Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 6

On Finsler geometry, MOND and diffeomorphic metrics to the Schwarzschild solution

Carlos Castro Perelman

Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Georgia

Correspondence: Carlos Castro Perelman, Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA. 30314, Ronin Institute, 127 Haddon Pl., NJ. 07043, USA

Received: December 06, 2018 | Published: December 26, 2018

Citation: Perelman CC. On Finsler geometry, MOND and diffeomorphic metrics to the Schwarzschild solution. Phys Astron Int J. 2018;2(6):593-600. DOI: 10.15406/paij.2018.02.00147

Download PDF

Abstract

We revisit the construction of diffeomorphic but not isometric solutions to the Schwarzschild metric. The solutions relevant to Black Holes are those which require the introduction of non-trivial areal-radial functions that are characterized by the key property that the radial horizon’s location is displaced continuously towards the singularity (r=0). In the limiting case scenario the location of the singularity and horizon merges and any infalling observer hits a null singularity at the very moment he/she crosses the horizon. This fact may have important consequences for the resolution of the firewall problem and the complementarity controversy in black holes. It is shown next how modified Newtonian dynamics (MOND) can be obtained from solutions to Finsler gravity, and which in turn, can also be modelled by metrics which are diffeomorphic but not isometric to the Schwarzschild metric. The key point now is that one will have to dispense with the asymptotic flatness condition, by choosing an areal radial function which is finite at r=. Consequently, changing the boundary condition at r= leads to MONDian dynamics. We conclude with some discussions on the role of scale invariance and Born’s Reciprocal Relativity Theory based on the existence of a maximal proper force.

Keywords: general relativity, black holes, finsler geometry, MOND, dark matter.

PACS

04.60.-m, 04.65.+e, 11.15.-q, 11.30.Ly

Introduction

The static spherically symmetric (SSS) vacuum solution of Einstein"s field equations1 that we learned from the text books is actually the Hilbert form of the original Schwarzschild solution2

(ds) 2 = (1 2GM r ) (dt ) 2 (1 2GM r ) 1 (dr ) 2 r 2 (dΩ ) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wiVeYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaWGKb Gaam4CaiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaIGaGaaGypaiaa iccacaaIOaGaaGymaiabgkHiTmaalaaabaGaaGOmaiaadEeacaWGnb aabaGaamOCaaaacaaIPaGaaGiiaiaaiIcacaWGKbGaamiDaiaaiMca daahaaWcbeqaaiaaikdaaaGccaaIGaGaeyOeI0IaaGiiaiaaiIcaca aIXaGaeyOeI0YaaSaaaeaacaaIYaGaam4raiaad2eaaeaacaWGYbaa aiaaiMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIGaGaaGikai aadsgacaWGYbGaaGykamaaCaaaleqabaGaaGOmaaaakiaaiccacqGH sislcaaIGaGaamOCamaaCaaaleqabaGaaGOmaaaakiaaiccacaaIOa GaamizaiabfM6axjaaiMcadaahaaWcbeqaaiaaikdaaaGccaaIUaaa aa@620E@  (1.1)

Birkoff"s theorem states that all static spherically symmetric vacuum solutions to Einstein"s equations are diffeomorphic to the Hilbert-Schwarzchild solution. There are an infinite number of metrics3,4 which are diffeomorphic but not isometric to the Hilbert form of the Schwarzschild2 solution. In particular, given an aerial radial function ρ(r)=r (in c=1 units), the metric

(ds) 2 = (1 2GM ρ(r) ) (dt ) 2 (1 2GM ρ(r) ) 1 (dρ ) 2 ρ 2 (r) (dΩ ) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wiVeYdOqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaWGKb Gaam4CaiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaIGaGaaGypaiaa iccacaaIOaGaaGymaiabgkHiTmaalaaabaGaaGOmaiaadEeacaWGnb aabaGaeqyWdiNaaGikaiaadkhacaaIPaaaaiaaiMcacaaIGaGaaGik aiaadsgacaWG0bGaaGykamaaCaaaleqabaGaaGOmaaaakiaaiccacq GHsislcaaIGaGaaGikaiaaigdacqGHsisldaWcaaqaaiaaikdacaWG hbGaamytaaqaaiabeg8aYjaaiIcacaWGYbGaaGykaaaacaaIPaWaaW baaSqabeaacqGHsislcaaIXaaaaOGaaGiiaiaaiIcacaWGKbGaeqyW diNaaGykamaaCaaaleqabaGaaGOmaaaakiaaiccacqGHsislcaaIGa GaeqyWdi3aaWbaaSqabeaacaaIYaaaaOGaaGikaiaadkhacaaIPaGa aGiiaiaaiIcacaWGKbGaeuyQdCLaaGykamaaCaaaleqabaGaaGOmaa aakiaai6caaaa@6C46@  (1.2)

is diffeomorphic but not isometric to the Hilbert form of the Schwarzschild2 solution. (dρ) 2 = (dρ(r)/dr) 2 (dr) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaWGKb GaeqyWdiNaaGykamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaiIca caWGKbGaeqyWdiNaaGikaiaadkhacaaIPaGaaG4laiaadsgacaWGYb GaaGykamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGKbGaamOCaiaa iMcadaahaaWcbeqaaiaaikdaaaaaaa@4C4A@ , and the solid angle infinitesimal element is (dΩ) 2 = (dϕ) 2 +si n 2 (ϕ)(dθ ) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaWGKb GaeuyQdCLaaGykamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaiIca caWGKbGaeqy1dyMaaGykamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aadohacaWGPbGaamOBamaaCaaaleqabaGaaGOmaaaakiaaiIcacqaH vpGzcaaIPaGaaGikaiaadsgacqaH4oqCcaaIPaWaaWbaaSqabeaaca aIYaaaaaaa@4FC5@ . The surface area at each point r is now given by 4π (ρ(r)) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaisdacqaHap aCcaaIOaGaeqyWdiNaaGikaiaadkhacaaIPaGaaGykamaaCaaaleqa baGaaGOmaaaaaaa@4104@  so that ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaaaa@3C3B@ plays the role of an effective radius and hence the name of “areal-radial” function for ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaaaa@3C3B@ .

The metric (1.2) is diffeomorphic but not isometric to the Hilbert form (1.1) of the Schwarzschild solution2 because the area elements r 2 (dΩ ) 2 = ρ 2 (r) (dΩ ) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaahaa WcbeqaaiaaikdaaaGccaaIGaGaaGikaiaadsgacqqHPoWvcaaIPaWa aWbaaSqabeaacaaIYaaaaOGafyypa0JbaybacqaHbpGCdaahaaWcbe qaaiaaikdaaaGccaaIOaGaamOCaiaaiMcacaaIGaGaaGikaiaadsga cqqHPoWvcaaIPaWaaWbaaSqabeaacaaIYaaaaaaa@4B23@ are not equal, except in the trivial case when ρ(r)=r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaiabg2da9iaadkhaaaa@3E38@ . We have not relabelled the radial variable r by giving it another “name” and calling it "ρ", because ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaaaa@3C3B@  is itself a function of r. Furthermore, one has not performed a naive change of radial coordinates rρ because the metric (1.2) is still given in terms of r. Therefore, the metric (1.2) is not the Schwarzschild metric rewritten in terms of new radial coordinates, but it is obtained after performing an active diffeomorphism via the mappings rρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGHsg IRcqaHbpGCcaaIOaGaamOCaiaaiMcaaaa@3F1F@ . Under active diffeomorphism the points of the manifold are displaced (except for the fixed points) and must not be confused with passive diffeomorphisms that amount to mere coordinate transformations (like rotation, translation of the coordinate axes) leaving all the points fixed. Consequently, the metric (1.2) assumes the same values as the Schwarzschild metric (1.1) but at different values of r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3916@  (at different radial locations). This is the reason why the horizon can be actively displaced from r=2GM to the value r= 0 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaaIWaWaaWbaaSqabeaacqGHRaWkaaaaaa@3BE5@  as we shall see below.

The boundary condition obeyed by the areal radial function ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaaaa@3C3B@  at the origin is ρ(r=0)=0  since the point mass location must reside at the center of spherical symmetry. At infinity, an asymptotically flat metric would require ρ(r)r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaeyOKH4QaeyOhIuQaaGykaebbfv3ySLgzGueE0jxyaGqb aiab=XJi6iaadkhacqGHsgIRcqGHEisPaaa@49A7@ . In particular, the metric solutions (1.2) are invariant under the transformations rr;MM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGHsg IRcqGHsislcaWGYbGaaG4oaiaad2eacqGHsgIRcqGHsislcaWGnbaa aa@422A@  for the particular choice of areal radial functions obeying the condition ρ(r,M)=ρ(r,M) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacqGHsislcaWGYbGaaGilaiabgkHiTiaad2eacaaIPaGaaGypaiab gkHiTiabeg8aYjaaiIcacaWGYbGaaGilaiaad2eacaaIPaaaaa@46F5@ . This allows us to extend the solutions to the r<0  region.

The metric (1.2) leads to modifications of the Newtonian potential, and for this reason, it is very relevant to modified Newtonian dynamics (MOND) as described in the next section. One recovers the Newtonian potential in the regime when ρ(r)r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaebbfv3ySLgzGueE0jxyaGqbaiab=nKi7iaadkha aaa@42F3@ . In the next section we will show why modified Newtonian dynamics (MOND)5,6 associated with galaxies can be obtained from Finsler gravity, and which in turn, can be modeled by metrics (1.2) which are diffeomorphic but not isometric to the Hilbert-Schwarzschild metric. The key point is that one will have to dispense with the asymptotic flatness condition, and introduce an infrared-cut-off for the metric at r= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaaI9a GaeyOhIukaaa@3B4E@  in the form of ρ(r=)= ρ o =finite MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGypaiabg6HiLkaaiMcacaaI9aGaeqyWdi3aaSbaaSqa aiaad+gaaeqaaOGaaGypaiaadAgacaWGPbGaamOBaiaadMgacaWG0b Gaamyzaaaa@4888@ . Therefore, changing the boundary condition at r= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaaI9a GaeyOhIukaaa@3B4E@  leads to MONDian dynamics.

To model the scenario when the horizon merges precisely with the singularity one needs an area radial function defined at r= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaaI9a GaeyOhIukaaa@3B4E@ and at r = 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaceaI9a GbaybacaaIWaaaaa@3AB4@ , as follows3,4

ρ(r=0)=0;ρ(r)=re|r|/2G|Μ|r=0 (1.3)

Under rr; MM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGHsg IRcqGHsislcaWGYbGaaG4oaiaaiccacaWGnbGaeyOKH4QaeyOeI0Ia amytaaaa@42D4@  one has that ρ(r)ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaiabgkziUkabgkHiTiabeg8aYjaaiIcacaWGYbGa aGykaaaa@4331@  so one can ensure the invariance of the metric (1.2) under these transformations and extend the solutions to the r<0 region. ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaaaa@3C3B@  is antisymmetric ρ(r)=ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacqGHsislcaWGYbGaaGykaiaai2dacqGHsislcqaHbpGCcaaIOaGa amOCaiaaiMcaaaa@42F8@ , and as such it must vanish at ρ(r=0+;Μ)=2GM , and ρ(r=0;Μ)=2GM , but ρ(r=0)=0  since a point mass must have zero area and zero volume. The horizon is located at rh=0+  and the singularity at r=0 . There is a discontinuity of ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaaaa@3C3B@  at r=0 . The right r=0+ , and left r=0  limits of ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaaaa@3C3B@  give respectively ±2GM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgglaXkaaik dacaWGhbGaamytaaaa@3C67@ , while ρ(r=0)=0  which is the arithmetic mean of 2GM and 2GM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik dacaWGhbGaamytaaaa@3B66@ . This is similar to the behaviour of the step function Θ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI5arjaaiI cacaWGYbGaaGykaaaa@3BF2@  defined by Θ=1,r>Θ=1,r<Θ=0,r=0 . Θ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI5arbaa@3996@  can be realized as r/|r| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaaIVa GaaGiFaiaadkhacaaI8baaaa@3CD2@  which is an antisymmetric function, and as such, it must vanish at the origin, like the areal radial function in eq-(1.3).

