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Abstract

It is shown that the interaction of the electromagnetic field with the vacuum of the
electron-positron field gives rise to dependence of the speed of light propagation on
the radiation temperature. Estimates show that in the modern epoch, even at very
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high temperatures, such for example which exist in the star interiors, the temperature-

dependent correction to the speed of light proves to be extremely small. But in the
cosmological model of the hot Universe, in the first instances after the Big Bang the
temperature was so high that the speed of light exceeded its present value by many
orders of magnitude. The effect of dependence of the speed of light on temperature

must be important for understanding the early evolution of the Universe.

Keywords: speed of light, electromagnetic field, electron-positron vacuum,

temperature, model of the hot Universe

Correspondence: Yu M Poluektov, National Science Center,
Kharkov Institute of Physics and Technology, Akhiezer Institute
for Theoretical Physics, 61 108 Kharkov, Ukraine,

Email yuripaluektov@kipt.kharkov.ua

Received: November 21,2017 | Published: December 03,
2018

Introduction

Maxwell’s classical equations in vacuum are linear and contain a
fundamental constant of the velocity dimension which has the meaning
of the speed of propagation of electromagnetic waves. Nevertheless
within the framework of quantum electrodynamics the interaction of
the electromagnetic field with the vacuum of the electron-positron
field leads to interaction of photons with each other.! Consequently,
the equations of electromagnetic field become nonlinear. Although
this nonlinearity and the effects of scattering of light on light are as a
rule negligibly small, they can lead to qualitatively new phenomena,
in particular, as shown in this work, to dependence of the speed of
light of the equilibrium radiation on temperature.

It should be noted that the dependence of the speed of propagation
of light in a material medium on temperature is a natural effect,
because the dielectric permittivity of a medium depends on
thermodynamic variables and, in particular, on temperature. In the
case under consideration in this work, at issue is the dependence of
the speed of light on temperature in vacuum, by which the complex
nature of the physical vacuum is manifested.

The performed estimates show that the considered effect is
extremely small at temperatures which can be realized at modern
conditions, but it should be quite important in the first instances of
evolution of the Universe after the Big Bang when temperatures were
anomalously high in comparison with temperatures of the modern
epoch. In this early stage of evolution the speed of light had to exceed
the present one by many orders of magnitude. We calculate the
thermodynamic characteristics of the equilibrium radiation with taking
into account the dependence of the speed of light on temperature.

Self-consistent description of the nonlinear
electromagnetic field

In order to describe the equilibrium electromagnetic field we
will use the self-consistent field model in the version which was
developed for the nonrelativistic Fermi and Bose systems.”™ With
regard to the relativistic field models, this approach was applied in.
The influence of the nonlinear effects on sound propagation in a solid
was investigated within the framework of this approach in works.”
Usually the Hamiltonian of a considered many-particle system
can be represented as a sum of the Hamiltonian of noninteracting

particles and the operator of their interactions. The effectiveness of
perturbation theory considerably depends on the successful choice
of the main approximation. When using perturbation theory, most
often one chooses the Hamiltonian of noninteracting particles as the
main approximation and consideres the operator of their interaction
as perturbation. Such a decomposition while studying many-particle
systems proves, as a rule, to be unsuccessful, and to obtain physically
correct results one needs to sum an infinite number of terms.” With
decreasing temperature the contribution of the kinetic energy into
the total energy of a system decreases and the interaction energy
between particles is coming to the foreground, as it no longer can
be considered as a small correction to the kinetic energy. Moreover,
the neglect of interaction in the main approximation does not allow
to study effectively the phase transitions. It is possible, however,
to reformulate perturbation theory to take the interaction into
account approximately already in the main approximation by the
self-consistent field method.>® Accounting for the phonon-phonon
interaction in a solid in the continuum Debye model’® by means of
this method leads to renormalization of the speed of sound and arising
of its dependence on temperature. In this work a similar approach is
applied for analysis of influence of the photon-photon interaction on
light propagation in vacuum.

