Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 6

On the dependence of the speed of light in vacuum on temperature

Poluektov Yu M

National Science Center, Kharkov Institute of Physics and Technology, Akhiezer Institute for Theoretical Physics, Ukraine

Correspondence: Yu M Poluektov, National Science Center, Kharkov Institute of Physics and Technology, Akhiezer Institute for Theoretical Physics, 61108 Kharkov, Ukraine

Received: November 21, 2017 | Published: December 3, 2018

Citation: Poluektov YM. On the dependence of the speed of light in vacuum on temperature. Phys Astron Int J. 2018;2(6):567-571. DOI: 10.15406/paij.2018.02.00143

Download PDF

Abstract

It is shown that the interaction of the electromagnetic field with the vacuum of the electron-positron field gives rise to dependence of the speed of light propagation on the radiation temperature. Estimates show that in the modern epoch, even at very high temperatures, such for example which exist in the star interiors, the temperature-dependent correction to the speed of light proves to be extremely small. But in the cosmological model of the hot Universe, in the first instances after the Big Bang the temperature was so high that the speed of light exceeded its present value by many orders of magnitude. The effect of dependence of the speed of light on temperature must be important for understanding the early evolution of the Universe.

Keywords: speed of light, electromagnetic field, electron-positron vacuum, temperature, model of the

Introduction

Maxwell’s classical equations in vacuum are linear and contain a fundamental constant of the velocity dimension which has the meaning of the speed of propagation of electromagnetic waves. Nevertheless within the framework of quantum electrodynamics the interaction of the electromagnetic field with the vacuum of the electron-positron field leads to interaction of photons with each other.1 Consequently, the equations of electromagnetic field become nonlinear. Although this nonlinearity and the effects of scattering of light on light are as a rule negligibly small, they can lead to qualitatively new phenomena, in particular, as shown in this work, to dependence of the speed of light of the equilibrium radiation on temperature.

It should be noted that the dependence of the speed of propagation of light in a material medium on temperature is a natural effect, because the dielectric permittivity of a medium depends on thermodynamic variables and, in particular, on temperature. In the case under consideration in this work, at issue is the dependence of the speed of light on temperature in vacuum, by which the complex nature of the physical vacuum is manifested.

The performed estimates show that the considered effect is extremely small at temperatures which can be realized at modern conditions, but it should be quite important in the first instances of evolution of the Universe after the Big Bang when temperatures were anomalously high in comparison with temperatures of the modern epoch. In this early stage of evolution the speed of light had to exceed the present one by many orders of magnitude. We calculate the thermodynamic characteristics of the equilibrium radiation with taking into account the dependence of the speed of light on temperature.

Self-consistent description of the nonlinear electromagnetic field

In order to describe the equilibrium electromagnetic field we will use the self-consistent field model in the version which was developed for the nonrelativistic Fermi and Bose systems.24 With regard to the relativistic field models, this approach was applied in. The influence of the nonlinear effects on sound propagation in a solid was investigated within the framework of this approach in works.78 Usually the Hamiltonian of a considered many-particle system can be represented as a sum of the Hamiltonian of noninteracting particles and the operator of their interactions. The effectiveness of perturbation theory considerably depends on the successful choice of the main approximation. When using perturbation theory, most often one chooses the Hamiltonian of noninteracting particles as the main approximation and consideres the operator of their interaction as perturbation. Such a decomposition while studying many-particle systems proves, as a rule, to be unsuccessful, and to obtain physically correct results one needs to sum an infinite number of terms.9 With decreasing temperature the contribution of the kinetic energy into the total energy of a system decreases and the interaction energy between particles is coming to the foreground, as it no longer can be considered as a small correction to the kinetic energy. Moreover, the neglect of interaction in the main approximation does not allow to study effectively the phase transitions. It is possible, however, to reformulate perturbation theory to take the interaction into account approximately already in the main approximation by the self-consistent field method.26 Accounting for the phonon-phonon interaction in a solid in the continuum Debye model7,8 by means of this method leads to renormalization of the speed of sound and arising of its dependence on temperature. In this work a similar approach is applied for analysis of influence of the photon-photon interaction on light propagation in vacuum.

The energy density of the electromagnetic field can be presented as a sum of two terms

w= w 0 + w I , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhacaaI9a Gaam4DamaaBaaaleaacaaIWaaabeaakiabgUcaRiaadEhadaWgaaWc baGaamysaaqabaGccaaISaaaaa@3F66@   (1)

where the first term which is quadratic in the electric and magnetic field intensities

w 0 = E 2 + H 2 8π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqabeaaae aacaWG3bWaaSbaaSqaaiaaicdaaeqaaOGaaGypamaalaaabaGaamyr amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadIeadaahaaWcbeqaai aaikdaaaaakeaacaaI4aGaeqiWdahaaaaaaaa@41CA@                                                                                 (2)

determines the energy of the noninteracting electromagnetic field, and the second term

w I =2D 3 E 2 E 2 H 2 H 2 E 2 H 2 + H 2 E 2 +2mm +7D (EH) 2 + (HE) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aacaWG3bWaaSbaaSqaaiaadMeaaeqaaOGaaGypaiaaikdacaWGebWa amWaaeaacaaIZaGaamyramaaCaaaleqabaGaaGOmaaaakiaadweada ahaaWcbeqaaiaaikdaaaGccqGHsislcaWGibWaaWbaaSqabeaacaaI YaaaaOGaamisamaaCaaaleqabaGaaGOmaaaakiabgkHiTmaabmaaba GaamyramaaCaaaleqabaGaaGOmaaaakiaadIeadaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaWGibWaaWbaaSqabeaacaaIYaaaaOGaamyram aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaGaay5waiaaw2fa aiabgUcaRiaaikdacaWGTbGaamyBaaqaaiaaywW7cqGHRaWkcaaMi8 UaaG4naiaadseadaWadaqaaiaaiIcacaWGfbGaamisaiaaiMcadaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIOaGaamisaiaadweacaaIPa WaaWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzxaaaaaaaa@651E@              (3)

describes the interaction between photons due to creation of virtual electron-positron pairs.1 The constant in (3) can be calculated by the methods of quantum electrodynamics1 and in Gaussian units Dη 3 m 4 c 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacqGHHj IUcqaH3oaAdaWcaaqaaiabl+qiOnaaCaaaleqabaGaaG4maaaaaOqa aiaad2gadaahaaWcbeqaaiaaisdaaaGccaWGJbWaaWbaaSqabeaaca aI1aaaaaaaaaa@4245@ , where the dimensionless coefficient η α 2 45 (4π) 2 7.5 10 9 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgg Mi6oaalaaabaGaeqySde2aaWbaaSqabeaacaaIYaaaaaGcbaGaaGin aiaaiwdacaaMi8UaeyikaGIaaGinaiabec8aWjaaiMcadaahaaWcbe qaaiaaikdaaaaaaOGaeyisISRaaG4naiaai6cacaaI1aGaeyyXICTa aGzaVlaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaI5aaaaaaa@5150@  is the fine-structure constant, m is the electron mass. The given coefficients contain the constant c having the dimension of speed, which we will call the “bare” speed of light. For estimation of coefficients the value of this speed was taken equal to the observed speed of light, though, as will be shown, it somewhat differs from the observed speed of light at zero temperature. It is convenient to write the coefficient in formula (3) through the Compton wavelength of an electron =/mc MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaai2dacqWIpe cAcaaIVaGaamyBaiaadogaaaa@3CA2@  in the form D=η 3 m c 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaaI9a Gaeq4TdG2aaSaaaeaadaahaaWcbeqaaiaaiodaaaaakeaacaWGTbGa am4yamaaCaaaleqabaGaaGOmaaaaaaaaaa@3F22@ . It is interesting to estimate the value of the ratio of energies w I / w 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaWgaa WcbaGaamysaaqabaGccaaIVaGaam4DamaaBaaaleaacaaIWaaabeaa aaa@3CBA@ . This quantity is equal to the ratio of the field energy contained in the volume λ 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaKeaabaGaeq 4UdWgaamaaCaaaleqabaGaaG4maaaaaaa@3AE6@  to the rest energy of an electron. In addition, this ratio should be multiplied by the small dimensionless coefficient η MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@39CB@ . For the magnetic field intensity of the order of H 10 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIearqqr1n gBPrgifHhDYfgaiuaacqWF8iIocaaIXaGaaGimamaaCaaaleqabaGa aGOnaaaaaaa@4107@  Gs we have w I / w 0 10 20 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaWgaa WcbaGaamysaaqabaGccaaIVaGaam4DamaaBaaaleaacaaIWaaabeaa rqqr1ngBPrgifHhDYfgaiuaakiab=XJi6iaaigdacaaIWaWaaWbaaS qabeaacqGHsislcaaIYaGaaGimaaaaaaa@4682@ , so that the contribution of interaction into the total field energy is indeed extremely small.

