaaqaaiaa dEfaaeaacaaIYaaaaaqaaiaadAhaaaGaeyicI48aaWbaaeqabaGaey 4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGymaaqabaaacaGLOaGa ayzkaaGaeyyXICTaeyicI48aaWbaaeqabaGaey4fIOcaamaabmaaba GaamiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaWaamqaaeaa daWdbaqaaiaadsgacaWG4bGaamizaiaadMhadaWcaaqaamaabmaaba GaeqiWdaNaeyOeI0IaamiEaiabgkHiTiaadMhacqGHRaWkcaaI0aGa amiEaiaadMhaaiaawIcacaGLPaaacaWGTbWaa0baaeaacaWGObaaba GaaGOmaaaaaeaacaWGTbWaa0baaeaacaWGxbaabaGaaGOmaaaacqGH sislcaWG4bGaamyEaiaad2gadaqhaaqaaiaadIgaaeaacaaIYaaaaa aaaeqabeGaey4kIipaaiaawUfaaaaa@6FD8@
+6( d1 )Γ( 2d/2 ) 0 1 dxdy ( m W 2 xy m h 2 ) 2d/2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadiaaba Gaey4kaSIaaGOnamaabmaabaGaamizaiabgkHiTiaaigdaaiaawIca caGLPaaacqqHtoWrdaqadaqaaiaaikdacqGHsisldaWcgaqaaiaads gaaeaacaaIYaaaaaGaayjkaiaawMcaamaapedabaWaaSaaaeaacaWG KbGaamiEaiaadsgacaWG5baabaWaaeWaaeaacaWGTbWaa0baaeaaca WGxbaabaGaaGOmaaaacqGHsislcaWG4bGaamyEaiaad2gadaqhaaqa aiaadIgaaeaacaaIYaaaaaGaayjkaiaawMcaamaaCaaabeqaaiaaik dacqGHsisldaWcgaqaaiaadsgaaeaacaaIYaaaaaaaaaaabaGaaGim aaqaaiaaigdaaiabgUIiYdaacaGLDbaaaaa@599E@   (25)

i M ( f ) =( 2iλν ) ( ie ) 2 μ ( p 1 ) v ( p 2 ) d d q ( 2π ) d ( 2q p 1 ) μ ( 2q p 2 ) μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaWbaaeqabaWaaeWaaeaacaWGMbaacaGLOaGaayzkaaaaaiab g2da9maabmaabaGaeyOeI0IaaGOmaiaadMgacqaH7oaBcqaH9oGBai aawIcacaGLPaaadaqadaqaaiabgkHiTiaadMgacaWGLbaacaGLOaGa ayzkaaWaaWbaaeqabaGaaGOmaaaacqGHiiIZdaqhaaqaaiabeY7aTb qaaiabgEHiQaaadaqadaqaaiaadchadaWgaaqaaiaaigdaaeqaaaGa ayjkaiaawMcaaiabgIGiopaaDaaabaGaamODaaqaaiabgEHiQaaada qadaqaaiaadchadaWgaaqaaiaaikdaaeqaaaGaayjkaiaawMcaamaa peaabaWaaSaaaeaacaWGKbWaaWbaaeqabaGaamizaaaacaWGXbaaba WaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaeqabaGa amizaaaaaaaabeqabiabgUIiYdWaaeWaaeaacaaIYaGaamyCaiabgk HiTiaadchadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaamaaCaaa beqaaiabeY7aTbaadaqadaqaaiaaikdacaWGXbGaeyOeI0IaamiCam aaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaWaaWbaaeqabaGaeqiV d0gaaaaa@71FD@
× D s ( q ) D s ( q p 1 ) D s ( q+ p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0k aadseadaWgaaqaaiaadohaaeqaamaabmaabaGaamyCaaGaayjkaiaa wMcaaiaadseadaWgaaqaaiaadohaaeqaamaabmaabaGaamyCaiabgk HiTiaadchadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiaadsea daWgaaqaaiaadohaaeqaamaabmaabaGaamyCaiabgUcaRiaadchada WgaaqaaiaaikdaaeqaaaGaayjkaiaawMcaaaaa@4C78@   