The energy density of the electromagnetic field can be presented
as a sum of two terms

w=wy+wy, Q)

where the first term which is quadratic in the electric and magnetic
field intensities
E*+H®
Wy == @
87
determines the energy of the noninteracting electromagnetic field,

and the second term

W, =2D [3E2E2 ~HH? - (EH? + HE? )} + 2mm
(3)
+7D[(EH)2 + (HE)Z]

describes the interaction between photons due to creation of
virtual electron-positron pairs.! The constant in (3) can be calculated
by the methods of quantum electrodynamics' and in Gaussian units

3 . . . 2
D=y h4 o where the dimensionless coefficient , _ & ~~75107
m'c 45(4r)
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On the dependence of the speed of light in vacuum on temperature

a=¢*/he~1/137 is the fine-structure constant, m is the electron
mass. The given coefficients contain the constant ¢ having the
dimension of speed, which we will call the “bare” speed of light. For
estimation of coefficients the value of this speed was taken equal to
the observed speed of light, though, as will be shown, it somewhat
differs from the observed speed of light at zero temperature. It

is convenient to write the coefficient in formula (3) through the
. 3

Compton wavelength of an electron =7#/mc in the form D=p—s
mc

. It is interesting to estimate the value of the ratio of energies w, / w,
. This quantity is equal to the ratio of the field energy contained in
the volume 4 to the rest energy of an electron. In addition, this
ratio should be multiplied by the small dimensionless coefficient 7 .
For the magnetic field intensity of the order of H ~10° Gs we have
w; /wy ~1072°, so that the contribution of interaction into the total
field energy is indeed extremely small.

Let us proceed to the description of the electromagnetic filed in
terms of the Fourier components of the fields, using the expansion of
the fields in plane waves

E(r,)=YE ()", H(r,t)=YH(t)e"". )

k k

Then the full Hamiltonian of the field in the volume V, in
accordance with (1), is a sum of the free Hamiltonian and the
interaction Hamiltonian

H=H,+H,, %)
where
_r + +
Ho*_Z(EkEk‘*Hka)a (6)
87 k
H; =2VDx2mm

x Z{z(E,jl E, XE;3 E,, ) {H,;H,{Z )(H,j3 Hy, ) — 0mm

{k;
(B, ) Hi Hyy ) A Hi Hy ) iy sy < 2m
X A(ky ke, + ks — ky)+3.5mm 7

+ + + +
+7VDMZ}{(E,€1 Hiy, N EiHi, W H By \ Hiy By ) Omm
X A(ky =k, + k5 —ky).

Here A(k)=1 if k=0 and A(k)=0 if £k=0. In (6) and (7)
we can pass to the operators of creation a,fj and annihilation a;
of photons, using representations of the operators of the Fourier
components of the fields:

. |27ho,
E, =i { %z ¥ (a)—a e (k),2mm
J

. |2xh 4
Hy =ic |=—2>(a)+a_)lkxe,(k)],
Vo, 5

where @, =ck, and the polarization vectors e;(k) satisfy the
conditions of orthonormality and completeness:
k,k,

®)

(002, () =8, S (e ()= 0, 2 ©
as well as the conditicjms
kej(k)ZO, e;(—k):ej(k). (10)

The free Hamiltonian of the field (6) is reduced to a sum of the
Hamiltonians of harmonic oscillators
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H0=Zha)k ayay +5 . (11)

k

The electromagnetic ﬁ]eld with account of the nonlinear effects
is characterized by the full Hamiltonian (5). In order to account
for interaction in a many-particle system, usually one chooses the
Hamiltonian of noninteracting particles as the main approximation
and considers the interaction Hamiltonian as perturbation (in our
case, those are H, (11) and H, (7)). Such choice, as remarked
above, is not optimal, because the effects caused by interaction
are totally disregarded in the main approximation. Although the
interaction is small in the considered case, it can lead, as we will
see, to qualitatively new effects. It is known from the self-consistent
approach for description of many-particles systems that accounting
for the interaction effects in the main approximation leads to a change
in the dispersion law of the initial particles and, thereby, we pass
from the representation of free particles to the language of collective
excitations — quasiparticles.

