Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 6 Issue 4

On the generalized laplace transform and applications

Juan E. Nápoles Valdés

UNNE, FaCENA, Ave. Libertad 5450, Argentina

Correspondence: Juan E. Nápoles Valdés, UNNE, FaCENA, Av. Libertad 5450, Corrientes (3400), UTN, FRRE, French 414, Resistencia (3500), Chaco, Argentina

Received: September 30, 2022 | Published: December 6, 2022

Citation: Valdés JEN. On the generalized laplace transform and applications. Phys Astron Int J. 2022;6(4):196-200. DOI: 10.15406/paij.2022.06.00274

Download PDF

Abstract

In this work we present the main properties of the Generalized Laplace Transform, recently defined, and we show some applications. Laplace’s transformation has been very useful in the studies of engineering, mathematics, physics, among other scientific areas. One of the main mathematical areas where it has many applications is in the topic of differential equations and their solution methods. In this paper, we study the stability and analysis of linear systems with the Generalized Laplace Transform.

Keywords: Generalized Laplace Transform, Differential equations, solution methods, Linear systems

Prelimminars

Modern definitions of derivatives and integrals of non-integer order play a vital role in the theory of fractional calculus. From the original definitions of Riemann-Liouville, to the most current of Atangana-Baleanu, through many others, a body of theory has been formed that is beginning to have applications in various fields. On the other hand, although local differential operators have been known since the 1960s, it was not until 2014 that a complete formalization was achieved with the conformable derivative.1 In 2018 we defined a new type of differential operator, called non conformable2-8 and in 2020 we consolidate our ideas with a generalized derivative definition,9-11 see also).7,12 In this way, a new area has been formed in the Mathematical Sciences, which we call Generalized Calculus, with many applications and important theoretical results.

Adding to this, integral transforms are also ground-breaking inventions in calculus. The capability of integral transforms to manipulate several problems by altering the domain of the equation, have made it persistently important.

The role of the classic Laplace Transform in Mathematical Sciences is of high impact, from the theoretical development to the multiplicity of applications, we have countless investigations and publications in this regard. In its almost 140 years of life, we have seen its great importance in the studies of engineering, mathematics, physics, among other scientific areas, since in addition to being of great interest in the theoretical order, it provides a simple way to solve differential equations, turning them into algebraic equations. In particular, one of the main difficulties is finding methods to find analytical solutions to some classes of differential equations, within these methods are those that use different integral transformations (Laplace, Mellin and Fourier, for example) some attempts in this direction, to fractional and generalized differential equations can be found in.13-26 One of the mathematical areas that is in constant development is that of Differential Equations (using new operators or defined on different functional spaces), and their solution methods, in particular, due to the multiplicity of applications and its own theoretical development, over time, researchers and productions related to this area have been increasing, you can consult in27-30 different aspects of this increase and its overlaps with the development of Mathematics itself. In this paper, we return to the Generalized Laplace Transform defined below, and illustrate its strength and scope with stability analysis of linear systems.

Preliminaries

In9 (see also12 and31) a generalized fractional derivative was defined in the following way.

Definition 1  Given a function f:[0,+) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiaacQdacaGGBbGaaGimaiaacYcacqGHRaWkcqGHEisPcaGG PaGaeyOKH4QaeSyhHekaaa@4180@ . Then the N-derivative of f of orderα is defined by

J F,b α (f)(t)= t b f(s) F(s,α) ds,b>t. J F,a α N F α ( J F,a α (f))(t)=f(t)f(a) F(ts,α)=Γ(α) (ts) (1α) I a,tI, 0<α1 f,g:[ a,b ] α(0,1] J F,a α ((f)( N F,a+ α g(t)))= [f(t)g(t)] a b J F,a α ((g)( N F,a α f(t))). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGkbWdamaaDaaaleaapeGaamOraiaacYcacaGGIbaapaqa a8qacqaHXoqyaaGccaGGOaGaamOzaiaacMcacaGGOaGaamiDaiaacM cacqGH9aqpcqGHRiI8paWaa0baaSqaaiaadshaaeaapeGaamOyaaaa kmaalaaabaGaamOzaiaacIcacaWGZbGaaiykaaqaaiaadAeacaGGOa Gaam4CaiaacYcacqaHXoqycaGGPaaaaiaadsgacaWGZbGaaiilaiaa dkgacqGH+aGpcaWG0bGaaiOlaiaadQeapaWaa0baaSqaa8qacaWGgb Gaaiilaiaadggaa8aabaWdbiabeg7aHbaak8aacaWGobWaa0baaSqa aiaadAeaaeaacqaHXoqyaaGccaGGOaWdbiaadQeapaWaa0baaSqaa8 qacaWGgbGaaiilaiaadggaa8aabaWdbiabeg7aHbaak8aacaGGOaGa amOzaiaacMcacaGGPaGaaiikaiaadshacaGGPaGaeyypa0JaamOzai aacIcacaWG0bGaaiykaiabgkHiTiaadAgacaGGOaGaamyyaiaacMca a8qabaGaamOraiaacIcacaWG0bGaeyOeI0Iaam4CaiaacYcacqaHXo qycaGGPaGaeyypa0Jaeu4KdCKaaiikaiabeg7aHjaacMcacaGGOaGa amiDaiabgkHiTiaadohacaGGPaWdamaaCaaaleqabaWdbiaacIcaca aIXaGaeyOeI0IaeqySdeMaaiykaaaaaOWdaeaacaWGjbGaeyOHI0Sa eSyhHekabaGaamyyaiaacYcacaWG0bGaeyicI4SaamysaiaacYcaae aacaaIWaGaeyipaWJaeqySdeMaeyizImQaaGymaaqaaiaadAgacaGG SaGaam4zaiaacQdadaWadaqaaiaadggacaGGSaGaamOyaaGaay5wai aaw2faaiabgkziUkabl2riHcqaaiabeg7aHjabgIGiolaacIcacaaI WaGaaiilaiaaigdacaGGDbaabaWdbiaadQeapaWaa0baaSqaa8qaca WGgbGaaiilaiaadggaa8aabaWdbiabeg7aHbaak8aacaGGOaGaaiik aiaadAgacaGGPaGaaiikaiaad6eadaqhaaWcbaGaamOraiaacYcaca WGHbGaey4kaScabaGaeqySdegaaOGaam4zaiaacIcacaWG0bGaaiyk aiaacMcacaGGPaGaeyypa0Jaai4waiaadAgacaGGOaGaamiDaiaacM cacaWGNbGaaiikaiaadshacaGGPaGaaiyxamaaDaaaleaacaWGHbaa baGaamOyaaaakiabgkHiT8qacaWGkbWdamaaDaaaleaapeGaamOrai aacYcacaWGHbaapaqaa8qacqaHXoqyaaGcpaGaaiikaiaacIcacaWG NbGaaiykaiaacIcacaWGobWaa0baaSqaaiaadAeacaGGSaGaamyyaa qaaiabeg7aHbaakiaadAgacaGGOaGaamiDaiaacMcacaGGPaGaaiyk aiaac6caaaaa@DC02@   (1)

for all t>0,α(0,1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg6da+iaaicdacaGGSaGaeqySdeMaeyicI4Saaiikaiaa icdacaGGSaGaaGymaiaacMcaaaa@413D@ being F(α,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiaacIcacqaHXoqycaGGSaGaaiiDaiaacMcaaaa@3C9C@ some absolutely continuous function.

If f is α-differentiable in some (0,α) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaaicdacaGGSaGaeqySdeMaaiykaaaa@3B93@ , and lim t 0 + N F α f(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaCbeaeaacaWGSbGaamyAaiaad2gaaSqaaiaadshacqGHsgIRcaaI WaWaaWbaaWqabeaacqGHRaWkaaaaleqaaOGaamOta8aadaqhaaWcba WdbiaadAeaa8aabaGaeqySdegaaOWdbiaadAgacaGGOaGaamiDaiaa cMcaaaa@45EF@ exists, then define N F α f(0)= lim t 0 + N F α f(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaqhaaWcbaWdbiaadAeaa8aabaGaeqySdegaaOWdbiaa dAgacaGGOaGaaGimaiaacMcacqGH9aqpdaWfqaqaaiaadYgacaWGPb GaamyBaaWcbaGaamiDaiabgkziUkaaicdadaahaaadbeqaaiabgUca RaaaaSqabaGccaWGobWdamaaDaaaleaapeGaamOraaWdaeaacqaHXo qyaaGcpeGaamOzaiaacIcacaWG0bGaaiykaaaa@4DA5@ , note that if f is differentiable, then N F α f(t)=F(t,α)f'(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaqhaaWcbaWdbiaadAeaa8aabaGaeqySdegaaOWdbiaa dAgacaGGOaGaamiDaiaacMcacqGH9aqpcaWGgbGaaiikaiaadshaca GGSaGaeqySdeMaaiykaiaadAgacaGGNaGaaiikaiaadshacaGGPaaa aa@487A@ where f'(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiaacEcacaGGOaGaamiDaiaacMcaaaa@3B19@ is the ordinary derivative.

