Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 6

On the singular series in the Jiang prime k-tuple theorem

Chun Xuan Jiang

China Aerospace Science and Technology Corporation, China

Correspondence: Chun Xuan Jiang, China Aerospace Science and Technology Corporation, P. O. Box 142-206, Beijing 100854, P. R. China

Received: September 18, 2018 | Published: November 16, 2018

Citation: Jiang CX. On the singular series in the Jiang prime k-tuple theorem. Phys Astron Int J. 2018;2(6):514-517. DOI: 10.15406/paij.2018.02.00134

Download PDF

Abstract

Using Jiang function we prove Jiang prime k-tuple theorem. We find true singular series. Using the examples we prove the Hardy-Littlewood prime k-tuple conjecture with wrong singular series. Jiang prime k-tuple theorem will replace the Hardy-Littlewood prime k-tuple conjecture.

Theorems

Jiang prime k-tuple theorem with true singular series.1,2

We define the prime k-tuple equation

p,p+ n i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeYdH8FAI8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaaGilai aaysW7caWGWbGaey4kaSIaamOBamaaBaaaleaacaWGPbaabeaakiaa iYcaaaa@3FD8@   (1)

where  2| n i ,i=1,k1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaaGiFai aad6gadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyAaiaai2dacaaI XaGaaGilaiabl+UimjaadUgacqGHsislcaaIXaGaaGOlaaaa@4551@

we have Jiang function1,2

J 2 (a))= P (P1χ(P)), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadggacaaIPaGaaGykaiaai2dadaqe qaqabSqaaiaadcfaaeqaniabg+GivdGccaaIOaqcLbsacaWGqbGccq GHsislcaaIXaGaeyOeI0Iaeq4XdmMaaGikaiaadcfacaaIPaGaaGyk aiaacYcaaaa@4A9F@   (2)

where co= P P,χ(P) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbGaam4Bai aai2dadaqeqaqabSqaaiaadcfaaeqaniabg+GivdGccaWGqbGaaGil aiabeE8aJjaaiIcacaWGqbGaaGykaaaa@432F@  is the number of solutions of congruence

i=1 k1 (q+ n i )0(modP),q=1,,p1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqeWaqabSqaai aadMgacaaI9aGaaGymaaqaaiaadUgacqGHsislcaaIXaaaniabg+Gi vdGccaaIOaGaamyCaiabgUcaRiaad6gadaWgaaWcbaGaamyAaaqaba GccaaIPaGaeyyyIORaaGimaiaaysW7caaIOaGaaeyBaiaab+gacaqG KbGaaGjbVlaadcfacaaIPaGaaGilaiaaysW7caWGXbGaaGypaiaaig dacaaISaGaeS47IWKaaGilaiaadchacqGHsislcaaIXaaaaa@5A08@   (3)

which is true.

If χ(P)<P1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHhpWycaaIOa GaamiuaiaaiMcacaaI8aGaamiuaiabgkHiTiaaigdaaaa@3F92@  then J 2 (ω)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiabeM8a3jaaiMcacqGHGjsUcaaIWaaa aa@3FD2@ . There exist infinitely many primes P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@3933@  such that each of P+ n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey4kaS IaamOBamaaBaaaleaacaWGPbaabeaaaaa@3C22@  is prime. If χ(P)=P1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHhpWycaaIOa GaamiuaiaaiMcacaaI9aGaamiuaiabgkHiTiaaigdaaaa@3F93@  then J 2 (ω)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiabeM8a3jaaiMcacaaI9aGaaGimaaaa @3ED2@ . There exist finitely many primes P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@3933@  such that each of P+ n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey4kaS IaamOBamaaBaaaleaacaWGPbaabeaaaaa@3C22@  is prime. J 2 (ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiabeM8a3jaaiMcaaaa@3D51@  is a subset of Euler function (co) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHfiIXcaaIOa Gaam4yaiaad+gacaaIPaaaaa@3D18@ .2

If J 2 (ω)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiabeM8a3jaaiMcacqGHGjsUcaaIWaaa aa@3FD2@ , then we have the best asymptotic formula of the number of prime P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@3933@ .1,2