Let us proceed to the description of the electromagnetic filed in terms of the Fourier components of the fields, using the expansion of the fields in plane waves

E(r,t)= k E k (t) e ikr ,H(r,t)= k H k (t) e ikr . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacaaIOa GaamOCaiaaiYcacaWG0bGaaGykaiaai2dadaaeqbqabSqaaiaadUga aeqaniabggHiLdGccaWGfbWaaSbaaSqaaiaadUgaaeqaaOGaaGikai aadshacaaIPaGaamyzamaaCaaaleqabaGaamyAaiaadUgacaWGYbaa aOGaaGilaiaaywW7caWGibGaaGikaiaadkhacaaISaGaamiDaiaaiM cacaaI9aWaaabuaeqaleaacaWGRbaabeqdcqGHris5aOGaamisamaa BaaaleaacaWGRbaabeaakiaaiIcacaWG0bGaaGykaiaadwgadaahaa WcbeqaaiaadMgacaWGRbGaamOCaaaakiaai6caaaa@5D1D@        (4)

Then the full Hamiltonian of the field in the volume V, in accordance with (1), is a sum of the free Hamiltonian and the interaction Hamiltonian

H= H 0 + H I , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqabeaaae aacaWGibGaaGypaiaadIeadaWgaaWcbaGaaGimaaqabaGccqGHRaWk caWGibWaaSbaaSqaaiaadMeaaeqaaOGaaGilaaaaaaa@3EE3@                  (5)

 where

H 0 = V 8π k E k + E k + H k + H k , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqabeaaae aacaWGibWaaSbaaSqaaiaaicdaaeqaaOGaaGypamaalaaabaGaamOv aaqaaiaaiIdacqaHapaCaaWaaabuaeqaleaacaWGRbaabeqdcqGHri s5aOWaaeWaaeaacaWGfbWaa0baaSqaaiaadUgaaeaacqGHRaWkaaGc caWGfbWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSIaamisamaaDaaale aacaWGRbaabaGaey4kaScaaOGaamisamaaBaaaleaacaWGRbaabeaa aOGaayjkaiaawMcaaiaaiYcaaaaaaa@4DE2@         (6) 

H I =2VD×2mm × { k i } {3 E k 1 + E k 2 E k 3 + E k 4 H k 1 + H k 2 H k 3 + H k 4 0mm E k 1 + E k 2 H k 3 + H k 4 H k 4 + H k 3 E k 2 + E k 1 }×2mm ×Δ( k 1 k 2 + k 3 k 4 )+3.5mm +7VD { k i } { E k 1 + H k 2 E k 3 + H k 4 + H k 4 + E k 3 H k 2 + E k 1 }×0mm ×Δ( k 1 k 2 + k 3 k 4 ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqageaaaa qaaiaaywW7caWGibWaaSbaaSqaaiaadMeaaeqaaOGaeyypa0JaaGOm aiaadAfacaWGebGaey41aqRaaGOmaiaad2gacaWGTbaabaGaaGzbVl abgEna0oaaqafabeWcbaGaaG4EaiaadUgadaWgaaqaaiaadMgaaeqa aiaai2haaeqaniabggHiLdGccaaI7bGaaG4maiaaygW7daqadaqaai aadweadaqhaaWcbaGaam4AamaaBaaabaGaaGymaaqabaaabaGaey4k aScaaOGaamyramaaBaaaleaacaWGRbWaaSbaaeaacaaIYaaabeaaae qaaaGccaGLOaGaayzkaaGaaGzaVpaabmaabaGaamyramaaDaaaleaa caWGRbWaaSbaaeaacaaIZaaabeaaaeaacqGHRaWkaaGccaWGfbWaaS baaSqaaiaadUgadaWgaaqaaiaaisdaaeqaaaqabaaakiaawIcacaGL PaaacqGHsislcaaMb8+aaeWaaeaacaWGibWaa0baaSqaaiaadUgada WgaaqaaiaaigdaaeqaaaqaaiabgUcaRaaakiaadIeadaWgaaWcbaGa am4AamaaBaaabaGaaGOmaaqabaaabeaaaOGaayjkaiaawMcaaiaayg W7daqadaqaaiaadIeadaqhaaWcbaGaam4AamaaBaaabaGaaG4maaqa baaabaGaey4kaScaaOGaamisamaaBaaaleaacaWGRbWaaSbaaeaaca aI0aaabeaaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaaGimaiaad2ga caWGTbaabaGaaGzbVlabgkHiTmaabmaabaGaamyramaaDaaaleaaca WGRbWaaSbaaeaacaaIXaaabeaaaeaacqGHRaWkaaGccaWGfbWaaSba aSqaaiaadUgadaWgaaqaaiaaikdaaeqaaaqabaaakiaawIcacaGLPa aacaaMb8+aaeWaaeaacaWGibWaa0baaSqaaiaadUgadaWgaaqaaiaa iodaaeqaaaqaaiabgUcaRaaakiaadIeadaWgaaWcbaGaam4AamaaBa aabaGaaGinaaqabaaabeaaaOGaayjkaiaawMcaaiabgkHiTiaaygW7 daqadaqaaiaadIeadaqhaaWcbaGaam4AamaaBaaabaGaaGinaaqaba aabaGaey4kaScaaOGaamisamaaBaaaleaacaWGRbWaaSbaaeaacaaI ZaaabeaaaeqaaaGccaGLOaGaayzkaaGaaGzaVpaabmaabaGaamyram aaDaaaleaacaWGRbWaaSbaaeaacaaIYaaabeaaaeaacqGHRaWkaaGc caWGfbWaaSbaaSqaaiaadUgadaWgaaqaaiaaigdaaeqaaaqabaaaki aawIcacaGLPaaacaaMb8UaaGyFaiabgEna0kaaikdacaWGTbGaamyB aaqaaiaaywW7cqGHxdaTcqqHuoarcaaIOaGaam4AamaaBaaaleaaca aIXaaabeaakiabgkHiTiaadUgadaWgaaWcbaGaaGOmaaqabaGccqGH RaWkcaWGRbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Iaam4AamaaBa aaleaacaaI0aaabeaakiaaiMcacaaMi8Uaey4kaSIaaG4maiaai6ca caaI1aGaamyBaiaad2gaaeaacaaMf8Uaey4kaSIaaGjcVlaaiEdaca WGwbGaamiraiaaygW7daaeqbqabSqaaiaaiUhacaWGRbWaaSbaaeaa caWGPbaabeaacaaI9baabeqdcqGHris5aOGaaGzaVlaaiUhacaaMb8 UaaGzaVpaabmaabaGaamyramaaDaaaleaacaWGRbWaaSbaaeaacaaI XaaabeaaaeaacqGHRaWkaaGccaWGibWaaSbaaSqaaiaadUgadaWgaa qaaiaaikdaaeqaaaqabaaakiaawIcacaGLPaaacaaMb8+aaeWaaeaa caWGfbWaa0baaSqaaiaadUgadaWgaaqaaiaaiodaaeqaaaqaaiabgU caRaaakiaadIeadaWgaaWcbaGaam4AamaaBaaabaGaaGinaaqabaaa beaaaOGaayjkaiaawMcaaiaaygW7cqGHRaWkcaaMb8+aaeWaaeaaca WGibWaa0baaSqaaiaadUgadaWgaaqaaiaaisdaaeqaaaqaaiabgUca RaaakiaadweadaWgaaWcbaGaam4AamaaBaaabaGaaG4maaqabaaabe aaaOGaayjkaiaawMcaaiaaygW7daqadaqaaiaadIeadaqhaaWcbaGa am4AamaaBaaabaGaaGOmaaqabaaabaGaey4kaScaaOGaamyramaaBa aaleaacaWGRbWaaSbaaeaacaaIXaaabeaaaeqaaaGccaGLOaGaayzk aaGaaGzaVlaaygW7caaI9bGaey41aqRaaGimaiaad2gacaWGTbaaba GaaGzbVlabgEna0kabfs5aejaaiIcacaWGRbWaaSbaaSqaaiaaigda aeqaaOGaeyOeI0Iaam4AamaaBaaaleaacaaIYaaabeaakiabgUcaRi aadUgadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWGRbWaaSbaaSqa aiaaisdaaeqaaOGaeyykaKIaeyOla4caaaaa@1665@   (7)

 Here Δ(k)=1  if Δ(k)=0  if k0 . In (6) and (7) we can pass to the operators of creation a kj + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaqhaa WcbaGaam4AaiaadQgaaeaacqGHRaWkaaaaaa@3BF3@  and annihilation a kj MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaam4AaiaadQgaaeqaaaaa@3B10@  of photons, using representations of the operators of the Fourier components of the fields:

E k =i 2π ω k V j ( a kj + a kj ) e j (k),2mm H k =ic 2π V ω k j ( a kj + + a kj )[k× e j (k)], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aacaWGfbWaaSbaaSqaaiaadUgaaeqaaOGaaGypaiabgkHiTiaadMga daGcaaqaamaalaaabaGaaGOmaiabec8aWjabl+qiOjabeM8a3naaBa aaleaacaWGRbaabeaaaOqaaiaadAfaaaaaleqaaOWaaabuaeqaleaa caWGQbaabeqdcqGHris5aOGaaGzaVlaaiIcacaWGHbWaa0baaSqaai aadUgacaWGQbaabaGaey4kaScaaOGaeyOeI0IaamyyamaaBaaaleaa cqGHsislcaWGRbGaamOAaaqabaGccaaIPaGaaGjcVlaadwgadaWgaa WcbaGaamOAaaqabaGccaaIOaGaam4AaiabgMcaPiaaiYcacaaIYaGa amyBaiaad2gaaeaacaaMf8UaamisamaaBaaaleaacaWGRbaabeaaki aai2dacaWGPbGaam4yamaakaaabaWaaSaaaeaacaaIYaGaeqiWdaNa eS4dHGgabaGaamOvaiabeM8a3naaBaaaleaacaWGRbaabeaaaaaabe aakmaaqafabeWcbaGaamOAaaqab0GaeyyeIuoakiaaygW7caaIOaGa amyyamaaDaaaleaacaWGRbGaamOAaaqaaiabgUcaRaaakiabgUcaRi aadggadaWgaaWcbaGaeyOeI0Iaam4AaiaadQgaaeqaaOGaaGykaiaa iUfacaWGRbGaey41aqRaamyzamaaBaaaleaacaWGQbaabeaakiaaiI cacaWGRbGaeyykaKIaeyyxa0LaaGilaaaaaaa@8370@   (8)

where ω k =ck MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWGRbaabeaakiaai2dacaWGJbGaam4Aaaaa@3DB1@ , and the polarization vectors e j (k) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaamOAaaqabaGccaaIOaGaam4AaiaaiMcaaaa@3C83@  satisfy the conditions of orthonormality and completeness:

e j 1 * (k) e j 2 (k)= δ j 1 j 2 , j e j α * (k) e j α (k)= δ α α k α k α k 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaqhaa WcbaGaamOAamaaBaaabaGaaGymaaqabaaabaGaaGOkaaaakiaaiIca caWGRbGaaGykaiaayIW7caWGLbWaaSbaaSqaaiaadQgadaWgaaqaai aaikdaaeqaaaqabaGccaaIOaGaam4AaiaaiMcacaaI9aGaeqiTdq2a aSbaaSqaaiaadQgadaWgaaqaaiaaigdaaeqaaiaadQgadaWgaaqaai aaikdaaeqaaaqabaGccaaISaGaaGjcVlaayIW7caaMi8+aaabuaeqa leaacaWGQbaabeqdcqGHris5aOGaamyzamaaDaaaleaacaWGQbaaba GaeqySdegaaOWaaWbaaSqabeaacaaIQaaaaOGaaGikaiaadUgacaaI PaGaaGjcVlaadwgadaqhaaWcbaGaamOAaaqaaiqbeg7aHzaafaaaaO GaaGikaiaadUgacaaIPaGaaGypaiabes7aKnaaBaaaleaacqaHXoqy cuaHXoqygaqbaaqabaGccqGHsislcaaMb8+aaSaaaeaacaWGRbWaaS baaSqaaiabeg7aHbqabaGccaWGRbWaaSbaaSqaaiqbeg7aHzaafaaa beaaaOqaaiaadUgadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaaa@72D7@           (9)

as well as the conditions

k e j (k)=0, e j * (k)= e j (k). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacaaMi8 UaamyzamaaBaaaleaacaWGQbaabeaakiaaiIcacaWGRbGaeyykaKIa eyypa0JaaGimaiaaiYcacaaMf8UaaGzbVlaadwgadaqhaaWcbaGaam OAaaqaaiaaiQcaaaGccaaIOaGaeyOeI0Iaam4AaiabgMcaPiabg2da 9iaadwgadaWgaaWcbaGaamOAaaqabaGccaaIOaGaam4AaiabgMcaPi abg6caUaaa@516F@   (10)

The free Hamiltonian of the field (6) is reduced to a sum of the Hamiltonians of harmonic oscillators

  H 0 = k,j ω k a kj + a kj + 1 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqabeaaae aafaqaaeqabaaabaqbaeaabeqaaaqaaiaadIeadaWgaaWcbaGaaGim aaqabaGccaaI9aWaaabuaeqaleaacaWGRbGaaGilaiaadQgaaeqani abggHiLdGccqWIpecAcqaHjpWDdaWgaaWcbaGaam4AaaqabaGcdaqa daqaaiaadggadaqhaaWcbaGaam4AaiaadQgaaeaacqGHRaWkaaGcca WGHbWaaSbaaSqaaiaadUgacaWGQbaabeaakiabgUcaRmaalaaabaGa aGymaaqaaiaaikdaaaaacaGLOaGaayzkaaGaaGOlaaaaaaaaaaaa@4F23@                  (11)

The electromagnetic field with account of the nonlinear effects is characterized by the full Hamiltonian (5). In order to account for interaction in a many-particle system, usually one chooses the Hamiltonian of noninteracting particles as the main approximation and considers the interaction Hamiltonian as perturbation (in our case, those are H 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaaGimaaqabaaaaa@39D2@  (11) and H I MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaamysaaqabaaaaa@39E6@  (7)). Such choice, as remarked above, is not optimal, because the effects caused by interaction are totally disregarded in the main approximation. Although the interaction is small in the considered case, it can lead, as we will see, to qualitatively new effects. It is known from the self-consistent approach for description of many-particles systems that accounting for the interaction effects in the main approximation leads to a change in the dispersion law of the initial particles and, thereby, we pass from the representation of free particles to the language of collective excitations – quasiparticles.

It is natural to consider that also in the case studied here the interaction effects will lead to renormalization of the “bare” speed of light c entering into the Hamiltonian. Taking into account this consideration, let us decompose the full Hamiltonian (5) into the main part and the perturbation in a different way, that is

H= H S + H C , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaaI9a GaamisamaaBaaaleaacaWGtbaabeaakiabgUcaRiaadIeadaWgaaWc baGaam4qaaqabaGccaaISaaaaa@3EF1@    (12)

where the self-consistent (or approximating) Hamiltonian is chosen in the form similar to the free Hamiltonian (11), but with the speed of light c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadogagaacaa aa@36DF@  being renormalized due to the photon-photon interaction:

H S = k,j ω ˜ k a kj + a kj + E 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaam4uaaqabaGccaaI9aWaaabuaeqaleaacaWGRbGaaGilaiaa dQgaaeqaniabggHiLdGccqWIpecAcuaHjpWDgaacamaaBaaaleaaca WGRbaabeaakiaayIW7caWGHbWaa0baaSqaaiaadUgacaWGQbaabaGa ey4kaScaaOGaamyyamaaBaaaleaacaWGRbGaamOAaaqabaGccqGHRa WkcaWGfbWaaSbaaSqaaiaaicdaaeqaaOGaaGilaaaa@4F6B@                   (13)

where ω ˜ k = c ˜ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeM8a3zaaia WaaSbaaSqaaiaadUgaaeqaaOGaaGypaiqadogagaacaiaadUgaaaa@3DCF@ . The correlation Hamiltonian describing the interaction between the renormalized or “dressed” photons is chosen from the condition that the full Hamiltonian should be unchanged:

H C = k,j ( ω k ω ˜ k ) a kj + a kj + k ω k E 0 + H I . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaam4qaaqabaGccaaI9aWaaabuaeqaleaacaWGRbGaaGilaiaa dQgaaeqaniabggHiLdGccqWIpecAcaaIOaGaeqyYdC3aaSbaaSqaai aadUgaaeqaaOGaeyOeI0IafqyYdCNbaGaadaWgaaWcbaGaam4Aaaqa baGccaaIPaGaamyyamaaDaaaleaacaWGRbGaamOAaaqaaiabgUcaRa aakiaadggadaWgaaWcbaGaam4AaiaadQgaaeqaaOGaey4kaSYaaabu aeqaleaacaWGRbaabeqdcqGHris5aOGaeS4dHGMaeqyYdC3aaSbaaS qaaiaadUgaaeqaaOGaeyOeI0IaamyramaaBaaaleaacaaIWaaabeaa kiabgUcaRiaadIeadaWgaaWcbaGaamysaaqabaGccaaIUaaaaa@5DEB@                                (14)

This Hamiltonian describes the interaction between photons propagating with the renormalized speed of light, which we will not consider. Formulas (13), (14) contain the non-operator term E 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaaGimaaqabaaaaa@39CF@ , taking account of which proves to be important for correct formulation of the self-consistent field model. Let us choose it from the consideration that the approximating Hamiltonian (13) should be maximally close to the exact Hamiltonian. This means we have to require that the quantity I|H H S |=| H C | MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGHHj IUcaaI8bGaeyykJeUaamisaiabgkHiTiaadIeadaWgaaWcbaGaam4u aaqabaGccqGHQms8caaI8bGaaGypaiaaiYhacqGHPms4caWGibWaaS baaSqaaiaadoeaaeqaaOGaeyOkJeVaaGiFaaaa@4BFB@  should be minimal, that is equal to zero. From here we obtain the conditions being natural for the self-consistent field theory:

H= H S , H C =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgMYiHlaadI eacqGHQms8caaI9aGaeyykJeUaamisamaaBaaaleaacaWGtbaabeaa kiabgQYiXlaaiYcacaaMf8UaeyykJeUaamisamaaBaaaleaacaWGdb aabeaakiabgQYiXlabg2da9iaaicdacaaIUaaaaa@4C9E@   (15)

The averaging is performed by means of the statistical operator

ρ=expβ(F H S ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaai2 daciGGLbGaaiiEaiaacchacqaHYoGycaaIOaGaamOraiabgkHiTiaa dIeadaWgaaWcbaGaam4uaaqabaGccqGHPaqkcaaISaaaaa@44FB@   (16)

Where F is the free energy, β=1/T  is the inverse temperature. The condition (15) allows to determine the non-operator part of the Hamiltonian (13):