This generalized differential operator contains many of the known local operators (for example, the conformable derivative of1 and the non-conformable of2)) and has shown its usefulness in various applications, as it can be consulted, for example, in.3,4,8,10,11,32-34 One of the most required properties of a derivative operator is the Chain Rule,9 to calculate the derivative of compound functions, which does not exist in the case of classical fractional derivatives N Φ α (fg)(t)= N Φ α f(g(t))=f ( g(t)) N Φ α g(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOta8aadaqhaaWcbaGaeuOPdyeabaGaeqySdegaaOWdbiaacIca caWGMbGaeSigI8Maam4zaiaacMcacaGGOaGaamiDaiaacMcacqGH9a qpcaWGobWdamaaDaaaleaacqqHMoGraeaacqaHXoqyaaGcpeGaamOz aiaacIcacaWGNbGaaiikaiaadshacaGGPaGaaiykaiabg2da9iaadA gaceGGOaGbauaacaWGNbGaaiikaiaadshacaGGPaGaaiykaiaad6ea paWaa0baaSqaaiabfA6agbqaaiabeg7aHbaak8qacaWGNbGaaiikai aadshacaGGPaaaaa@5B0D@ .

Between its own theoretical development and the multiplicity of applications, the field has grown rapidly in recent years, in such a way that a single definition of “fractional derivative or integral” does not exist, or at least is not unanimously accepted, in35 suggests and justifies the idea of a fairly complete classification of the known operators in non-integer order Calculus, in addition, in the work36 some reasons are presented why new operators linked to applications and developments theorists appear every day. These operators, both classic (global) or local, have been obtained by numerous mathematicians, some well known and others have not gone far enough (the Sonin derivative is enough as an example), if to this we add that, for some reason, local differential operators, which we prefer to call generalized, have been ignored and underestimated by numerous researchers, today they have been the source of development of new global operators based on their formulations.

In addition, Chapter 1 of37 presents a history of differential operators, both local and global, from Newton to Caputo and presents a definition of local derivative with new parameter, providing a large number of applications, with a difference qualitative between both types of operators, local and global. Most importantly, Section 1.4 LIMITATIONS ... concludes “We can therefore conclude that both the Riemann – Liouville and Caputo operators are not derivatives, and then they are not fractional derivatives, but fractional operators. We agree with the result38 that, the local fractional operator is not a fractional derivative” (p.24). As we said before, they are new tools that have demonstrated their usefulness and potential in the modeling of different processes and phenomena.

Now, we give the definition of a general fractional integral.39 Throughout the work we will consider that the integral operator kernel T defined below is an absolutely continuous function (for additional details, the interested reader can consult12 and).31

Definition 2  Let I be an interval I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamysaiabgAOinlabl2riHcaa@3B70@ , a,tI MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyyaiaacYcacaWG0bGaeyicI4Saamysaaaa@3C12@ and α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyicI4SaeSyhHekaaa@3BC4@ . The integral operator J, is defined for every locally integrable function f on I as

J F,a α (f)(t)= a t f(s) F(s,α) ds,t>a. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsa8aadaqhaaWcbaWdbiaadAeacaGGSaGaamyyaaWdaeaapeGa eqySdegaaOGaaiikaiaadAgacaGGPaGaaiikaiaadshacaGGPaGaey ypa0Jaey4kIi=damaaDaaaleaapeGaamyyaaWdaeaapeGaamiDaaaa kmaalaaabaGaamOzaiaacIcacaWGZbGaaiykaaqaaiaadAeacaGGOa Gaam4CaiaacYcacqaHXoqycaGGPaaaaiaadsgacaWGZbGaaiilaiaa dshacqGH+aGpcaWGHbGaaiOlaaaa@5511@    (2)

J F,b α (f)(t)= t b f(s) F(s,α) ds,b>t. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsa8aadaqhaaWcbaWdbiaadAeacaGGSaGaaiOyaaWdaeaapeGa eqySdegaaOGaaiikaiaadAgacaGGPaGaaiikaiaadshacaGGPaGaey ypa0Jaey4kIi=damaaDaaaleaacaWG0baabaWdbiaadkgaaaGcdaWc aaqaaiaadAgacaGGOaGaam4CaiaacMcaaeaacaWGgbGaaiikaiaado hacaGGSaGaeqySdeMaaiykaaaacaWGKbGaam4CaiaacYcacaWGIbGa eyOpa4JaamiDaiaac6caaaa@54F4@    (3)

Remark 3 As pointed out in,4 many fractional integral operators can be obtained as particular cases of the previous one, under certain choices of the f  kernel. For example, if F(ts,α)=Γ(α) (ts) (1α) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiaacIcacaWG0bGaeyOeI0Iaam4CaiaacYcacqaHXoqycaGG PaGaeyypa0Jaeu4KdCKaaiikaiabeg7aHjaacMcacaGGOaGaamiDai abgkHiTiaadohacaGGPaWdamaaCaaaleqabaWdbiaacIcacaaIXaGa eyOeI0IaeqySdeMaaiykaaaaaaa@4D0B@ the right Riemann-Liouville integral is obtained (similarly to the left), further details on Fractional Calculus and fractional integral operators linked to the generalized integral of the previous definition, can be found in.1,40-47 The following property is one of the fundamental ones and links the integral operator with the generalized derivative, defined above (see also12 and31).

Proposition 4  Let I be an interval I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGHgk sZcqWIDesOaaa@3B50@ , aI, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHii IZcaWGjbGaaiilaaaa@3AF9@ 0<α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaicdacqGH8a apcqaHXoqycqGHKjYOcaaIXaaaaa@3CDE@ and fa α-differentiable function on I such that f' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGNa aaaa@38A7@  is a locally integrable function on I. Then, we have for all tI MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGHii IZcaWGjbaaaa@3A5C@  

J F,a α ( N F α (f))(t)=f(t)f(a) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsa8aadaqhaaWcbaWdbiaadAeacaGGSaGaamyyaaWdaeaapeGa eqySdegaaOWdaiaacIcacaWGobWaa0baaSqaaiaadAeaaeaacqaHXo qyaaGccaGGOaGaamOzaiaacMcacaGGPaGaaiikaiaadshacaGGPaGa eyypa0JaamOzaiaacIcacaWG0bGaaiykaiabgkHiTiaadAgacaGGOa GaamyyaiaacMcaaaa@4E41@ .

Proposition 5  Let I be an interval I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGHgk sZcqWIDesOaaa@3B50@ , aI, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGHii IZcaWGjbGaaiilaaaa@3AF9@ and α(0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabgI GiolaacIcacaaIWaGaaiilaiaaigdacaGGDbaaaa@3DE6@ .

N F α ( J F,a α (f))(t)=f(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaqhaa WcbaGaamOraaqaaiabeg7aHbaakiaacIcaqaaaaaaaaaWdbiaadQea paWaa0baaSqaa8qacaWGgbGaaiilaiaadggaa8aabaWdbiabeg7aHb aak8aacaGGOaGaamOzaiaacMcacaGGPaGaaiikaiaadshacaGGPaGa eyypa0JaamOzaiaacIcacaWG0bGaaiykaaaa@4A2A@ ,

for every continuous function f on I and a,tI MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacaGGSa GaamiDaiabgIGiolaadMeaaaa@3BF2@ .