π k (N,2)=|{PN:P+ n i =prime}| J 2 (co)c o k1 N k (co) log k N =C(k) N log k N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaam4AaaqabaGccaaIOaGaamOtaiaaiYcacaaIYaGaaGykaiaa i2dacaaI8bGaaG4EaiaadcfacqGHKjYOcaWGobGaaGOoaiaadcfacq GHRaWkcaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaadchacaWG YbGaamyAaiaad2gacaWGLbGaaGyFaiaaiYhacqGHsisldaWcaaqaai aadQeadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaam4yaiaad+gacaaI PaGaam4yaiaad+gadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaO GaamOtaaqaaiabgwGigpaaCaaaleqabaGaam4AaaaakiaaiIcacaWG JbGaam4BaiaaiMcadaqfGaqabSqabeaacaWGRbaakeaaciGGSbGaai 4BaiaacEgaaaGaamOtaaaacaaI9aGaam4qaiaaiIcacaWGRbGaaGyk amaalaaabaGaamOtaaqaamaavacabeWcbeqaaiaadUgaaOqaaiGacY gacaGGVbGaai4zaaaacaWGobaaaaaa@7127@   (4)

(co)= P (P1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHfiIXcaaIOa Gaam4yaiaad+gacaaIPaGaaGypamaarafabeWcbaGaamiuaaqab0Ga ey4dIunakiaaiIcacaWGqbGaeyOeI0IaaGymaiaaiMcaaaa@44B3@

C(k)= P (1 1+χ(P) P )(1 1 P ) k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbGaaGikai aadUgacaaIPaGaaGypamaarababeWcbaGaamiuaaqab0Gaey4dIuna kiaaiIcacaaIXaGaeyOeI0YaaSaaaeaacaaIXaGaey4kaSIaeq4Xdm MaaGikaiaadcfacaaIPaaabaGaamiuaaaacaaIPaGaaGikaiaaigda cqGHsisldaWcaaqaaiaaigdaaeaacaWGqbaaaiaaiMcadaahaaWcbe qaaiabgkHiTiaadUgaaaaaaa@4F2B@   (5)

is Jiang true singular series.

Example 1

Let k=2,P,P+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaaGypai aaikdacaaISaGaamiuaiaaiYcacaWGqbGaey4kaSIaaGOmaaaa@3F85@ , twin primes theorem.

From (3) we have

χ(2)=0,χ(P)=1ifP>2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHhpWycaaIOa GaaGOmaiaaiMcacaaI9aGaaGimaiaaiYcacqaHhpWycaaIOaGaamiu aiaaiMcacaaI9aGaaGymaiaaykW7caaMc8UaamyAaiaadAgacaaMc8 Uaamiuaiaai6dacaaIYaaaaa@4CB3@   (6)

Substituting (6) into (2) we have

J 2 (a))= P3 (P2)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadggacaaIPaGaaGykaiaai2dadaqe qaqabSqaaiaadcfacqGHLjYScaaIZaaabeqdcqGHpis1aOGaaGikai aadcfacqGHsislcaaIYaGaaGykaiabgcMi5kaaicdaaaa@497D@   (7)

There exist infinitely many primes P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@3933@  such that P+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey4kaS IaaGOmaaaa@3AD1@  is prime. Substituting (7) into (4) we have the best asymptotic formula

π k (N,2)=|{PN:P+2=prime}|2 P3 (1 1 (P1) 2 ) N log 2 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaam4AaaqabaGccaaIOaGaamOtaiaaiYcacaaIYaGaaGykaiaa i2dacaaI8bGaaG4EaiaadcfacqGHKjYOcaWGobGaaGOoaiaadcfacq GHRaWkcaaIYaGaaGypaiaadchacaWGYbGaamyAaiaad2gacaWGLbGa aGyFaiaaiYhacqGHsislcaaIYaWaaebeaeqaleaacaWGqbGaeyyzIm RaaG4maaqab0Gaey4dIunakiaaiIcacaaIXaGaeyOeI0YaaSaaaeaa caaIXaaabaGaaGikaiaadcfacqGHsislcaaIXaGaaGykamaaCaaale qabaGaaGOmaaaaaaGccaaIPaWaaSaaaeaacaWGobaabaWaaubiaeqa leqabaGaaGOmaaGcbaGaciiBaiaac+gacaGGNbaaaiaad6eaaaaaaa@64FB@   (8)

Example 2

Let  k=3,P,P+2,P+4. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaaGypai aaiodacaaISaGaamiuaiaaiYcacaWGqbGaey4kaSIaaGOmaiaaiYca caWGqbGaey4kaSIaaGinaiaai6caaaa@4369@

From (3) we have

χ(2)=0,χ(3)=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHhpWycaaIOa GaaGOmaiaaiMcacaaI9aGaaGimaiaaiYcacaaMe8Uaeq4XdmMaaGik aiaaiodacaaIPaGaaGypaiaaikdaaaa@4556@   (9)

From (2) we have

J 2 (ω)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiabeM8a3jaaiMcacaaI9aGaaGimaaaa @3ED2@   (10)

It has only a solution P=3,P+2=5,P+4=7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaaGypai aaiodacaaISaGaamiuaiabgUcaRiaaikdacaaI9aGaaGynaiaaiYca caWGqbGaey4kaSIaaGinaiaai2dacaaI3aaaaa@4419@ . One of P,P+2,P+4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaaGilai aadcfacqGHRaWkcaaIYaGaaGilaiaadcfacqGHRaWkcaaI0aaaaa@3F87@  is always divisible by 3. Example 2 is not admissible.