E 0 =2(c c ˜ ) k k f k + k ck+ H I , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcqGHYaGmcaaIOaGaam4yaiabgkHi TiqadogagaacaiaaiMcadaaeqbqabSqaaiaadUgaaeqaniabggHiLd GccqWIpecAcaWGRbGaamOzamaaBaaaleaacaWGRbaabeaakiabgUca RmaaqafabeWcbaGaam4Aaaqab0GaeyyeIuoakiabl+qiOjaadogaca WGRbGaaGjcVlabgUcaRiabgMYiHlaadIeadaWgaaWcbaGaamysaaqa baGccqGHQms8caaISaaaaa@56C6@   (17)

where the distribution function of the renormalized photons has the Planck form

f k = a kj + a kj = 1 exp(β ω ˜ k )1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaam4AaaqabaGccaaI9aGaeyykJeUaamyyamaaDaaaleaacaWG RbGaamOAaaqaaiabgUcaRaaakiaadggadaWgaaWcbaGaam4AaiaadQ gaaeqaaOGaeyOkJeVaaGypamaalaaabaGaaGymaaqaaiGacwgacaGG 4bGaaiiCaiaaiIcacqaHYoGycqWIpecAcuaHjpWDgaacamaaBaaale aacaWGRbaabeaakiaaiMcacqGHsislcaaIXaaaaaaa@5299@                (18)

and does not depend on the polarization index. From the normalization condition for the statistical operator (16) Spρ=1  it follows the expression for the free energy of radiation

F=2(c c ˜ ) k k f k + k ck+ H I +2mm +2T k ln 1 e β ω ˜ k . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqaceaaae aacaWGgbGaeyypa0JaaGOmaiaaiIcacaWGJbGaeyOeI0Iabm4yayaa iaGaaGykamaaqafabeWcbaGaam4Aaaqab0GaeyyeIuoakiabl+qiOj aadUgacaWGMbWaaSbaaSqaaiaadUgaaeqaaOGaey4kaSYaaabuaeqa leaacaWGRbaabeqdcqGHris5aOGaeS4dHGMaam4yaiaadUgacaaMi8 Uaey4kaSIaeyykJeUaamisamaaBaaaleaacaWGjbaabeaakiabgQYi XlaayIW7cqGHRaWkcaaIYaGaamyBaiaad2gaaeaacaaMf8Uaey4kaS IaaGjcVlaaikdacaWGubWaaabuaeqaleaacaWGRbaabeqdcqGHris5 aOGaciiBaiaac6gacaaMb8+aaeWaaeaacaaIXaGaeyOeI0Iaamyzam aaCaaaleqabaGaeyOeI0IaeqOSdiMaeS4dHGMafqyYdCNbaGaadaWg aaqaaiaadUgaaeqaaaaakiaaygW7aiaawIcacaGLPaaacaaIUaaaaa aa@7366@   (19)

With neglect of the photon-photon interaction and zero fluctuations, from formula (19), of course, there follow the usual formulas of the thermodynamics of blackbody radiation.9,10 It is natural to require that in the used approximation with the Hamiltonian (13) and the free energy (19), like in the case of a gas of noninteracting photons, the thermodynamic relations should hold. Since the introduced renormalized speed c ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadogagaacaa aa@36DF@  itself can, in principle, depend on thermodynamic variables, then in order for the thermodynamic relations to hold the following condition should be satisfied:

F c ˜ =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqabeaaae aadaWcaaqaaiabgkGi2kaadAeaaeaacqGHciITceWGJbGbaGaaaaGa eyypa0JaaGimaiaai6caaaaaaa@3F3F@   (20)

From this condition and formula (19) it follows the relation which determines the renormalized speed:

c ˜ c= H I c ˜ 2 c ˜ k k f k . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadogagaacai abgkHiTiaadogacaaI9aWaaSaaaeaadaWcaaqaaiabgkGi2kabgMYi HlaadIeadaWgaaWcbaGaamysaaqabaGccqGHQms8aeaacqGHciITce WGJbGbaGaaaaaabaGaaGOmamaalaaabaGaeyOaIylabaGaeyOaIyRa bm4yayaaiaaaamaaqafabeWcbaGaam4Aaaqab0GaeyyeIuoakiabl+ qiOjaadUgacaWGMbWaaSbaaSqaaiaadUgaaeqaaaaakiaai6caaaa@5178@      (21)

Since formula (21) contains the temperature-dependent distribution function (18) then, naturally, also the speed of light c ˜ = c ˜ (T) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqabeaaae aaceWGJbGbaGaacaaI9aGabm4yayaaiaGaaGikaiaadsfacaaIPaaa aaaa@3D1C@  is a function of temperature. Thus, we have to calculate the average of the interaction Hamiltonian H I MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgMYiHlaadI eadaWgaaWcbaGaamysaaqabaGccqGHQms8aaa@3D73@ . Here, as in the theory of phonons in solids,7,8 divergent integrals appear. While describing phonons within the continuum model it is natural to cut off such integrals at the wave number, which equals the inverse average distance between particles or, at integration over frequencies, at the Debye frequency. In the case of photons, we will cut off divergent integrals at some wave number k m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamyBaaqabaaaaa@3A2D@ , the choice of which is discussed a little later. With this in mind, the calculation of the average of the interaction Hamiltonian (7) gives

H I = 1312V 15 π 2 D 2 c 2 J k m 4 4 +J , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqabeaaae aacqGHPms4caWGibWaaSbaaSqaaiaadMeaaeqaaOGaeyOkJeVaaGyp amaalaaabaGaaGymaiaaiodacaaIXaGaaGOmaiaadAfaaeaacaaIXa GaaGynaiabec8aWnaaCaaaleqabaGaaGOmaaaaaaGccaWGebGaaGjc Vlabl+qiOnaaCaaaleqabaGaaGOmaaaakiaadogadaahaaWcbeqaai aaikdaaaGccaWGkbWaaeWaaeaadaWcaaqaaiaadUgadaqhaaWcbaGa amyBaaqaaiaaisdaaaaakeaacaaI0aaaaiabgUcaRiaadQeaaiaawI cacaGLPaaacaaISaaaaaaa@54FD@         (22)

where J=6ζ(4) T c ˜ 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeacqGH9a qpcaaI2aGaeqOTdONaeyikaGIaeyinaqJaeyykaKYaaeWaaeaadaWc aaqaaiaadsfaaeaacqWIpecAceWGJbGbaGaaaaaacaGLOaGaayzkaa WaaWbaaSqabeaacaaMb8UaaGinaaaaaaa@4626@ , ζ(4)= π 4 /901.0823 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6jabgI caOiabgsda0iabgMcaPiabg2da9iabec8aWnaaCaaaleqabaGaaGin aaaakiabg+caViaaiMdacaaIWaGaeyisISRaaGymaiaai6cacaaIWa GaaGioaiaaikdacaaIZaaaaa@48C2@  is the zeta function. Let σ c ˜ /c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjabgg Mi6kqadogagaacaiaai+cacaWGJbaaaa@3E43@  be the ratio of the temperature-dependent speed of light to the “bare” speed of light. Considering that k k f k = V 2 π 2 J MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqababeWcba Gaam4Aaaqab0GaeyyeIuoakiabl+qiOjaadUgacaWGMbWaaSbaaSqa aiaadUgaaeqaaOGaaGypamaalaaabaGaamOvaiabl+qiObqaaiaaik dacqaHapaCdaahaaWcbeqaaiaaikdaaaaaaOGaamOsaaaa@463D@ , from (21) we get the equation for σ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZbaa@39E2@ :

σ=1+ 328 15 Dc k m 4 + 32816 5 ζ(4)Dc T c 4 1 σ 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjabg2 da9iaaigdacqGHRaWkdaWcaaqaaiaaiodacaaIYaGaaGioaaqaaiaa igdacaaI1aaaaiaadseacqWIpecAcaWGJbGaaGjcVlaadUgadaqhaa WcbaGaamyBaaqaaiaaisdaaaGccqGHRaWkdaWcaaqaaiaaiodacaaI YaGaaGioaiabgwSixlaaygW7caaIXaGaaGOnaaqaaiaaiwdaaaGaeq OTdONaeyikaGIaaGinaiaaiMcacaWGebGaeS4dHGMaam4yamaabmaa baWaaSaaaeaacaWGubaabaGaeS4dHGMaam4yaaaaaiaawIcacaGLPa aadaahaaWcbeqaaiaaygW7caaI0aaaaOGaaGzaVlabgwSixlaaygW7 daWcaaqaaiaaigdaaeaacqaHdpWCdaahaaWcbeqaaiaaisdaaaaaaO GaaGOlaaaa@6846@   (23)

This implies that the ratio of the speed of light at zero temperature c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadogagaacam aaBaaaleaacaaIWaaabeaaaaa@37C5@  to the “bare” speed of light σ 0 c ˜ 0 /c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIWaaabeaakiabggMi6kqadogagaacamaaBaaaleaacaaI Waaabeaakiaai+cacaWGJbaaaa@3DEC@  is determined by the formula:

σ 0 =1+ 328 15 Dc k m 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIWaaabeaakiabg2da9iabggdaXiabgUcaRmaalaaabaGa aG4maiaaikdacaaI4aaabaGaaGymaiaaiwdaaaGaamiraiabl+qiOj aadogacaaMi8Uaam4AamaaDaaaleaacaWGTbaabaGaaGinaaaakiaa i6caaaa@4967@   (24)