Theorem 6 (Integration by parts) Let f,g:[ a,b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGSa Gaam4zaiaacQdadaWadaqaaiaadggacaGGSaGaamOyaaGaay5waiaa w2faaiabgkziUkabl2riHcaa@4222@ differentiable functions and α(0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabgI GiolaacIcacaaIWaGaaiilaiaaigdacaGGDbaaaa@3DE6@ . Then, the following property hold

J F,a α ((f)( N F,a α +g(t)))= [f(t)g(t)] a b J F,a α ((g)( N F,a α f(t))). N F i , t i α f( a )= lim ε0 f( a 1 ,.., a i +ε F i ( a i ,α),..., a n )f( a 1 ,..., a i ,..., a n )) ε α(0,1] a i >0 N α f( a )=( N t1 α f( a ),..., N t n α f( a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWGkbWdamaaDaaaleaapeGaamOraiaacYcacaWGHbaapaqa a8qacqaHXoqyaaGcpaGaaiikaiaacIcacaWGMbGaaiykaiaacIcaca WGobWaa0baaSqaaiaadAeacaGGSaGaamyyaaqaaiabeg7aHbaakiab gUcaRiaadEgacaGGOaGaamiDaiaacMcacaGGPaGaaiykaiabg2da9i aacUfacaWGMbGaaiikaiaadshacaGGPaGaam4zaiaacIcacaWG0bGa aiykaiaac2fadaqhaaWcbaGaamyyaaqaaiaadkgaaaGccqGHsislpe GaamOsa8aadaqhaaWcbaWdbiaadAeacaGGSaGaamyyaaWdaeaapeGa eqySdegaaOWdaiaacIcacaGGOaGaam4zaiaacMcacaGGOaGaamOtam aaDaaaleaacaWGgbGaaiilaiaadggaaeaacqaHXoqyaaGccaWGMbGa aiikaiaadshacaGGPaGaaiykaiaacMcacaGGUaaabaGaamOtamaaDa aaleaacaWGgbWaaSbaaWqaaiaadMgaaeqaaSGaaiilaiaadshadaWg aaadbaGaamyAaaqabaaaleaacqaHXoqyaaGccaWGMbGaaiikamaaFe aabaGaamyyaaGaayP1GaGaaiykaiabg2da9maaxababaGaciiBaiaa cMgacaGGTbaaleaacqaH1oqzcqGHsgIRcaaIWaaabeaakmaalaaaba GaamOzaiaacIcacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaa c6cacaGGUaGaaiilaiaadggadaWgaaWcbaGaamyAaaqabaGccqGHRa WkcqaH1oqzcaWGgbWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadgga daWgaaWcbaGaaiyAaaqabaGccaGGSaGaeqySdeMaaiykaiaacYcaca GGUaGaaiOlaiaac6cacaGGSaGaamyyamaaBaaaleaacaWGUbaabeaa kiaacMcacqGHsislcaWGMbGaaiikaiaadggadaWgaaWcbaGaaGymaa qabaGccaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadggadaWgaaWc baGaamyAaaqabaGccaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaadg gadaWgaaWcbaGaamOBaaqabaGccaGGPaGaaiykaaqaaiabew7aLbaa aeaacqaHXoqycqGHiiIZcaGGOaGaaGimaiaacYcacaaIXaGaaiyxaa qaaiaadggadaWgaaWcbaGaamyAaaqabaGccqGH+aGpcaaIWaaabaGa ey4bIe9aa0baaSqaaiaad6eaaeaacqaHXoqyaaGccaWGMbGaaiikam aaFeaabaGaamyyaaGaayP1GaGaaiykaiabg2da9iaacIcacaWGobWa a0baaSqaaiaadshacaaIXaaabaGaeqySdegaaOGaamOzaiaacIcada WhbaqaaiaadggaaiaawAniaiaacMcacaGGSaGaaiOlaiaac6cacaGG UaGaaiilaiaad6eadaqhaaWcbaGaamiDamaaBaaameaacaWGUbaabe aaaSqaaiabeg7aHbaakiaadAgacaGGOaWaa8raaeaacaWGHbaacaGL wdcacaGGPaaaaaa@D59D@   (4)

Theorem 7 If f:[ a,b ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGG6a WaamWaaeaacaWGHbGaaiilaiaadkgaaiaawUfacaGLDbaacqGHsgIR cqWIDesOaaa@4086@ is a continuous function and α(0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabgI GiolaacIcacaaIWaGaaiilaiaaigdacaGGDbaaaa@3DE6@ then, the following inequality is fulfilled

| J F,a α +(f)(t)| J F,a α +f(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqqaaeaacaWGkbWdamaaDaaaleaapeGaamOraiaacYcacaWGHbaa paqaa8qacqaHXoqyaaaakiaawEa7amaaeiaabaGaey4kaSIaaiikai aadAgacaGGPaGaaiikaiaadshacaGGPaaacaGLiWoacqGHKjYOcaWG kbWdamaaDaaaleaapeGaamOraiaacYcacaWGHbaapaqaa8qacqaHXo qyaaGcpaGaey4kaScccaGae8394FVaamOzaiab=Dp+3lab=HcaO8qa caWG0bWdaiab=LcaPaaa@5790@   (5)

Taking into account the ideas of5 we can define the generalized partial derivatives as follows.

Definition 8  Given a real valued function f: n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGG6a GaeSyhHe6aaWbaaSqabeaacaWGUbaaaOGaeyOKH4QaeSyhHekaaa@3EB1@ and a =( a 1 ,..., a n ) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa8raaeaacaWGHbaacaGLwdcacqGH9aqpcaGGOaGaamyya8aadaWg aaWcbaWdbiaaigdaa8aabeaak8qacaGGSaWdaiaab6cacaqGUaGaae Ola8qacaGGSaGaamyya8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qa caGGPaGaeyicI4SaeSyhHe6damaaCaaaleqabaWdbiaad6gaaaaaaa@484F@ a point whose ith component is positive. Then the generalized partial N-derivative of f of orderα in the point a =( a 1 ,..., a n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Waa8raaeaacaWGHbaacaGLwdcacqGH9aqpcaGGOaGaamyya8aadaWg aaWcbaWdbiaaigdaa8aabeaak8qacaGGSaWdaiaab6cacaqGUaGaae Ola8qacaGGSaGaamyya8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qa caGGPaaaaa@441C@ is defined by

N F i , t i α f( a )= lim ε0 f( a 1 ,.., a i +ε F i ( a i ,α),..., a n )f( a 1 ,..., a i ,..., a n )) ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaqhaa WcbaGaamOramaaBaaameaacaWGPbaabeaaliaacYcacaWG0bWaaSba aWqaaiaadMgaaeqaaaWcbaGaeqySdegaaOGaamOzaiaacIcadaWhba qaaiaadggaaiaawAniaiaacMcacqGH9aqpdaWfqaqaaiGacYgacaGG PbGaaiyBaaWcbaGaeqyTduMaeyOKH4QaaGimaaqabaGcdaWcaaqaai aadAgacaGGOaGaamyyamaaBaaaleaacaaIXaaabeaakiaacYcacaGG UaGaaiOlaiaacYcacaWGHbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaS IaeqyTduMaamOramaaBaaaleaacaWGPbaabeaakiaacIcacaWGHbWa aSbaaSqaaiaacMgaaeqaaOGaaiilaiabeg7aHjaacMcacaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaadggadaWgaaWcbaGaamOBaaqabaGc caGGPaGaeyOeI0IaamOzaiaacIcacaWGHbWaaSbaaSqaaiaaigdaae qaaOGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGHbWaaSbaaSqa aiaadMgaaeqaaOGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGHb WaaSbaaSqaaiaad6gaaeqaaOGaaiykaiaacMcaaeaacqaH1oqzaaaa aa@76C5@   (6)

 if it exists, is denoted N F i , t i α f( a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaqhaa WcbaGaamOramaaBaaameaacaWGPbaabeaaliaacYcacaWG0bWaaSba aWqaaiaadMgaaeqaaaWcbaGaeqySdegaaOGaamOzaiaacIcadaWhba qaaiaadggaaiaawAniaiaacMcaaaa@4356@ , and called the ith generalized partial derivative of f of the order α(0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabgI GiolaacIcacaaIWaGaaiilaiaaigdacaGGDbaaaa@3DE6@ at a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFeaabaGaam yyaaGaayP1Gaaaaa@39A9@ .

Remark 9 If a real valued function f with n variables has all generalized partial derivatives of the order α(0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabgI GiolaacIcacaaIWaGaaiilaiaaigdacaGGDbaaaa@3DE6@ at a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFeaabaGaam yyaaGaayP1Gaaaaa@39A9@ , each a i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaamyAaaqabaGccqGH+aGpcaaIWaaaaa@3ADD@ , then the generalized α-gradient of f of the order α(0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabgI GiolaacIcacaaIWaGaaiilaiaaigdacaGGDbaaaa@3DE6@ at a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaFeaabaGaam yyaaGaayP1Gaaaaa@39A9@ is

N α f( a )=( N t1 α f( a ),..., N t n α f( a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirpaaDa aaleaacaWGobaabaGaeqySdegaaOGaamOzaiaacIcadaWhbaqaaiaa dggaaiaawAniaiaacMcacqGH9aqpcaGGOaGaamOtamaaDaaaleaaca WG0bGaaGymaaqaaiabeg7aHbaakiaadAgacaGGOaWaa8raaeaacaWG HbaacaGLwdcacaGGPaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcaca WGobWaa0baaSqaaiaadshadaWgaaadbaGaamOBaaqabaaaleaacqaH XoqyaaGccaWGMbGaaiikamaaFeaabaGaamyyaaGaayP1GaGaaiykaa aa@5826@   (7)

Taking into account the above definitions, it is not difficult to prove the following result, on the equality of mixed partial derivatives.