It is natural to consider that also in the case studied here the
interaction effects will lead to renormalization of the “bare” speed
of light ¢ entering into the Hamiltonian. Taking into account this
consideration, let us decompose the full Hamiltonian (5) into the main
part and the perturbation in a different way, that is

H=Hg+H,, (12)

where the self-consistent (or approximating) Hamiltonian is chosen
in the form similar to the free Hamiltonian (11), but with the speed of
light C being renormalized due to the photon-photon interaction:

Hy =Zha~)ka,:;.a,g. +E,, (13)
k.j

where @, =ck. The correlation Hamiltonian describing the
interaction between the renormalized or “dressed” photons is chosen
from the condition that the full Hamiltonian should be unchanged:

He =Y, —cbk)a;jakj +>ho, —Ey+H,. (14)
k.j k

This Hamiltonian describes the interaction between photons
propagating with the renormalized speed of light, which we will
not consider. Formulas (13), (14) contain the non-operator term
E,, taking account of which proves to be important for correct
formulation of the self-consistent field model. Let us choose it from
the consideration that the approximating Hamiltonian (13) should be
maximally close to the exact Hamiltonian. This means we have to
require that the quantity / =|(H —Hg) |=|(H)| should be minimal,
that is equal to zero. From here we obtain the conditions being natural
for the self-consistent field theory:

(H)=(Hyg), (H¢)=0. (15)
The averaging is performed by means of the statistical operator
p=exp f(F ~H), (16)

Where F is the free energy, f=1/T is the inverse temperature.
The condition (15) allows to determine the non-operator part of the
Hamiltonian (13):

E, =2(c— )Y kfy, + > hck+(H,), a7
k k

where the distribution function of the renormalized photons has
the Planck form
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I
S aay) = B -1

and does not depend on the polarization index. From the
normalization condition for the statistical operator (16) Spp=1 it
follows the expression for the free energy of radiation

(18)

F=2(c-&)Shkf, + Y hck+(H, )+ 2mm
k k
275 Inf1—e 7%,
Si1-e %)

With neglect of the photon-photon interaction and zero
fluctuations, from formula (19), of course, there follow the usual
formulas of the thermodynamics of blackbody radiation.*® Tt is
natural to require that in the used approximation with the Hamiltonian
(13) and the free energy (19), like in the case of a gas of noninteracting
photons, the thermodynamic relations should hold. Since the
introduced renormalized speed C itself can, in principle, depend
on thermodynamic variables, then in order for the thermodynamic
relations to hold the following condition should be satisfied:

OF (20)

(19)

Z o
oc

From this condition and formula (19) it follows the relation which
determines the renormalized speed:

KH))
Gme=—sl—. @1)
2 hkf,

oc %

Since formula (21) contains the temperature-dependent distribution
function (18) then, naturally, also the speed of light ¢ =¢(T) is a
function of temperature. Thus, we have to calculate the average of the
interaction Hamiltonian (/) . Here, as in the theory of phonons in
solids,”® divergent integrals appear. While describing phonons within
the continuum model it is natural to cut off such integrals at the wave
number, which equals the inverse average distance between particles
or, at integration over frequencies, at the Debye frequency. In the case
of photons, we will cut off divergent integrals at some wave number
k,, , the choice of which is discussed a little later. With this in mind,
the calculation of the average of the interaction Hamiltonian (7) gives

1312V Dite zj(km +Jj

4
where J=6§(4)(§) , (@) =7"/90~1.0823 is the zeta
C

(Hp)= (22)

function. Let o =¢/ ¢ be the ratio of the temperature-dependent speed

of light to the “bare” speed of light. Considering that ) 7kf, = th J,
from (21) we get the equation for o : 2
4
= 1+ﬁDhck;‘n 32816 £ (4)Dhe % (23)
15 he) o

