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Introduction
Maxwell’s classical equations in vacuum are linear and contain a 

fundamental constant of the velocity dimension which has the meaning 
of the speed of propagation of electromagnetic waves. Nevertheless 
within the framework of quantum electrodynamics the interaction of 
the electromagnetic field with the vacuum of the electron-positron 
field leads to interaction of photons with each other.1 Consequently, 
the equations of electromagnetic field become nonlinear. Although 
this nonlinearity and the effects of scattering of light on light are as a 
rule negligibly small, they can lead to qualitatively new phenomena, 
in particular, as shown in this work, to dependence of the speed of 
light of the equilibrium radiation on temperature.

It should be noted that the dependence of the speed of propagation 
of light in a material medium on temperature is a natural effect, 
because the dielectric permittivity of a medium depends on 
thermodynamic variables and, in particular, on temperature. In the 
case under consideration in this work, at issue is the dependence of 
the speed of light on temperature in vacuum, by which the complex 
nature of the physical vacuum is manifested.

The performed estimates show that the considered effect is 
extremely small at temperatures which can be realized at modern 
conditions, but it should be quite important in the first instances of 
evolution of the Universe after the Big Bang when temperatures were 
anomalously high in comparison with temperatures of the modern 
epoch. In this early stage of evolution the speed of light had to exceed 
the present one by many orders of magnitude. We calculate the 
thermodynamic characteristics of the equilibrium radiation with taking 
into account the dependence of the speed of light on temperature.

Self-consistent description of the nonlinear 
electromagnetic field

In order to describe the equilibrium electromagnetic field we 
will use the self-consistent field model in the version which was 
developed for the nonrelativistic Fermi and Bose systems.2−4 With 
regard to the relativistic field models, this approach was applied in. 
The influence of the nonlinear effects on sound propagation in a solid 
was investigated within the framework of this approach in works.7,8 
Usually the Hamiltonian of a considered many-particle system 
can be represented as a sum of the Hamiltonian of noninteracting 

particles and the operator of their interactions. The effectiveness of 
perturbation theory considerably depends on the successful choice 
of the main approximation. When using perturbation theory, most 
often one chooses the Hamiltonian of noninteracting particles as the 
main approximation and consideres the operator of their interaction 
as perturbation. Such a decomposition while studying many-particle 
systems proves, as a rule, to be unsuccessful, and to obtain physically 
correct results one needs to sum an infinite number of terms.9 With 
decreasing temperature the contribution of the kinetic energy into 
the total energy of a system decreases and the interaction energy 
between particles is coming to the foreground, as it no longer can 
be considered as a small correction to the kinetic energy. Moreover, 
the neglect of interaction in the main approximation does not allow 
to study effectively the phase transitions. It is possible, however, 
to reformulate perturbation theory to take the interaction into 
account approximately already in the main approximation by the 
self-consistent field method.2−6 Accounting for the phonon-phonon 
interaction in a solid in the continuum Debye model7,8 by means of 
this method leads to renormalization of the speed of sound and arising 
of its dependence on temperature. In this work a similar approach is 
applied for analysis of influence of the photon-photon interaction on 
light propagation in vacuum.

The energy density of the electromagnetic field can be presented 
as a sum of two terms

		  0= ,Iw w w+  	 (1)

where the first term which is quadratic in the electric and magnetic 
field intensities 
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 determines the energy of the noninteracting electromagnetic field, 
and the second term 
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describes the interaction between photons due to creation of 
virtual electron-positron pairs.1 The constant in (3) can be calculated 
by the methods of quantum electrodynamics1 and in Gaussian units 
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2= / 1/137e cα ≈  is the fine-structure constant, m is the electron 
mass. The given coefficients contain the constant c having the 
dimension of speed, which we will call the “bare” speed of light. For 
estimation of coefficients the value of this speed was taken equal to 
the observed speed of light, though, as will be shown, it somewhat 
differs from the observed speed of light at zero temperature. It 
is convenient to write the coefficient in formula (3) through the 
Compton wavelength of an electron = / mc  in the form 

3

2=D
mc

η

. It is interesting to estimate the value of the ratio of energies 0/Iw w

. This quantity is equal to the ratio of the field energy contained in 
the volume λ 3  to the rest energy of an electron. In addition, this 
ratio should be multiplied by the small dimensionless coefficient η . 
For the magnetic field intensity of the order of 610H   Gs we have 

20
0/ 10Iw w −
 , so that the contribution of interaction into the total 

field energy is indeed extremely small.