= i ( 4π ) d/2 e 2 m h 2 v ( p 1 ) ( p 2 )Γ( 2d/2 ) 2dxdy ( m W 2 xy m h 2 ) 2d/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaamyAaaqaamaabmaabaGaaGinaiabec8aWbGaayjkaiaa wMcaamaaCaaabeqaamaalyaabaGaamizaaqaaiaaikdaaaaaaaaada WcaaqaaiaadwgadaahaaqabeaacaaIYaaaaiaad2gadaqhaaqaaiaa dIgaaeaacaaIYaaaaaqaaiaadAhaaaGaeyicI48aaWbaaeqabaGaey 4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGymaaqabaaacaGLOaGa ayzkaaGaeyyXICTaeyicI48aaWbaaeqabaGaey4fIOcaamaabmaaba GaamiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaGaeu4KdC0a aeWaaeaacaaIYaGaeyOeI0YaaSGbaeaacaWGKbaabaGaaGOmaaaaai aawIcacaGLPaaadaWdbaqaamaalaaabaGaaGOmaiaadsgacaWG4bGa amizaiaadMhaaeaadaqadaqaaiaad2gadaqhaaqaaiaadEfaaeaaca aIYaaaaiabgkHiTiaadIhacaWG5bGaamyBamaaDaaabaGaamiAaaqa aiaaikdaaaaacaGLOaGaayzkaaWaaWbaaeqabaGaaGOmaiabgkHiTm aalyaabaGaamizaaqaaiaaikdaaaaaaaaaaeqabeGaey4kIipaaaa@6D9B@   (26)

i M ( g ) =( i m W 2 v ) ( ie ) 2 μ ( p 1 ) v ( p 2 ) d d q ( 2π ) d ( 1 ) ( q p 1 ) μ q v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaWbaaeqabaWaaeWaaeaacaWGNbaacaGLOaGaayzkaaaaaiab g2da9maabmaabaGaeyOeI0YaaSaaaeaacaWGPbGaamyBamaaDaaaba Gaam4vaaqaaiaaikdaaaaabaGaamODaaaaaiaawIcacaGLPaaadaqa daqaaiaadMgacaWGLbaacaGLOaGaayzkaaWaaWbaaeqabaGaaGOmaa aacqGHiiIZdaqhaaqaaiabeY7aTbqaaiabgEHiQaaadaqadaqaaiaa dchadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiabgIGiopaaDa aabaGaamODaaqaaiabgEHiQaaadaqadaqaaiaadchadaWgaaqaaiaa ikdaaeqaaaGaayjkaiaawMcaamaapeaabaWaaSaaaeaacaWGKbWaaW baaeqabaGaamizaaaacaWGXbaabaWaaeWaaeaacaaIYaGaeqiWdaha caGLOaGaayzkaaWaaWbaaeqabaGaamizaaaaaaaabeqabiabgUIiYd WaaeWaaeaacqGHsislcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaWG XbGaeyOeI0IaamiCamaaBaaabaGaaGymaaqabaaacaGLOaGaayzkaa WaaWbaaeqabaGaeqiVd0gaaiaadghadaahaaqabeaacaWG2baaaaaa @6D56@   

× D s ( q ) D s ( q p 1 ) D s ( q+ p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0k aadseadaWgaaqaaiaadohaaeqaamaabmaabaGaamyCaaGaayjkaiaa wMcaaiaadseadaWgaaqaaiaadohaaeqaamaabmaabaGaamyCaiabgk HiTiaadchadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiaadsea daWgaaqaaiaadohaaeqaamaabmaabaGaamyCaiabgUcaRiaadchada WgaaqaaiaaikdaaeqaaaGaayjkaiaawMcaaaaa@4C78@   