Theorem 10  Under assumptions of Definiton 8, assume that f( t 1 , t 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamiDamaaBaaaleaacaaIXaaabeaakiaacYcacaWG0bWaaSbaaSqa aiaaikdaaeqaaOGaaiykaaaa@3DDA@ it is a function for which, mixed generalized partial derivatives exist and are continuous, N F 1 , 2 , t 1 , t 2 α+β (f( t 1 , t 2 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6eapaWaa0baaSqaa8qacaWGgbWaaSbaaWqaaSWdamaaBaaameaa jugWa8qacaaIXaaam8aabeaajugWa8qacaGGSaWcdaWgaaadbaqcLb macaaIYaaameqaaaqabaWccaGGSaGaamiDa8aadaWgaaadbaWcpeWa aSbaaWqaaKqzadGaaGymaaadbeaaa8aabeaal8qacaGGSaGaamiDam aaBaaameaapaWaaSbaaeaajugWa8qacaaIYaaam8aabeaaa8qabeaa aSWdaeaapeGaeqySdeMaey4kaSIaeqOSdigaaOWdaiaacIcacaWGMb Gaaiika8qacaWG0bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaa cYcacaWG0bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacMcaca GGPaaaaa@5609@ and N F 2,1 , t 2 , t 1 β+α ( f( t 1 , t 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobWdamaaDaaaleaapeGaamOra8aadaWgaaadbaWdbiaaikda caGGSaGaaGymaaWdaeqaaSWdbiaacYcacaWG0bWdamaaBaaameaape GaaGOmaaWdaeqaaSWdbiaacYcacaWG0bWdamaaBaaameaapeGaaGym aaWdaeqaaaWcbaWdbiabek7aIjabgUcaRiabeg7aHbaakmaabmaapa qaa8qacaWGMbWaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qacaaI XaaapaqabaGcpeGaaiilaiaadshapaWaaSbaaSqaa8qacaaIYaaapa qabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaaaaa@4DBB@  over some domain of 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqWIDesOdaahaa WcbeqaaabaaaaaaaaapeGaaGOmaaaaaaa@3A3F@  then

N F 1 , 2 , t 1 , t 2 α+β (f( t 1 , t 2 ))= N F 2,1 , t 2 , t 1 β+α (f( t 1 , t 2 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6eapaWaa0baaSqaa8qacaWGgbWaaSbaaWqaaSWdamaaBaaameaa jugWa8qacaaIXaaam8aabeaajugWa8qacaGGSaWcdaWgaaadbaqcLb macaaIYaaameqaaaqabaWccaGGSaGaamiDa8aadaWgaaadbaWcpeWa aSbaaWqaaKqzadGaaGymaaadbeaaa8aabeaal8qacaGGSaGaamiDam aaBaaameaapaWaaSbaaeaajugWa8qacaaIYaaam8aabeaaa8qabeaa aSWdaeaapeGaeqySdeMaey4kaSIaeqOSdigaaOWdaiaacIcacaWGMb Gaaiika8qacaWG0bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaa cYcacaWG0bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaacMcaca GGPaGaeyypa0JaamOta8aadaqhaaWcbaWdbiaadAeadaWgaaadbaWc paWaaSbaaWqaaKqzadWdbiaaikdacaGGSaGaaGymaaadpaqabaaape qabaWccaGGSaGaamiDa8aadaWgaaadbaqcLbmapeGaaGOmaaadpaqa baWcpeGaaiilaiaadshadaWgaaadbaqcLbmacaaIXaaameqaaaWcpa qaa8qacqaHYoGycqGHRaWkcqaHXoqyaaGcpaGaaiikaiaadAgacaGG OaWdbiaadshapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilai aadshapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiykaiaacMca aaa@71FB@   (8)

Main results

The following generalized exponential order will play an important role in our work.

Definition 11  Let α   (0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeg7aHjaacckacqGHiiIZcaGGGcGaaiiOaiaacIcacaaIWaGaaiil aGGaaiab=fdaXiaac2faaaa@425D@  and c  a real number. We define the generalized exponential order in the following way

E α N (c,t)=exp(cF(t,α)). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweapaWaa0baaSqaaiabeg7aHbqaa8qacaWGobaaaOGaaiikaiaa dogacaGGSaGaamiDaiaacMcacqGH9aqpcaWGLbGaamiEaiaadchaca GGOaGaam4yamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac faGae8xmHyKaaiikaiaadshacaGGSaGaeqySdeMaaiykaiaacMcaca GGUaaaaa@557F@

with  F(t,α)= 0 t ds F(s,α) = J (F,0) α (1)(t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8xmHyKa aiikaiaadshacaGGSaGaeqySdeMaaiykaiabg2da9iabgUIiY=aada qhaaWcbaWdbiaaicdaa8aabaWdbiaadshaaaGcpaWaaSaaaeaapeGa amizaiaadohaa8aabaWdbiaadAeacaGGOaGaam4CaiaacYcacqaHXo qycaGGPaaaa8aacqGH9aqppeGaamOsa8aadaqhaaWcbaWdbiaacIca caWGgbGaaiilaiaaicdacaGGPaaapaqaaiabeg7aHbaak8qacaGGOa GaaGymaiaacMcacaGGOaGaamiDaiaacMcacaGGUaaaaa@606F@

From Definitions 1, 11 and the Chain Rule, we have  N F α { E α N (c,t)}=c E α N (c,t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6eapaWaa0baaSqaa8qacaWGgbaapaqaaiabeg7aHbaakiaacUha peGaamyra8aadaqhaaWcbaGaeqySdegabaWdbiaad6eaaaGccaGGOa Gaam4yaiaacYcacaWG0bGaaiykaiaac2hacqGH9aqpcaWGJbGaamyr a8aadaqhaaWcbaGaeqySdegabaWdbiaad6eaaaGccaGGOaGaam4yai aacYcacaWG0bGaaiykaiaac6caaaa@4F30@

Definition 12 Let α   (0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeg7aHjaacckacqGHiiIZcaGGGcGaaiiOaiaacIcacaaIWaGaaiil aGGaaiab=fdaXiaac2faaaa@425D@ let g a function ands a real number. We define the Generalized Laplace Transform in the following way

F(s)=( L N α {g(t)})(s)= J F,0 α ( E α N (s,t)g(t))(). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeacaGGOaGaam4CaiaacMcacqGH9aqpcaGGOaGaamita8aadaqh aaWcbaWdbiaad6eaa8aabaGaeqySdegaaOGaai4Ea8qacaWGNbGaai ikaiaadshacaGGPaGaaiyFaiaacMcacaGGOaGaam4CaiaacMcacqGH 9aqpcaWGkbWdamaaDaaaleaapeGaamOraiaacYcacaaIWaaapaqaai abeg7aHbaak8qacaGGOaGaamyra8aadaqhaaWcbaGaeqySdegabaWd biaad6eaaaGccaGGOaGaeyOeI0Iaam4CaiaacYcacaWG0bGaaiykai aadEgacaGGOaGaamiDaiaacMcacaGGPaGaaiikaiabg6HiLkaacMca caGGUaaaaa@5F52@

and its inverse transform

g(t)=( L N α {G(s)} (1) )(t)= J F,0 α (F(t,α) E α N (s,t)G(s))() MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEgacaGGOaGaamiDaiaacMcacqGH9aqpcaGGOaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiuaacqWFsectpaWaa0baaSqaa8 qacaWGobaapaqaaiabeg7aHbaakiaacUhapeGaam4raiaacIcacaWG ZbGaaiykaiaac2hapaWaaWbaaSqabeaapeGaaiikaiabgkHiTiaaig dacaGGPaaaaOGaaiykaiaacIcacaWG0bGaaiykaiabg2da9iaadQea paWaa0baaSqaa8qacaWGgbGaaiilaiaaicdaa8aabaGaeqySdegaaO WdbiaacIcacaWGgbGaaiikaiaadshacaGGSaGaeqySdeMaaiykaiaa dweapaWaa0baaSqaaiabeg7aHbqaa8qacaWGobaaaOGaaiikaiaado hacaGGSaGaamiDaiaacMcacaWGhbGaaiikaiaadohacaGGPaGaaiyk aiaacIcacqGHEisPcaGGPaaaaa@7014@

Remark 13 If F(t,α)=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbGaaiikai aadshacaGGSaGaeqySdeMaaiykaiabg2da9GGaaiab=fdaXaaa@3F29@ then we have the usual Laplace Transform, and if F(t,α)= t 1α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbGaaiikai aadshacaGGSaGaeqySdeMaaiykaiabg2da9iaadshadaahaaWcbeqa aGGaaiab=fdaXiab=jHiTiabeg7aHbaaaaa@42D4@ then we have the Conformable Laplace Transform defined in 40 (also see16,48-51). If we put F(t,α)= 1 g'(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbGaaiikai aadshacaGGSaGaeqySdeMaaiykaiabg2da9maalaaabaaccaGae8xm aedabaGaam4zaiaacEcacaGGOaGaamiDaiaacMcaaaaaaa@4322@ then we obtain the generalized Laplace transform of17 (more details in52,53).