It is the speed of light at zero temperature that is a directly measurable speed. As follows from (24), this speed does not coincide with the “bare” speed of light, which is caused by taking into account the interaction between photons. Because of the weakness of this interaction c and c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadogagaacam aaBaaaleaacaaIWaaabeaaaaa@39FC@ should differ very little and in the main approximation they could be considered equal, which would not affect further conclusions. Nevertheless, it is of certain interest to clarify in more detail the relation between c and c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadogagaacam aaBaaaleaacaaIWaaabeaaaaa@39FC@ , which, as seen from (24), is essentially determined by the choice of the wave number k m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamyBaaqabaaaaa@3A2D@  at which the cut-off of divergent integrals is carried out. We find this wave number from the condition c ˜ 0 k m =m c ˜ 0 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabl+qiOjqado gagaacamaaBaaaleaacaaIWaaabeaakiaadUgadaWgaaWcbaGaamyB aaqabaGccaaI9aGaamyBaiqadogagaacamaaDaaaleaacaaIWaaaba GaaGOmaaaaaaa@419A@ , so that k m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamyBaaqabaaaaa@3A2D@  is equal to the inverse Compton wavelength of an electron k m =m c ˜ 0 / = 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamyBaaqabaGccaaI9aGaamyBaiqadogagaacamaaBaaaleaa caaIWaaabeaakiaai+cacqWIpecAcaaI9aWaa0baaSqaaiaaicdaae aacqGHsislcaaIXaaaaaaa@430F@ . This condition implies that a real electron cannot be created from the energy of zero oscillations. A similar method of cutting off divergent integrals was employed, for example, by Bethe in the nonrelativistic calculation of the Lamb shift.11 With such cut-off procedure, from (24) it follows

σ 0 =1+χ σ 0 6 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIWaaabeaakiabg2da9iaaigdacqGHRaWkcqaHhpWycqaH dpWCdaqhaaWcbaGaaGimaaqaaiaaiAdaaaGccaaISaaaaa@4356@   (25)

where χ 328 15 η 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJjabgg Mi6oaalaaabaGaaG4maiaaikdacaaI4aaabaGaaGymaiaaiwdaaaGa eq4TdG2aaSbaaSqaaiaaicdaaeqaaaaa@41F6@ , η 0 α 0 2 45 (4π) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa aaleaacaaIWaaabeaakiabggMi6oaalaaabaGaeqySde2aa0baaSqa aiabgcdaWaqaaiabgkdaYaaaaOqaaiabgsda0iabgwda1iabgIcaOi abgsda0iabec8aWjabgMcaPmaaCaaaleqabaGaeyOmaidaaaaaaaa@47B8@  and α 0 e 2 c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaaIWaaabeaakiabggMi6oaalaaabaGaamyzamaaCaaaleqa baGaaGOmaaaaaOqaaiabl+qiOjqadogagaacamaaBaaaleaacaaIWa aabeaaaaaaaa@416A@  is the fine-structure constant written through the observed speed of light. Formula (25) determines the ratio σ 0 c ˜ 0 /c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIWaaabeaakiabggMi6kqadogagaacamaaBaaaleaacaaI Waaabeaakiaai+cacaWGJbaaaa@4023@  through the observed fine-structure constant. With the help of it, the unobserved “bare” speed can be eliminated from Eq. (23). As a result, we come to the equation for the dimensionless quantity σ ˜ σ/ σ 0 = c ˜ / c ˜ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaia GaeyyyIORaeq4WdmNaaG4laiabeo8aZnaaBaaaleaacaaIWaaabeaa kiaai2daceWGJbGbaGaacaaIVaGabm4yayaaiaWaaSbaaSqaaiaaic daaeqaaaaa@453D@ , which equals the ratio of the observed speeds of light at finite and at zero temperatures:

σ ˜ 5 σ ˜ 4 =b τ 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaia WaaWbaaSqabeaacaaI1aaaaOGaeyOeI0Iafq4WdmNbaGaadaahaaWc beqaaiaaisdaaaGccaaI9aGaamOyaiabes8a0naaCaaaleqabaGaaG inaaaakiaai6caaaa@43BB@         (26)

Here b3χ σ 0 5 4.9 10 7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgacqGHHj IUcaaIZaGaeq4XdmMaeq4Wdm3aa0baaSqaaiaaicdaaeaacaaI1aaa aOGaeyisISRaaGinaiaai6cacaaI5aGaeyyXICTaaGzaVlaaigdaca aIWaWaaWbaaSqabeaacqGHsislcaaI3aaaaaaa@4BC4@ , τT/ T 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jabgg Mi6kaadsfacaaIVaGaamivamaaBaaaleaacaaIWaaabeaaaaa@3EFE@  is the dimensionless temperature, and T 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqabeaaae aafaqaaeqabaaabaqbaeaabeqaaaqaauaabaqabeaaaeaacaWGubWa aSbaaSqaaiaaicdaaeqaaaaaaaaaaaaaaaa@3A06@ is characteristic temperature determined by the rest energy of an electron

m c ˜ 0 2 =2 [ζ(4)] 1/4 T 0 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gaceWGJb GbaGaadaqhaaWcbaGaaGimaaqaaiaaikdaaaGccaWG9aGaeyOmaiJa ey4waSLaeqOTdONaeyikaGIaeyinaqJaeyykaKIaeyyxa01aaWbaaS qabeaacaaIXaGaey4la8IaaGinaaaakiaadsfadaWgaaWcbaGaaGim aaqabaGccaaISaaaaa@4973@   (27)

so that T 0 0.29 10 10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaGimaaqabaGccqGHijYUcaaIWaGaaGOlaiaaikdacaaI5aGa eyyXICTaaGzaVlaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGimaa aaaaa@4575@  K. Thus, it follows from formula (26) that the speed of light rises with increasing temperature. As opposed to the “bare” photons with the dispersion law ω=ck MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaai2 dacaWGJbGaam4Aaaaa@3C8B@ , the photons which speed is determined by the self-consistency Eq. (26) and depends on temperature have the dispersion law ω ˜ = c ˜ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeM8a3zaaia GaaGypaiqadogagaacaiaadUgaaaa@3CA9@ , and it is natural to call them “self-consistent” photons.

At b τ 4 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgacqaHep aDdaahaaWcbeqaaiaaisdaaaqeeuuDJXwAKbsr4rNCHbacfaGccqWF QjspcaaIXaaaaa@4265@  we have σ ˜ 1+b τ 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaia GaeyisISRaaGymaiabgUcaRiaadkgacqaHepaDdaahaaWcbeqaaiaa isdaaaaaaa@40D6@ . Since the coefficient b is very small, then the temperature dependence of the speed of light can manifest itself only at very high temperatures. For the observed relict radiation with the temperature T=2.73K  we have σ ˜ 13.8 10 43 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaia GaeyOeI0IaaGymaiabgIKi7kaaiodacaaIUaGaaGioaiabgwSixlaa ygW7caaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGinaiaaiodaaa aaaa@475F@ , so that the speed of light practically coincides with the speed of light at zero temperature. Inside stars, temperature can reach tens of millions degrees. For example, at the temperature inside the Sun that equals 15 million degrees, we have σ ˜ 13.4 10 16 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaia GaeyOeI0IaaGymaiabgIKi7kaaiodacaaIUaGaaGinaiabgwSixlaa ygW7caaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGymaiaaiAdaaa aaaa@475B@ . This means that the speed of light inside the Sun differs from the speed of light at zero temperature by the amount Δ c ˜ = c ˜ c ˜ 0 10 5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejqado gagaacaiaai2daceWGJbGbaGaacqGHsislceWGJbGbaGaadaWgaaWc baGaaGimaaqabaGccqGHijYUcaaIXaGaaGimamaaCaaaleqabaGaey OeI0IaaGynaaaakiaayIW7aaa@45A8@ cm/s. In order for the speed of light of the equilibrium radiation at a finite temperature to differ from the speed of light at zero temperature by one percent σ~=1.01 , the temperature T12 T 0 3.5 10 10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGHij YUcaaIXaGaaGOmaiaayIW7caWGubWaaSbaaSqaaiaaicdaaeqaaOGa eyisISRaaG4maiaai6cacaaI1aGaeyyXICTaaGzaVlaaigdacaaIWa WaaWbaaSqabeaacaaIXaGaaGimaaaakiaayIW7aaa@4BE5@ K is required.