= i ( 4π ) d/2 e 2 m W 2 v ( p 1 ) ( p 2 )Γ( 2d/2 ) dxdy ( m W 2 xy m h 2 ) 2d/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9i abgkHiTmaalaaabaGaamyAaaqaamaabmaabaGaaGinaiabec8aWbGa ayjkaiaawMcaamaaCaaabeqaamaalyaabaGaamizaaqaaiaaikdaaa aaaaaadaWcaaqaaiaadwgadaahaaqabeaacaaIYaaaaiaad2gadaqh aaqaaiaadEfaaeaacaaIYaaaaaqaaiaadAhaaaGaeyicI48aaWbaae qabaGaey4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGymaaqabaaa caGLOaGaayzkaaGaeyyXICTaeyicI48aaWbaaeqabaGaey4fIOcaam aabmaabaGaamiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaGa eu4KdC0aaeWaaeaacaaIYaGaeyOeI0YaaSGbaeaacaWGKbaabaGaaG OmaaaaaiaawIcacaGLPaaadaWdbaqaamaalaaabaGaamizaiaadIha caWGKbGaamyEaaqaamaabmaabaGaamyBamaaDaaabaGaam4vaaqaai aaikdaaaGaeyOeI0IaamiEaiaadMhacaWGTbWaa0baaeaacaWGObaa baGaaGOmaaaaaiaawIcacaGLPaaadaahaaqabeaacaaIYaGaeyOeI0 YaaSGbaeaacaWGKbaabaGaaGOmaaaaaaaaaaqabeqacqGHRiI8aaaa @6DBB@   (27)

i M ( h ) =i M ( i ) = ig 2 i g μλ g 2 vsin θ w 2 ( ie ) 2 μ ( p 1 ) v ( p 2 ) d d q ( 2π ) d ( q p 1 k ) σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaWbaaeqabaWaaeWaaeaacaWGObaacaGLOaGaayzkaaaaaiab g2da9iaadMgacaWGnbWaaWbaaeqabaWaaeWaaeaacaWGPbaacaGLOa Gaayzkaaaaaiabg2da9maalaaabaGaamyAaiaadEgaaeaacaaIYaaa amaalaaabaGaamyAaiaadEgadaahaaqabeaacqaH8oqBcqaH7oaBaa Gaam4zamaaCaaabeqaaiaaikdaaaGaamODaiGacohacaGGPbGaaiOB aiabeI7aXnaaBaaabaGaam4DaaqabaaabaGaaGOmaaaadaqadaqaai abgkHiTiaadMgacaWGLbaacaGLOaGaayzkaaWaaWbaaeqabaGaaGOm aaaacqGHiiIZdaqhaaqaaiabeY7aTbqaaiabgEHiQaaadaqadaqaai aadchadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiabgIGiopaa DaaabaGaamODaaqaaiabgEHiQaaadaqadaqaaiaadchadaWgaaqaai aaikdaaeqaaaGaayjkaiaawMcaamaapeaabaWaaSaaaeaacaWGKbWa aWbaaeqabaGaamizaaaacaWGXbaabaWaaeWaaeaacaaIYaGaeqiWda hacaGLOaGaayzkaaWaaWbaaeqabaGaamizaaaaaaaabeqabiabgUIi YdWaaeWaaeaacaWGXbGaeyOeI0IaamiCamaaBaaabaGaaGymaaqaba GaeyOeI0Iaam4AaaGaayjkaiaawMcaamaaCaaabeqaaiabeo8aZbaa aaa@7A76@   

×[ η σλ ( 2q+ p 2 ) v η λ v ( q p 2 ) σ η σ v ( 2 p 2 +q ) λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0o aadmaabaGaeq4TdG2aaSbaaeaacqaHdpWCcqaH7oaBaeqaamaabmaa baGaaGOmaiaadghacqGHRaWkcaWGWbWaaSbaaeaacaaIYaaabeaaai aawIcacaGLPaaadaahaaqabeaacaWG2baaaiabgkHiTiabeE7aOnaa DaaabaGaeq4UdWgabaGaamODaaaadaqadaqaaiaadghacqGHsislca WGWbWaaSbaaeaacaaIYaaabeaaaiaawIcacaGLPaaadaWgaaqaaiab eo8aZbqabaGaeyOeI0Iaeq4TdG2aa0baaeaacqaHdpWCaeaacaWG2b aaamaabmaabaGaaGOmaiaadchadaWgaaqaaiaaikdaaeqaaiabgUca RiaadghaaiaawIcacaGLPaaadaWgaaqaaiabeU7aSbqabaaacaGLBb Gaayzxaaaaaa@61EE@   