Let us proceed to the description of the electromagnetic filed in 
terms of the Fourier components of the fields, using the expansion of 
the fields in plane waves 

	
( , ) = ( ) , ( , ) = ( ) .ikr ikr

k k
k k
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Then the full Hamiltonian of the field in the volume V, in 
accordance with (1), is a sum of the free Hamiltonian and the 
interaction Hamiltonian 

			   0= ,IH H H+ 		  (5)
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Here ( ) = 1k∆  if = 0k  and ( ) = 0k∆  if 0k ≠ . In (6) and (7) 
we can pass to the operators of creation kja+  and annihilation kja  
of photons, using representations of the operators of the Fourier 
components of the fields: 
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where =k ckω , and the polarization vectors ( )je k  satisfy the 
conditions of orthonormality and completeness: 

* *
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j

k ke k e k e k e k
k
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′ −∑  	 (9)

as well as the conditions 

		
*( ) = 0, ( ) = ( ).j j jk e k e k e k−  	 (10)

The free Hamiltonian of the field (6) is reduced to a sum of the 
Hamiltonians of harmonic oscillators 

		   0
,

1= .
2k kj kj

k j
H a aω + + 

 
∑  	 (11)

The electromagnetic field with account of the nonlinear effects 
is characterized by the full Hamiltonian (5). In order to account 
for interaction in a many-particle system, usually one chooses the 
Hamiltonian of noninteracting particles as the main approximation 
and considers the interaction Hamiltonian as perturbation (in our 
case, those are 0H  (11) and IH  (7)). Such choice, as remarked 
above, is not optimal, because the effects caused by interaction 
are totally disregarded in the main approximation. Although the 
interaction is small in the considered case, it can lead, as we will 
see, to qualitatively new effects. It is known from the self-consistent 
approach for description of many-particles systems that accounting 
for the interaction effects in the main approximation leads to a change 
in the dispersion law of the initial particles and, thereby, we pass 
from the representation of free particles to the language of collective 
excitations – quasiparticles.

It is natural to consider that also in the case studied here the 
interaction effects will lead to renormalization of the “bare” speed 
of light c entering into the Hamiltonian. Taking into account this 
consideration, let us decompose the full Hamiltonian (5) into the main 
part and the perturbation in a different way, that is 

			   = ,S CH H H+  	 (12)

where the self-consistent (or approximating) Hamiltonian is chosen 
in the form similar to the free Hamiltonian (11), but with the speed of 
light c  being renormalized due to the photon-photon interaction:

		
0

,
= ,S k kj kj

k j
H a a Eω + +∑ 

  	 (13)

where =k ckω  . The correlation Hamiltonian describing the 
interaction between the renormalized or “dressed” photons is chosen 
from the condition that the full Hamiltonian should be unchanged:

	
0

,
= ( ) .C k k kj kj k I

k j k
H a a E Hω ω ω+− + − +∑ ∑

          (14)

This Hamiltonian describes the interaction between photons 
propagating with the renormalized speed of light, which we will 
not consider. Formulas (13), (14) contain the non-operator term 

0E , taking account of which proves to be important for correct 
formulation of the self-consistent field model. Let us choose it from 
the consideration that the approximating Hamiltonian (13) should be 
maximally close to the exact Hamiltonian. This means we have to 
require that the quantity | |=| |S CI H H H≡ 〈 − 〉 〈 〉  should be minimal, 
that is equal to zero. From here we obtain the conditions being natural 
for the self-consistent field theory:

		  = , = 0.S CH H H〈 〉 〈 〉 〈 〉  	 (15)

The averaging is performed by means of the statistical operator 

		  = exp ( ),SF Hρ β −  	 (16)

Where F is the free energy, = 1/ Tβ  is the inverse temperature. 
The condition (15) allows to determine the non-operator part of the 
Hamiltonian (13):

	    
0 = 2( ) ,k I

k k
E c c kf ck H− + + 〈 〉∑ ∑

   	 (17)

where the distribution function of the renormalized photons has 
the Planck form 
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and does not depend on the polarization index. From the 
normalization condition for the statistical operator (16) Sp = 1ρ  it 
follows the expression for the free energy of radiation
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With neglect of the photon-photon interaction and zero 
fluctuations, from formula (19), of course, there follow the usual 
formulas of the thermodynamics of blackbody radiation.9,10 It is 
natural to require that in the used approximation with the Hamiltonian 
(13) and the free energy (19), like in the case of a gas of noninteracting 
photons, the thermodynamic relations should hold. Since the 
introduced renormalized speed c  itself can, in principle, depend 
on thermodynamic variables, then in order for the thermodynamic 
relations to hold the following condition should be satisfied:

			 
= 0.F

c
∂
∂ 

 		 (20)

From this condition and formula (19) it follows the relation which 
determines the renormalized speed:
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Since formula (21) contains the temperature-dependent distribution 
function (18) then, naturally, also the speed of light = ( )c c T   is a 
function of temperature. Thus, we have to calculate the average of the 
interaction Hamiltonian IH〈 〉 . Here, as in the theory of phonons in 
solids,7,8 divergent integrals appear. While describing phonons within 
the continuum model it is natural to cut off such integrals at the wave 
number, which equals the inverse average distance between particles 
or, at integration over frequencies, at the Debye frequency. In the case 
of photons, we will cut off divergent integrals at some wave number 

mk , the choice of which is discussed a little later. With this in mind, 
the calculation of the average of the interaction Hamiltonian (7) gives
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where 
4
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, 4(4) = / 90 1.0823ζ π ≈  is the zeta 

function. Let /c cσ ≡   be the ratio of the temperature-dependent speed 

of light to the “bare” speed of light. Considering that 2=
2kk
Vkf J
π∑ 

 , 
from (21) we get the equation for σ :
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This implies that the ratio of the speed of light at zero temperature 
0c  to the “bare” speed of light 0 0 /c cσ ≡   is determined by the 

formula:

		     
4

0
328= 1 .
15 mD ckσ +   		  (24)

It is the speed of light at zero temperature that is a directly 
measurable speed. As follows from (24), this speed does not coincide 

with the “bare” speed of light, which is caused by taking into 
account the interaction between photons. Because of the weakness 
of this interaction c and 0c  should differ very little and in the main 
approximation they could be considered equal, which would not affect 
further conclusions. Nevertheless, it is of certain interest to clarify in 
more detail the relation between c and 0c , which, as seen from (24), 
is essentially determined by the choice of the wave number mk  at 
which the cut-off of divergent integrals is carried out. We find this 
wave number from the condition 2

0 0=mc k mc 

 , so that mk  is equal 
to the inverse Compton wavelength of an electron 1

0 0= / =mk mc −


 . 
This condition implies that a real electron cannot be created from the 
energy of zero oscillations. A similar method of cutting off divergent 
integrals was employed, for example, by Bethe in the nonrelativistic 
calculation of the Lamb shift.11 With such cut-off procedure, from (24) 
it follows

			 
6
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χ η≡ , 
2
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αη
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≡  and 
2

0
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e
c

α ≡

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 is the fine-

structure constant written through the observed speed of light. 
Formula (25) determines the ratio 0 0 /c cσ ≡   through the observed 
fine-structure constant. With the help of it, the unobserved “bare” 
speed can be eliminated from Eq. (23). As a result, we come to the 
equation for the dimensionless quantity 0 0/ = /c cσ σ σ≡   , which 
equals the ratio of the observed speeds of light at finite and at zero 
temperatures:

			 
5 4 4= .bσ σ τ−  	 (26)

Here 5 7
03 4.9 10b χσ −≡ ≈ ⋅ , 0/T Tτ ≡  is the dimensionless 

temperature, and 0T  is characteristic temperature determined by the 
rest energy of an electron

		
2 1/4
0 0= 2[ (4)] ,mc Tζ  	 (27)

so that 10
0 0.29 10T ≈ ⋅  K. Thus, it follows from formula (26) that 

the speed of light rises with increasing temperature. As opposed to the 
“bare” photons with the dispersion law = ckω , the photons which 
speed is determined by the self-consistency Eq. (26) and depends on 
temperature have the dispersion law = ckω  , and it is natural to call 
them “self-consistent” photons.

At 4 1bτ   we have 41 bσ τ≈ + . Since the coefficient b is very 
small, then the temperature dependence of the speed of light can 
manifest itself only at very high temperatures. For the observed relict 
radiation with the temperature = 2.73T K  we have 431 3.8 10σ −− ≈ ⋅

, so that the speed of light practically coincides with the speed of 
light at zero temperature. Inside stars, temperature can reach tens of 
millions degrees. For example, at the temperature inside the Sun that 
equals 15 million degrees, we have 161 3.4 10σ −− ≈ ⋅ . This means that 
the speed of light inside the Sun differs from the speed of light at 
zero temperature by the amount 5

0= 10c c c −∆ − ≈   cm/s. In order for 
the speed of light of the equilibrium radiation at a finite temperature 
to differ from the speed of light at zero temperature by one percent 

= 1.01σ , the temperature 10
012 3.5 10T T≈ ≈ ⋅ K is required.