In the limit of very high temperatures τ b 1/4 38 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0fbbfv 3ySLgzGueE0jxyaGqbaiab=TMi=iaadkgadaahaaWcbeqaaiabgkHi TiaaigdacaaIVaGaaGinaaaakiabgIKi7kaaiodacaaI4aaaaa@473E@  we have

σ~b1/5τ4/5.  (28)

Accounting for the dependence of the speed of light on temperature should be of principal importance in the very early stage of evolution of the Universe, when the dependence (28) could be valid. In the model of the hot Universe,12 in the first instances after the Big Bang the temperature of the Universe was anomalously high in comparison with modern temperatures. As follows from the relations obtained above, also the speed of light was large in comparison with the present one. As the Universe was expanding and cooling the speed of light was decreasing and in the modern epoch it reached its value, practically equal to that of the speed of light at zero temperature. At the Planck temperature T p 1.42 10 32 K 10 19 GeV MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamiCaaqabaGccqGHijYUcaaIXaGaaGOlaiaaisdacaaIYaGa eyyXICTaaGzaVlaaigdacaaIWaWaaWbaaSqabeaacaaIZaGaaGOmaa aakiaayIW7caqGlbGaeyisISRaaGymaiaaicdadaahaaWcbeqaaiaa igdacaaI5aaaaOGaaGjcVlaabEeacaqGLbGaaeOvaaaa@5110@  the speed of light c ˜ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadogagaacam aaBaaaleaacaWGWbaabeaaaaa@3A37@  had to exceed the present one by many orders of magnitude: c ˜ p / c ˜ 0 0.8 10 17 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadogagaacam aaBaaaleaacaWGWbaabeaakiaai+caceWGJbGbaGaadaWgaaWcbaGa aGimaaqabaGccqGHijYUcaaIWaGaaGOlaiaaiIdacqGHflY1caaMb8 UaaGymaiaaicdadaahaaWcbeqaaiaaigdacaaI3aaaaaaa@47B8@ . The illustration of how the speed of light was varying as the Universe was cooling in the first instances after the Big Bang is given in Table 1.

t,s

T, Gev

T,K

τ=T/T0

c~/c~0

5.4 ​× ​1044

1.2× ​1019

1.42×1032

4.9​ × ​1022

0.8×1017

1039

1016

1029

3.5​ × ​1019

2.3× ​1014

1011

100

1015

3.5​ × ​105

1.5× ​103

105

0.2

2×1012

6.9× ​102

10

102

102

2×1011

69

1.9

1.5

0.7×103

0.8× ​1010

2.8

1.00003

Table 1 The value of the speed of light at different temperatures in the first instances after the Big Bang

Thermodynamics of the equilibrium radiation of self-consistent photons

Let us give general formulas for the thermodynamic functions of a gas of self-consistent photons. The free energy (19), expressed through the observed speed of light, can be written in the form

F U V =1+3 σ 0 1 4 3 σ ˜ τ 4 σ ˜ 4 + 9 2 χ σ 0 6 τ 8 σ ˜ 8 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OraaqaaiaadwfadaWgaaWcbaGaamOvaaqabaaaaOGaeyypa0JaaGym aiabgUcaRiaaiodacqaHdpWCdaWgaaWcbaGaaGimaaqabaGcdaqada qaaiaaigdacqGHsisldaWcaaqaaiaaisdaaeaacaaIZaaaaiaayIW7 cuaHdpWCgaacaaGaayjkaiaawMcaamaalaaabaGaeqiXdq3aaWbaaS qabeaacaaI0aaaaaGcbaGafq4WdmNbaGaadaahaaWcbeqaaiaaisda aaaaaOGaey4kaSYaaSaaaeaacaaI5aaabaGaaGOmaaaacaaMi8Uaeq 4XdmMaeq4Wdm3aa0baaSqaaiaaicdaaeaacaaI2aaaaOGaaGjcVpaa laaabaGaeqiXdq3aaWbaaSqabeaacaaI4aaaaaGcbaGafq4WdmNbaG aadaahaaWcbeqaaiaaiIdaaaaaaOGaaGilaaaa@5FB5@   (29)

where U V V 8 π 2 m c ˜ 0 2 0 3 σ 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfadaWgaa WcbaGaamOvaaqabaGccqGHHjIUdaWcaaqaaiaadAfaaeaacaaI4aGa eqiWda3aaWbaaSqabeaacaaIYaaaaaaakmaalaaabaGaamyBaiqado gagaacamaaDaaaleaacaaIWaaabaGaaGjcVlaaikdaaaaakeaadaqh aaWcbaGaaGimaaqaaiaaiodaaaaaaOGaaGjcVlabeo8aZnaaDaaale aacaaIWaaabaGaeyOeI0IaaGymaaaaaaa@4CF8@  is the energy of zero oscillations. It is easy to verify that Eq. (26) follows from the condition σ ˜ F U V =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRafq4WdmNbaGaaaaWaaeWaaeaadaWcaaqaaiaa dAeaaeaacaWGvbWaaSbaaSqaaiaadAfaaeqaaaaaaOGaayjkaiaawM caaiabg2da9iaaicdaaaa@42DC@ . This condition allows to calculate from the expression for the free energy (29) by the usual formulas the pressure p= F V T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacaaI9a GaeyOeI0YaaeWaaeaadaWcaaqaaiabgkGi2kaadAeaaeaacqGHciIT caWGwbaaaaGaayjkaiaawMcaamaaBaaaleaacaaMb8Uaamivaaqaba aaaa@4362@  and the entropy S= F T V MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaaI9a GaeyOeI0YaaeWaaeaadaWcaaqaaiabgkGi2kaadAeaaeaacqGHciIT caWGubaaaaGaayjkaiaawMcaamaaBaaaleaacaaMb8UaamOvaaqaba aaaa@4345@ , and due to fulfillment of this condition the temperature-dependent parameter σ ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaia aaaa@39F1@  should not be differentiated. Considering (26), the formulas for the pressure and entropy can be written in the form

p= U V V 1+ 3 σ 0 2 1 5 3 σ ˜ τ 4 σ ˜ 4 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacaaI9a GaeyOeI0YaaSaaaeaacaWGvbWaaSbaaSqaaiaadAfaaeqaaaGcbaGa amOvaaaacaaMb8+aamWaaeaacaaIXaGaey4kaSYaaSaaaeaacaaIZa Gaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaaGcbaGaaGOmaaaadaqadaqa aiaaygW7caaIXaGaeyOeI0YaaSaaaeaacaaI1aaabaGaaG4maaaaca aMi8Uafq4WdmNbaGaacaaMb8oacaGLOaGaayzkaaGaaGzaVpaalaaa baGaeqiXdq3aaWbaaSqabeaacaaI0aaaaaGcbaGafq4WdmNbaGaada ahaaWcbeqaaiaaisdaaaaaaaGccaGLBbGaayzxaaGaaGilaaaa@59F8@         (30) 

S= 4 σ 0 U V T 0 τ 3 σ ˜ 3 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofacaaI9a WaaSaaaeaacaaI0aGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaOGaamyv amaaBaaaleaacaWGwbaabeaaaOqaaiaadsfadaWgaaWcbaGaaGimaa qabaaaaOWaaSaaaeaacqaHepaDdaahaaWcbeqaaiaaiodaaaaakeaa cuaHdpWCgaacamaaCaaaleqabaGaaG4maaaaaaGccaaIUaaaaa@473A@       (31)

The total energy E=F+TS MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacaaI9a GaamOraiabgUcaRiaadsfacaWGtbaaaa@3D0E@  is

E= U V 1+ 3 2 σ 0 (1+ σ ˜ ) τ 4 σ ˜ 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacaaI9a GaamyvamaaBaaaleaacaWGwbaabeaakiaaygW7daWadaqaaiaaigda cqGHRaWkdaWcaaqaaiaaiodaaeaacaaIYaaaaiaayIW7cqaHdpWCda WgaaWcbaGaaGimaaqabaGccqGHOaakcqGHXaqmcqGHRaWkcuaHdpWC gaacaiaaiMcadaWcaaqaaiabes8a0naaCaaaleqabaGaaGinaaaaaO qaaiqbeo8aZzaaiaWaaWbaaSqabeaacaaI0aaaaaaaaOGaay5waiaa w2faaiaai6caaaa@51FB@   (32)

With neglect of the interaction between photons, when σ0=σ~=1 , and without taking into account vacuum fluctuations formulas (29) – (32) turn into classical formulas of the theory of blackbody radiation.10 In order to pass to this limit it is convenient to use the formula U V T 0 4 =V 2ζ(4) π 2 σ 0 3 c ˜ 0 3 =V π 2 45 σ 0 3 c ˜ 0 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yvamaaBaaaleaacaWGwbaabeaaaOqaaiaadsfadaqhaaWcbaGaaGim aaqaaiaaisdaaaaaaOGaaGypaiaadAfadaWcaaqaaiaaikdacqaH2o GEcqGHOaakcqGH0aancqGHPaqkaeaacqaHapaCdaahaaWcbeqaaiaa ikdaaaGccqaHdpWCdaWgaaWcbaGaaGimaaqabaGccqWIpecAdaahaa WcbeqaaiaaiodaaaGcceWGJbGbaGaadaqhaaWcbaGaaGimaaqaaiaa yIW7caaIZaaaaaaakiaai2dacaWGwbWaaSaaaeaacqaHapaCdaahaa WcbeqaaiaaikdaaaaakeaacaaI0aGaaGynaiabeo8aZnaaBaaaleaa caaIWaaabeaakiabl+qiOnaaCaaaleqabaGaaG4maaaakiqadogaga acamaaDaaaleaacaaIWaaabaGaaGjcVlaaiodaaaaaaaaa@5E0C@ . But, even with neglect of the interaction between photons, accounting for vacuum fluctuations leads to appearance of the additional energy U V MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfadaWgaa WcbaGaamOvaaqabaaaaa@3A00@  in the total energy of blackbody radiation, and a negative contribution from vacuum fluctuations appears in the expression for the pressure (30). Hence, instead of the usual relation between energy and pressure pV=E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacaWGwb GaaGypaiaadweaaaa@3B80@ ,10 with account of fluctuations we obtain 3pV=E4 U V MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiodacaWGWb GaamOvaiaai2dacaWGfbGaeyOeI0IaaGinaiaadwfadaWgaaWcbaGa amOvaaqabaaaaa@3FC9@ . At temperatures T< T 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacaaI8a GaamivamaaBaaaleaacaaIWaaabeaaaaa@3B7D@  the total pressure proves to be negative and changes sign, becoming positive, at T> T 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacaaI+a GaamivamaaBaaaleaacaaIWaaabeaaaaa@3B7F@ . Accounting for the interaction between photons leads to a little shift of the temperature at which the pressure changes sign. This temperature T 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqabeaaae aafaqaaeqabaaabaqbaeaabeqaaaqaauaabaqabeaaaeaafaqaaeqa baaabaGaamivamaaBaaaleaacaaIXaaabeaaaaaaaaaaaaaaaaaa@3A11@  can be found from Eqs. (26) and (30), that gives T 1 T 0 (1+3χ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaGymaaqabaGccqGHijYUcaWGubWaaSbaaSqaaiaaicdaaeqa aOGaeyikaGIaeyymaeJaey4kaSIaaG4maiabeE8aJjaaiMcaaaa@4336@ . Note that vacuum fluctuations do not give a contribution into the enthalpy