× D W ( q ) D s ( q p 1 ) D W ( q+ p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0k aadseadaWgaaqaaiaadEfaaeqaamaabmaabaGaamyCaaGaayjkaiaa wMcaaiaadseadaWgaaqaaiaadohaaeqaamaabmaabaGaamyCaiabgk HiTiaadchadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiaadsea daWgaaqaaiaadEfaaeqaamaabmaabaGaamyCaiabgUcaRiaadchada WgaaqaaiaaikdaaeqaaaGaayjkaiaawMcaaaaa@4C40@   

= i ( 4π ) d/2 e 2 m W 2 v ( p 1 ) ( p 2 ) [ dxdy ( 1x )( 1+y ) m h 2 m W 2 xy m h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaamyAaaqaamaabmaabaGaaGinaiabec8aWbGaayjkaiaa wMcaamaaCaaabeqaamaalyaabaGaamizaaqaaiaaikdaaaaaaaaada WcaaqaaiaadwgadaahaaqabeaacaaIYaaaaiaad2gadaqhaaqaaiaa dEfaaeaacaaIYaaaaaqaaiaadAhaaaGaeyicI48aaWbaaeqabaGaey 4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGymaaqabaaacaGLOaGa ayzkaaGaeyyXICTaeyicI48aaWbaaeqabaGaey4fIOcaamaabmaaba GaamiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaWaamqaaeaa daWdbaqaaiaadsgacaWG4bGaamizaiaadMhadaWcaaqaamaabmaaba GaaGymaiabgkHiTiaadIhaaiaawIcacaGLPaaadaqadaqaaiaaigda cqGHRaWkcaWG5baacaGLOaGaayzkaaGaamyBamaaDaaabaGaamiAaa qaaiaaikdaaaaabaGaamyBamaaDaaabaGaam4vaaqaaiaaikdaaaGa eyOeI0IaamiEaiaadMhacaWGTbWaa0baaeaacaWGObaabaGaaGOmaa aaaaaabeqabiabgUIiYdaacaGLBbaaaaa@6D74@
1 2 ( πd1 )Γ( 22/d ) dxdy ( m W 2 xy m h 2 ) 22/d ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadiaaba GaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiabec8a WjaadsgacqGHsislcaaIXaaacaGLOaGaayzkaaGaeu4KdC0aaeWaae aacaaIYaGaeyOeI0YaaSGbaeaacaaIYaaabaGaamizaaaaaiaawIca caGLPaaadaWdbaqaamaalaaabaGaamizaiaadIhacaWGKbGaamyEaa qaamaabmaabaGaamyBamaaDaaabaGaam4vaaqaaiaaikdaaaGaeyOe I0IaamiEaiaadMhacaWGTbWaa0baaeaacaWGObaabaGaaGOmaaaaai aawIcacaGLPaaadaahaaqabeaacaaIYaGaeyOeI0YaaSGbaeaacaaI YaaabaGaamizaaaaaaaaaaqabeqacqGHRiI8aaGaayzxaaaaaa@5A8A@   (28)

i M ( j ) = i g 2 v 2 ( i g 2 vsin θ w 2 ) 2 ( p 1 ) ( p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaWbaaeqabaWaaeWaaeaacaWGQbaacaGLOaGaayzkaaaaaiab g2da9maalaaabaGaamyAaiaadEgadaahaaqabeaacaaIYaaaaiaadA haaeaacaaIYaaaamaabmaabaWaaSaaaeaacaWGPbGaam4zamaaCaaa beqaaiaaikdaaaGaamODaiGacohacaGGPbGaaiOBaiabeI7aXnaaBa aabaGaam4DaaqabaaabaGaaGOmaaaaaiaawIcacaGLPaaadaahaaqa beaacaaIYaaaaiabgIGiopaaCaaabeqaaiabgEHiQaaadaqadaqaai aadchadaWgaaqaaiaaigdaaeqaaaGaayjkaiaawMcaaiabgwSixlab gIGiopaaCaaabeqaaiabgEHiQaaadaqadaqaaiaadchadaWgaaqaai aaikdaaeqaaaGaayjkaiaawMcaaaaa@5C65@   