Example 3

Let k=4,P,P+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaaGypai aaisdacaaISaGaamiuaiaaiYcacaWGqbGaey4kaSIaamOBaaaa@3FBE@ , where n=2,6,8. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbGaaGypai aaikdacaaISaGaaGOnaiaaiYcacaaI4aGaaGOlaaaa@3E7A@

From (3) we have

χ(2)=0,χ(3)=1,χ(P)=3ifP>3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHhpWycaaIOa GaaGOmaiaaiMcacaaI9aGaaGimaiaaiYcacqaHhpWycaaIOaGaaG4m aiaaiMcacaaI9aGaaGymaiaaiYcacqaHhpWycaaIOaGaamiuaiaaiM cacaaI9aGaaG4maiaaykW7caaMc8UaamyAaiaadAgacaaMc8UaaGPa VlaadcfacaaI+aGaaG4maaaa@5452@ .  (11)

Substituting (11) into (2) we have

J 2 (ω)= P5 (P4)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiabeM8a3jaaiMcacaaI9aWaaybuaeqa leaacaWGqbGaeyyzImRaaGynaaqab0qaamaarababeGdbaaabeqdcq GHpis1aaaakiaaiIcacaWGqbGaeyOeI0IaaGinaiaaiMcacqGHGjsU caaIWaaaaa@4A3F@ ,  (12)

There exist infinitely many primes P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@3933@  such that each of P+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey4kaS IaamOBaaaa@3B08@  is prime. Example 3 is admissible.

Substituting (12) into (4) we have the best asymptotic formula

π 4 (N,2)=|{PN:P+n=prime}| 27 3 P5 P 3 (P4)N (P1) 4 log 4 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaaGinaaqabaGccaaIOaGaamOtaiaaiYcacaaIYaGaaGykaiaa i2dacaaI8bGaaG4EaiaadcfacqGHKjYOcaWGobGaaGOoaiaadcfacq GHRaWkcaWGUbGaaGypaiaadchacaWGYbGaamyAaiaad2gacaWGLbGa aGyFaiaaiYhacqGHsisldaWcaaqaaiaaikdacaaI3aaabaGaaG4maa aadaGfqbqabSqaaiaadcfacqGHLjYScaaI1aaabeqdbaWaaebeaeqa oeaaaeqaniabg+GivdaaaOWaaSaaaeaacaWGqbWaaWbaaSqabeaaca aIZaaaaOGaaGikaiaadcfacqGHsislcaaI0aGaaGykaiaad6eaaeaa caaIOaGaamiuaiabgkHiTiaaigdacaaIPaWaaWbaaSqabeaacaaI0a aaaOWaaubiaeqaleqabaGaaGinaaGcbaGaciiBaiaac+gacaGGNbaa aiaad6eaaaaaaa@68F4@   (13)

Example 4

Let k=5,P,P+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaaGypai aaiwdacaaISaGaamiuaiaaiYcacaWGqbGaey4kaSIaamOBaaaa@3FBF@ , where n=2,6,8,12. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbGaaGypai aaikdacaaISaGaaGOnaiaaiYcacaaI4aGaaGilaiaaigdacaaIYaGa aGOlaaaa@40A7@

From (3) we have

χ(2)=0,χ(3)=1,χ(5)=3,χ(P)=4ifP>5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHhpWycaaIOa GaaGOmaiaaiMcacaaI9aGaaGimaiaaiYcacqaHhpWycaaIOaGaaG4m aiaaiMcacaaI9aGaaGymaiaaiYcacqaHhpWycaaIOaGaaGynaiaaiM cacaaI9aGaaG4maiaaiYcacqaHhpWycaaIOaGaamiuaiaaiMcacaaI 9aGaaGinaiaaykW7caaMc8UaamyAaiaadAgacaaMc8UaaGPaVlaadc facaaI+aGaaGynaaaa@5A6A@   (14)

Substituting (14) into (2) we have

J 2 (ω)= P7 (P5)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiabeM8a3jaaiMcacaaI9aWaaybuaeqa leaacaWGqbGaeyyzImRaaG4naaqab0qaamaarababeGdbaaabeqdcq GHpis1aaaakiaaiIcacaWGqbGaeyOeI0IaaGynaiaaiMcacqGHGjsU caaIWaaaaa@4A42@   (15)