Because a point mass is an infinitely compact source of infinite density, there is nothing wrong with the possibility of having a discontinuity of the metric at the location of the singularity r=0 . Due to the boundary condition ρ(r=0)=0 , there is a curvature tensor singularity and the Kretschmann invariant R μνρσ R μνρσ (2GM) 2 /ρ (r) 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaeqiVd0MaeqyVd4MaeqyWdiNaeq4Wdmhabeaakiaadkfadaah aaWcbeqaaiabeY7aTjabe27aUjabeg8aYjabeo8aZbaarqqr1ngBPr gifHhDYfgaiuaakiab=XJi6iabgIcaOiabgkdaYiaadEeacaWGnbGa eyykaKYaaWbaaSqabeaacqGHYaGmaaGccqGHVaWlcqaHbpGCcqGHOa akcaWGYbGaeyykaKYaaWbaaSqabeaacaaI2aaaaaaa@598C@  diverges at ρ(r=0)=0 . In this extreme case, when the location of the horizon merges with the singularity, there is a null-line singularity at r=0  and a null-surface at r=0+ . This may sound quite paradoxical but it is a consequence of the metric discontinuity at r=0 , the location of the point mass (singularity). This key fact may have important consequences for the resolution of the firewall problem and the complementarity controversye may label the null-line singularity at r=0  as a firepoint, and the null-surface atr=0+  as a firewall. A recent discussion of the notion of a firepoint can be found in8 where they propose the singularity itself as a “firepoint" capable to break the entanglement between the “in" and the “out" states created through the Hawking process.

When the areal-radial function ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaaiI cacaWGYbGaaGykaaaa@3C3B@  has the actual form in eq-(1.3) there is no interior region beyond the horizon r=0+ , so that the metric (1.2) is truly static everywhere. The Fronsdal-Kruskal-Szekeres analytical continuation of the metric (1.1) inside the horizon is no longer static. Klinkhamer9 provided earlier on a regularization of the standard Schwarzschild solution with a curvature singularity at the center by removing the interior region of a ball and identifying the antipodal points on the boundary. The resulting four-dim manifold has now the topology R× M ˜ 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGHxd aTceWGnbGbaGaadaWgaaWcbaGaaG4maaqabaaaaa@3CD7@ where M ˜ 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaacam aaBaaaleaacaaIZaaabeaaaaa@39E9@ is a nonsimply-connected manifold, which up to a point (the center), is homeomorphic to the 3-dim real projective space R P 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaWGqb WaaWbaaSqabeaacaaIZaaaaaaa@3AB5@ . In our case, there is no need to remove the interior region by surgery. The discontinuity ρ(r=0)=0ρ(r=0+)=2GM  of the areal-radial function amounts to a sort of “point-splitting” creating a void (hole) in spacetime, isolating and expunging the curvature singularity at the center from the remaining region of space-time. The topology of the region free of the singularity at the center is M ˜ 4 =R× M ˜ 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad2eagaacam aaBaaaleaacaaI0aaabeaakiaai2dacaWGsbGaey41aqRabmytayaa iaWaaSbaaSqaaiaaiodaaeqaaaaa@3F73@ , where M~3=R3{0}  is the punctured 3-dim space.

Finsler geometry, modified newtonian dynamics and areal radial functions

It has long been known that if one recurs to Newton"s inverse-square law of gravity, the observed baryonic matter cannot provide enough force to attract the matter (stars) present in the outer edges of the galaxies.10,11 Postulating that galaxies are surrounded by massive, non-luminous dark matter is one of the most widely accepted proposals to solve the problem. No dark matter has been detected yet. An extensive overview with a vast number of references of the tests and problems of the standard model in Cosmology.12

Some models have been built as an alternative to the dark matter hypothesis. The main ideas are based on assuming that the Newtonian gravity or Newton"s dynamics is invalid on galactic scales. In the MOND model (modified Newtonian dynamics) of Milgrom5,6 it assumes that the Newtonian dynamics does not hold on galactic scales. In Extended Theories of Gravity, like gravity1317 it is shown that several gravitating structures like stars, spiral galaxies, elliptical galaxies and clusters of galaxies can be self-consistently described without dark matter. There are other MONDian theories, for example, by introducing several scalar, vector and tensor fields, Bekenstein18 rewrote the MOND model of Milgrom in a covariant formalism (the TeVeS model). There is the Einstein-aether theory admitting a preferred reference frame and broken local Lorentz invariance.19

The accurate measurement of the speed of gravitational waves (GW) compared to the speed of light in 2017 ruled out modified gravity theories, termed “dark matter emulators", which dispense with the need for dark matter by making ordinary matter couple to a different metric from that of GW. These models have the property that, in the extreme weak field regime relevant to cosmology, gravitational waves propagate on different geodesics from those followed by photons and neutrinos. Therefore, the differential Shapiro delay between GWs and photons/neutrinos is due to the gravitational potential of only the dark matter. Some examples of these Dark Matter (DM) emulator theories include Bekenstein"s TeVeS theory18 and Moffat"s Scalar-TensorVector gravity theory.20 It is important to understand that dark matter emulators constitute a special class of modified gravity theories which attempt to dispense with dark matter. Many modifications of gravity do not fall within this class,21 including Milgrom"s bi-metric formulation of MOND,22 nonlocal MOND,2325 such as superfluid dark matter,26 or dipolar dark matter.27 Nor does it apply to certain types of Einstein-Aether theories28,29 whose vector kinetic terms are properly chosen. Therefore, other kinds of modified gravity theories which dispense with the need for dark matter and are still viable.21 Some recent studies on MOND, f(R) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaaIOa GaamOuaiaaiMcaaaa@3B46@ gravity, clustering of galaxies, and large distance modification of the Newtonian potential.3034

In this section we shall review the main ingredients of Finsler geometry;3545 present a solution of the vacuum field equation in Finsler gravity, in the weak field approximation,46,47 and show how it reproduces the main results of MOND. The solution depends on the rotational velocity of the galaxy consistent with the relationship between the Tully-Fisher relation48 and MOND. We finalize by showing how this Finsler gravity solution leads to a metric that is diffeomorphic (but not isometric) to the Hilbert-Schwarzschild metric. The most salient feature is that the metric is not asymptotically flat due to the infrared cutoff of the areal radial function, and resulting from imposing different boundary conditions for the metric at r= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaaI9a GaeyOhIukaaa@3B4E@ than in the Hilbert-Schwarzschild metric case.

We shall begin with a very brief discussion of Finsler geometry3545 before discussing the gravitational vacuum field equations. Finsler geometry is based on a non-negative real function F(x,y= dx dτ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaaIOa GaamiEaiaaiYcacaWG5bGaaGypamaalaaabaGaamizaiaadIhaaeaa caWGKbGaeqiXdqhaaiaaiMcaaaa@426B@ , obeying F(x,λy)=λF(x,y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaaIOa GaamiEaiaaiYcacqaH7oaBcaWG5bGaaGykaiaai2dacqaH7oaBcaWG gbGaaGikaiaadIhacaaISaGaamyEaiaaiMcaaaa@4610@ , and defined on the tangent bundle TM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacaWGnb aaaa@39CA@  represented by the coordinates x x 0 , x 1 , x 2 , x n ;y d x 0 dτ , d x 1 dτ , d x n dτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGHHj IUcaWG4bWaaWbaaSqabeaacaaIWaaaaOGaaGilaiaadIhadaahaaWc beqaaiaaigdaaaGccaaISaGaamiEamaaCaaaleqabaGaaGOmaaaaki aaiYcacqWIVlctcaWG4bWaaWbaaSqabeaacaWGUbaaaOGaaG4oaiaa dMhacqGHHjIUdaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacaaIWa aaaaGcbaGaamizaiabes8a0baacaaISaWaaSaaaeaacaWGKbGaamiE amaaCaaaleqabaGaaGymaaaaaOqaaiaadsgacqaHepaDaaGaaGilai abl+UimnaalaaabaGaamizaiaadIhadaahaaWcbeqaaiaad6gaaaaa keaacaWGKbGaeqiXdqhaaaaa@5EC8@ . The fundamental metric tensor is given as

g μν (x,y) 1 2 2 F 2 y μ y ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaeqiVd0MaeqyVd4gabeaakiaaiIcacaWG4bGaaGilaiaadMha caaIPaGaaGiiaiabggMi6kaaiccadaWcaaqaaiaaigdaaeaacaaIYa aaaiaaiccadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaa dAeadaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG5bWaaWbaaS qabeaacqaH8oqBaaGccqGHciITcaWG5bWaaWbaaSqabeaacqaH9oGB aaaaaaaa@52D4@           (2.1)

The arc-length is                                                                                                                            

L = F( x 0 , x 1 , x n ; y 0 , y 1 , y n ) dτ = F( x 0 , x 1 , x n ; d x 0 dτ , d x 1 dτ d x n dτ ) dτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeacaaIGa GaaGypaiaaiccadaWdbaqabSqabeqaniabgUIiYdGccaaIGaGaamOr aiaaiIcacaWG4bWaaWbaaSqabeaacaaIWaaaaOGaaGilaiaadIhada ahaaWcbeqaaiaaigdaaaGccaaISaGaeS47IWKaamiEamaaCaaaleqa baGaamOBaaaakiaaiUdacaWG5bWaaWbaaSqabeaacaaIWaaaaOGaaG ilaiaadMhadaahaaWcbeqaaiaaigdaaaGccaaISaGaeS47IWKaamyE amaaCaaaleqabaGaamOBaaaakiaaiMcacaaIGaGaamizaiabes8a0j aaiccacaaI9aGaaGiiamaapeaabeWcbeqab0Gaey4kIipakiaaicca caWGgbGaaGikaiaadIhadaahaaWcbeqaaiaaicdaaaGccaaISaGaam iEamaaCaaaleqabaGaaGymaaaakiaaiYcacqWIVlctcaWG4bWaaWba aSqabeaacaWGUbaaaOGaaG4oamaalaaabaGaamizaiaadIhadaahaa WcbeqaaiaaicdaaaaakeaacaWGKbGaeqiXdqhaaiaaiYcadaWcaaqa aiaadsgacaWG4bWaaWbaaSqabeaacaaIXaaaaaGcbaGaamizaiabes 8a0baacqWIVlctdaWcaaqaaiaadsgacaWG4bWaaWbaaSqabeaacaWG UbaaaaGcbaGaamizaiabes8a0baacaaIPaGaaGiiaiaadsgacqaHep aDaaa@7EDA@     (2.2)

The Cartan tensor (which measures the deviation from a Riemannian manifold) is given by the third derivative

C μνσ (x,y) = 1 4 3 F 2 y μ y ν y σ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaa WcbaGaeqiVd0MaeqyVd4Maeq4WdmhabeaakiaaiIcacaWG4bGaaGil aiaadMhacaaIPaGaaGiiaiaai2dacaaIGaWaaSaaaeaacaaIXaaaba GaaGinaaaadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG4maaaakiaa dAeadaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG5bWaaWbaaS qabeaacqaH8oqBaaGccqGHciITcaWG5bWaaWbaaSqabeaacqaH9oGB aaGccqGHciITcaWG5bWaaWbaaSqabeaacqaHdpWCaaaaaaaa@5728@                                                                    (2.3)

If C μνσ (x,y)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaa WcbaGaeqiVd0MaeqyVd4Maeq4WdmhabeaakiaaiIcacaWG4bGaaGil aiaadMhacaaIPaGaaGypaiaaicdaaaa@43E5@  everywhere in the tangent space, the Finsler space becomes a metric space with g μν (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaeqiVd0MaeqyVd4gabeaakiaaiIcacaWG4bGaaGykaaaa@3F11@  independent on the tangent space coordinates y (velocities). The geodesic equation on a Finsler manifold is given by

d 2 x μ d τ 2 +2 G μ = 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaaleqabaGaaGOmaaaakiaadIhadaahaaWcbeqaaiabeY7a TbaaaOqaaiaadsgacqaHepaDdaahaaWcbeqaaiaaikdaaaaaaOGaaG iiaiabgUcaRiaaikdacaaIGaGaam4ramaaCaaaleqabaGaeqiVd0ga aOGaaGiiaiaai2dacaaIGaGaaGimaaaa@4916@           (2.4)

where the geodesic spray coefficients G μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeadaahaa WcbeqaaiabeY7aTbaaaaa@3ACE@ (dropping the x,y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaaISa GaamyEaaaa@3AD0@  dependence for convenience) are given by

G μ = 1 4 g μν y σ 2 F 2 x ν y σ F 2 x ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeadaahaa WcbeqaaiabeY7aTbaakiaaiccacaaI9aGaaGiiamaalaaabaGaaGym aaqaaiaaisdaaaGaaGiiaiaadEgadaahaaWcbeqaaiabeY7aTjabe2 7aUbaakiaaiccadaqadaqaaiaaiccacaWG5bWaaWbaaSqabeaacqaH dpWCaaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaadA eadaahaaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG4bWaaWbaaSqa beaacqaH9oGBaaGccqGHciITcaWG5bWaaWbaaSqabeaacqaHdpWCaa aaaOGaaGiiaiabgkHiTiaaiccadaWcaaqaaiabgkGi2kaadAeadaah aaWcbeqaaiaaikdaaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacq aH9oGBaaaaaOGaaGiiaaGaayjkaiaawMcaaaaa@60D4@      (2.5)