× d d q ( 2π ) d D s ( q ) D W ( q p 1 ) D W ( q+ p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0o aapeaabaWaaSaaaeaacaWGKbWaaWbaaeqabaGaamizaaaacaWGXbaa baWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaeqaba GaamizaaaaaaaabeqabiabgUIiYdGaamiramaaBaaabaGaam4Caaqa baWaaeWaaeaacaWGXbaacaGLOaGaayzkaaGaamiramaaBaaabaGaam 4vaaqabaWaaeWaaeaacaWGXbGaeyOeI0IaamiCamaaBaaabaGaaGym aaqabaaacaGLOaGaayzkaaGaamiramaaBaaabaGaam4vaaqabaWaae WaaeaacaWGXbGaey4kaSIaamiCamaaBaaabaGaaGOmaaqabaaacaGL OaGaayzkaaaaaa@562A@   

= i ( 4π ) d/2 e 2 m W 2 v ( p 1 ) ( p 2 ) dxdy 2 m W 2 m W 2 xy m h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaamyAaaqaamaabmaabaGaaGinaiabec8aWbGaayjkaiaa wMcaamaaCaaabeqaamaalyaabaGaamizaaqaaiaaikdaaaaaaaaada WcaaqaaiaadwgadaahaaqabeaacaaIYaaaaiaad2gadaqhaaqaaiaa dEfaaeaacaaIYaaaaaqaaiaadAhaaaGaeyicI48aaWbaaeqabaGaey 4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGymaaqabaaacaGLOaGa ayzkaaGaeyyXICTaeyicI48aaWbaaeqabaGaey4fIOcaamaabmaaba GaamiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaWaa8qaaeaa caWGKbGaamiEaiaadsgacaWG5bWaaSaaaeaacaaIYaGaamyBamaaDa aabaGaam4vaaqaaiaaikdaaaaabaGaamyBamaaDaaabaGaam4vaaqa aiaaikdaaaGaeyOeI0IaamiEaiaadMhacaWGTbWaa0baaeaacaWGOb aabaGaaGOmaaaaaaaabeqabiabgUIiYdaaaa@64D2@   (29)

i M ( k ) =i M ( l ) = ig 2 i g 2 vsin θ w 2 ( ie ) 2 μ ( p 1 ) v ( p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaWbaaeqabaWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaiab g2da9iaadMgacaWGnbWaaWbaaeqabaWaaeWaaeaacaWGSbaacaGLOa Gaayzkaaaaaiabg2da9maalaaabaGaamyAaiaadEgaaeaacaaIYaaa amaalaaabaGaamyAaiaadEgadaahaaqabeaacaaIYaaaaiaadAhaci GGZbGaaiyAaiaac6gacqaH4oqCdaWgaaqaaiaadEhaaeqaaaqaaiaa ikdaaaWaaeWaaeaacqGHsislcaWGPbGaamyzaaGaayjkaiaawMcaam aaCaaabeqaaiaaikdaaaGaeyicI48aa0baaeaacqaH8oqBaeaacqGH xiIkaaWaaeWaaeaacaWGWbWaaSbaaeaacaaIXaaabeaaaiaawIcaca GLPaaacqGHiiIZdaqhaaqaaiaadAhaaeaacqGHxiIkaaWaaeWaaeaa caWGWbWaaSbaaeaacaaIYaaabeaaaiaawIcacaGLPaaaaaa@631B@   

× d d q ( 2π ) d ( p 1 +2 p 2 +q ) μ ( 2q+ p 2 ) v D s ( q ) D W ( q p 1 ) D W ( q+ p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0o aapeaabaWaaSaaaeaacaWGKbWaaWbaaeqabaGaamizaaaacaWGXbaa baWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaeqaba GaamizaaaaaaaabeqabiabgUIiYdWaaeWaaeaacaWGWbWaaSbaaeaa caaIXaaabeaacqGHRaWkcaaIYaGaamiCamaaBaaabaGaaGOmaaqaba Gaey4kaSIaamyCaaGaayjkaiaawMcaamaaCaaabeqaaiabeY7aTbaa daqadaqaaiaaikdacaWGXbGaey4kaSIaamiCamaaBaaabaGaaGOmaa qabaaacaGLOaGaayzkaaWaaWbaaeqabaGaamODaaaacaWGebWaaSba aeaacaWGZbaabeaadaqadaqaaiaadghaaiaawIcacaGLPaaacaWGeb WaaSbaaeaacaWGxbaabeaadaqadaqaaiaadghacqGHsislcaWGWbWa aSbaaeaacaaIXaaabeaaaiaawIcacaGLPaaacaWGebWaaSbaaeaaca WGxbaabeaadaqadaqaaiaadghacqGHRaWkcaWGWbWaaSbaaeaacaaI YaaabeaaaiaawIcacaGLPaaaaaa@67B0@   