Theorem 14 The Generalized Laplace Transform has the following properties:

L N α {αg(t)+βh(t)=α L N α {g(t)+β L N α {h(t)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGccaGG7bWdbiabeg 7aHjaadEgacaGGOaGaamiDaiaacMcacqGHRaWkcqaHYoGycaWGObGa aiikaiaadshacaGGPaGaeyypa0JaeqySdeMae8NeHW0damaaDaaale aapeGaamOtaaWdaeaapeGaeqySdegaaOWdaiaacUhapeGaam4zaiaa cIcacaWG0bGaaiykaiabgUcaRiabek7aIjab=jrim9aadaqhaaWcba Wdbiaad6eaa8aabaGaeqySdegaaOGaai4Ea8qacaWGObGaaiikaiaa dshacaGGPaGaaiyFaaaa@6792@   (9)

L N α { N F α g(t)}=g(0)s L N α g(t)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGccaGG7bWdbiaad6 eapaWaa0baaSqaa8qacaWGgbaapaqaaiabeg7aHbaak8qacaWGNbGa aiikaiaadshacaGGPaGaaiyFaiabg2da9iabgkHiTiaadEgacaGGOa GaaGimaiaacMcacqGHsislcaWGZbGae8NeHW0damaaDaaaleaapeGa amOtaaWdaeaacqaHXoqyaaGcpeGaam4zaiaacIcacaWG0bGaaiykai aac2haaaa@5D4C@   (10)

L N α { J F,0 α (g(s))(t)= 1 s L N α {g(t)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaapeGaeqySdegaaOWdaiaacUhape GaamOsa8aadaqhaaWcbaWdbiaadAeacaGGSaGaaGimaaWdaeaacqaH XoqyaaGcpeGaaiikaiaadEgacaGGOaGaam4CaiaacMcacaGGPaGaai ikaiaadshacaGGPaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4Caaaa cqWFsectpaWaa0baaSqaa8qacaWGobaapaqaaiabeg7aHbaakiaacU hapeGaam4zaiaacIcacaWG0bGaaiykaiaac2haaaa@5E6B@   (11)

L N α { N F α ) n g(t)}= k=1 n (1) k s nk ( ( N F α ) k1 )g(0) s n L N α {g(t)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaapeGaeqySdegaaOWdaiaacUhape GaamOta8aadaqhaaWcbaWdbiaadAeaa8aabaWdbiabeg7aHbaakiaa cMcapaWaaWbaaSqabeaapeGaamOBaaaakiaadEgacaGGOaGaamiDai aacMcacaGG9bGaeyypa0JaeyOeI0IaeyyeIu+damaaDaaaleaapeGa am4Aaiabg2da9iaaigdaa8aabaWdbiaad6gaaaGccaGGOaGaeyOeI0 IaaGymaiaacMcapaWaaWbaaSqabeaapeGaam4AaaaakiaadohapaWa aWbaaSqabeaapeGaamOBaiabgkHiTiaadUgaaaGccaGGOaGaaiikai aad6eapaWaa0baaSqaa8qacaWGgbaapaqaaiabeg7aHbaak8qacaGG PaWdamaaCaaaleqabaWdbiaadUgacqGHsislcaaIXaaaaOGaaiykai aadEgacaGGOaGaaGimaiaacMcacqGHsislcaWGZbWdamaaCaaaleqa baWdbiaad6gaaaGccaWGmbWdamaaDaaaleaapeGaamOtaaWdaeaacq aHXoqyaaGccaGG7bWdbiaadEgacaGGOaGaamiDaiaacMcacaGG9baa aa@78EA@   (12)

where  ( N F α ) n = N F α N F α ... N F α n  times MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacIcacaWGobWdamaaDaaaleaapeGaamOraaWdaeaacqaHXoqyaaGc peGaaiyka8aadaahaaWcbeqaa8qacaWGUbaaaOGaeyypa0Zdamaaza aabaWdbiaad6eapaWaa0baaSqaa8qacaWGgbaapaqaaiabeg7aHbaa k8qacqWIyiYBcaWGobWdamaaDaaaleaapeGaamOraaWdaeaacqaHXo qyaaGcpeGaeSigI8MaaiOlaiaac6cacaGGUaGaeSigI8MaamOta8aa daqhaaWcbaWdbiaadAeaa8aabaGaeqySdegaaaqaaiaad6gapeGaai iOaiaacckacaWG0bGaamyAaiaad2gacaWGLbGaam4CaaGcpaGaayjd Sdaaaa@59EC@

Theorem 15 Since the function F(t,α) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8xmHy0d aiaacIcacaWG0bGaaiilaiabeg7aHjaacMcaaaa@473D@  has the property F'(t,α)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8xmHy0d aiaacEcacaGGOaGaamiDaiaacYcacqaHXoqycaGGPaGaeyOpa4JaaG imaaaa@49AA@  then the following relation between the Generalized Laplace Transform and the classical one holds:

( L N α {g(t)})(s)=(L{g(F (t,α) 1 )})(s) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab =jrim9aadaqhaaWcbaWdbiaad6eaa8aabaGaeqySdegaaOGaai4Ea8 qacaWGNbGaaiikaiaadshacaGGPaGaaiyFaiaacMcacaGGOaGaam4C aiaacMcacqGH9aqpcaGGOaGae8NeHWKaai4EaiaadEgacaGGOaGae8 xmHyKaaiikaiaadshacaGGSaGaeqySdeMaaiyka8aadaahaaWcbeqa a8qacqGHsislcaaIXaaaaOGaaiykaiaac2hacaGGPaGaaiikaiaado hacaGGPaaaaa@5FF8@    (13)

Definition 16 A function f:[0,)R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiOoai aacUfacaaIWaGaaiilaiabg6HiLkaacMcacqGHsgIRtuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Trisbaa@4A60@  is said to be of g(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbGaaiikai aadshacaGGPaGaeyOeI0caaa@3BF1@  exponential order if and only if there exists non-negative constants M, c, T such that |f(t)|M e c g(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacYhacaWGMbGaaiikaiaadshacaGGPaGaaiiFaiabgsMiJkaad2ea caWGLbWdamaaCaaaleqabaWdbiaadogaaaGcdaahaaWcbeqaaiaadE gacaGGOaGaamiDaiaacMcaaaaaaa@453D@ for tT. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshacqGHLjYScaWGubGaaiOlaaaa@3C30@  

Theorem 17 If f:[0,)R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiOoai aacUfacaaIWaGaaiilaiabg6HiLkaacMcacqGHsgIRtuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Trisbaa@4A60@ is a piecewise function of F(t,α) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8xmHy0d aiaacIcacaWG0bGaaiilaiabeg7aHjaacMcacqGHsislaaa@482A@ exponential order, then the Generalized Laplace Transform exists for s>c. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadohacqGH+aGpcaWGJbGaaiOlaaaa@3B80@

The main properties of the Generalized Laplace Transform are presented in the following result.

Theorem 18 If α(0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeg7aHjabgIGiolaacIcacaaIWaGaaiilaGGaa8aacqWFXaqmcaGG Dbaaaa@3F00@ then we have

  1. L N α {1}= 1 s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGccaGG7bWdbiaaig dacaGG9bGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4Caaaaaaa@4ADF@
  2. L N α { E α N (c,t)}= 1 sc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGccaGG7bWdbiaadw eapaWaa0baaSqaaiabeg7aHbqaa8qacaWGobaaaOGaaiikaiaadoga caGGSaGaamiDaiaacMcacaGG9bGaeyypa0ZaaSaaaeaacaaIXaaaba Gaam4CaiabgkHiTiaadogaaaaaaa@5375@
  3. L N α {g(t) E α N (c,t)}=g(sc) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGccaGG7bWdbiaadE gacaGGOaGaamiDaiaacMcacaWGfbWdamaaDaaaleaacqaHXoqyaeaa peGaamOtaaaakiaacIcacaWGJbGaaiilaiaadshacaGGPaGaaiyFai abg2da9iaadEgacaGGOaGaam4CaiabgkHiTiaadogacaGGPaaaaa@582D@
  4. L N α {sin(cF(t,α))}= c s 2 + c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGccaGG7bWdbiaado hacaWGPbGaamOBaiaacIcacaWGJbGae8xmHyKaaiikaiaadshacaGG SaGaeqySdeMaaiykaiaacMcacaGG9bGaeyypa0ZaaSaaaeaacaWGJb aabaGaam4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaam4y a8aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@590D@
  5. L N α {cos(cF(t,α))}= s s 2 + c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGccaGG7bWdbiaado gacaWGVbGaam4CaiaacIcacaWGJbGae8xmHyKaaiikaiaadshacaGG SaGaeqySdeMaaiykaiaacMcacaGG9bGaeyypa0ZaaSaaaeaacaWGZb aabaGaam4Ca8aadaahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaam4y a8aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@5918@
  6. L N α {sinh(cF(t,α))}= c s 2 c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGccaGG7bGaai4Cai aacMgacaGGUbGaaiiAa8qacaGGOaGaam4yaiab=ftigjaacIcacaWG 0bGaaiilaiabeg7aHjaacMcacaGGPaGaaiyFaiabg2da9maalaaaba Gaam4yaaqaaiaadohapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHi TiaadogapaWaaWbaaSqabeaapeGaaGOmaaaaaaaaaa@5A01@
  7. L N α {cosh(cF(t,α))}= s s 2 c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGccaGG7bWdbiGaco gacaGGVbGaai4CaiaacIgacaGGOaGaam4yaiab=ftigjaacIcacaWG 0bGaaiilaiabeg7aHjaacMcacaGGPaGaaiyFaiabg2da9maalaaaba Gaam4CaaqaaiaadohapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHi TiaadogapaWaaWbaaSqabeaapeGaaGOmaaaaaaaaaa@5A0E@