The corresponding nonlinear connection N ν μ (x,y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaqhaa WcbaGaeqyVd4gabaGaeqiVd0gaaOGaaGikaiaadIhacaaISaGaamyE aiaaiMcaaaa@40AD@  associated to the geodesic spray coefficients is defined by

2 G μ (x,y) = N ν μ (x,y) y ν = 1 2 g μν y σ 2 F 2 x ν y σ F 2 x ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaaIGa Gaam4ramaaCaaaleqabaGaeqiVd0gaaOGaaGikaiaadIhacaaISaGa amyEaiaaiMcacaaIGaGaaGypaiaaiccacaWGobWaa0baaSqaaiabe2 7aUbqaaiabeY7aTbaakiaaiIcacaWG4bGaaGilaiaadMhacaaIPaGa aGiiaiaadMhadaahaaWcbeqaaiabe27aUbaakiaaiccacaaI9aWaaS aaaeaacaaIXaaabaGaaGOmaaaacaaIGaGaam4zamaaCaaaleqabaGa eqiVd0MaeqyVd4gaaOGaaGiiamaabmaabaGaaGiiaiaadMhadaahaa Wcbeqaaiabeo8aZbaakmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaamOramaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadI hadaahaaWcbeqaaiabe27aUbaakiabgkGi2kaadMhadaahaaWcbeqa aiabeo8aZbaaaaGccaaIGaGaeyOeI0IaaGiiamaalaaabaGaeyOaIy RaamOramaaCaaaleqabaGaaGOmaaaaaOqaaiabgkGi2kaadIhadaah aaWcbeqaaiabe27aUbaaaaGccaaIGaaacaGLOaGaayzkaaaaaa@73E4@      (2.6)

The nonlinear connection allows decomposing the tangent space to the tangent bundle T (x,y) TM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaGikaiaadIhacaaISaGaamyEaiaaiMcaaeqaaOGaamivaiaa d2eaaaa@3EEF@  at the point (x,y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaWG4b GaaGilaiaadMhacaaIPaaaaa@3C35@ into a vertical space spanned by y μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaamyEamaaCaaaleqabaGaeqiVd0gaaaaaaaa@3DDC@ , and a horizontal space spanned by the so-called elongated derivatives δ δ x μ x μ N μ ν y ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iTdqgabaGaeqiTdqMaamiEamaaCaaaleqabaGaeqiVd0gaaaaakiab ggMi6oaalaaabaGaeyOaIylabaGaeyOaIyRaamiEamaaCaaaleqaba GaeqiVd0gaaaaakiabgkHiTiaad6eadaqhaaWcbaGaeqiVd0gabaGa eqyVd4gaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWG5bWaaWbaaS qabeaacqaH9oGBaaaaaaaa@5116@ . The nonlinear curvature derived from N ν μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaqhaa WcbaGaeqyVd4gabaGaeqiVd0gaaaaa@3C8D@  is

R νσ μ δ N ν μ δ x σ δ N σ μ δ x ν , δ δ x μ x μ N μ ν y ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaqhaa WcbaGaeqyVd4Maeq4WdmhabaGaeqiVd0gaaOGaaGiiaiabggMi6kaa iccadaWcaaqaaiabes7aKjaad6eadaqhaaWcbaGaeqyVd4gabaGaeq iVd0gaaaGcbaGaeqiTdqMaamiEamaaCaaaleqabaGaeq4Wdmhaaaaa kiaaiccacqGHsislcaaIGaWaaSaaaeaacqaH0oazcaWGobWaa0baaS qaaiabeo8aZbqaaiabeY7aTbaaaOqaaiabes7aKjaadIhadaahaaWc beqaaiabe27aUbaaaaGccaaISaGaaGiiaiaaiccadaWcaaqaaiabes 7aKbqaaiabes7aKjaadIhadaahaaWcbeqaaiabeY7aTbaaaaGccqGH HjIUdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhadaahaaWcbeqaai abeY7aTbaaaaGccqGHsislcaWGobWaa0baaSqaaiabeY7aTbqaaiab e27aUbaakmaalaaabaGaeyOaIylabaGaeyOaIyRaamyEamaaCaaale qabaGaeqyVd4gaaaaaaaa@744F@                  (2.7)

Regarding the tangent bundle T M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamytaaqabaaaaa@39F6@  as an 2(n+1) -dim manifold of its own, one can construct linear covariant derivatives which are compatible with the structure induced by the nonlinear connection and which preserves the horizontal-vertical split of the tangent bundle TM MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacaWGnb aaaa@39CA@  with basis δ δ x μ , y μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iTdqgabaGaeqiTdqMaamiEamaaCaaaleqabaGaeqiVd0gaaaaakiaa iYcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadMhadaahaaWcbeqaai abeY7aTbaaaaaaaa@44D6@ .

The nonlinear connection is unique, however the linear connections are not, and many different choices are possible.3840 For example, the horizontal part of a torsionless linear connection is given in terms of the elongated derivatives δ/δ x μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaai+ cacqaH0oazcaWG4bWaaWbaaSqabeaacqaH8oqBaaaaaa@3F02@  as

Γ νσ μ (x,y) = 1 2 g μλ (x,y) ( δ ν g σλ (x,y) + δ σ g νλ (x,y) δ λ g νσ (x,y) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahnaaDa aaleaacqaH9oGBcqaHdpWCaeaacqaH8oqBaaGccaaIOaGaamiEaiaa iYcacaWG5bGaaGykaiaaiccacaaI9aGaaGiiamaalaaabaGaaGymaa qaaiaaikdaaaGaaGiiaiaadEgadaahaaWcbeqaaiabeY7aTjabeU7a SbaakiaaiIcacaWG4bGaaGilaiaadMhacaaIPaGaaGiiaiaaiIcaca aIGaGaeqiTdq2aaSbaaSqaaiabe27aUbqabaGccaWGNbWaaSbaaSqa aiabeo8aZjabeU7aSbqabaGccaaIOaGaamiEaiaaiYcacaWG5bGaaG ykaiaaiccacqGHRaWkcaaIGaGaeqiTdq2aaSbaaSqaaiabeo8aZbqa baGccaWGNbWaaSbaaSqaaiabe27aUjabeU7aSbqabaGccaaIOaGaam iEaiaaiYcacaWG5bGaaGykaiaaiccacqGHsislcaaIGaGaeqiTdq2a aSbaaSqaaiabeU7aSbqabaGccaWGNbWaaSbaaSqaaiabe27aUjabeo 8aZbqabaGccaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaaiccacaaI Paaaaa@7C94@         (2.8)

and the horizontal part of the curvature (dropping x,y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaaISa GaamyEaaaa@3AD0@ ) is

R νσλ μ = δ σ Γ νλ μ δ λ Γ νσ μ + Γ ξσ μ Γ νλ ξ Γ ξλ μ Γ νσ ξ C νξ μ R σλ ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaqhaa WcbaGaeqyVd4Maeq4WdmNaeq4UdWgabaGaeqiVd0gaaOGaaGiiaiaa i2dacaaIGaGaeqiTdq2aaSbaaSqaaiabeo8aZbqabaGccqqHtoWrda qhaaWcbaGaeqyVd4Maeq4UdWgabaGaeqiVd0gaaOGaaGiiaiabgkHi TiaaiccacqaH0oazdaWgaaWcbaGaeq4UdWgabeaakiabfo5ahnaaDa aaleaacqaH9oGBcqaHdpWCaeaacqaH8oqBaaGccaaIGaGaey4kaSIa aGiiaiabfo5ahnaaDaaaleaacqaH+oaEcqaHdpWCaeaacqaH8oqBaa GccaaIGaGaeu4KdC0aa0baaSqaaiabe27aUjabeU7aSbqaaiabe67a 4baakiaaiccacqGHsislcaaIGaGaeu4KdC0aa0baaSqaaiabe67a4j abeU7aSbqaaiabeY7aTbaakiaaiccacqqHtoWrdaqhaaWcbaGaeqyV d4Maeq4WdmhabaGaeqOVdGhaaOGaaGiiaiabgkHiTiaaiccacaWGdb Waa0baaSqaaiabe27aUjabe67a4bqaaiabeY7aTbaakiaaiccacaWG sbWaa0baaSqaaiabeo8aZjabeU7aSbqaaiabe67a4baaaaa@89A2@                        (2.9)

In Finsler geometry there is a geometrical invariant (under coordinate transformations) that only depends on the Finsler structure F(x,y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaaIOa GaamiEaiaaiYcacaWG5bGaaGykaaaa@3D00@ and is insensitive to the choices of the linear connection. It is the Ricci scalar defined in terms of the geodesic spray coefficients as

R R μ μ = 1 F 2 2 G μ x μ y λ 2 G μ x λ y μ + 2 G λ 2 G μ y λ y μ G μ y λ G λ y μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaaIGa GaeyyyIORaaGiiaiaadkfadaqhaaWcbaGaeqiVd0gabaGaeqiVd0ga aOGaaGiiaiaai2dacaaIGaWaaSaaaeaacaaIXaaabaGaamOramaaCa aaleqabaGaaGOmaaaaaaGccaaIGaWaaeWaaeaacaaIGaGaaGOmamaa laaabaGaeyOaIylabaGaam4ramaaCaaaleqabaGaeqiVd0gaaOGaey OaIyRaamiEamaaCaaaleqabaGaeqiVd0gaaaaakiaaiccacqGHsisl caaIGaGaamyEamaaCaaaleqabaGaeq4UdWgaaOWaaSaaaeaacqGHci ITdaahaaWcbeqaaiaaikdaaaGccaWGhbWaaWbaaSqabeaacqaH8oqB aaaakeaacqGHciITcaWG4bWaaWbaaSqabeaacqaH7oaBaaGccqGHci ITcaWG5bWaaWbaaSqabeaacqaH8oqBaaaaaOGaaGiiaiabgUcaRiaa iccacaaIYaGaam4ramaaCaaaleqabaGaeq4UdWgaaOWaaSaaaeaacq GHciITdaahaaWcbeqaaiaaikdaaaGccaWGhbWaaWbaaSqabeaacqaH 8oqBaaaakeaacqGHciITcaWG5bWaaWbaaSqabeaacqaH7oaBaaGccq GHciITcaWG5bWaaWbaaSqabeaacqaH8oqBaaaaaOGaaGiiaiabgkHi TiaaiccadaWcaaqaaiabgkGi2kaadEeadaahaaWcbeqaaiabeY7aTb aaaOqaaiabgkGi2kaadMhadaahaaWcbeqaaiabeU7aSbaaaaGcdaWc aaqaaiabgkGi2kaadEeadaahaaWcbeqaaiabeU7aSbaaaOqaaiabgk Gi2kaadMhadaahaaWcbeqaaiabeY7aTbaaaaGccaaIGaaacaGLOaGa ayzkaaaaaa@8B86@   (2.10)

With these geometrical ingredients the analog of the Newtonian limit in Finsler spaces based on the notion of “locally Minkowski" spacetime.46,47 A Finsler spacetime is “locally Minkowski" if there is a coordinate system x with induced tangent space coordinates y, such that F only depends on y, but not on x. A “locally Minkowski" spacetime is a solution of the Finslerian vacuum field equations.41-45 X Li et al.47 assumed a very small metric perturbation h μν (x,y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaeqiVd0MaeqyVd4gabeaakiaaiIcacaWG4bGaaGilaiaadMha caaIPaaaaa@40C6@  to the locally Minkowski one η μν (y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa aaleaacqaH8oqBcqaH9oGBaeqaaOGaaGikaiaadMhacaaIPaaaaa@3FD2@

g μν (x,y) = η μν (y) + h μν (x,y), | h μν (x,y)|<<1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaeqiVd0MaeqyVd4gabeaakiaaiIcacaWG4bGaaGilaiaadMha caaIPaGaaGiiaiaai2dacaaIGaGaeq4TdG2aaSbaaSqaaiabeY7aTj abe27aUbqabaGccaaIOaGaamyEaiaaiMcacaaIGaGaey4kaSIaaGii aiaadIgadaWgaaWcbaGaeqiVd0MaeqyVd4gabeaakiabgIcaOiaadI hacaaISaGaamyEaiabgMcaPiaaiYcacaaIGaGaaGiiaiabgYha8jaa dIgadaWgaaWcbaGaeqiVd0MaeqyVd4gabeaakiabgIcaOiaadIhaca aISaGaamyEaiabgMcaPiabgYha8jabgYda8iabgYda8iabggdaXaaa @66C9@  (2.11)

and found that to leading order in the post-Newtonian approximation the explicit form of the Finslerian line element which solves the vacuum field equations in a 4D Finsler spacetime is given by