= i ( 4π ) d/2 e 2 m W 2 v ( p 1 ) ( p 2 )Γ( 22/d ) dxdy ( m W 2 xy m h 2 ) 22/d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaamyAaaqaamaabmaabaGaaGinaiabec8aWbGaayjkaiaa wMcaamaaCaaabeqaamaalyaabaGaamizaaqaaiaaikdaaaaaaaaada WcaaqaaiaadwgadaahaaqabeaacaaIYaaaaiaad2gadaqhaaqaaiaa dEfaaeaacaaIYaaaaaqaaiaadAhaaaGaeyicI48aaWbaaeqabaGaey 4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGymaaqabaaacaGLOaGa ayzkaaGaeyyXICTaeyicI48aaWbaaeqabaGaey4fIOcaamaabmaaba GaamiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaGaeu4KdC0a aeWaaeaacaaIYaGaeyOeI0YaaSGbaeaacaaIYaaabaGaamizaaaaai aawIcacaGLPaaadaWdbaqaamaalaaabaGaamizaiaadIhacaWGKbGa amyEaaqaamaabmaabaGaamyBamaaDaaabaGaam4vaaqaaiaaikdaaa GaeyOeI0IaamiEaiaadMhacaWGTbWaa0baaeaacaWGObaabaGaaGOm aaaaaiaawIcacaGLPaaadaahaaqabeaacaaIYaGaeyOeI0YaaSGbae aacaaIYaaabaGaamizaaaaaaaaaaqabeqacqGHRiI8aaaa@6CCE@   (30)

i M ( m ) =( 2iλv ) ( i g 2 vsin θ w 2 ) 2 ( p 1 ) ( p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadMgaca WGnbWaaWbaaeqabaWaaeWaaeaacaWGTbaacaGLOaGaayzkaaaaaiab g2da9maabmaabaGaeyOeI0IaaGOmaiaadMgacqaH7oaBcaWG2baaca GLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaadMgacaWGNbWaaWbaaeqa baGaaGOmaaaacaWG2bGaci4CaiaacMgacaGGUbGaeqiUde3aaSbaae aacaWG3baabeaaaeaacaaIYaaaaaGaayjkaiaawMcaamaaCaaabeqa aiaaikdaaaGaeyicI48aaWbaaeqabaGaey4fIOcaamaabmaabaGaam iCamaaBaaabaGaaGymaaqabaaacaGLOaGaayzkaaGaeyyXICTaeyic I48aaWbaaeqabaGaey4fIOcaamaabmaabaGaamiCamaaBaaabaGaaG OmaaqabaaacaGLOaGaayzkaaaaaa@5EB8@   

× d d q ( 2π ) d D W ( q ) D s ( q p 1 ) D s ( q+ p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgEna0o aapeaabaWaaSaaaeaacaWGKbWaaWbaaeqabaGaamizaaaacaWGXbaa baWaaeWaaeaacaaIYaGaeqiWdahacaGLOaGaayzkaaWaaWbaaeqaba GaamizaaaaaaaabeqabiabgUIiYdGaamiramaaBaaabaGaam4vaaqa baWaaeWaaeaacaWGXbaacaGLOaGaayzkaaGaamiramaaBaaabaGaam 4CaaqabaWaaeWaaeaacaWGXbGaeyOeI0IaamiCamaaBaaabaGaaGym aaqabaaacaGLOaGaayzkaaGaamiramaaBaaabaGaam4CaaqabaWaae WaaeaacaWGXbGaey4kaSIaamiCamaaBaaabaGaaGOmaaqabaaacaGL OaGaayzkaaaaaa@5646@   