The following result complete the theoretical body.

Definition 19  Let f and g be two functions which are piecewise continuous at each interval [0,T] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUfacaaIWaGaaiilaiaacsfacaGGDbaaaa@3BE8@ and of generalized exponential order. We define the N-convolution of f and g by

(fg) N (t)= 0 t f(τ)g[ F (1) (F(t,α)F(τ,α))] dτ F(τ,α) ,tT. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacIcacaWGMbGaey4fIOIaam4zaiaacMcapaWaaSbaaSqaa8qacaWG obaapaqabaGcpeGaaiikaiaadshacaGGPaGaeyypa0Jaey4kIi=dam aaDaaaleaapeGaaGimaaWdaeaapeGaamiDaaaakiaadAgacaGGOaGa eqiXdqNaaiykaiaadEgacaGGBbWefv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuaacqWFXeIrpaWaaWbaaSqabeaapeGaaiikaiab gkHiTiaaigdacaGGPaaaaOGaaiikaiab=ftigjaacIcacaWG0bGaai ilaiabeg7aHjaacMcacqGHsislcqWFXeIrcaGGOaGaeqiXdqNaaiil aiabeg7aHjaacMcacaGGPaGaaiyxamaalaaabaGaamizaiabes8a0b qaaiaadAeacaGGOaGaeqiXdqNaaiilaiabeg7aHjaacMcaaaGaaiil aiaadshacqGHKjYOcaWGubGaaiOlaaaa@75B7@   (14)

The commutativity of the N-convolution is given in the following result.

Lemma 20 Let f and g be two functions which are piecewise continuous at each interval [0,T] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUfacaaIWaGaaiilaiaacsfacaGGDbaaaa@3BE8@ and of generalized exponential order. Then

(fg) N (t)= (gf) N (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacIcacaWGMbGaey4fIOIaam4zaiaacMcapaWaaSbaaSqaa8qacaWG obaapaqabaGcpeGaaiikaiaadshacaGGPaGaeyypa0JaaiikaiaadE gacqGHxiIkcaWGMbGaaiykamaaBaaaleaacaGGobaabeaakiaacIca caGG0bGaaiykaiaac6caaaa@48CE@   (15)

Below we present the N-Laplace transform of the N-convolution.

Theorem 21 Let f andg be two functions which are piecewise continuous at each interval [0,T] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUfacaaIWaGaaiilaiaacsfacaGGDbaaaa@3BE8@ and of generalized exponential order. Then

L N α { (f*g) N = L N α {f} L N α {g}. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGccaGG7bWdbiaacI cacaWGMbGaaiOkaiaadEgacaGGPaWdamaaBaaaleaapeGaamOtaaWd aeqaaOWdbiabg2da9iab=jrim9aadaqhaaWcbaWdbiaad6eaa8aaba GaeqySdegaaOGaai4Ea8qacaWGMbGaaiyFaiab=jrim9aadaqhaaWc baWdbiaad6eaa8aabaGaeqySdegaaOGaai4Ea8qacaWGNbGaaiyFai aac6caaaa@5AE4@   (16)

On the stability

Let us consider the following system

N F α x (t)=A x (t)+ f (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6eapaWaa0baaSqaa8qacaWGgbaapaqaaiabeg7aHbaak8qaceWG 4bGbaWaacaGGOaGaamiDaiaacMcacqGH9aqpcaWGbbGabmiEayaama GaaiikaiaadshacaGGPaGaey4kaSIabmOzayaamaGaaiikaiaadsha caGGPaaaaa@485A@   (17)

and its corresponding associated homogeneous system

N F α x (t)=A x (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6eapaWaa0baaSqaa8qacaWGgbaapaqaaiabeg7aHbaak8qaceWG 4bGbaWaacaGGOaGaamiDaiaacMcacqGH9aqpcaWGbbGabmiEayaama GaaiikaiaadshacaGGPaGaaiOlaaaa@44DA@   (18)

With  x n ,A=[ a i j ] n × n , f (t)= [ f 1 (t), f 2 (t),..., f n (t)] T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadIhagaadaiabgIGiolabl2riHoaaCaaaleqabaGaamOBaaaakiaa cYcacaWGbbGaeyypa0Jaai4waiaadggapaWaaSbaaSqaa8qacaWGPb aapaqabaGcpeWaaSbaaSqaaiaadQgaaeqaaOGaaiyxaiabgIGiolab l2riH+aadaahaaWcbeqaa8qacaWGUbaaaOWdaiaGbEnapeGaeSyhHe 6damaaCaaaleqabaWdbiaad6gaaaGccaGGSaGabmOzayaamaGaaiik aiaadshacaGGPaGaeyypa0Jaai4waiaadAgapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaaiikaiaadshacaGGPaGaaiilaiaadAgapaWa aSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiikaiaadshacaGGPaGaai ilaiaac6cacaGGUaGaaiOlaiaacYcacaWGMbWdamaaBaaaleaapeGa amOBaaWdaeqaaOWdbiaacIcacaWG0bGaaiykaiaac2fapaWaaWbaaS qabeaapeGaamivaaaakiaac6caaaa@67F6@

Definition 22 The solution x (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadIhagaadaiaacIcacaWG0bGaaiykaaaa@3B48@ of system (18) is called stable if, for any initial condition x 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaSbaaS qaaiaaicdaaeqaaOGaaiilaaaa@3A63@ there exists ε>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzcqGH+a GpcaaIWaaaaa@3B2F@ such that x (t) <ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aafmaabaGabmiEayaamaGaaiikaiaadshacaGGPaaacaGLjWUaayPc SdGaeyipaWJaeqyTdugaaa@411A@ for all t>0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshacqGH+aGpcaaIWaGaaiOlaaaa@3B53@   The solution is called asymptotically stable if it is stable and x (t) 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aafmaabaGabmiEayaamaGaaiikaiaadshacaGGPaaacaGLjWUaayPc SdGaeyOKH4QaaGimaaaa@4116@  as t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshacqGHsgIRcqGHEisPaaa@3C3D@ .

Theorem 23 The solution of system (18) is given by

x (t)= x 0 E α N (1,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadIhagaadaiaacIcacaWG0bGaaiykaiabg2da9iqadIhagaada8aa daWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGfbWdamaaDaaaleaacq aHXoqyaeaapeGaamOtaaaakiaacIcacaaIXaGaaiilaiaadshacaGG Paaaaa@45DB@   (19)

whenever the solution is differentiable on [0,) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUfacaaIWaGaaiilaiabg6HiLkaacMcaaaa@3C4D@ and E α N (1,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadweapaWaa0baaSqaaiabeg7aHbqaa8qacaWGobaaaOGaaiikaiaa igdacaGGSaGaamiDaiaacMcaaaa@3F35@ is the generalized exponential order of Definition 11.

  Proof. It is enough to use the properties of the generalized exponential order function.  

Theorem 24 The system (18) is is asymptotically stable if and only if the eigenvalues of A have strictly negative real parts.

Proof. It is enough to take limit in (19).

As is known, the eigenvalues are obtained by solving the system | Aλ |=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aaemaabaGaamyqaiabgkHiTiabeU7aSbGaay5bSlaawIa7aiabg2da 9iaaicdacaGGSaaaaa@40DF@ with A the matrix of system (18).

Now we will see how to obtain the explicit solution of the system (17).