F 2 (dτ ) 2 = 1 2GM R(r,v)) (dt) 2 1+ 2GM R(r,v)) (dR ) 2 R 2 (r,v) (dΩ ) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaahaa WcbeqaaiaaikdaaaGccaaIGaGaaGikaiaadsgacqaHepaDcaaIPaWa aWbaaSqabeaacaaIYaaaaOGaaGiiaiaai2dacaaIGaWaaeWaaeaaca aIXaGaeyOeI0YaaSaaaeaacaaIYaGaam4raiaad2eaaeaacaWGsbGa aGikaiaadkhacaaISaGaamODaiaaiMcacaaIPaaaaaGaayjkaiaawM caaiaaiIcacaWGKbGaamiDaiaaiMcadaahaaWcbeqaaiaaikdaaaGc caaIGaGaeyOeI0IaaGiiamaabmaabaGaaGymaiabgUcaRmaalaaaba GaaGOmaiaadEeacaWGnbaabaGaamOuaiaaiIcacaWGYbGaaGilaiaa dAhacaaIPaGaaGykaaaaaiaawIcacaGLPaaacaaIGaGaaGikaiaads gacaWGsbGaaGykamaaCaaaleqabaGaaGOmaaaakiaaiccacqGHsisl caaIGaGaamOuamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWGYbGaaG ilaiaadAhacaaIPaGaaGiiaiaaiIcacaWGKbGaeuyQdCLaaGykamaa CaaaleqabaGaaGOmaaaaaaa@70C5@          (2.12)

where the radial coordinate in the locally Minkowski space-time of the galaxies is defined as R(r,v) η ij (v) x i x j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaaIOa GaamOCaiaaiYcacaWG2bGaaGykaiabggMi6oaakaaabaGaeq4TdG2a aSbaaSqaaiaadMgacaWGQbaabeaakiaaiIcacaWG2bGaaGykaiaadI hadaahaaWcbeqaaiaadMgaaaGccaWG4bWaaWbaaSqabeaacaWGQbaa aaqabaaaaa@4936@ . In this spherically symmetric case, the radial function is denoted by R(r,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaaIOa GaamOCaiaaiYcacaWG2bGaaGykaaaa@3D03@  (which must not be confused with the scalar curvature R), and now it depends on both r, and the velocity v, due to functional dependence of g μν (x,y) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaeqiVd0MaeqyVd4gabeaakiaaiIcacaWG4bGaaGilaiaadMha caaIPaaaaa@40C5@  on both coordinates and velocities.

Li et al.46,47 have shown that Finsler gravity reduces to MOND if the spatial components of the locally Minkowski metric of galaxies is of the form

η 00 = 1, η ij (y) = δ ij 1 GM a o ( y 0 ) 4 ( δ mn y m y n ) 2 ) 2 = δ ij 1 ( GM a o v 4 ) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa aaleaacaaIWaGaaGimaaqabaGccaaIGaGaaGypaiaaiccacaaIXaGa aGilaiaaiccacaaIGaGaeq4TdG2aaSbaaSqaaiaadMgacaWGQbaabe aakiaaiIcacaWG5bGaaGykaiaaiccacaaI9aGaaGiiaiabes7aKnaa BaaaleaacaWGPbGaamOAaaqabaGccaaIGaWaaeWaaeaacaaIGaGaaG ymaiabgkHiTiaaiccadaqadaqaamaalaaabaGaam4raiaad2eacaWG HbWaaSbaaSqaaiaad+gaaeqaaOGaaGikaiaadMhadaahaaWcbeqaai aaicdaaaGccaaIPaWaaWbaaSqabeaacaaI0aaaaaGcbaGaaGikaiab es7aKnaaBaaaleaacaWGTbGaamOBaaqabaGccaWG5bWaaWbaaSqabe aacaWGTbaaaOGaamyEamaaCaaaleqabaGaamOBaaaakiaaiMcadaah aaWcbeqaaiaaikdaaaaaaOGaaGykaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaakiaaiccaaiaawIcacaGLPaaacaaIGaGaaGypaiaa iccacqaH0oazdaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaGiiamaabm aabaGaaGiiaiaaigdacqGHsislcaaIGaGaaGikamaalaaabaGaam4r aiaad2eacaWGHbWaaSbaaSqaaiaad+gaaeqaaaGcbaGaamODamaaCa aaleqabaGaaGinaaaaaaGccaaIPaWaaWbaaSqabeaacaaIYaaaaOGa aGiiaaGaayjkaiaawMcaaaaa@7B72@                      (2.13)

v i = d x i d x 0 = (d x i /dτ) (d x 0 /dτ) = y i y 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaahaa WcbeqaaiaadMgaaaGccaaI9aWaaSaaaeaacaWGKbGaamiEamaaCaaa leqabaGaamyAaaaaaOqaaiaadsgacaWG4bWaaWbaaSqabeaacaaIWa aaaaaakiaai2dadaWcaaqaaiaaiIcacaWGKbGaamiEamaaCaaaleqa baGaamyAaaaakiaai+cacaWGKbGaeqiXdqNaaGykaaqaaiaaiIcaca WGKbGaamiEamaaCaaaleqabaGaaGimaaaakiaai+cacaWGKbGaeqiX dqNaaGykaaaacaaI9aWaaSaaaeaacaWG5bWaaWbaaSqabeaacaWGPb aaaaGcbaGaamyEamaaCaaaleqabaGaaGimaaaaaaaaaa@5628@     (2.14)

where ao=1.2×1010ms2  is the acceleration constant of MOND,5,6 and which is of the order of c 2 R H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4yamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkfadaWgaaWcbaGaamis aaqabaaaaaaa@3BDA@ , where R H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamisaaqabaaaaa@39EF@  is the present-day Hubble scale.

In this particular case the radial coordinate in the locally Minkowski space-time of the galaxies becomes

R(r,v) η ij (v) x i x j = r f(v), f(v) 1 ( GM a o v 4 ) 2 , i,j=1,2,3. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaaIOa GaamOCaiaaiYcacaWG2bGaaGykaiaaiccacqGHHjIUcqGHGaaidaGc aaqaaiabeE7aOnaaBaaaleaacaWGPbGaamOAaaqabaGccaaIOaGaam ODaiaaiMcacaaIGaGaamiEamaaCaaaleqabaGaamyAaaaakiaaicca caWG4bWaaWbaaSqabeaacaWGQbaaaaqabaGccqGHGaaicqGH9aqpca aIGaGaamOCaiaaiccacaWGMbGaeyikaGIaamODaiabgMcaPiaaiYca caaIGaGaaGiiaiaadAgacaaIOaGaamODaiaaiMcacaaIGaGaeyyyIO RaaGiiamaakaaabaGaaGymaiabgkHiTiaaiccacaaIOaWaaSaaaeaa caWGhbGaamytaiaadggadaWgaaWcbaGaam4BaaqabaaakeaacaWG2b WaaWbaaSqabeaacaaI0aaaaaaakiaaiMcadaahaaWcbeqaaiaaikda aaaabeaakiaaiYcacaaIGaGaaGiiaiaadMgacaaISaGaamOAaiabg2 da9iabggdaXiabgYcaSiabgkdaYiabgYcaSiabgodaZiaai6caaaa@7194@  (2.15)

and the modified Newtonian equations of motion associated with the Finslerian line element (2.12) are given by

GM R 2 = v 2 R GM r 2 f 2 (v) = v 2 rf(v) GM r 2 = v 2 r f(v)= v 2 r 1 ( GM a o v 4 ) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4raiaad2eaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaakiaaicca caaI9aGaaGiiamaalaaabaGaamODamaaCaaaleqabaGaaGOmaaaaaO qaaiaadkfaaaGaaGiiaiabgkDiElaaiccadaWcaaqaaiaadEeacaWG nbaabaGaamOCamaaCaaaleqabaGaaGOmaaaakiaadAgadaahaaWcbe qaaiaaikdaaaGccaaIOaGaamODaiaaiMcaaaGaaGiiaiaai2dacaaI GaWaaSaaaeaacaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOCai aadAgacaaIOaGaamODaiaaiMcaaaGaaGiiaiabgkDiElaaiccadaWc aaqaaiaadEeacaWGnbaabaGaamOCamaaCaaaleqabaGaaGOmaaaaaa GccaaIGaGaaGypaiaaiccadaWcaaqaaiaadAhadaahaaWcbeqaaiaa ikdaaaaakeaacaWGYbGaaGiiaaaacaWGMbGaaGikaiaadAhacaaIPa GaaGypaiaaiccadaWcaaqaaiaadAhadaahaaWcbeqaaiaaikdaaaaa keaacaWGYbaaaiaaiccadaGcaaqaaiaaigdacqGHsislcaaIGaGaaG ikamaalaaabaGaam4raiaad2eacaWGHbWaaSbaaSqaaiaad+gaaeqa aaGcbaGaamODamaaCaaaleqabaGaaGinaaaaaaGccaaIPaWaaWbaaS qabeaacaaIYaaaaaqabaaaaa@7425@     (2.16)

One may recover the MONDian behavior from eq-(2.16) if v(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacaaIOa GaamOCaiaaiMcaaaa@3B76@  satisfies the following relation

GM a o v 4 (r) = 1 1 + ( v 2 (r)r a o ) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4raiaad2eacaWGHbWaaSbaaSqaaiaad+gaaeqaaaGcbaGaamODamaa CaaaleqabaGaaGinaaaakiaaiIcacaWGYbGaaGykaiaaiccaaaGaaG ypaiaaiccadaWcaaqaaiaaigdaaeaadaGcaaqaaiaaigdacaaIGaGa ey4kaSIaaGiiaiaaiIcacaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaG ikaiaadkhacaaIPaGaamOCaiaadggadaWgaaWcbaGaam4BaaqabaGc caaIPaWaaWbaaSqabeaacaaIYaaaaaqabaaaaaaa@4FAF@          (2.17)

upon inserting (2.17) into the last term of eq-(2.16) it allows to rewrite the scaling factor f(v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaaIOa GaamODaiaaiMcaaaa@3B6A@  in terms of v MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhaaaa@391A@  and r, leading finally to the desired result of MOND

GM r 2 = v 2 rf(v) = v 2 r ( v 2 r a o ) 1 + ( v 2 r a o ) 2 = v 2 r μ( v 2 r a o ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacaWGnb GaamOCamaaCaaaleqabaGaaGOmaaaakiaaiccacaaI9aGaaGiiaiaa dAhadaahaaWcbeqaaiaaikdaaaGccaWGYbGaamOzaiaaiIcacaWG2b GaaGykaiaaiccacaaI9aGaaGiiaiaadAhadaahaaWcbeqaaiaaikda aaGccaWGYbGaaGiiaiaaiIcacaWG2bWaaWbaaSqabeaacaaIYaaaaO GaamOCaiaadggadaWgaaWcbaGaam4BaaqabaGccaaIPaWaaOaaaeaa caaIXaGaaGiiaiabgUcaRiaaiccacaaIOaGaamODamaaCaaaleqaba GaaGOmaaaakiaadkhacaWGHbWaaSbaaSqaaiaad+gaaeqaaOGaaGyk amaaCaaaleqabaGaaGOmaaaaaeqaaOGaaGiiaiaai2dacaaIGaGaam ODamaaCaaaleqabaGaaGOmaaaakiaadkhacaaIGaGaeqiVd0MaaGik aiaadAhadaahaaWcbeqaaiaaikdaaaGccaWGYbGaamyyamaaBaaale aacaWGVbaabeaakiaaiMcaaaa@67FE@       (2.18)

where

μ(x) x 1+ x 2 , x v 2 r a o MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjaaiI cacaWG4bGaaGykaiaaiccacqGHHjIUcaaIGaWaaSaaaeaacaWG4baa baWaaOaaaeaacaaIXaGaey4kaSIaamiEamaaCaaaleqabaGaaGOmaa aaaeqaaaaakiaaiYcacaaIGaGaaGiiaiaadIhacqGHHjIUdaWcaaqa aiaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaWGYbGaamyyamaaBa aaleaacaWGVbaabeaaaaaaaa@4DC9@       (2.19)

is the interpolating function in MOND. From eqs-(2.18, 2.19) one learns

x<<1, μ(x)x; x>>1, μ(x)1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH8a apcqGH8aapcqGHXaqmcaaISaGaaGiiaiabeY7aTjaaiIcacaWG4bGa aGykaebbfv3ySLgzGueE0jxyaGqbaiab=XJi6iaadIhacaaI7aGaaG iiaiaaiccacaWG4bGaeyOpa4JaeyOpa4JaeyymaeJaeyilaWIaaGii aiabeY7aTjaaiIcacaWG4bGaaGykaiab=XJi6iaaigdaaaa@55D2@  (2.20a)

The deep-MOND regime is characterized by x<<1,μ(x)x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH8a apcqGH8aapcaaIXaGaaGilaiabeY7aTjaaiIcacaWG4bGaaGykaebb fv3ySLgzGueE0jxyaGqbaiab=XJi6iaadIhaaaa@4763@ , such that

r, R(r) GM a o a o , v 4 (r)GM a o , f(v)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGHsg IRcqGHEisPcaaISaGaaGiiaiaaiccacaWGsbGaaGikaiaadkhacaaI PaGaeyOKH46aaOaaaeaadaWcaaqaaiaadEeacaWGnbGaamyyamaaBa aaleaacaWGVbaabeaaaOqaaiaadggadaWgaaWcbaGaam4Baaqabaaa aaqabaGccaaISaGaaGiiaiaaiccacaWG2bWaaWbaaSqabeaacaaI0a aaaOGaaGikaiaadkhacaaIPaGaeyOKH4Qaam4raiaad2eacaWGHbWa aSbaaSqaaiaad+gaaeqaaOGaaGilaiaaiccacaaIGaGaamOzaiaaiI cacaWG2bGaaGykaiabgkziUkaaicdaaaa@5D69@       (2.20b)

and one recovers the Tully-Fisher relation GM a o v 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacaWGnb GaamyyamaaBaaaleaacaWGVbaabeaarqqr1ngBPrgifHhDYfgaiuaa kiab=XJi6iaadAhadaahaaWcbeqaaiaaisdaaaaaaa@436C@ .