There exist infinitely many primes P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@3933@  such that each of P+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey4kaS IaamOBaaaa@3B08@  is prime. Example 4 is admissible. Substituting (15) into (4) we have the best asymptotic formula

π 5 (N,2)=|{PN:P+n=prime}| 15 4 2 11 P7 (P5) P 4 N (P1) 5 log 5 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaaGynaaqabaGccaaIOaGaamOtaiaaiYcacaaIYaGaaGykaiaa i2dacaaI8bGaaG4EaiaadcfacqGHKjYOcaWGobGaaGOoaiaadcfacq GHRaWkcaWGUbGaaGypaiaadchacaWGYbGaamyAaiaad2gacaWGLbGa aGyFaiaaiYhacqGHsisldaWcaaqaaiaaigdacaaI1aWaaWbaaSqabe aacaaI0aaaaaGcbaGaaGOmamaaCaaaleqabaGaaGymaiaaigdaaaaa aOWaaybuaeqaleaacaWGqbGaeyyzImRaaG4naaqab0qaamaarababe GdbaaabeqdcqGHpis1aaaakmaalaaabaGaaGikaiaadcfacqGHsisl caaI1aGaaGykaiaadcfadaahaaWcbeqaaiaaisdaaaGccaWGobaaba GaaGikaiaadcfacqGHsislcaaIXaGaaGykamaaCaaaleqabaGaaGyn aaaakmaavacabeWcbeqaaiaaiwdaaOqaaiGacYgacaGGVbGaai4zaa aacaWGobaaaaaa@6B99@   (16)

Example 5

Let k=6,P,P+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaaGypai aaiAdacaaISaGaamiuaiaaiYcacaWGqbGaey4kaSIaamOBaaaa@3FC0@ , where n=2,6,8,12,14. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbGaaGypai aaikdacaaISaGaaGOnaiaaiYcacaaI4aGaaGilaiaaigdacaaIYaGa aGilaiaaigdacaaI0aGaaGOlaaaa@42D6@

From (3) and (2) we have

χ(2)=0,χ(3)=1,χ(5)=4, J 2 (5)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHhpWycaaIOa GaaGOmaiaaiMcacaaI9aGaaGimaiaaiYcacaaMe8Uaeq4XdmMaaGik aiaaiodacaaIPaGaaGypaiaaigdacaaISaGaaGjbVlabeE8aJjaaiI cacaaI1aGaaGykaiaai2dacaaI0aGaaGilaiaaysW7caWGkbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiaaiwdacaaIPaGaaGypaiaaicdaaa a@54A1@   (17)

It has only a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbaaaa@3944@  solution P=5,P+2=7,P+6=11,P+8=13,P+12=17,P+14=19 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaaGypai aaiwdacaaISaGaamiuaiabgUcaRiaaikdacaaI9aGaaG4naiaaiYca caWGqbGaey4kaSIaaGOnaiaai2dacaaIXaGaaGymaiaaiYcacaWGqb Gaey4kaSIaaGioaiaai2dacaaIXaGaaG4maiaaiYcacaWGqbGaey4k aSIaaGymaiaaikdacaaI9aGaaGymaiaaiEdacaaISaGaamiuaiabgU caRiaaigdacaaI0aGaaGypaiaaigdacaaI5aaaaa@5694@ . One of P+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey4kaS IaamOBaaaa@3B08@  is always divisible by 5. Example 5 is not admissible.

The Hardy-Littlewood prime k-tuple conjecture with wrong singular series.3−17

This conjecture is generally believed to be true, but has not been proved.18

We define the prime k-tuple equation

P,P+ n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaaGilai aaysW7caWGqbGaey4kaSIaamOBamaaBaaaleaacaWGPbaabeaaaaa@3F3A@   (18)

where 2| n i ,i=1,,k1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaaGiFai aad6gadaWgaaWcbaGaamyAaaqabaGccaaISaGaamyAaiaai2dacaaI XaGaaGilaiabl+UimjaaiYcacaWGRbGaeyOeI0IaaGymaiaai6caaa a@4607@