For this, we will apply the generalized Laplace transform L N α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae8NeHW0d amaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaaaaa@4541@ on both sides of the system (17), obtain

( s X 1 (s) x 1 (0) s X 2 (s) x 2 (0) .... s X n (s) x n (0) )=A( X 1 (s) X 2 (s) .... X n (s) )+( F 1 (s) F 2 (s) .... F n (s) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaabaqbaeqabqqaaaaabaGaam4CaiaadIfadaWgaaWcbaGaaGym aaqabaGccaGGOaGaam4CaiaacMcacqGHsislcaWG4bWaaSbaaSqaai aaigdaaeqaaOGaaiikaiaaicdacaGGPaaabaGaam4CaiaadIfadaWg aaWcbaGaaGOmaaqabaGccaGGOaGaam4CaiaacMcacqGHsislcaWG4b WaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaaicdacaGGPaaabaGaaiOl aiaac6cacaGGUaGaaiOlaaqaaiaadohacaWGybWaaSbaaSqaaiaad6 gaaeqaaOGaaiikaiaadohacaGGPaGaeyOeI0IaamiEamaaBaaaleaa caWGUbaabeaakiaacIcacaaIWaGaaiykaaaaaiaawIcacaGLPaaacq GH9aqpcaWGbbWaaeWaaeaafaqabeabbaaaaeaacaWGybWaaSbaaSqa aiaaigdaaeqaaOGaaiikaiaadohacaGGPaaabaGaamiwamaaBaaale aacaaIYaaabeaakiaacIcacaWGZbGaaiykaaqaaiaac6cacaGGUaGa aiOlaiaac6caaeaacaWGybWaaSbaaSqaaiaad6gaaeqaaOGaaiikai aadohacaGGPaaaaaGaayjkaiaawMcaaiabgUcaRmaabmaabaqbaeqa bqqaaaaabaGaamOramaaBaaaleaacaaIXaaabeaakiaacIcacaWGZb GaaiykaaqaaiaadAeadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaam4C aiaacMcaaeaacaGGUaGaaiOlaiaac6cacaGGUaaabaGaamOramaaBa aaleaacaWGUbaabeaakiaacIcacaWGZbGaaiykaaaaaiaawIcacaGL Paaaaaa@7F31@   (20)

where  X i (s)= L N α [ x i (t)], F i (s)= L N α [ f i (t)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIfapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiikaiaadoha caGGPaGaeyypa0Zefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUv gaiuaacqWFsectpaWaa0baaSqaa8qacaWGobaapaqaaiabeg7aHbaa k8qacaGGBbGaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qaca GGOaGaamiDaiaacMcacaGGDbGaaiilaiaadAeapaWaaSbaaSqaa8qa caWGPbaapaqabaGcpeGaaiikaiaadohacaGGPaGaeyypa0Jae8NeHW 0damaaDaaaleaapeGaamOtaaWdaeaacqaHXoqyaaGcpeGaai4waiaa dAgapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiikaiaadshaca GGPaGaaiyxaaaa@61E0@  with  i=1,2,...,n. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaaiOlaiaac6ca caGGUaGaaiilaiaad6gacaGGUaaaaa@411C@

( X 1 (s) X 2 (s) .... X n (s) )=( 1 (s a 1 1 ) ( x 1 (0)+ F 1 (s)+ j=1,j1 n a 1 j X j (s)) 1 (s a 2 2 ) ( x 2 (0)+ F 2 (s)+ j=1,j2 n a 2 j X j (s)) .... 1 (s a n n ) ( x n (0)+ F n (s)+ j=1,jn n a n j X j (s)) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaabaqbaeqabqqaaaaabaGaamiwamaaBaaaleaacaaIXaaabeaa kiaacIcacaWGZbGaaiykaaqaaiaadIfadaWgaaWcbaGaaGOmaaqaba GccaGGOaGaam4CaiaacMcaaeaacaGGUaGaaiOlaiaac6cacaGGUaaa baGaamiwamaaBaaaleaacaWGUbaabeaakiaacIcacaWGZbGaaiykaa aaaiaawIcacaGLPaaacqGH9aqpdaqadaqaauaabeqaeeaaaaqaamaa laaabaGaaGymaaqaaiaacIcacaWGZbGaeyOeI0Iaamyya8aadaWgaa WcbaWdbiaaigdaa8aabeaak8qadaWgaaWcbaGaaGymaaqabaGccaGG PaaaaiaacIcacaWG4bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbi aacIcacaaIWaGaaiykaiabgUcaRiaadAeapaWaaSbaaSqaa8qacaaI XaaapaqabaGcpeGaaiikaiaadohacaGGPaGaey4kaSIaeyyeIu+dam aaDaaaleaapeGaamOAaiabg2da9iaaigdacaGGSaGaamOAaiabgcMi 5kaaigdaa8aabaWdbiaad6gaaaGccaWGHbWdamaaBaaaleaapeGaaG ymaaWdaeqaaOWdbmaaBaaaleaacaWGQbaabeaakiaadIfapaWaaSba aSqaa8qacaWGQbaapaqabaGcpeGaaiikaiaadohacaGGPaGaaiykaa qaamaalaaabaGaaGymaaqaaiaacIcacaWGZbGaeyOeI0Iaamyya8aa daWgaaWcbaWdbiaaikdaa8aabeaak8qadaWgaaWcbaGaaGOmaaqaba GccaGGPaaaaiaacIcacaWG4bWdamaaBaaaleaacaaIYaaabeaak8qa caGGOaGaaGimaiaacMcacqGHRaWkcaWGgbWdamaaBaaaleaacaaIYa aabeaak8qacaGGOaGaam4CaiaacMcacqGHRaWkcqGHris5paWaa0ba aSqaa8qacaWGQbGaeyypa0JaaGymaiaacYcacaWGQbGaeyiyIKRaaG OmaaWdaeaapeGaamOBaaaakiaadggadaWgaaWcbaGaaGOmaaqabaGc daWgaaWcbaGaamOAaaqabaGccaWGybWdamaaBaaaleaapeGaamOAaa WdaeqaaOWdbiaacIcacaWGZbGaaiykaiaacMcaaeaacaGGUaGaaiOl aiaac6cacaGGUaaabaWaaSaaaeaacaaIXaaabaGaaiikaiaadohacq GHsislcaWGHbWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbmaaBaaa leaacaWGUbaabeaakiaacMcaaaGaaiikaiaadIhapaWaaSbaaSqaai aad6gaaeqaaOWdbiaacIcacaaIWaGaaiykaiabgUcaRiaadAeapaWa aSbaaSqaaiaad6gaaeqaaOWdbiaacIcacaWGZbGaaiykaiabgUcaRi abggHiL=aadaqhaaWcbaWdbiaadQgacqGH9aqpcaaIXaGaaiilaiaa dQgacqGHGjsUcaWGUbaapaqaa8qacaWGUbaaaOGaamyyamaaBaaale aacaWGUbaabeaakmaaBaaaleaacaWGQbaabeaakiaadIfapaWaaSba aSqaa8qacaWGQbaapaqabaGcpeGaaiikaiaadohacaGGPaGaaiykaa aaaiaawIcacaGLPaaaaaa@BBBE@   (21)

Solving this system and applying the Inverse Transform we obtain the desired solution.

Remark 25 The results of this section contain as a particular case, those of,54 relative to commensurable systems.

Remark 26 If we consider F(t,α)= t 1α , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeacaGGOaGaamiDaiaacYcacqaHXoqycaGGPaGaeyypa0JaamiD a8aadaahaaWcbeqaa8qacaaIXaGaeyOeI0IaeqySdegaaOWdaiaacY caaaa@43AD@ that is, the conformable case, the results obtained in 18,20,22,52,56 can be generalized with our kernel.

Conclusion

In this work we have taken up the recently defined Generalized Laplace Transform and have illustrated its usefulness with the analysis of the stability of generalized linear systems. Various results known from the literature can be obtained using this transform for the conformable case.

Acknowledgments

The author wishes to thank the reviewer and the editor for their valuable comments that allowed us to improve the quality of this work.

Conflicts of interest

None.