Introducing the following definitions in the deep infrared

R c R(r), v c v(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaam4yaaqabaGccqGHHjIUcaWGsbGaaGikaiaadkhacqGHsgIR cqGHEisPcqGHPaqkcaaISaGaaGiiaiaaiccacaWG2bWaaSbaaSqaai aadogaaeqaaOGaeyyyIORaamODaiaaiIcacaWGYbGaeyOKH4QaeyOh IuQaaGykaaaa@4F3A@  (2.21a)

one can then rewrite (2.20b) in the following more familiar form

GM R c 2 = v c 2 R c = a o c 2 R H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4raiaad2eaaeaacaWGsbWaa0baaSqaaiaadogaaeaacaaIYaaaaaaa kiaaiccacaaI9aGaaGiiamaalaaabaGaamODamaaDaaaleaacaWGJb aabaGaaGOmaaaaaOqaaiaadkfadaWgaaWcbaGaam4yaaqabaaaaOGa aGiiaiaai2dacaaIGaGaamyyamaaBaaaleaacaWGVbaabeaakiaaic carqqr1ngBPrgifHhDYfgaiuaacqWFdjYocaaIGaWaaSaaaeaacaWG JbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOuamaaBaaaleaacaWGib aabeaaaaaaaa@5270@            (2.21b)

Given that 2GM/ c 2 R S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaWGhb Gaamytaiaai+cacaWGJbWaaWbaaSqabeaacaaIYaaaaOGaeyyyIORa amOuamaaBaaaleaacaWGtbaabeaaaaa@40B1@  is the definition of the Schwarzschild radius associated to a point mass M gravitational source, from eq-(2.21b) one arrives at the following scaling relations involving the Hubble radius R H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamisaaqabaaaaa@39EF@ , R S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaam4uaaqabaaaaa@39FA@  and R c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaam4yaaqabaaaaa@3A0A@

12 R S R H = ( v c c ) 4 , 12 R S R H = ( R c ) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIYa GaaGiiaiaadkfadaWgaaWcbaGaam4uaaqabaGccaWGsbWaaSbaaSqa aiaadIeaaeqaaOGaaGiiaiaai2dacaaIGaGaaGikaiaadAhadaWgaa WcbaGaam4yaaqabaGccaWGJbGaaGykamaaCaaaleqabaGaaGinaaaa kiaaiYcacaaIGaGaaGiiaiaaigdacaaIYaGaaGiiaiaadkfadaWgaa WcbaGaam4uaaqabaGccaaIGaGaamOuamaaBaaaleaacaWGibaabeaa kiaaiccacaaI9aGaaGiiaiaaiIcacaWGsbWaaSbaaSqaaiaadogaae qaaOGaaGykamaaCaaaleqabaGaaGOmaaaaaaa@5467@       (2.22)

Below we shall see the importance of these scaling relations (2.22) within the context of Black Hole Cosmology4953 and Born"s Reciprocal Relativity Theory.5456

Given a galaxy of size L g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaam4zaaqabaaaaa@3A08@ , from eq-(2.17) one can solve for v=v(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacaaI9a GaamODaiaaiIcacaWGYbGaaGykaaaa@3D38@ and obtain the rotational velocities for point test masses in the region r L g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGHLj YScaWGmbWaaSbaaSqaaiaadEgaaeqaaaaa@3CC5@

v 4 (r) = GM r 2 + GM r 4 + 4(GM a o ) 2 2 , r L g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaahaa WcbeqaaiaaisdaaaGccaaIOaGaamOCaiaaiMcacaaIGaGaaGypamaa laaabaGaaGiiamaabmaabaWaaSaaaeaacaWGhbGaamytaaqaaiaadk haaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaaGiiaiab gUcaRiaaiccadaGcaaqaamaabmaabaWaaSaaaeaacaWGhbGaamytaa qaaiaadkhaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI0aaaaOGa aGiiaiabgUcaRiaaiccacaaI0aGaaGikaiaadEeacaWGnbGaamyyam aaBaaaleaacaWGVbaabeaakiaaiMcadaahaaWcbeqaaiaaikdaaaaa beaaaOqaaiaaikdaaaGaaGilaiaaiccacaaIGaGaamOCaiabgwMiZk aadYeadaWgaaWcbaGaam4zaaqabaaaaa@5B86@            (2.23)

Eq-(2.23) is equivalent to the following expression

r 2 (v) = ( v 4 / a o 2 ) ( v 4 GM a o ) 2 1 , r L g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaahaa WcbeqaaiaaikdaaaGccaaIOaGaamODaiaaiMcacaaIGaGaaGypaiaa iccadaWcaaqaaiaaiIcacaWG2bWaaWbaaSqabeaacaaI0aaaaOGaaG 4laiaadggadaqhaaWcbaGaam4BaaqaaiaaikdaaaGccaaIPaGaaGii aaqaaiaaiIcadaWcaaqaaiaadAhadaahaaWcbeqaaiaaisdaaaaake aacaWGhbGaamytaiaadggadaWgaaWcbaGaam4BaaqabaaaaOGaaGyk amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiccacaaIXaaaaiaaiY cacaaIGaGaaGiiaiaadkhacqGHLjYScaWGmbWaaSbaaSqaaiaadEga aeqaaaaa@5721@          (2.24)

and

v 2 r = v 4 GM 1 a o 2 ( v 4 GM ) 2 v 4 GM = a o 1 + ( v 2 /r) 2 a o 2 , r L g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ODamaaCaaaleqabaGaaGOmaaaakiaaiccaaeaacaWGYbaaaiaai2da caaIGaWaaSaaaeaacaWG2bWaaWbaaSqabeaacaaI0aaaaaGcbaGaam 4raiaad2eaaaGaaGiiamaakaaabaGaaGymaiaaiccacqGHsislcaaI GaWaaSaaaeaacaWGHbWaa0baaSqaaiaad+gaaeaacaaIYaaaaaGcba GaaGikamaalaaabaGaamODamaaCaaaleqabaGaaGinaaaaaOqaaiaa dEeacaWGnbaaaiaaiMcadaahaaWcbeqaaiaaikdaaaaaaaqabaGcca aIGaGaeyi1HSTaaGiiamaalaaabaGaamODamaaCaaaleqabaGaaGin aaaaaOqaaiaadEeacaWGnbaaaiaaiccacaaI9aGaaGiiaiaadggada WgaaWcbaGaam4BaaqabaGccaaIGaWaaOaaaeaacaaIXaGaaGiiaiab gUcaRiaaiccadaWcaaqaaiaaiIcacaWG2bWaaWbaaSqabeaacaaIYa aaaOGaaG4laiaadkhacaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGa amyyamaaDaaaleaacaWGVbaabaGaaGOmaaaaaaaabeaakiaaiYcaca aIGaGaaGiiaiaadkhacqGHLjYScaWGmbWaaSbaaSqaaiaadEgaaeqa aaaa@6BFD@            (2.25)

To sum up, given the range of scales

R S < R(r= L g ,v( L g )) L g < R(r,v(r)) < R c < R H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaam4uaaqabaGccaaIGaGaaGipaiaaiccacaWGsbGaaGikaiaa dkhacaaI9aGaamitamaaBaaaleaacaWGNbaabeaakiaaiYcacaWG2b GaaGikaiaadYeadaWgaaWcbaGaam4zaaqabaGccaaIPaGaaGykaebb fv3ySLgzGueE0jxyaGqbaiab=nKi7iaadYeadaWgaaWcbaGaam4zaa qabaGccaaIGaGaaGipaiaaiccacaWGsbGaaGikaiaadkhacaaISaGa amODaiaaiIcacaWGYbGaaGykaiaaiMcacaaIGaGaaGipaiaaiccaca WGsbWaaSbaaSqaaiaadogaaeqaaOGaaGiiaiaaiYdacaaIGaGaamOu amaaBaaaleaacaWGibaabeaaaaa@601B@                  (2.26)

in the region R(r,v(r)) L g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaaIOa GaamOCaiaaiYcacaWG2bGaaGikaiaadkhacaaIPaGaaGykaiabgwMi ZkaadYeadaWgaaWcbaGaam4zaaqabaaaaa@430E@ one has GM R 2 = v 2 R MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4raiaad2eaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaakiaai2da daWcaaqaaiaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaWGsbaaaa aa@3F33@  leading then to the rotational velocities associated to MONDian dynamics. In the interior region of the galaxy, ordinary Newtonian gravity is assumed to be valid, and for spherical symmetric mass distributions one has

GM(r) r 2 = v 2 r , r< L g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4raiaad2eacaaIOaGaamOCaiaaiMcaaeaacaWGYbWaaWbaaSqabeaa caaIYaaaaaaakiaaiccacaaI9aGaaGiiamaalaaabaGaamODamaaCa aaleqabaGaaGOmaaaaaOqaaiaadkhaaaGaaGilaiaaiccacaaIGaGa amOCaiaaiYdacaWGmbWaaSbaaSqaaiaadEgaaeqaaaaa@48D3@          (2.27)

which just follows from Gauss theorem when the mass enclosed M(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaaIOa GaamOCaiaaiMcaaaa@3B4D@ s inside the spherical region of radius r< L g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaaI8a GaamitamaaBaaaleaacaWGNbaabeaaaaa@3BC5@ r< L g MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaaI8a GaamitamaaBaaaleaacaWGNbaabeaaaaa@3BC5@  is given by M(r)= 0 r ρ( r )4π r 2 d r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaaIOa GaamOCaiaaiMcacqGH9aqpdaWdXaqabSqaaiaaicdaaeaacaWGYbaa niabgUIiYdGccqaHbpGCcqGHOaakceWGYbGbauaacqGHPaqkcaaI0a GaeqiWdaNabmOCayaafaWaaWbaaSqabeaacaaIYaaaaOGaamizaiqa dkhagaqbaaaa@4B12@ .