This implies that the ratio of the speed of light at zero temperature
C, to the “bare” speed of light O, = C, / ¢ is determined by the
formula:

328

o =1+===Dhck?. (24)
15

It is the speed of light at zero temperature that is a directly
measurable speed. As follows from (24), this speed does not coincide
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with the “bare” speed of light, which is caused by taking into
account the interaction between photons. Because of the weakness
of this interaction ¢ and ¢, should differ very little and in the main
approximation they could be considered equal, which would not affect
further conclusions. Nevertheless, it is of certain interest to clarify in
more detail the relation between ¢ and ¢, , which, as seen from (24),
is essentially determined by the choice of the wave number £, at
which the cut-off of divergent integrals is carried out. We find this
wave number from the condition %iéyk, =méZ , so that k, is equal
to the inverse Compton wavelength of an electron k, =mé, /li=;".
This condition implies that a real electron cannot be created from the
energy of zero oscillations. A similar method of cutting off divergent
integrals was employed, for example, by Bethe in the nonrelativistic
calculation of the Lamb shift.!! With such cut-off procedure, from (24)
it follows

O'0=1+)50'g,
2

(25)

2
where ;(—32877 My = d aoze—~ is the fine-

o

15 45(4r)
structure constant written through the observed speed of light.
Formula (25) determines the ratio o,=¢,/c through the observed
fine-structure constant. With the help of it, the unobserved “bare”
speed can be eliminated from Eq. (23). As a result, we come to the
equation for the dimensionless quantity ¢ =0c/0,=c¢/¢,, which
equals the ratio of the observed speeds of light at finite and at zero
temperatures:

& -c*=br'.

Here b=3y0,~49107, 7=T/T, is the dimensionless
temperature, and 7}, is characteristic temperature determined by the
rest energy of an electron

(26)

2[¢ @ T,, 27)

so that 7, ~0.29 10" K. Thus, it follows from formula (26) that
the speed of light rises with increasing temperature. As opposed to the
“bare” photons with the dispersion law @ = ck , the photons which
speed is determined by the self-consistency Eq. (26) and depends on
temperature have the dispersion law @ = ¢k , and it is natural to call
them “self-consistent” photons.

méy =

At br* <1 we have & ~1+br*. Since the coefficient b is very
small, then the temperature dependence of the speed of light can
manifest itself only at very high temperatures. For the observed relict
radiation with the temperature T =2.73K we have 6 —1~3.8107%
, so that the speed of light practically coincides with the speed of
light at zero temperature. Inside stars, temperature can reach tens of
millions degrees. For example, at the temperature inside the Sun that
equals 15 million degrees, we have & —1~3.4107'® . This means that
the speed of light inside the Sun differs from the speed of light at
zero temperature by the amount A¢=é—&, ~10™ cm/s. In order for
the speed of light of the equilibrium radiation at a finite temperature
to differ from the speed of light at zero temperature by one percent
& =1.01, the temperature T ~ 127, ~3.510" K is required.

V4 ~38 we have

(28)

In the limit of very high temperatures 7 > b~
&~ BS54

Accounting for the dependence of the speed of light on temperature
should be of principal importance in the very early stage of evolution
of the Universe, when the dependence (28) could be valid. In the
model of the hot Universe,'? in the first instances after the Big Bang
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the temperature of the Universe was anomalously high in comparison
with modern temperatures. As follows from the relations obtained
above, also the speed of light was large in comparison with the
present one. As the Universe was expanding and cooling the speed
of light was decreasing and in the modern epoch it reached its value,
practically equal to that of the speed of light at zero temperature.
At the Planck temperature 7, ~1.42 102K ~10"GeV  the speed of
light ¢ , had to exceed the present one by many orders of magnitude:
¢,/¢ ~0.810". The illustration of how the speed of light was
varying as the Universe was cooling in the first instances after the Big
Bang is given in Table 1.