References

  1. JE Nápoles. The historical legacy of ordinary differential equations. (Self) critical considerations, Boletín de Matemáticas. 1998;2:53–79.
  2. JE Nápoles PM Guzmán, LM Lugo, et al. The local non conformable derivative and Mittag Leffler function. Sigma J Eng Nat Sci. 2020;38(2):1007–1017.
  3. JE Nápoles Valdés PM Guzmán, L M Lugo. Some New Results on Nonconformable Fractional Calculus. Advances in Dynamical Systems and Applications. 2018;13(2):167–175.
  4. JE Nápoles Valdés. Differential equations and contemporaneity. Revista Brasileira de História da Matemática. 2007;7(14):213–232.
  5. M Vivas Cortez, JE Nápoles, JE Hernández, et al On Non Conformable Fractional Laplace Transform. Appl Math Inf Sci. 2021;15(4):403–409.
  6. Ortigueira M, Martynyuk V, Fedula M, et al. The failure of certain fractional calculus operators in two physical models. Fract Calc Appl Anal. 2019;23(1).
  7. PM Guzmán, LM Lugo Motta Bittencurt, JE Nápoles Valdés. On the stability of solutions of fractional non conformable differential equations. Stud Univ Babe s–Bolyai Math. 2020;65(4):495–502.
  8. PM Guzmán, LM Lugo, JE Nápoles Valdés, et al. On a New Generalized Integral Operator and Certain Operating Properties. Axioms. 2020;9:69.
  9. P Bosch, HJ Carmenate G, JM Rodríguez, et al. On the Generalized Laplace Transform. Symmetry. 2021; 13:669.
  10. PM Guzmán, G Langton, LM Lugo, et al. A new definition of a fractional derivative of local type. J Math Anal. 2018;9:2:88–98.
  11. PM Guzmán, LM Lugo Motta Bittencurt, JE Nápoles Valdés. A note on the qualitative behavior of some nonlinear local improper conformable differential equations. J Frac Calc & Nonlinear Sys. 2020;1(1):13–20.
  12. Zhao, MLuo. General conformable fractional derivative and its physical interpretation. Calcolo. 2017;54:903–917.
  13. El–Ajou, M Oqielat, Z Al–Zhour, et al. A Class of linear non–homogenous higher order matrix fractional differential equations: Analytical solutions and new technique. Fract Cal Appl Anal. 2020;23(2):356–377.
  14. F Jarad, T Abdeljawad. A modified Laplace transform for certain generalized fractional operators. Results in Nonlinear Analysis. 2018;2:88–98.
  15. Fleitas A, JE Nápoles, JM Rodríguez, et al. Note on the generalized conformable derivative. Revista de la Unión Matemática Argentina. 2021;62(2):443–457.
  16. JE Nápoles, JM Rod, JM Sigarreta. On Hermite–Hadamard type inequalities for non–conformable integral operators. Symmetry. 2019;11:1108.
  17. JE Nápoles, MN Quevedo, AR Gómez. On the asymptotic behavior of a generalized nonlinear equation. Sigma J Eng & Nat Sci. 2020;38(4):2109–2121.
  18. JT Machado, V Kiryakova, F Mainardi. Recent history of fractional calculus. Commun Nonlinear Sci. Numer. 2011;16(3):1140–1153.
  19. M Vivas Cortez, A Fleitas, PM Guzmán, et al. Newton’s Law of Cooling with Generalized Conformable Derivatives. Symmetry. 2021;13:1093.
  20. R Gorenflo, F Mainardi. Fractional Calculus: Integral and Differential Equations of Fractional Order. Springer Verlag, Wien and New York, 1997, pp. 223–276.
  21. R Khalil, Al Horani, A Yousef, et al. A new definition of fractional derivative. J Comput Appl Math.  2014;264(1):65–70.
  22. SL Shaikh. Introducing a new integral transform Sadik transfor. Amer Int J Res Sci Tech Eng Math. 2018;2:100–102.
  23. SP Bhairat, DB Dhaigude. Existence of solutions of generalized fractional differential equation with nonlocal initial condition. Mathematica Bohemica. 2019;144(2):203–220.
  24. T Abdeljawad. On conformable fractional calculus. J Comput Appl Math. 2015;279:57–66.
  25. UN Katugampola. A new approach to generalized fractional derivatives. Bull Math Anal App. 2014;6:1–15.
  26. UN Katugampola. New approach to a generalized fractional integral. Appl Math Comput. 2011;218:860–865.
  27. M Yavuz N Sene. Approximate Solutions of the Model Describing Fluid Flow Using Generalized ρ–Laplace Transform Method and Heat Balance Integral Method. Axioms. 2020;9:123.
  28. Ms Oumarou, Hm Fahad, Jd Djida, et al. On fractional calculus with analytic kernels with respect to functions. Technical report.
  29. NA Khan, OA Razzaq, M Ayaz. Some properties and applications of conformable fractional Laplace transform (CFLT). Journal of Fractional Calculus and Applications. 2018;9(1):72–78.
  30. O Ozkan, A Kurt. The analytical solutions for conformable integral equations and integro–differential equations by conformable Laplace transform. Opt Quant Electron. 2018;50:77–81.
  31. H Khader. The conformable Laplace transform of the fractional Chebyshev and Legendre polynnomials. MSc.Thesis, Zarqa University; 2017.
  32. Al–Habahbeh. Exact solution for commensurate and incommensurate linear systems of fractional differential equations. J Math Computer Sci. 2022;28(2):123–136.
  33. FS Silva, DM Moreira, MA Moret. Conformable Laplace Transform of Fractional Differential Equations. Axioms. 2018;7:55.
  34. HM Fahad, MU Rehman, A Fernandez. On Laplace transforms with respect to functions and their applications to fractional differential equations. Technical report. Arxiv:1907.04541, 2020.
  35. E Capelas de Oliveira, JA Tenreiro Machado. A Review of Definitions for Fractional Derivatives and Integral. Mathematical Problems in Engineering. 2014;2014.
  36. D Baleanu, A Fernandez. On Fractional Operators and Their Classifications. Mathematics. 2019;7:830.
  37. Cınar. On Some Properties of Generalized Riesz Potentials. Intern Math Journal. 2003;3(12):1393–1397.
  38. S Umarov. S Steinberg. Variable order differential equations with piecewise constant order–function and diffusion with changing modes. Z Anal Anwend. 2009;28(4):431–450.
  39. JE Nápoles, C Tunc. On the boundedness and oscillation of non–conformable Liénard equation, Journal of Fractional Calculus and Applications. 2020;11(2):92–101.
  40. A Kilbas O, I Marichev, G Samko. Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach, Switzerland. 1993.
  41. F Martínez, JE Nápoles Valdés, Towards a Non–Confor:mable Fractional Calculus of N–variables. Journal of Mathematics and Applications. 2020;43:87–98.
  42. F Martínez, PO. Mohammed, JE Nápoles. Non conformable Fractional Laplace Transform. Kragujevac J. of Math. 2022;46(3)341–354.
  43. J Younis, B Ahmed, M AlJazzazi, et al. Existence and Uniqueness Study of the Conformable Laplace Transform. Journal of Mathematics. 2022;45:7.
  44. JE Nápoles, MN Quevedo. On the Oscillatory Nature of Some Generalized Emden–Fowler Equation, Punjab University Journal of Mathematics. 2020;52(6):97–106.
  45. JE Nápoles. A century of qualitative theory of differential equations. Lecturas Matemáticas. 2004;25:59–111.
  46. M Bouaouid, K Hilal, S Melliani. Existence of mild solutions for conformable fractional differential equations with nonlocal conditions. Rocky Mountain J Math. 2020;50(3):871–879.
  47. M Molaei, F Dastmalchi, Y Mahmoudi. Solving a class of ordinary differential equations and fractional differential equations with conformable derivative by fractional Laplace transform. Turk J Math. 2022;46:3025–3044.
  48. BI Eroglu, D Avcı, N Ozdemir, et al. Optimal Control Problem for a Conformable Fractional Heat Conduction Equation. ACTA PHYSICA POLONICA A. 2017;132(3):658–662.
  49. F Jarad, T Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and continuous dynamical systems series S. 2020;13(3):709–722.
  50. Fleitas A, JA Méndez, JE Nápoles Valdés, et al. On the some classical systems of Liénard in general context. Revista Mexicana de Física. 2019;65(6):618–625.
  51. JE Nápoles. Ordinary differential equations as signs of the times. Revista Eureka. 2006;(21):39–75.
  52. Fleitas A, JF Gómez–Aguilar, JE Nápoles Valdés, et al. Analysis of the local Drude model involving the generalized fractional derivative. Optik – International Journal for Light and Electron Optics. 2019;193:163008.
  53. R Abreu‐Blaya, A Fleitas, JE Nápoles Valdés, et al. On the conformable fractional logistic models. Math Meth Appl Sci. 2020;1–12.
  54. Atangana. Derivative with a New Parameter Theory. Methods and Applications, Academic Press, 2016.
  55. M Vivas Cortez, OJ Larreal, JE Nápoles. EXTREMAL SOLUTION TO GENERALIZED DIFFERENTIAL EQUATIONS UNDER INTEGRAL BOUNDARY CONDITION. Journal of Mathematical Control Science and Applications. 2021;7(1):47–56.
  56. Z Al–Zhour, N Al–Mutairi, F Alrawajeh, et al. New theoretical results and applications on conformable fractional Natural transform. Ain Shams Engineering Journal. 2021;12(1):927–933.
Creative Commons Attribution License

©2022 Valdés. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.