In the limit of very high temperatures 1/4 38bτ − ≈  we have

		
1/5 4/5.bσ τ≈  	 (28)

Accounting for the dependence of the speed of light on temperature 
should be of principal importance in the very early stage of evolution 
of the Universe, when the dependence (28) could be valid. In the 
model of the hot Universe,12 in the first instances after the Big Bang 
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the temperature of the Universe was anomalously high in comparison 
with modern temperatures. As follows from the relations obtained 
above, also the speed of light was large in comparison with the 
present one. As the Universe was expanding and cooling the speed 
of light was decreasing and in the modern epoch it reached its value, 
practically equal to that of the speed of light at zero temperature. 
At the Planck temperature 32 191.42 10 K 10 GeVpT ≈ ⋅ ≈  the speed of 
light pc  had to exceed the present one by many orders of magnitude: 

17
0/ 0.8 10pc c ≈ ⋅  . The illustration of how the speed of light was 

varying as the Universe was cooling in the first instances after the Big 
Bang is given in Table 1.
Table 1 The value of the speed of light at different temperatures in the first 
instances after the Big Bang

t,s T, Gev T,K
0ô = T / T 0c / c 

445.4 10−× 191.2 10× 321.42 10× 224.9 10× 170.8 10×

3910− 1610 2910 193.5 10× 142.3 10×

1110− 100 1510 53.5 10× 31.5 10×

510− 0.2 122 10× 26.9 10× 10

210− 210− 112 10× 69 1.9

1.5 30.7 10−×⋅ 100.8 10× 2.8 1.00003

Thermodynamics of the equilibrium radiation 
of self-consistent photons

Let us give general formulas for the thermodynamic functions 
of a gas of self-consistent photons. The free energy (19), expressed 
through the observed speed of light, can be written in the form

	

4 8
6

0 04 8
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3 2V
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 is the energy of zero oscillations. It is 

easy to verify that Eq. (26) follows from the condition = 0
V

F
Uσ
 ∂
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. This condition allows to calculate from the expression for the free 

energy (29) by the usual formulas the pressure =
T

Fp
V
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 and the 

entropy =
V

FS
T
∂ − ∂ 

, and due to fulfillment of this condition the 

temperature-dependent parameter σ  should not be differentiated. 
Considering (26), the formulas for the pressure and entropy can be 
written in the form 

	

4
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4
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3
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4= .VUS
T
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The total energy =E F TS+  is 
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3= 1 (1 ) .
2VE U τσ σ

σ
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



 	 (32)

With neglect of the interaction between photons, when 0 = = 1σ σ  
and without taking into account vacuum fluctuations formulas 
(29) – (32) turn into classical formulas of the theory of blackbody 

radiation.10 In order to pass to this limit it is convenient to use the 

formula 
2

4 2 3 3 3 3
0 0 0 0 0

2 (4)= =
45

VU V V
T c c

ζ π
π σ σ 

 

. But, even with neglect of 

the interaction between photons, accounting for vacuum fluctuations 
leads to appearance of the additional energy VU  in the total energy 
of blackbody radiation, and a negative contribution from vacuum 
fluctuations appears in the expression for the pressure (30). Hence, 
instead of the usual relation between energy and pressure =pV E
,10 with account of fluctuations we obtain 3 = 4 VpV E U− . At 
temperatures 0<T T  the total pressure proves to be negative and 
changes sign, becoming positive, at 0>T T . Accounting for the 
interaction between photons leads to a little shift of the temperature at 
which the pressure changes sign. This temperature 1T  can be found 
from Eqs. (26) and (30), that gives 1 0 (1 3 )T T χ≈ + . Note that vacuum 
fluctuations do not give a contribution into the enthalpy

		

4

0 3= = 4 ,VW E pV U τσ
σ

+


 	 (33)

as well as into the entropy (31).