Table 1 The value of the speed of light at different temperatures in the first
instances after the Big Bang

Ls T, Gev TK 0=T/T, ¢/¢,
54x107%  12x10"°  1.42x10%  4.9x102  0.8x10"
107 10 107 3.5x10  2.3x10"
107" 100 10" 3.5x10°  1.5x10°
107 0.2 210" 69x10> 10

1072 1072 2%10" 69 1.9

1.5 0.7x1073 0.8x10'° 2.8 1.00003

Thermodynamics of the equilibrium radiation
of self-consistent photons
Let us give general formulas for the thermodynamic functions

of a gas of self-consistent photons. The free energy (19), expressed
through the observed speed of light, can be written in the form

F 4 Yt 9 6 8
—=1+30y|1-—0 | —F+=x0,—> 29
, 0 [ 3 j 5'4 2 X0y 5_8 ( )
V mc 2 1 . . . .
where U, E—zTocro is the energy of zero oscillations. It is

easy to verify that Eq. (26) follows from the condition %[ij =0
o\Yr

. This condition allows to calculate from the expression for the free

energy (29) by the usual formulas the pressure p = —(a—FJ and the
T

entropy S = —(g—l;j , and due to fulfillment of this condition the

v

temperature-dependent parameter & should not be differentiated.
Considering (26), the formulas for the pressure and entropy can be
written in the form

Uyl 30,(, 5.\

=— l+—* 1-=6 , 30
P 7[ 2( 3 )? S

3
S:Mi_}_ 31)

I, o

The total energy E=F +TS is

_ 3 .7

E*UV 1+EC70(1+O')? . (32)

With neglect of the interaction between photons, when o, =¢ =1
and without taking into account vacuum fluctuations formulas
(29) — (32) turn into classical formulas of the theory of blackbody
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radiation.'® In order to pass to this limit it is convenient to use the
U, . 204 _ 7’
i V=557V 3~3
T, oy C, 450,h°c,
the interaction between photons, accounting for vacuum fluctuations
leads to appearance of the additional energy U, in the total energy
of blackbody radiation, and a negative contribution from vacuum
fluctuations appears in the expression for the pressure (30). Hence,
instead of the usual relation between energy and pressure pV =FE
,'° with account of fluctuations we obtain 3pV =E-4U, . At
temperatures T <7, the total pressure proves to be negative and
changes sign, becoming positive, at T >T7;. Accounting for the
interaction between photons leads to a little shift of the temperature at
which the pressure changes sign. This temperature 7; can be found
from Eqs. (26) and (30), that gives 7, = T;(1+3 ) . Note that vacuum
fluctuations do not give a contribution into the enthalpy
4

formula . But, even with neglect of

W=E+pV=4U,0,—, (33)
o

as well as into the entropy (31).

For calculation of the heat capacity of a gas of photons
C,=T(@S/0T),, it is already necessary to account for the
dependence of the speed of light on temperature, using the formula
(26), so that we obtain

26,U, & 7
C, = - —-
I, (Go-4¢6
Let us also give the formula for the number of photons
0,3 U, 7
=73 5 % -
z T, &

In the low-temperature limit 7 < 7; formulas (33)—(35), of
course, turn into the known formulas of the theory of blackbody
radiation.'

The photon distribution function and
thermodynamics of the equilibrium radiation
at high temperatures

(34

(3%)

Now we consider separately the most interesting region of high
temperatures 7 >> b™""* . The distribution functions for the number of
photons and the energy with respect to wave numbers have the Planck
form at all temperatures

K hek’

—_— g, =
(e -1) g

ey (36)

n, =

where L=#c/T, so that the total densities of the number of
photons and energy are respectively n =j:nkdk and &= I:gkdk.