In 1923 Hardy et al.3 conjectured the asymptotic formula

π k (N,2)=|{PN:P+ n i =prime}|H(k) N log k N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaam4AaaqabaGccaaIOaGaamOtaiaaiYcacaaIYaGaaGykaiaa i2dacaaI8bGaaG4EaiaadcfacqGHKjYOcaWGobGaaGOoaiaadcfacq GHRaWkcaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaadchacaWG YbGaamyAaiaad2gacaWGLbGaaGyFaiaaiYhacqGHsislcaWGibGaaG ikaiaadUgacaaIPaWaaSaaaeaacaWGobaabaWaaubiaeqaleqabaGa am4AaaGcbaGaciiBaiaac+gacaGGNbaaaiaad6eaaaaaaa@5B0E@ ,  (19)

where

H(k)= P (1 V(P) P )( 1 1 _ P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaaGikai aadUgacaaIPaGaaGypamaarababeWcbaGaamiuaaqab0Gaey4dIuna kiaaiIcacaaIXaGaeyOeI0YaaSaaaeaacaWGwbGaaGikaiaadcfaca aIPaaabaGaamiuaaaacaaIPaWaaeWaaeaafaqaaeGabaaabaGaaGym aiabgkHiTmaamaaabaGaaGymaaaaaeaacaWGqbaaaaGaayjkaiaawM caaaaa@4ADD@   (20)

Is Hardy-Littlewood wrong singula series,

v(P) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaaGikai aadcfacaaIPaaaaa@3B93@  is the number of solutions of congruence

i=1 k1 (q+ n i )0(modP) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqeWaqabSqaai aadMgacaaI9aGaaGymaaqaaiaadUgacqGHsislcaaIXaaaniabg+Gi vdGccaaIOaGaamyCaiabgUcaRiaad6gadaWgaaWcbaGaamyAaaqaba GccaaIPaGaeyyyIORaaGimaiaaiIcacaqGTbGaae4BaiaabsgacaaM e8UaamiuaiaaiMcaaaa@4DC9@ , q=1,,P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGXbGaaGypai aaigdacaaISaGaeS47IWKaaGilaiaadcfaaaa@3F05@ .  (21)

which is wrong.

From (21) we have v(P)<P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaaGikai aadcfacaaIPaGaaGipaiaadcfaaaa@3D2E@  and H(k)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaaGikai aadUgacaaIPaGaeyiyIKRaaGimaaaa@3E01@ . For any prime k-tuple equation there exist infinitely many primes P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@3933@  such that each of P+ n i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbGaey4kaS IaamOBamaaBaaaleaacaWGPbaabeaaaaa@3C22@  is prime, which is false.

Conjecture 1

Let k=2,P,P+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaaGypai aaikdacaaISaGaamiuaiaaiYcacaWGqbGaey4kaSIaaGOmaaaa@3F85@ , twin primes theorem

From (21) we have

v(P)=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaaGikai aadcfacaaIPaGaaGypaiaaigdaaaa@3D15@   (22)

Substituting (22) into (20) we have

H(2)= P P P1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaaGikai aaikdacaaIPaGaaGypamaarababeWcbaGaamiuaaqab0Gaey4dIuna kmaalaaabaGaamiuaaqaaiaadcfacqGHsislcaaIXaaaaaaa@4227@   (23)

Substituting (23) into (19) we have the asymptotic formula

π 2 (N,2)=|{PN:P+2=prime}| p PN P1 log 2 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaaGOmaaqabaGccaaIOaGaamOtaiaaiYcacaaIYaGaaGykaiaa i2dacaaI8bGaaG4EaiaadcfacqGHKjYOcaWGobGaaGOoaiaadcfacq GHRaWkcaaIYaGaaGypaiaadchacaWGYbGaamyAaiaad2gacaWGLbGa aGyFaiaaiYhacqGHsisldaGfqbqabSqaaiaadchaaeqaneaadaqeqa qab4qaaaqab0Gaey4dIunaaaGcdaWcaaqaaiaadcfacaWGobaabaGa amiuaiabgkHiTiaaigdadaqfGaqabSqabeaacaaIYaaakeaaciGGSb Gaai4BaiaacEgaaaGaamOtaaaaaaa@5CD7@   (24)

which is wrong see example l. They do not get twin primes formula (8).

Conjecture 2

Let k=3,P,P+2,P+4. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaaGypai aaiodacaaISaGaamiuaiaaiYcacaWGqbGaey4kaSIaaGOmaiaaiYca caWGqbGaey4kaSIaaGinaiaai6caaaa@4369@

From (21) we have

v(2)=1,v(P)=2ifP>2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaaGikai aaikdacaaIPaGaaGypaiaaigdacaaISaGaamODaiaaiIcacaWGqbGa aGykaiaai2dacaaIYaGaaGPaVlaaykW7caWGPbGaamOzaiaaykW7ca aMc8Uaamiuaiaai6dacaaIYaaaaa@4CC8@   (25)

Substituting (25) into (20) we have

H(3)=4 P3 P 2 (P2) (P1) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaaGikai aaiodacaaIPaGaaGypaiaaisdadaGfqbqabSqaaiaadcfacqGHLjYS caaIZaaabeqdbaWaaebeaeqaoeaaaeqaniabg+GivdaaaOWaaSaaae aacaWGqbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadcfacqGHsisl caaIYaGaaGykaaqaaiaaiIcacaWGqbGaeyOeI0IaaGymaiaaiMcada ahaaWcbeqaaiaaiodaaaaaaaaa@4D18@   (26)