W=E+pV=4 U V σ 0 τ 4 σ ˜ 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfacaaI9a GaamyraiabgUcaRiaadchacaWGwbGaeyypa0JaeyinaqJaamyvamaa BaaaleaacaWGwbaabeaakiabeo8aZnaaBaaaleaacaaIWaaabeaakm aalaaabaGaeqiXdq3aaWbaaSqabeaacaaI0aaaaaGcbaGafq4WdmNb aGaadaahaaWcbeqaaiaaiodaaaaaaOGaaGilaaaa@4A1C@   (33)

as well as into the entropy (31).

For calculation of the heat capacity of a gas of photons C V =T (S/T) V MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaa WcbaGaamOvaaqabaGccaaI9aGaamivaiaaiIcacqGHciITcaWGtbGa aG4laiabgkGi2kaadsfacaaIPaWaaSbaaSqaaiaadAfaaeqaaaaa@433A@ , it is already necessary to account for the dependence of the speed of light on temperature, using the formula (26), so that we obtain

C V = 12 σ 0 U V T 0 σ ˜ (5 σ ˜ 4) τ 3 σ ˜ 3 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaa WcbaGaamOvaaqabaGccaaI9aWaaSaaaeaacaaIXaGaaGOmaiabeo8a ZnaaBaaaleaacaaIWaaabeaakiaadwfadaWgaaWcbaGaamOvaaqaba aakeaacaWGubWaaSbaaSqaaiaaicdaaeqaaaaakmaalaaabaGafq4W dmNbaGaaaeaacqGHOaakcqGH1aqncuaHdpWCgaacaiabgkHiTiaais dacqGHPaqkaaWaaSaaaeaacqaHepaDdaahaaWcbeqaaiaaiodaaaaa keaacuaHdpWCgaacamaaCaaaleqabaGaaG4maaaaaaGccaaIUaaaaa@5103@   (34)

Let us also give the formula for the number of photons

N= 90ζ(3) π 4 U V T 0 σ 0 τ 3 σ ˜ 3 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eacaaI9a WaaSaaaeaacaaI5aGaaGimaiabeA7a6jabgIcaOiabgodaZiabgMca Paqaaiabec8aWnaaCaaaleqabaGaaGinaaaaaaGcdaWcaaqaaiaadw fadaWgaaWcbaGaamOvaaqabaaakeaacaWGubWaaSbaaSqaaiaaicda aeqaaaaakiabeo8aZnaaBaaaleaacaaIWaaabeaakmaalaaabaGaeq iXdq3aaWbaaSqabeaacaaIZaaaaaGcbaGafq4WdmNbaGaadaahaaWc beqaaiaaiodaaaaaaOGaaGOlaaaa@4F1F@   (35)

In the low-temperature limit T T 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfarqqr1n gBPrgifHhDYfgaiuaacqWFQjspcaWGubWaaSbaaSqaaiaaicdaaeqa aaaa@40A1@  formulas (33)–(35), of course, turn into the known formulas of the theory of blackbody radiation.10

The photon distribution function and thermodynamics of the equilibrium radiation at high temperatures

Now we consider separately the most interesting region of high temperatures τ b 1/4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0fbbfv 3ySLgzGueE0jxyaGqbaiab=TMi=iaadkgadaahaaWcbeqaaiabgkHi TiabggdaXiabg+caViabgsda0aaaaaa@449E@ . The distribution functions for the number of photons and the energy with respect to wave numbers have the Planck form at all temperatures

n k = k 2 π 2 ( e Lk 1) , ε k = c ˜ k 3 π 2 ( e Lk 1) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaam4AaaqabaGccaaI9aWaaSaaaeaacaWGRbWaaWbaaSqabeaa caaIYaaaaaGcbaGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGaaGikai aadwgadaahaaWcbeqaaiaadYeacaWGRbaaaOGaeyOeI0IaeyymaeJa eyykaKcaaiaaiYcacaaMf8UaaGzbVlabew7aLnaaBaaaleaacaWGRb aabeaakiaai2dadaWcaaqaaiabl+qiOjqadogagaacaiaadUgadaah aaWcbeqaaiaaiodaaaaakeaacqaHapaCdaahaaWcbeqaaiaaikdaaa GccaaIOaGaamyzamaaCaaaleqabaGaamitaiaadUgaaaGccqGHsisl cqGHXaqmcqGHPaqkaaGaaGilaaaa@5B1C@   (36)

where L c ˜ /T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacqGHHj IUcqWIpecAceWGJbGbaGaacaaIVaGaamivaaaa@3E6B@ , so that the total densities of the number of photons and energy are respectively n= 0 n k dk MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacaaI9a Waa8qmaeqaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGccaaMb8Ua amOBamaaBaaaleaacaWGRbaabeaakiaadsgacaWGRbaaaa@43B4@  and ε= 0 ε k dk MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLjaai2 dadaWdXaqabSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaaygW7 cqaH1oqzdaWgaaWcbaGaam4AaaqabaGccaWGKbGaam4Aaaaa@451C@ . However, the parameter L entering into (36) depends on temperature differently in the low-temperature and high-temperature limits. At low temperatures L c ˜ 0 /T=[2π/ 90 1/4 ] ( 0 /τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacqGHHj IUcqWIpecAceWGJbGbaGaadaWgaaWcbaGaaGimaaqabaGccaaIVaGa amivaiabg2da9iabgUfaBjaaikdacqaHapaCcqGHVaWlcaaI5aGaaG imamaaCaaaleqabaGaeyymaeJaey4la8IaeyinaqdaaOGaeyyxa0La aGzaVlabgIcaOmaaBaaaleaacaaIWaaabeaakiaai+cacqaHepaDca aIPaaaaa@5153@ , and at high temperatures L= B 0 / τ 1/5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaI9a GaamOqamaaBaaaleaacaaIWaaabeaakiabg+caViabes8a0naaCaaa leqabaGaeyymaeJaey4la8Iaeyynaudaaaaa@4118@ , where B=2π b 1/5 / 90 1/4 =0.11 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacqGH9a qpcaaIYaGaeqiWdaNaamOyamaaCaaaleqabaGaeyymaeJaey4la8Ia eyynaudaaOGaey4la8IaaGyoaiaaicdadaahaaWcbeqaaiabggdaXi abg+caViabgsda0aaakiabg2da9iaaicdacaaIUaGaaGymaiaaigda aaa@49A9@ . In particular, in the case of low temperatures, as is known, maximums of the distributions (36) shift to higher energies proportional to temperature, respectively as k max 0 =0.782τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaeyBaiaabggacaqG4baabeaakmaaBaaaleaacaaIWaaabeaa kiabg2da9iabgcdaWiabg6caUiabgEda3iabgIda4iabgkdaYiaayI W7cqaHepaDaaa@461A@  and k max 0 =1.383τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaeyBaiaabggacaqG4baabeaakmaaBaaaleaacaaIWaaabeaa kiabg2da9iabggdaXiabg6caUiabgodaZiabgIda4iabgodaZiaayI W7cqaHepaDaaa@4616@ (Wien’s displacement law).10 In the limit of high temperatures τ b 1/4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0fbbfv 3ySLgzGueE0jxyaGqbaiab=TMi=iaadkgadaahaaWcbeqaaiabgkHi TiabggdaXiabg+caViabgsda0aaaaaa@449E@ maximums of the distributions (36) also shift to higher energies with increasing temperature, but much slower, as k max 0 =14.51 τ 1/5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaeyBaiaabggacaqG4baabeaakmaaBaaaleaacaaIWaaabeaa kiabg2da9iaaigdacaaI0aGaaGOlaiaaiwdacaaIXaGaaGjcVlabes 8a0naaCaaaleqabaGaeyymaeJaey4la8Iaeyynaudaaaaa@4806@  and k max 0 =25.65 τ 1/5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaeyBaiaabggacaqG4baabeaakmaaBaaaleaacaaIWaaabeaa kiabg2da9iabgkdaYiabgwda1iabg6caUiabgAda2iabgwda1iaayI W7cqaHepaDdaahaaWcbeqaaiabggdaXiabg+caViabgwda1aaaaaa@4917@ respectively.