For calculation of the heat capacity of a gas of photons 
= ( / )V VC T S T∂ ∂ , it is already necessary to account for the 

dependence of the speed of light on temperature, using the formula 
(26), so that we obtain

		

3
0

3
0

12= .
(5 4)

V
V

UC
T
σ σ τ

σ σ−





 	 (34)

Let us also give the formula for the number of photons 

		

3

04 3
0

90 (3)= .VUN
T

ζ τσ
π σ

 	 (35)

In the low-temperature limit 0T T  formulas (33)–(35), of 
course, turn into the known formulas of the theory of blackbody 
radiation.10

The photon distribution function and 
thermodynamics of the equilibrium radiation 
at high temperatures

Now we consider separately the most interesting region of high 
temperatures 1/4bτ −

 . The distribution functions for the number of 
photons and the energy with respect to wave numbers have the Planck 
form at all temperatures

	  
2 3

2 2= , = ,
( 1) ( 1)k kLk Lk

k ckn
e e

ε
π π− −



  	 (36)

where /L c T≡ 

 , so that the total densities of the number of 

photons and energy are respectively 
0

= kn n dk∞
∫  and 

0
= kdkε ε

∞
∫ . 

However, the parameter L entering into (36) depends on temperature 
differently in the low-temperature and high-temperature limits. At low 
temperatures 1/4

0 0/ = [2 / 90 ]( / )L c T π τ≡ 

 , and at high temperatures 
1/5

0= /L B τ , where 1/5 1/4= 2 / 90 = 0.11B bπ . In particular, in the case 
of low temperatures, as is known, maximums of the distributions (36) 
shift to higher energies proportional to temperature, respectively as 

max0 = 0.782k τ  and max0 = 1.383k τ  (Wien’s displacement law).10 In 
the limit of high temperatures 1/4bτ −

  maximums of the distributions 
(36) also shift to higher energies with increasing temperature, but 
much slower, as 1/5

max0 = 14.51k τ  and 1/5
max0 = 25.65k τ  respectively.

When going over to the distribution functions with respect to 
frequencies = ckω   in (36) /Lk Tω≡ 

 , and maximums of the 
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distributions with respect to frequencies shift with temperature in the 
same way at all temperatures: as max / = 1.594Tω  for the number of 
photons and max / = 2.821Tω  for the energy.

In the high-temperature limit the temperature dependencies of 
thermodynamic functions of the equilibrium radiation are determined 
by the formulas:

8/5 8/5
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3/5 3/5
0 0

0 0
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0
0 3/5 4
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2 2
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						            (37)

Here the pressure and the energy are connected by the relation 
5=
3

pV E . As seen, the thermodynamic quantities increase with 

temperature much slower than at low temperatures.

Conclusion
The considered effect of dependence of the speed of light in 

vacuum on the radiation temperature is of fundamental importance 
for understanding the world around us and the early stage of evolution 
of the Universe. In the theories of special and general relativity the 
speed of light in vacuum is considered to be a cosmological constant. 
The equations of Einstein’s theory of general relativity are usually 
written in such form that their left part is expressed through the space-
time curvature tensor and has a purely geometric nature, and the right 
part contains the energy-momentum tensor of matter and fields of 
different nature. As is known, Einstein himself was dissatisfied with 
such separation of geometry and matter in the equations. Accounting 
for dependence of the speed of light on conditions, at which its 
propagation occurs, results in that now the metric tensor itself, through 
the speed of light contained in it, proves to be directly dependent 
on the state of matter, and thus the interdependence of matter and 
geometry becomes closer.

Einstein was rather interested in evidence for the possible 
dependence of the speed of light on the external conditions. As PL 
Kapitsa13 recalled, when, working in the 30s of past century in the 
Cavendish Laboratory with Rutherford, he obtained magnetic fields 
10 times stronger than those obtained before, a number of scientists 
advised him to make experiments on studying the influence of strong 
magnetic field on the speed of light. The one who insisted the most 
was Einstein. He said to Kapitsa: “I don’t believe that God created 
such the Universe, that the speed of light depends on nothing in it”. 
Yet Kapitsa refused the proposed experiment, on the ground that the 
experiment promised to be extremely difficult and the effect, if it had 
been discovered, for sure would have been at the edge of experimental 
accuracy and there would have been no credit to these results.

The above-stated calculations of dependence of the speed of light 
on temperature allow to definitely conclude that, as Einstein surmised, 
the magnetic field, similarly to temperature, will affect the speed of 
light propagation. We can estimate the order of magnitude of fields, 
at which the speed of light will change substantially, by equating the 

energies (2) and (3) 0 Iw w . The estimation gives 1610H   Gs. So, 
PL Kapitsa was right when he refused to perform a labor-consuming 
experiment, because the fields necessary for observation of such 
effect should be so strong that they could hardly be realized in modern 
conditions.

So long as, according to above mentioned estimates, in the first 
instances of existence of the Universe the speed of light exceeded its 
present value by many orders of magnitude, this should substantially 
affect the existing scenarios of the evolution of the Universe at its 
early stage.
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