Having gone through this Finsler geometric tour underlying MONDian dynamics, we can finally relate the results of this section with the previous one by noticing that in the regime (2GM/R)<<1 , a Taylor expansion yields

(12GMv)1~(1+2GMR) (2.28)

and the Finslerian line element (2.12) in this regime reduces to

F 2 (dτ ) 2 = (1 2GM R(r,v) ) (dt ) 2 (1 2GM R(r,v) ) 1 (dR ) 2 R (r,v) 2 (dΩ ) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaahaa WcbeqaaiaaikdaaaGccaaIGaGaaGikaiaadsgacqaHepaDcaaIPaWa aWbaaSqabeaacaaIYaaaaOGaaGiiaiaai2dacaaIGaGaaGikaiaaig dacqGHsisldaWcaaqaaiaaikdacaWGhbGaamytaaqaaiaadkfacaaI OaGaamOCaiaaiYcacaWG2bGaaGykaaaacaaIPaGaaGiiaiaaiIcaca WGKbGaamiDaiaaiMcadaahaaWcbeqaaiaaikdaaaGccaaIGaGaeyOe I0IaaGiiaiaaiIcacaaIXaGaeyOeI0YaaSaaaeaacaaIYaGaam4rai aad2eaaeaacaWGsbGaaGikaiaadkhacaaISaGaamODaiaaiMcaaaGa aGykamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiccacaaIOaGaam izaiaadkfacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaGiiaiabgkHi TiaaiccacaWGsbGaaGikaiaadkhacaaISaGaamODaiaaiMcadaahaa WcbeqaaiaaikdaaaGccaaIGaGaaGikaiaadsgacqqHPoWvcaaIPaWa aWbaaSqabeaacaaIYaaaaaaa@71AB@        (2.29)

leading then to a metric which is diffeomorphic (but not isometric) to the Hilbert-Schwarzchild one (after inserting the functional relation v=v(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacaaI9a GaamODaiaaiIcacaWGYbGaaGykaaaa@3D38@  given explicitly by eq-(2.23)) into the areal radial function R(r,v)=R(r,v(r)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaaIOa GaamOCaiaaiYcacaWG2bGaaGykaiaai2dacaWGsbGaaGikaiaadkha caaISaGaamODaiaaiIcacaWGYbGaaGykaiaaiMcaaaa@450A@ . In fact, the metric (2.29) is a solution to the vacuum Einstein field equations in a 4D spacetime for any functional form v=v(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacaaI9a GaamODaiaaiIcacaWGYbGaaGykaaaa@3D38@  with the provision that R(r,v(r))=R(r,v(r)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaaIOa GaeyOeI0IaamOCaiaaiYcacaWG2bGaaGikaiabgkHiTiaadkhacaaI PaGaaGykaiaai2dacqGHsislcaWGsbGaaGikaiaadkhacaaISaGaam ODaiaaiIcacaWGYbGaaGykaiaaiMcaaaa@4A2D@ as shown explicitly in the appendix a Lorentzian signature is used.

The particular form of v(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacaaIOa GaamOCaiaaiMcaaaa@3B76@ in eq-(2.23) was dictated to us by the empirical astronomical observations. Furthermore, from eq-(2.15) one learns that under the transformations

rr, MM, a o a o R(r,v)R(r,v) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGHsg IRcqGHsislcaWGYbGaaGilaiaaiccacaaIGaGaamytaiabgkziUkab gkHiTiaad2eacaaISaGaaGiiaiaaiccacaWGHbWaaSbaaSqaaiaad+ gaaeqaaOGaeyOKH4QaeyOeI0IaamyyamaaBaaaleaacaWGVbaabeaa kiaaiccacqGHshI3caaIGaGaamOuaiaaiIcacaWGYbGaaGilaiaadA hacaaIPaGaeyOKH4QaeyOeI0IaamOuaiaaiIcacaWGYbGaaGilaiaa dAhacaaIPaaaaa@5CC6@           (2.30)

The areal radial function changes sign as it should be in order for the metric (2.29) to remain invarint.

Despite that the metric (2.29) is diffeomorphic (but not isometric) to the Hilbert-Schwarzschild one, it is not asymptotically flat. The Kretschmann invariant R μνσλ R μνσλ 2GM R 3 (r,v(r)) 2 = 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaeqiVd0MaeqyVd4Maeq4WdmNaeq4UdWgabeaakiaadkfadaah aaWcbeqaaiabeY7aTjabe27aUjabeo8aZjabeU7aSbaarqqr1ngBPr gifHhDYfgaiuaakiab=XJi6maabmaabaWaaSaaaeaacaaIYaGaam4r aiaad2eaaeaacaWGsbWaaWbaaSqabeaacaaIZaaaaOGaaGikaiaadk hacaaISaGaamODaiaaiIcacaWGYbGaaGykaiaaiMcaaaaacaGLOaGa ayzkaaWaaWbaaSqabeaacaaIYaaaaOGabGypayaawaGaaGimaaaa@5C75@  is non-vanishing at r= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaaI9a GaeyOhIukaaa@3B4E@  due to the fact that R(r=)= R c = GM a o / a o = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaaIOa GaamOCaiaai2dacqGHEisPcaaIPaGaaGypaiaadkfadaWgaaWcbaGa am4yaaqabaGccaaI9aWaaOaaaeaacaWGhbGaamytaiaadggadaWgaa WcbaGaam4Baaqabaaabeaakiaai+cacaWGHbWaaSbaaSqaaiaad+ga aeqaaOGabGypayaawaGaeyOhIukaaa@49E9@  as shown in eq-(2.20b). In the limit that ao=0 , the areal radial function becomes the trivial one R=r MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaaI9a GaamOCaaaa@3AB4@ , and one recovers the asymptotically flat Hilbert-Schwarzschild metric associated with ordinary Newtonian mechanics (in the weak field and slow moving bodies limit).

In a nutshell, simply by rewriting GM R 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4raiaad2eaaeaacaWGsbWaaWbaaSqabeaacaaIYaaaaaaaaaa@3B8D@  as G M eff (r) r 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4raiaad2eadaWgaaWcbaGaamyzaiaadAgacaWGMbaabeaakiaaiIca caWGYbGaaGykaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaaaaaaa@40FF@ , in terms of an effective mass M eff (r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamyzaiaadAgacaWGMbaabeaakiaaiIcacaWGYbGaaGykaaaa @3E43@  enclosed in a spherical region of radius r, it leads to the relation M eff (r)=M/ f 2 (v(r))M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamyzaiaadAgacaWGMbaabeaakiaaiIcacaWGYbGaaGykaiaa i2dacaWGnbGaaG4laiaadAgadaahaaWcbeqaaiaaikdaaaGccaaIOa GaamODaiaaiIcacaWGYbGaaGykaiaaiMcacqGHLjYScaWGnbaaaa@49C7@ , since f(v(r))1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaaIOa GaamODaiaaiIcacaWGYbGaaGykaiaaiMcacqGHKjYOcaaIXaaaaa@4036@ , and such that the enhanced value of the “effective” mass M eff (r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamyzaiaadAgacaWGMbaabeaakiaaiIcacaWGYbGaaGykaaaa @3E43@ compared to M would seem as if non-luminous “dark matter" were present in the galaxies.

Concluding remarks : scale invariance and born"s reciprocal relativity theory

By simple inspection one can verify that eqs-(2.15-2.26) are scale invariant under

tλt, rλr, R(r,v)λR(r,v), MλM, a o λ 1 a o , vv, cc MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGHsg IRcqaH7oaBcaWG0bGaaGilaiaaiccacaaIGaGaamOCaiabgkziUkab eU7aSjaadkhacaaISaGaaGiiaiaaiccacaWGsbGaaGikaiaadkhaca aISaGaamODaiaaiMcacqGHsgIRcqaH7oaBcaWGsbGaaGikaiaadkha caaISaGaamODaiabgMcaPiaaiYcacaaIGaGaaGiiaiaad2eacqGHsg IRcqaH7oaBcaWGnbGaaGilaiaaiccacaaIGaGaamyyamaaBaaaleaa caWGVbaabeaakiabgkziUkabeU7aSnaaCaaaleqabaGaeyOeI0IaaG ymaaaakiaadggadaWgaaWcbaGaam4BaaqabaGccaaISaGaaGiiaiaa iccacaWG2bGaeyOKH4QaamODaiaaiYcacaaIGaGaaGiiaiaadogacq GHsgIRcaWGJbaaaa@7396@  (3.1)

with λ = constant and which implies a flat rotation curve. Note the anomalous scaling of the macroscopic galactic mass MλM as compared to the scaling mλ1m of a fundamental particle (consistent with the scaling of the Compton wavelength /mc). Under these scalings (3.1) f(v) given by eq-(2.15) is invariant and the metric (2.29) scales (ds) 2 λ 2 (ds) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaWGKb Gaam4CaiaaiMcadaahaaWcbeqaaiaaikdaaaGccqGHsgIRcqaH7oaB daahaaWcbeqaaiaaikdaaaGccaaIOaGaamizaiaadohacaaIPaWaaW baaSqabeaacaaIYaaaaaaa@451B@  as it occurs in Weyl’s geometry under conformal transformations.

Another similar scaling occurs in Born’s Reciprocal Relativity theory. It was shown that54-56 how one can implement a maximal proper force principle within the context of Born’s Reciprocal Relativity theory, Mach’s principle and Black-Hole Cosmology5457 by setting the following proper forces to be equal to the maximal proper force value b ( “b" stands for Born)

M U ( c 2 R H ) = m P ( c 2 L P ) = b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaamyvaaqabaGccaaIGaGaaGikamaalaaabaGaam4yamaaCaaa leqabaGaaGOmaaaaaOqaaiaadkfadaWgaaWcbaGaamisaaqabaaaaO GaaGykaiaaiccacaaI9aGaaGiiaiaad2gadaWgaaWcbaGaamiuaaqa baGccaaIGaGaaGikamaalaaabaGaam4yamaaCaaaleqabaGaaGOmaa aaaOqaaiaadYeadaWgaaWcbaGaamiuaaqabaaaaOGaaGykaiaaicca caaI9aGaaGiiaiaadkgaaaa@4CC5@          (3.2)

where MU is the Universe’s total mass inside the present-day Hubble radius RH;mP,LP are the Planck mass, and length, respectively. What (3.2) indicates is that the observed Universe’s total mass MU coincides with the product of the maximal proper force times the Hubble horizon scale (an infrared cutoff), and which in turn, is the black hole horizon radius corresponding to a Universe-mass black hole. The Planck mass is the product of the maximal proper force times the Planck scale (ultraviolet cutoff), and which in turn, is the black hole horizon radius corresponding to a Planck-mass black hole. And so forth, namely a black hole’s mass M coincides with the product of the maximal proper force b with its black hole horizon radius Rh.

Eq-(3.2) is also invariant under the scalings (3.1). Milgrom5,6 long ago pointed out the importance of scale invariance for MOND phenomenology, it is still impressive how much of that phenomenology, (i.e. flat rotation curves and baryonic Tully Fisher) is a consequence of scale invariance alone.

The recent new hypothesis58 is that this scale invariance is due to the dark matter undergoing a second order phase transition in the region normally associated with MONDian behavior. It is based on the idea that dark matter has a super-fluid phase59 which, if successful, would explain the flattening of the rotation curves, the Tully-Fisher48 and acceleration relations and the relation between ao~c2/RH.

In this work we do not have to recur to these hypothesis.58 Eqs-(2.20, 2.21) lead to these acceleration relations. A proposal that advocates the fall of dark matter can be found in.60,61 Scale invariance is assumed in the empty regions of space. The Weyl gauge field Aμ of dilatations contributes to modifications of the Christoffel connection leading then to repulsive corrections to the geodesic equations. We have not invoked the role of Quantum Gravity in this work nor what are the asymptotic symmetries (if any).

What we find remarkable is how powerful is the diffeomorphism symmetry of Einstein’s vacuum field equations to account for the Finsler gravity solution described here, and which is able to model MOND by simply replacing the radial coordinate r with the areal radial function R(r,v(r)). The key relation in eq-(2.21b) could be interpreted as a balance equation between an inward acceleration due to MOND, and an outward acceleration due to the accelerated expansion of the Universe (since the observed cosmological constant Λ=3/RH2). For this reason, it is warranted to find solutions of Finsler gravity which incorporate the cosmological constant, and see whether or not they can be recast in terms of diffeomorphic (but not isometric) solutions to the de Sitter-Schwarzschild metric.