= i ( 4π ) d/2 e 2 m W 2 v ( p 1 ) ( p 2 ) dxdy m W 2 m W 2 xy m h 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabg2da9m aalaaabaGaamyAaaqaamaabmaabaGaaGinaiabec8aWbGaayjkaiaa wMcaamaaCaaabeqaamaalyaabaGaamizaaqaaiaaikdaaaaaaaaada WcaaqaaiaadwgadaahaaqabeaacaaIYaaaaiaad2gadaqhaaqaaiaa dEfaaeaacaaIYaaaaaqaaiaadAhaaaGaeyicI48aaWbaaeqabaGaey 4fIOcaamaabmaabaGaamiCamaaBaaabaGaaGymaaqabaaacaGLOaGa ayzkaaGaeyyXICTaeyicI48aaWbaaeqabaGaey4fIOcaamaabmaaba GaamiCamaaBaaabaGaaGOmaaqabaaacaGLOaGaayzkaaWaa8qaaeaa caWGKbGaamiEaiaadsgacaWG5bWaaSaaaeaacaWGTbWaa0baaeaaca WGxbaabaGaaGOmaaaaaeaacaWGTbWaa0baaeaacaWGxbaabaGaaGOm aaaacqGHsislcaWG4bGaamyEaiaad2gadaqhaaqaaiaadIgaaeaaca aIYaaaaaaaaeqabeGaey4kIipaaaa@6416@   (31)

Results

Our results for the total decay width, the cross section as well as the branching ratios can be plotted to show in the figures.

Figure 1 Branching ratios vs. Higgs mass.

Figure 2 Total width vs. Higgs mass.

Figure 3 Cross section vs. center-of-mass energy.

Conclusion

Not only does the Higgs boson give mass to quarks but also undergoes decay via a number of channels from which a few have been discussed in this paper. Experimental discovery of these decay modes have given room for unknown potential particles that may contribute mass to be discovered in future experiments. Studying the Higgs boson tells us that it is capable of interacting with other particles like quarks and give them mass.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. ME Peskin, DV Schroeder. An Introduction to Quantum Field Theory, Westview Press, 1995.
  2. Cheng Zhang, Manyika Kabuswa Davy, Yu Shi. Multiparticle azimuthal angular correlations in pA collisions. Physical Review D 99. 2019;034009.
  3. MD Schwartz. Quantum Field Theory and the Standard Model, Cambridge University Press, 2014.
  4. Anthony W. Thomas. Reflections on the Origin of the EMC Effect. Nuclear Physics A. 2018;983(18).
  5. KA Olive. Review of particle physics (Particle Data Group). Chin Phys C 38. 2014;090001.
  6. Manyika Kabuswa Davy, Matindih Kahyata Levy. On the Radiation of Gluon Jets: A Summary. 2019:121–126.
  7. Zee, Quantum Field Theory in a Nutshell, 2nd edition, Princeton University Press, 2010.
  8. Manyika Kabuswa Davy, Nawa Nawa. On the Future of Nuclear Energy and Climate Change: A Summary. 2019.
  9. S Coleman. Aspects of Symmetry, Cambridge University Press, 1985.
  10. Davy MK, Hamweendo A, Banda PJ, et al. On radiation protection and climate change – a summary. Phys Astron Int J. 2022;6(3):126–129.
  11. SR Coleman, EJ Weinberg. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys Rev D 7. 1973;1888.
  12. Andreessen W Frost, M D Schwartz. Consistent Use of Effective Potentials. Phys Rev D. 2015;016009 [arXiv:1408.0287].
  13. Davy MK, Banda PJ, Morris MK, et al. Nuclear energy and sustainable development. Phys Astron Int J. 2022;6(4):142‒143.
  14.  LHC Higgs Cross Section Working Group Collaboration (S Heinemeyer (ed.)), Hand–book of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347.
  15. Matindih LK, Moyo E, Manyika DK. Some Results of Upper and Lower M–Asymmetric Irresolute Multifunctions in Bitopological Spaces. Advances in Pure Mathematics. 2021;11:611–627.
Creative Commons Attribution License

©2023 Davy, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.