Substituting (26) into (19) we have asymptotic formula

π 3 (N,2)=|{PN:P+2=prime,P+4=prim}|4 P3 P 2 (P2)N (P1) 3 log 3 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaaG4maaqabaGccaaIOaGaamOtaiaaiYcacaaIYaGaaGykaiaa i2dacaaI8bGaaG4EaiaadcfacqGHKjYOcaWGobGaaGOoaiaadcfacq GHRaWkcaaIYaGaaGypaiaadchacaWGYbGaamyAaiaad2gacaWGLbGa aGilaiaaysW7caWGqbGaey4kaSIaaGinaiaai2dacaWGWbGaamOCai aadMgacaWGTbGaaGyFaiaaiYhacqGHsislcaaI0aWaaybuaeqaleaa caWGqbGaeyyzImRaaG4maaqab0qaamaarababeGdbaaabeqdcqGHpi s1aaaakmaalaaabaGaamiuamaaCaaaleqabaGaaGOmaaaakiaaiIca caWGqbGaeyOeI0IaaGOmaiaaiMcacaWGobaabaGaaGikaiaadcfacq GHsislcaaIXaGaaGykamaaCaaaleqabaGaaG4maaaakmaavacabeWc beqaaiaaiodaaOqaaiGacYgacaGGVbGaai4zaaaacaWGobaaaaaa@7074@   (27)

which is wrong see example 2.

Conjecture 3

Let k=4,P,P+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaaGypai aaisdacaaISaGaamiuaiaaiYcacaWGqbGaey4kaSIaamOBaaaa@3FBE@ , where n=2,6,8. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbGaaGypai aaikdacaaISaGaaGOnaiaaiYcacaaI4aGaaGOlaaaa@3E7A@

From (21) we have

v(2)=1,v(3)=2,v(P)=3ifP>3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaaGikai aaikdacaaIPaGaaGypaiaaigdacaaISaGaamODaiaaiIcacaaIZaGa aGykaiaai2dacaaIYaGaaGilaiaadAhacaaIOaGaamiuaiaaiMcaca aI9aGaaG4maiaaykW7caaMc8UaamyAaiaadAgacaaMc8UaaGPaVlaa dcfacaaI+aGaaG4maaaa@5220@   (28)

Substituting (28) into (20) we have

H(4)= 27 2 P>3 P 3 (P3) (P1) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaaGikai aaisdacaaIPaGaaGypamaalaaabaGaaGOmaiaaiEdaaeaacaaIYaaa amaarababeWcbaGaamiuaiaai6dacaaIZaaabeqdcqGHpis1aOWaaS aaaeaacaWGqbWaaWbaaSqabeaacaaIZaaaaOGaaGikaiaadcfacqGH sislcaaIZaGaaGykaaqaaiaaiIcacaWGqbGaeyOeI0IaaGymaiaaiM cadaahaaWcbeqaaiaaisdaaaaaaaaa@4D1F@   (29)

Substituting (29) into (19) we have asymptotic formula

π 4 (N,2)=|{PN:P+n=prime}| 27 2 P>3 P 3 (P3)N (P1) 4 log 4 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaaGinaaqabaGccaaIOaGaamOtaiaaiYcacaaIYaGaaGykaiaa i2dacaaI8bGaaG4EaiaadcfacqGHKjYOcaWGobGaaGOoaiaadcfacq GHRaWkcaWGUbGaaGypaiaadchacaWGYbGaamyAaiaad2gacaWGLbGa aGyFaiaaiYhacqGHsisldaWcaaqaaiaaikdacaaI3aaabaGaaGOmaa aadaqeqaqabSqaaiaadcfacaaI+aGaaG4maaqab0Gaey4dIunakmaa laaabaGaamiuamaaCaaaleqabaGaaG4maaaakiaaiIcacaWGqbGaey OeI0IaaG4maiaaiMcacaWGobaabaGaaGikaiaadcfacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaaGinaaaakmaavacabeWcbeqaaiaais daaOqaaiGacYgacaGGVbGaai4zaaaacaWGobaaaaaa@6768@   (30)

Which is wrong see example 3.