Appendix A : Schwarzschild-like solutions in

In this Appendix we verify Birkhoff’s theorem by following closely the calculations of the static spherically symmetric vacuum solutions to Einstein’s equations in any dimension D>3. Let us start with the line element with the Lorentzian signature (,+,+,+,....,+) 

d s 2 = e μ(r) (dt) 2 + e ν(r) (dr) 2 + R 2 (r) g ˜ ij d ξ i d ξ j . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGZb WaaWbaaSqabeaacaaIYaaaaOGaaGypaiabgkHiTiaadwgadaahaaWc beqaaiabeY7aTjaaiIcacaWGYbGaaGykaaaakiaaiIcacaWGKbGaam iDaiaaiMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGLbWaaWba aSqabeaacqaH9oGBcaaIOaGaamOCaiaaiMcaaaGccaaIOaGaamizai aadkhacaaIPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamOuamaa CaaaleqabaGaaGOmaaaakiaaiIcacaWGYbGaaGykaiqadEgagaacam aaBaaaleaacaWGPbGaamOAaaqabaGccaWGKbGaeqOVdG3aaWbaaSqa beaacaWGPbaaaOGaamizaiabe67a4naaCaaaleqabaGaamOAaaaaki aai6caaaa@60D4@   (A.1)

where the areal radial function ρ(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjabgI caOiaadkhacqGHPaqkaaa@3C90@  is now denoted by R(r) and which must not be confused with the scalar curvature R. Here, the metric g~ij corresponds to a homogeneous space and i,j=3,4,...,D2 and the temporal and radial indices are denoted by 1,2 respectively. In our text we denoted the temporal index by 0. The only non-vanishing Christoffel symbols are given in terms of the following partial derivatives with respect to the r variable and denoted with a prime

Γ 21 1 = 1 2 μ ' , Γ 22 2 = 1 2 ν ' , Γ 11 2 = 1 2 μ ' e μν , Γ ij 2 = e ν R R ' g ˜ ij , Γ 2j i = R ' R δ j i , Γ jk i = Γ ˜ jk i , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabeqacmaaae aacqqHtoWrdaqhaaWcbaGaaGOmaiaaigdaaeaacaaIXaaaaOGaaGyp amaalaaabaGaaGymaaqaaiaaikdaaaGaeqiVd02aaWbaaSqabeaaca WGNaaaaOGaaGilaaqaaiabfo5ahnaaDaaaleaacaaIYaGaaGOmaaqa aiaaikdaaaGccaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaacqaH9o GBdaahaaWcbeqaaiaadEcaaaGccaaISaaabaGaeu4KdC0aa0baaSqa aiaaigdacaaIXaaabaGaaGOmaaaakiaai2dadaWcaaqaaiaaigdaae aacaaIYaaaaiabeY7aTnaaCaaaleqabaGaam4jaaaakiaadwgadaah aaWcbeqaaiabeY7aTjabgkHiTiabe27aUbaakiaaiYcaaeaacqqHto WrdaqhaaWcbaGaamyAaiaadQgaaeaacaaIYaaaaOGaaGypaiabgkHi TiaadwgadaahaaWcbeqaaiabgkHiTiabe27aUbaakiaadkfacaWGsb WaaWbaaSqabeaacaWGNaaaaOGabm4zayaaiaWaaSbaaSqaaiaadMga caWGQbaabeaakiaaiYcaaeaacqqHtoWrdaqhaaWcbaGaaGOmaiaadQ gaaeaacaWGPbaaaOGaaGypamaalaaabaGaamOuamaaCaaaleqabaGa am4jaaaaaOqaaiaadkfaaaGaeqiTdq2aa0baaSqaaiaadQgaaeaaca WGPbaaaOGaaGilaaqaaiabfo5ahnaaDaaaleaacaWGQbGaam4Aaaqa aiaadMgaaaGccaaI9aGafu4KdCKbaGaadaqhaaWcbaGaamOAaiaadU gaaeaacaWGPbaaaOGaaGilaaaaaaa@8076@      (A.2)

and the only nonvanishing Riemann tensor are

                R 212 1 = 1 2 μ '' 1 4 μ '2 + 1 4 ν ' μ ' , R i1j 1 = 1 2 μ ' e ν R R ' g ˜ ij , R 121 2 = e μν ( 1 2 μ '' + 1 4 μ '2 1 4 ν ' μ ' ), R i2j 2 = e ν ( 1 2 ν ' R R ' R R '' ) g ˜ ij , R jkl i = R ˜ jkl i R '2 e ν ( δ k i g ˜ jl δ l i g ˜ jk ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqbaeqabi Gaaaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e83gHi1aa0baaSqaaiaaikdacaaIXaGaaGOmaaqaaiaaigdaaaGcca aI9aGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacqaH8oqBdaah aaWcbeqaaiaadEcacaWGNaaaaOGaeyOeI0YaaSaaaeaacaaIXaaaba GaaGinaaaacqaH8oqBdaahaaWcbeqaaiaadEcacaaIYaaaaOGaey4k aSYaaSaaaeaacaaIXaaabaGaaGinaaaacqaH9oGBdaahaaWcbeqaai aadEcaaaGccqaH8oqBdaahaaWcbeqaaiaadEcaaaGccaaISaaabaGa e83gHi1aa0baaSqaaiaadMgacaaIXaGaamOAaaqaaiaaigdaaaGcca aI9aGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacqaH8oqBdaah aaWcbeqaaiaadEcaaaGccaWGLbWaaWbaaSqabeaacqGHsislcqaH9o GBaaGccaWGsbGaamOuamaaCaaaleqabaGaam4jaaaakiqadEgagaac amaaBaaaleaacaWGPbGaamOAaaqabaGccaaISaaabaGae83gHi1aa0 baaSqaaiaaigdacaaIYaGaaGymaaqaaiaaikdaaaGccaaI9aGaamyz amaaCaaaleqabaGaeqiVd0MaeyOeI0IaeqyVd4gaaOGaaGikamaala aabaGaaGymaaqaaiaaikdaaaGaeqiVd02aaWbaaSqabeaacaWGNaGa am4jaaaakiabgUcaRmaalaaabaGaaGymaaqaaiaaisdaaaGaeqiVd0 2aaWbaaSqabeaacaWGNaGaaGOmaaaakiabgkHiTmaalaaabaGaaGym aaqaaiaaisdaaaGaeqyVd42aaWbaaSqabeaacaWGNaaaaOGaeqiVd0 2aaWbaaSqabeaacaWGNaaaaOGaaGykaiaaiYcaaeaacqWFBeIudaqh aaWcbaGaamyAaiaaikdacaWGQbaabaGaaGOmaaaakiaai2dacaWGLb WaaWbaaSqabeaacqGHsislcqaH9oGBaaGccaaIOaWaaSaaaeaacaaI XaaabaGaaGOmaaaacqaH9oGBdaahaaWcbeqaaiaadEcaaaGccaWGsb GaamOuamaaCaaaleqabaGaam4jaaaakiabgkHiTiaadkfacaWGsbWa aWbaaSqabeaacaWGNaGaam4jaaaakiaaiMcaceWGNbGbaGaadaWgaa WcbaGaamyAaiaadQgaaeqaaOGaaGilaaaaaeaacqWFBeIudaqhaaWc baGaamOAaiaadUgacaWGSbaabaGaamyAaaaakiaai2daceWGsbGbaG aadaqhaaWcbaGaamOAaiaadUgacaWGSbaabaGaamyAaaaakiabgkHi TiaadkfadaahaaWcbeqaaiaadEcacaaIYaaaaOGaamyzamaaCaaale qabaGaeyOeI0IaeqyVd4gaaOGaaGikaiabes7aKnaaDaaaleaacaWG RbaabaGaamyAaaaakiqadEgagaacamaaBaaaleaacaWGQbGaamiBaa qabaGccqGHsislcqaH0oazdaqhaaWcbaGaamiBaaqaaiaadMgaaaGc ceWGNbGbaGaadaWgaaWcbaGaamOAaiaadUgaaeqaaOGaaGykaiaai6 caaaaa@C995@          (A.3)

The vacuum field equations are

R 11 = e μν ( 1 2 μ '' + 1 4 μ '2 1 4 μ ' ν ' + (D2) 2 μ ' R ' R )=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83gHi1aaSbaaSqaaiaa igdacaaIXaaabeaakiaai2dacaWGLbWaaWbaaSqabeaacqaH8oqBcq GHsislcqaH9oGBaaGccqGHOaakdaWcaaqaaiaaigdaaeaacaaIYaaa aiabeY7aTnaaCaaaleqabaGaam4jaiaadEcaaaGccqGHRaWkdaWcaa qaaiaaigdaaeaacaaI0aaaaiabeY7aTnaaCaaaleqabaGaam4jaiaa ikdaaaGccqGHsisldaWcaaqaaiaaigdaaeaacaaI0aaaaiabeY7aTn aaCaaaleqabaGaam4jaaaakiabe27aUnaaCaaaleqabaGaam4jaaaa kiabgUcaRmaalaaabaGaeyikaGIaamiraiabgkHiTiaaikdacqGHPa qkaeaacaaIYaaaaiabeY7aTnaaCaaaleqabaGaam4jaaaakmaalaaa baGaamOuamaaCaaaleqabaGaam4jaaaaaOqaaiaadkfaaaGaeyykaK Iaeyypa0JaeyimaaJaaGilaaaa@6C57@  (A.4)

R 22 = 1 2 μ '' 1 4 μ '2 + 1 4 μ ' ν ' +(D2)( 1 2 ν ' R ' R R '' R )=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83gHi1aaSbaaSqaaiaa ikdacaaIYaaabeaakiaai2dacqGHsisldaWcaaqaaiaaigdaaeaaca aIYaaaaiabeY7aTnaaCaaaleqabaGaam4jaiaadEcaaaGccqGHsisl daWcaaqaaiaaigdaaeaacaaI0aaaaiabeY7aTnaaCaaaleqabaGaam 4jaiaaikdaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaaI0aaaaiab eY7aTnaaCaaaleqabaGaam4jaaaakiabe27aUnaaCaaaleqabaGaam 4jaaaakiabgUcaRiaaiIcacaWGebGaeyOeI0IaeyOmaiJaeyykaKIa eyikaGYaaSaaaeaacaaIXaaabaGaaGOmaaaacqaH9oGBdaahaaWcbe qaaiaadEcaaaGcdaWcaaqaaiaadkfadaahaaWcbeqaaiaadEcaaaaa keaacaWGsbaaaiabgkHiTmaalaaabaGaamOuamaaCaaaleqabaGaam 4jaiaadEcaaaaakeaacaWGsbaaaiabgMcaPiabg2da9iabgcdaWiaa iYcaaaa@6CCB@  (A.5)

and

R ij = e ν R 2 ( 1 2 ( ν ' μ ' )R R ' R R '' (D3) R '2 ) g ˜ ij +k R 2 (D3) g ˜ ij =0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83gHi1aaSbaaSqaaiaa dMgacaWGQbaabeaakiaai2dacaWGLbWaaWbaaSqabeaacqGHsislcq aH9oGBaaGccaWGsbWaaWbaaSqabeaacaaIYaaaaOGaaGikamaalaaa baGaaGymaaqaaiaaikdaaaGaaGikaiabe27aUnaaCaaaleqabaGaam 4jaaaakiabgkHiTiabeY7aTnaaCaaaleqabaGaam4jaaaakiaaiMca caWGsbGaamOuamaaCaaaleqabaGaam4jaaaakiabgkHiTiaadkfaca WGsbWaaWbaaSqabeaacaWGNaGaam4jaaaakiabgkHiTiaaiIcacaWG ebGaeyOeI0IaaG4maiabgMcaPiaadkfadaahaaWcbeqaaiaadEcaca aIYaaaaOGaeyykaKIabm4zayaaiaWaaSbaaSqaaiaadMgacaWGQbaa beaakiabgUcaRiaadUgacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaaG ikaiaadseacqGHsislcaaIZaGaeyykaKIabm4zayaaiaWaaSbaaSqa aiaadMgacaWGQbaabeaakiabg2da9iaaicdacaaISaaaaa@7415@  (A.6)

where k=±1(Α.6), depending if g~ij refers to positive or negative curvature. From the combination eμ+νR11+R22=0 we get

μ ' + ν ' = 2 R '' R ' . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaCa aaleqabaGaam4jaaaakiabgUcaRiabe27aUnaaCaaaleqabaGaam4j aaaakiabg2da9maalaaabaGaaGOmaiaadkfadaahaaWcbeqaaiaadE cacaWGNaaaaaGcbaGaamOuamaaCaaaleqabaGaam4jaaaaaaGccaaI Uaaaaa@44DF@ (A.7)

The solution of this equation is

μ+ν=lnR'2+C,       (A.8)

where C is an integration constant that one sets to zero if one wishes to recover the flat Minkowski spacetime metric in spherical coordinates in the asymptotic region r.