However, the parameter L entering into (36) depends on temperature
differently in the low-temperature and high-temperature limits. At low

temperatures L=hc, /T =27/ 90" Xo/7) , and at high temperatures

L=B, /7" where B=27b"/90"*=0.11.1n particular, in the case
of low temperatures, as is known, maximums of the distributions (36)
shift to higher energies proportional to temperature, respectively as
k. ..0o=0.7827 and k_,,=1.3837 (Wien’s displacement law)." In

max0 ‘max 0
the limit of high temperatures 7 > b™"* maximums ofthe distributions
(36) also shift to higher energies with increasing temperature, but

=14.517"° and k

max 0

much slower, as £, =25.657" respectively.

‘max 0

When going over to the distribution functions with respect to
frequencies @=ck in (36) Lk=ha/T , and maximums of the

Citation: Poluektov YM. On the dependence of the speed of light in vacuum on temperature. Phys Astron Int J. 2018;2(6):567-571. DOI:

10.15406/paij.2018.02.00143


https://doi.org/10.15406/paij.2018.02.00143

On the dependence of the speed of light in vacuum on temperature

distributions with respect to frequencies shift with temperature in the
same way at all temperatures: as fi@,,,, /T =1.594 for the number of

ax

photons and %@, /T =2.821 for the energy.

In the high-temperature limit the temperature dependencies of
thermodynamic functions of the equilibrium radiation are determined
by the formulas:

5U.0 % 3 5
:5 1;01)37, E=EUVO'0F,2mm
3/5 3/5
g 4Uy0 (1] G- 12U, 0, (zj 2m
8/5 3/5
B T _90¢3)Uyo,( T
W=4U,00—=, N=—37"=—"2—| .
b V4 I, \b

Here the pressure and the energy are connected by the relation
pV=§E . As seen, the thermodynamic quantities increase with

temperature much slower than at low temperatures.

Conclusion

The considered effect of dependence of the speed of light in
vacuum on the radiation temperature is of fundamental importance
for understanding the world around us and the early stage of evolution
of the Universe. In the theories of special and general relativity the
speed of light in vacuum is considered to be a cosmological constant.
The equations of Einstein’s theory of general relativity are usually
written in such form that their left part is expressed through the space-
time curvature tensor and has a purely geometric nature, and the right
part contains the energy-momentum tensor of matter and fields of
different nature. As is known, Einstein himself was dissatisfied with
such separation of geometry and matter in the equations. Accounting
for dependence of the speed of light on conditions, at which its
propagation occurs, results in that now the metric tensor itself, through
the speed of light contained in it, proves to be directly dependent
on the state of matter, and thus the interdependence of matter and
geometry becomes closer.

Einstein was rather interested in evidence for the possible
dependence of the speed of light on the external conditions. As PL
Kapitsa'® recalled, when, working in the 30s of past century in the
Cavendish Laboratory with Rutherford, he obtained magnetic fields
10 times stronger than those obtained before, a number of scientists
advised him to make experiments on studying the influence of strong
magnetic field on the speed of light. The one who insisted the most
was FEinstein. He said to Kapitsa: “I don’t believe that God created
such the Universe, that the speed of light depends on nothing in it”.
Yet Kapitsa refused the proposed experiment, on the ground that the
experiment promised to be extremely difficult and the effect, if it had
been discovered, for sure would have been at the edge of experimental
accuracy and there would have been no credit to these results.

The above-stated calculations of dependence of the speed of light
on temperature allow to definitely conclude that, as Einstein surmised,
the magnetic field, similarly to temperature, will affect the speed of
light propagation. We can estimate the order of magnitude of fields,
at which the speed of light will change substantially, by equating the
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energies (2) and (3) w, ~ w, . The estimation gives H ~ 10'® Gs. So,
PL Kapitsa was right when he refused to perform a labor-consuming
experiment, because the fields necessary for observation of such
effect should be so strong that they could hardly be realized in modern
conditions.

So long as, according to above mentioned estimates, in the first
instances of existence of the Universe the speed of light exceeded its
present value by many orders of magnitude, this should substantially
affect the existing scenarios of the evolution of the Universe at its
carly stage.
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