Conjecture 4

Let k=5,P,P+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaaGypai aaiwdacaaISaGaamiuaiaaiYcacaWGqbGaey4kaSIaamOBaaaa@3FBF@ , where n=2,6,8,12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbGaaGypai aaikdacaaISaGaaGOnaiaaiYcacaaI4aGaaGilaiaaigdacaaIYaaa aa@3FEF@

From (21) we have

v(2)=1,v(3)=2,v(5)=3,v(P)=4ifP>5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaaGikai aaikdacaaIPaGaaGypaiaaigdacaaISaGaamODaiaaiIcacaaIZaGa aGykaiaai2dacaaIYaGaaGilaiaadAhacaaIOaGaaGynaiaaiMcaca aI9aGaaG4maiaaiYcacaWG2bGaaGikaiaadcfacaaIPaGaaGypaiaa isdacaaMc8UaaGPaVlaabMgacaqGMbGaaGPaVlaaykW7caWGqbGaaG Opaiaaiwdaaaa@5778@   (31)

Substituting (31) into (20) we have

H(5)= 15 4 4 5 P>5 P 4 (P4) (P1) 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaaGikai aaiwdacaaIPaGaaGypamaalaaabaGaaGymaiaaiwdadaahaaWcbeqa aiaaisdaaaaakeaacaaI0aWaaWbaaSqabeaacaaI1aaaaaaakmaara babeWcbaGaamiuaiaai6dacaaI1aaabeqdcqGHpis1aOWaaSaaaeaa caWGqbWaaWbaaSqabeaacaaI0aaaaOGaaGikaiaadcfacqGHsislca aI0aGaaGykaaqaaiaaiIcacaWGqbGaeyOeI0IaaGymaiaaiMcadaah aaWcbeqaaiaaiwdaaaaaaaaa@4F0F@   (32)

Substituting (32) into (19) we have asymptotic formula

π 5 (N,2)=|{PN:P+n=prime}| 15 4 4 5 P>5 P 4 (P4)N (P1) 5 log 5 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaaGynaaqabaGccaaIOaGaamOtaiaaiYcacaaIYaGaaGykaiaa i2dacaaI8bGaaG4EaiaadcfacqGHKjYOcaWGobGaaGOoaiaadcfacq GHRaWkcaWGUbGaaGypaiaadchacaWGYbGaamyAaiaad2gacaWGLbGa aGyFaiaaiYhacqGHsisldaWcaaqaaiaaigdacaaI1aWaaWbaaSqabe aacaaI0aaaaaGcbaGaaGinamaaCaaaleqabaGaaGynaaaaaaGcdaqe qaqabSqaaiaadcfacaaI+aGaaGynaaqab0Gaey4dIunakmaalaaaba GaamiuamaaCaaaleqabaGaaGinaaaakiaaiIcacaWGqbGaeyOeI0Ia aGinaiaaiMcacaWGobaabaGaaGikaiaadcfacqGHsislcaaIXaGaaG ykamaaCaaaleqabaGaaGynaaaakmaavacabeWcbeqaaiaaiwdaaOqa aiGacYgacaGGVbGaai4zaaaacaWGobaaaaaa@6959@   (33)

Which is wrong see example 4.

Conjecture 5

Let k=6,P,P+n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbGaaGypai aaiAdacaaISaGaamiuaiaaiYcacaWGqbGaey4kaSIaamOBaaaa@3FC0@ , where n=2,6,8,12,14. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGUbGaaGypai aaikdacaaISaGaaGOnaiaaiYcacaaI4aGaaGilaiaaigdacaaIYaGa aGilaiaaigdacaaI0aGaaGOlaaaa@42D6@

From (21) we have

v(2)=1,v(3)=2,v(5)=4,v(P)=5ifP>5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaaGikai aaikdacaaIPaGaaGypaiaaigdacaaISaGaamODaiaaiIcacaaIZaGa aGykaiaai2dacaaIYaGaaGilaiaadAhacaaIOaGaaGynaiaaiMcaca aI9aGaaGinaiaaiYcacaWG2bGaaGikaiaadcfacaaIPaGaaGypaiaa iwdacaaMc8UaaGPaVlaabMgacaqGMbGaaGPaVlaadcfacaaI+aGaaG ynaaaa@55EF@   (34)

Substituting (34) into (20) we have

H(6)= 15 5 2 13 P>5 (P5) P 5 (P1) 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGibGaaGikai aaiAdacaaIPaGaaGypamaalaaabaGaaGymaiaaiwdadaahaaWcbeqa aiaaiwdaaaaakeaacaaIYaWaaWbaaSqabeaacaaIXaGaaG4maaaaaa GcdaqeqaqabSqaaiaadcfacaaI+aGaaGynaaqab0Gaey4dIunakmaa laaabaGaaGikaiaadcfacqGHsislcaaI1aGaaGykaiaadcfadaahaa WcbeqaaiaaiwdaaaaakeaacaaIOaGaamiuaiabgkHiTiaaigdacaaI PaWaaWbaaSqabeaacaaI2aaaaaaaaaa@4FCB@   (35)