When going over to the distribution functions with respect to frequencies ω ˜ = c ˜ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabaqabeaaae aafaqaaeqabaaabaqbaeaabeqaaaqaauaabaqabeaaaeaacuaHjpWD gaacaiaai2daceWGJbGbaGaacaWGRbaaaaaaaaaaaaaa@3CD1@  in (36) Lk ω ˜ /T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaWGRb GaeyyyIORaeS4dHGMafqyYdCNbaGaacaaIVaGaamivaaaa@4040@ , and maximums of the distributions with respect to frequencies shift with temperature in the same way at all temperatures: as ω ˜ max /T=1.594 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabl+qiOjqbeM 8a3zaaiaWaaSbaaSqaaiaab2gacaqGHbGaaeiEaaqabaGccaaIVaGa amivaiabg2da9iabggdaXiabg6caUiabgwda1iabgMda5iabgsda0a aa@457F@  for the number of photons and ω ˜ max /T=2.821 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabl+qiOjqbeM 8a3zaaiaWaaSbaaSqaaiaab2gacaqGHbGaaeiEaaqabaGccaaIVaGa amivaiabg2da9iabgkdaYiabg6caUiabgIda4iabgkdaYiabggdaXa aa@4573@  for the energy.

In the high-temperature limit the temperature dependencies of thermodynamic functions of the equilibrium radiation are determined by the formulas:

p= 5 2 U V σ 0 V τ 8/5 b 3/5 ,E= 3 2 U V σ 0 τ 8/5 b 3/5 ,2mm S= 4 U V σ 0 T 0 τ b 3/5 , C V = 12 U V σ 0 5 T 0 τ b 3/5 ,2mm W=4 U V σ 0 τ 8/5 b 3/5 ,N= 90ζ(3) π 4 U V σ 0 T 0 τ b 3/5 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqadmaaae aacaWGWbGaaGypamaalaaabaGaaGynaaqaaiaaikdaaaWaaSaaaeaa caWGvbWaaSbaaSqaaiaadAfaaeqaaOGaeq4Wdm3aaSbaaSqaaiaaic daaeqaaaGcbaGaamOvaaaadaWcaaqaaiabes8a0naaCaaaleqabaGa eyioaGJaey4la8IaeyynaudaaaGcbaGaamOyamaaCaaaleqabaGaey 4mamJaey4la8IaeyynaudaaaaakiaaiYcacaaMf8UaaGzbVlaadwea caaI9aWaaSaaaeaacaaIZaaabaGaaGOmaaaacaaMi8UaamyvamaaBa aaleaacaWGwbaabeaakiabeo8aZnaaBaaaleaacaaIWaaabeaakmaa laaabaGaeqiXdq3aaWbaaSqabeaacqGH4aaocqGHVaWlcqGH1aqnaa aakeaacaWGIbWaaWbaaSqabeaacqGHZaWmcqGHVaWlcqGH1aqnaaaa aOGaaGilaiaaikdacaWGTbGaamyBaaqaaaqaaaqaaiaaywW7caWGtb GaaGypamaalaaabaGaaGinaiaadwfadaWgaaWcbaGaamOvaaqabaGc cqaHdpWCdaWgaaWcbaGaaGimaaqabaaakeaacaWGubWaaSbaaSqaai aaicdaaeqaaaaakmaabmaabaWaaSaaaeaacqaHepaDaeaacaWGIbaa aaGaayjkaiaawMcaamaaCaaaleqabaGaaGzaVlabgodaZiabg+caVi abgwda1aaakiaaiYcacaaMf8UaaGzbVlaadoeadaWgaaWcbaGaamOv aaqabaGccaaI9aWaaSaaaeaacaaIXaGaaGOmaiaadwfadaWgaaWcba GaamOvaaqabaGccqaHdpWCdaWgaaWcbaGaaGimaaqabaaakeaacaaI 1aGaamivamaaBaaaleaacaaIWaaabeaaaaGcdaqadaqaamaalaaaba GaeqiXdqhabaGaamOyaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaa ygW7cqGHZaWmcqGHVaWlcqGH1aqnaaGccaaISaGaaGOmaiaad2gaca WGTbaabaaabaaabaGaaGzbVlaadEfacaaI9aGaaGinaiaadwfadaWg aaWcbaGaamOvaaqabaGccqaHdpWCdaWgaaWcbaGaaGimaaqabaGcda Wcaaqaaiabes8a0naaCaaaleqabaGaeyioaGJaey4la8Iaeyynauda aaGcbaGaamOyamaaCaaaleqabaGaey4mamJaey4la8Iaeyynaudaaa aakiaaiYcacaaMf8UaaGzbVlaad6eacaaI9aWaaSaaaeaacaaI5aGa aGimaiabeA7a6jabgIcaOiaaiodacqGHPaqkaeaacqaHapaCdaahaa WcbeqaaiaaisdaaaaaaOWaaSaaaeaacaWGvbWaaSbaaSqaaiaadAfa aeqaaOGaeq4Wdm3aaSbaaSqaaiaaicdaaeqaaaGcbaGaamivamaaBa aaleaacaaIWaaabeaaaaGcdaqadaqaamaalaaabaGaeqiXdqhabaGa amOyaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaygW7cqGHZaWmcq GHVaWlcqGH1aqnaaGccaaIUaaabaaabaaaaaaa@C0F9@ (37)

Here the pressure and the energy are connected by the relation pV= 5 3 E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacaWGwb GaaGypamaalaaabaGaaGynaaqaaiaaiodaaaGaaGjcVlaadweaaaa@3E9D@ . As seen, the thermodynamic quantities increase with temperature much slower than at low temperatures.

Conclusion

The considered effect of dependence of the speed of light in vacuum on the radiation temperature is of fundamental importance for understanding the world around us and the early stage of evolution of the Universe. In the theories of special and general relativity the speed of light in vacuum is considered to be a cosmological constant. The equations of Einstein"s theory of general relativity are usually written in such form that their left part is expressed through the space-time curvature tensor and has a purely geometric nature, and the right part contains the energy-momentum tensor of matter and fields of different nature. As is known, Einstein himself was dissatisfied with such separation of geometry and matter in the equations. Accounting for dependence of the speed of light on conditions, at which its propagation occurs, results in that now the metric tensor itself, through the speed of light contained in it, proves to be directly dependent on the state of matter, and thus the interdependence of matter and geometry becomes closer.

Einstein was rather interested in evidence for the possible dependence of the speed of light on the external conditions. As PL Kapitsa13 recalled, when, working in the 30s of past century in the Cavendish Laboratory with Rutherford, he obtained magnetic fields 10 times stronger than those obtained before, a number of scientists advised him to make experiments on studying the influence of strong magnetic field on the speed of light. The one who insisted the most was Einstein. He said to Kapitsa: “I don"t believe that God created such the Universe, that the speed of light depends on nothing in it”. Yet Kapitsa refused the proposed experiment, on the ground that the experiment promised to be extremely difficult and the effect, if it had been discovered, for sure would have been at the edge of experimental accuracy and there would have been no credit to these results.

The above-stated calculations of dependence of the speed of light on temperature allow to definitely conclude that, as Einstein surmised, the magnetic field, similarly to temperature, will affect the speed of light propagation. We can estimate the order of magnitude of fields, at which the speed of light will change substantially, by equating the energies (2) and (3) . The estimation gives Gs. So, PL Kapitsa was right when he refused to perform a labor-consuming experiment, because the fields necessary for observation of such effect should be so strong that they could hardly be realized in modern conditions.

So long as, according to above mentioned estimates, in the first instances of existence of the Universe the speed of light exceeded its present value by many orders of magnitude, this should substantially affect the existing scenarios of the evolution of the Universe at its early stage.

Acknowledgments

None

Conflict of interest

Authors declare there is no conflicts of interest.

References

  1. AI Ahiezer, VB Beresteckii. Quantum electrodynamics. Russia: Nouka publishers; 1981. p. 432.
  2. Yu M Poluektov. Self-consistent field model for spatially inhomogeneous Bose systems. AIP Low Temp Phys. 2002;28(6):429.
  3. Yu M Poluektov. On the quantum-field description of many-particle Fermi systems with spontaneously broken symmetry. Ukr J Phys. 2005:50 (11):1237–1250.
  4. Yu M Poluektov. On the quantum-field description of many-particle Bose systems with spontaneously broken symmetry. Ukr J Phys. 2007;52(6):579–595.
  5. Yu M Poluektov. On the theory of a non-linear neutral scalar field with spontaneously broken symmetry. The Journal of Kharkov National University. 2009;859:9–20.
  6. Yu M Poluektov. Modified perturbation theory for the Yukawa model. Russian Physics Journal. 2010;53(2):163–171.
  7. Yu M Poluektov. Self-consistent description of a system of interacting phonons. Low Temp Phys. 2015;41(11):922.
  8. Yu M Poluektov. Self-consistent description of interacting phonons in a crystal lattice. East European Journal of Physics. 2016;3(3):35–46.
  9. AA Abrikosov, LP Gorkov, IE Dzyaloshinski, et al. Quantum field theoretical methods in statistical physics. USA: Dover Publications; 1975. p. 384 p.
  10. LD Landau, EM Lifshitz. Statistical physics. In JB Sykes, MJ Kearsley, editors. 3rd edn, Volume 5. Oxford: England Pergamon Press; 1980. p. 544.
  11. HA Bethe. The Electromagnetic shift of energy levels. Phys Rev. 1947;72:339.
  12. Ya B. Zeldovich, ID Novikov. The structure and evolution of the Universe. Russia: Nauka publishers; 1975. p.736.
  13. PL Kapitsa. Experiment, theory, practice. Russia: Nauka publishers; 1981. p. 496.
Creative Commons Attribution License

©2018 Poluektov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.