Substituting (35) into (19) we have asymptotic formula

π 6 (N,2)=|{PN:P+n=prime}| 15 5 2 13 P>5 (P5) P 5 N (P1) 6 log 6 N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=gjLkVeY=zkY=wiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCdaWgaa WcbaGaaGOnaaqabaGccaaIOaGaamOtaiaaiYcacaaIYaGaaGykaiaa i2dacaaI8bGaaG4EaiaadcfacqGHKjYOcaWGobGaaGOoaiaadcfacq GHRaWkcaWGUbGaaGypaiaadchacaWGYbGaamyAaiaad2gacaWGLbGa aGyFaiaaiYhacqGHsisldaWcaaqaaiaaigdacaaI1aWaaWbaaSqabe aacaaI1aaaaaGcbaGaaGOmamaaCaaaleqabaGaaGymaiaaiodaaaaa aOWaaebeaeqaleaacaWGqbGaaGOpaiaaiwdaaeqaniabg+GivdGcda WcaaqaaiaaiIcacaWGqbGaeyOeI0IaaGynaiaaiMcacaWGqbWaaWba aSqabeaacaaI1aaaaOGaamOtaaqaaiaaiIcacaWGqbGaeyOeI0IaaG ymaiaaiMcadaahaaWcbeqaaiaaiAdaaaGcdaqfGaqabSqabeaacaaI 2aaakeaaciGGSbGaai4BaiaacEgaaaGaamOtaaaaaaa@6A16@   (36)

which is wrong see example 5.

Conclusion

The Jiang prime k-tuple theorem has true singular series.The Hardy-Littlewood prime -tuple conjecture has wrong singular series. The tool of additive prime number theory is basically the Hardy-Littlewood wrong prime k-tuple conjecture which are wrong.3−17 Using Jiang true singula series we prove almost all prime theorems. Jiang prime k-tuple theorem will replace Hardy-Littlewood prime k-tuple Conjecture. There cannot be really modern prime theory without Jiang function.

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Chun Xuan Jiang. Foundations of Santilli’s isonumber theory with applications to new cryptograms, Fermat’s theorem and Goldbach’s conjecture. USA:International Academic Press; 2002. p. 413.
  2. Chun Xuan Jiang. Jiang’s function Jn+1 (ω) in prime distribution.
  3. GH Hardy, JE Littlewood. Some problems of ‘Partition Numerorum’, III: On the expression of a number as a sum of primes. Acta Mathematica. 1923;44(1):1−70.
  4. B Green,T Tao. The primes contain arbitrarily long arithmetic progressions. Ann Math. 2008;167(2):481−547.
  5. DA Goldston, SW Graham, J Pint, et al. Small gaps between products of two primes. Proc London Math Soc. 2009;98(3):741−774.
  6. DA Goldston, SW Graham, J Pintz, et al. Small gaps between primes or almost primes. Trans Amer Math Soc. 2009;361(10):5285−5330.
  7. DA Goldston, J Pintz, CY Yildirim. Primes in tulpes I. Ann Math. 2009;170(2):819−862.
  8. P Ribenboim. The new book of prime number records. 3rd ed. New York: Springer-Verlag; 1995. p. 409−411.
  9. H Halberstam, H E Richert. Sieve methods. USA:International Academic Press;1974. p. 364.
  10. A Schinzel,W Sierpinski. Sur certaines hypotheses concernant les nombres premiers. Acta Arithmetica. 1958;4(3):185−208.
  11. PT Bateman, RA Horn. A heuristic asymptotic formula concerning the distribution of prime numbers. Math.Comp. 1962;16(79):363−367.
  12. W Narkiewicz. The development of prime number theory, From Euclid to Hardy and Littlewood. New York:Springer-Verlag; 2000. p. 333−353.
  13. B Green, T Tao. Linear equations in primes. Ann Math. 2010;171(3):1753−1850.
  14. T Tao. Recent progress in additive prime number theory. Mahler Lecture Series, Los Angeles: University of California; 2009. p. 34.
  15. Yitang Zhang. Bounded gaps between primes. Ann of Math. 2014;179(3):1121−1174.
  16. James Maynard. Small gaps between primes. Ann of Math. 2015;181(1):383−413.
  17. Granville Andrew. Prime in intervals bounded length. Bull Amer Math Soc. 2015;52(2):171−222.
  18. Andrew Odlyzko, Michael Rubinstein, Marek Wolf. Jumping Champions. Experimental Mathematics. 1999;8(2):107−118.
Creative Commons Attribution License

©2018 Jiang. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.