Substituting (A.7) into the equation (A.6) we find

e ν ( ν ' R R ' 2R R '' (D3) R '2 ) = k(D3) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaahaa WcbeqaaiabgkHiTiabe27aUbaakiaaiccacaaIOaGaaGiiaiabe27a UnaaCaaaleqabaGaam4jaaaakiaadkfacaWGsbWaaWbaaSqabeaaca WGNaaaaOGaeyOeI0IaaGOmaiaadkfacaWGsbWaaWbaaSqabeaacaWG NaGaam4jaaaakiabgkHiTiaaiIcacaWGebGaeyOeI0Iaey4mamJaey ykaKIaamOuamaaCaaaleqabaGaam4jaiaaikdaaaGccqGHGaaicqGH PaqkcqGHGaaicqGH9aqpcqGHGaaicqGHsislcaWGRbGaaGikaiaads eacqGHsislcaaIZaGaeyykaKcaaa@59C0@  (A.9)

or

γ ' R R ' +2γR R '' +(D3)γ R '2 =k(D3), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaCa aaleqabaGaam4jaaaakiaadkfacaWGsbWaaWbaaSqabeaacaWGNaaa aOGaey4kaSIaaGOmaiabeo7aNjaadkfacaWGsbWaaWbaaSqabeaaca WGNaGaam4jaaaakiabgUcaRiaaiIcacaWGebGaeyOeI0IaaG4maiab gMcaPiabeo7aNjaadkfadaahaaWcbeqaaiaadEcacaaIYaaaaOGaey ypa0Jaam4AaiabgIcaOiaadseacqGHsislcaaIZaGaeyykaKIaaGil aaaa@5397@  (A.10)

Where

γ=eν.  (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal dimension ) corresponding to a D-2 -dim sphere for the homogeneous space can be written as

γ=(1 16π G D M (D2) Ω D2 R D3 ) ( dR dr ) 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjaai2 dacqGHOaakcqGHXaqmcqGHsisldaWcaaqaaiaaigdacaaI2aGaeqiW daNaam4ramaaBaaaleaacaWGebaabeaakiaad2eaaeaacqGHOaakca WGebGaeyOeI0IaaGOmaiabgMcaPiabfM6axnaaBaaaleaacaWGebGa eyOeI0IaaGOmaaqabaGccaWGsbWaaWbaaSqabeaacaWGebGaeyOeI0 IaaG4maaaaaaGccqGHPaqkcqGHGaaicqGHOaakdaWcaaqaaiaadsga caWGsbaabaGaamizaiaadkhaaaGaeyykaKYaaWbaaSqabeaacqGHsi slcqGHYaGmaaGccqGHshI3aaa@5A91@

g rr = e ν = (1 16π G D M (D2) Ω D2 R D3 ) 1 ( dR dr ) 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaamOCaiaadkhaaeqaaOGaeyypa0JaamyzamaaCaaaleqabaGa eqyVd4gaaOGaeyypa0JaeyikaGIaaGymaiabgkHiTmaalaaabaGaaG ymaiaaiAdacqaHapaCcaWGhbWaaSbaaSqaaiaadseaaeqaaOGaamyt aaqaaiaaiIcacaWGebGaeyOeI0IaaGOmaiaaiMcacqqHPoWvdaWgaa WcbaGaamiraiabgkHiTiaaikdaaeqaaOGaamOuamaaCaaaleqabaGa amiraiabgkHiTiaaiodaaaaaaOGaeyykaKYaaWbaaSqabeaacqGHsi slcqGHXaqmaaGccqGHGaaicqGHOaakdaWcaaqaaiaadsgacaWGsbaa baGaamizaiaadkhaaaGaeyykaKYaaWbaaSqabeaacaaIYaaaaOGaaG Olaaaa@5EDC@    (A.12)

where ΩD2 is the appropriate solid angle in D2-dim and GD is the D-dim gravitational constant whose units are (length)D2. Thus GDM has a unit of (length)D3 as it should. When D=4 as a result that the 2-dim solid angle is Ω2=4π one recovers from eq-(A.12) the 4-dim Schwarzchild solution. The solution in eq-(A.12) is consistent with Gauss law and Poisson’s equation in D-1 spatial dimensions obtained in the Newtonian limit.

For the most general case of the D-2-dim homogeneous space we should write

ν=ln(kβDGDMRD3)2lnR'   (A.13)

βD is a constant equal to 16π/(D2) Ω D2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaI2a GaeqiWdaNaey4la8IaeyikaGIaamiraiabgkHiTiaaikdacqGHPaqk cqqHPoWvdaWgaaWcbaGaamiraiabgkHiTiaaikdaaeqaaaaa@4499@ , where ΩD2 is the solid angle in the D2 transverse dimensions to r,t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaaISa GaamiDaaaa@3AC5@  and is given by 2π(D1)/2Γ[(D1)/2].

Thus, according to (A.8) we get

μ=ln(k β D G D M R D3 ) + constant. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2 da9iGacYgacaGGUbGaeyikaGIaam4AaiabgkHiTmaalaaabaGaeqOS di2aaSbaaSqaaiaadseaaeqaaOGaam4ramaaBaaaleaacaWGebaabe aakiaad2eaaeaacaWGsbWaaWbaaSqabeaacaWGebGaeyOeI0IaaG4m aaaaaaGccqGHPaqkcaaIGaGaey4kaSIaaGiiaiaadogacaWGVbGaam OBaiaadohacaWG0bGaamyyaiaad6gacaWG0bGaaGOlaaaa@53A4@        (A.14)

we can set the constant to zero, and this means the line element (A.1) can be written as

ds2=(kβDGDMRD3dt2+dRdr2kβDGDMRD3+R2rg~ijdξidξj=kβDGDMRD3dt2+1kβDGDMRD3+R2rg~ijdξidξj     (A.15)

One can verify, that the equations (A.4)-(A.6),leading to eqs-(A.9)-(A.10), do not determine the form R(r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGHOa akcaWGYbGaeyykaKcaaa@3BA7@ . It is also interesting to observe that the only effect of the homogeneous metric g~ij is reflected in the k=±1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacqGH9a qpcqGHXcqScqGHXaqmaaa@3CF1@  parameter, associated with a positive (negative) constant scalar curvature of the homogeneous D2-dim space. k=0 corresponds to a spatially flat D2-dim section. The metric solution in eq-(1.2) is associated to a different signature than the one chosen in this Appendix, and corresponds to D=4  and k=1.6273

Acknowledgments

We are indebted to M. Bowers for assistance.

Conflict of interest

Authors declare there is no conflict of interest.

References

  1. A Einstein. The Field Equations of Gravitation. Berlin: Sitzungsber Preuss Akad; 1915. p. 831.
  2. K Schwarzschild. On the gravitational field of a mass point according to Einstein's theory. Berlin: Sitzungsber Preuss Akad; 1999. p.7.
  3. C Castro. Novel Remarks on Point Mass Sources, Firewalls, Null Singularities and Gravitational Entropy. Foundations of Physics. 2016;46(1):14−27.
  4. Carlos Castro. Asymptotic Safety in Quantum Gravity and Diffeomorphic Non−isometric Metric Solutions to the Schwarzschild Metric. Canadian Journal of Physics. 2018;96(1):90−97.
  5. M Milgrom. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophysical Journal. 1983;270:365−370.
  6. P Kroupa, M Pawlowski, M Milgrom. The failures of the standard model of cosmology require a new paradigm. International Journal of Modern Physics D. 2012;21(14):1230003.
  7. A Almheiri, D Marolf, J Polchinski, et al. Black Holes: Complementarity or Firewalls. Journal of High Energy Physics. 2013;62.
  8. L Susskind, L Thorlacius, J Uglum. The Stretched Horizon and Black Hole Complementarity. Phys Rev D. 1993;48:3743.
  9. F Klinkhamer. A new type of nonsingular black−hole solution in general relativity. Mod Phys Lett. 2014;29(19):1430018.
  10. VC Rubin, N Thonnard, WK Ford. Extended rotation curves of high−luminosity spiral galaxies. IV − Systematic dynamical properties, SA through SC. Astrophysical Journal Letters. 1978;225:107−111.
  11. VC Rubin, WK Ford, N Thonnard. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophysical Journal. 1980;238:471−487.
  12. M Lopez Corredoira. Tests and problems of the standard model in Cosmology. arXiv: 1701.08720.
  13. S Capozziello, M De Laurentis. The dark matter problem from f(R) gravity viewpoint. Annalen der Physik. 2012;524(9−10):545−578.
  14. S Capozziello, M De Laurentis. Extended Theories of Gravity. Phys Rep. 2011;509:(4−5):167−321.
  15. S Capozziello, P Jovanovic, V Borka Jovanovic et al. Addressing the missing matter problem in galaxies through a new fundamental gravitational radius. JCAP. 2017;06:044.
  16. BG Sidharth, A Das. Anomaly of Dark Matter. arXiv: 1609.04246.
  17. P Mannheim. Alternatives to Dark Matter and Dark Energy. Prog Part Nucl Phys. 2005;56(2):340.
  18. J Bekenstein. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Physical Review D. 2004;70(8):083509.
  19. T Zlosnik, P Ferreira, G Starkman. Modifying gravity with the aether: An alternative to dark matter. Phys Rev D. 2007;75:044017.
  20. JW Moffat. Scalar–tensor–vector gravity theory. Journal of Cosmology and Astroparticle Physics. 2006;3:004.
  21. S Boran, S Desai, E Kahya, et al. GW170817 Falsifies Dark Matter Emulators. Phys Rev D. 2018;97:041501.
  22. M Milgrom. Bimetric MOND gravity. Phys Rev D. 2009;80:123536.
  23. C Deffayet, G Esposito Farese, RP Woodard. Nonlocal metric formulations of modified Newtonian dynamics with sufficient lensing. Phys Rev D. 2011;84:124054.
  24. C Deffayet, G Esposito Farese, RP Woodard. Field equations and cosmology for a class of nonlocal metric models of MOND. Phys Rev D. 2014;90:064038.
  25. M Kim, MH Rahat, M Sayeb, et al. Determining cosmology for a nonlocal realization of MOND. Phys Rev D. 2016;94:104009.
  26. L Berezhiani, J Khoury. Theory of dark matter superfluidity. Phys Rev D. 2015;92:103510.
  27. L Blanchet, L Heisenberg. Dipolar dark matter as an effective field theory. Phys Rev D. 2017;96:083512.
  28. RH Sanders. Hiding Lorentz invariance violation with MOND. Phys Rev D. 2011;84:084024.
  29. L Blanchet, S Marsat. Modified gravity approach based on a preferred time foliation. Phys Rev D. 2011;84:044056.
  30. S Capozziello, M Faizal, M Hameeda, et al. Clustering of galaxies with f(R) gravity. Monthly Notices of the Royal Academic Society. 2018;474(2):2430−2443.
  31. M Hameeda, S Upadhyay, M Faizal, et al. Effects of cosmological constant on clustering of Galaxies. Monthly Notices of the Royal Academic Society. 2016;463:3699−3704.
  32. S Upadhyay. Thermodynamics and galactic clustering with a modified gravitational potential. Phys Rev D. 2017;95:043008.
  33. B Pourhassan, S Upadhyay, M Hameeda, et al. Clustering of galaxies with dynamical dark energy. Monthly Notices of the Royal Academic Society. 2017;468:3166.
  34. M Hameeda, S Upadhyay, M Faizal, et al. Large distance modification of Newtonian potential and structure formation in universe. Physics of the Dark Universe. 2018;19:137−143.
  35. P Finsler. Über Kurven und Flächen in allgemeinen Räumen. PhD thesis, Georg August University zu Göttingen, Germany. 1918.
  36. D Bao, S Chern, Z Shen, An Introduction to Riemann−Finsler Geometry. Graduate Texts in Mathematics. NewYork; Springer: 2000. p. 435.
  37. R Miron, D Hrimiuc, H Shimada, et al. The Geometry of Hamilton and Lagrange Spaces. Netherlands: Springer; 2002. p. 338.
  38.  S Vacaru. On axiomatic formulation of gravity and matter field theories with MDRs and Finsler−Lagrange−Hamilton geometry on (co)tangent Lorentz bundles. arXiv: 1801.06444.
  39. S Vacaru. Finsler−Lagrange Geometries and Standard Theories in Physics: New Methods in Einstein and String Gravity. arXiv: 0707.1524.
  40. S Vacaru, P Stavrinos, E Gaburov, et al. Clifford and Riemann−Finsler Structures in Geometric Mechanics and Gravity. Differential Geometry − Dynamical Systems Monographs. 2003. p. 693.
  41. C Pfeifer. The Finsler spacetime framework: backgrounds for physics beyond metric geometry. Ph.D thesis, University of Hamburg. 2013. p. 151.
  42. C Pfeifer. From the Einstein−Hilbert action to an action principle for Finsler gravity. Diploma thesis, University of Hamburg. 2010. p. 91.
  43. C Pfeifer, MNR Wohlfarth. Finsler geometric extension of Einstein gravity. Phys Rev D. 2012;85:064009.
  44. S Rutz. A Finsler generalization of Einstein’s vacuum field equations. General Relativity and Gravitation. 1993;25(11):1139−1158.
  45. M Hohmann. Extensions of Lorentzian spacetime geometry: From Finsler to Cartan and vice versa. Phys Rev D. 2013;87:124034.
  46. X Li, Z Chang. The spacetime structure of MOND with Tully-Fisher relation and Lorentz invariance violation. Chinese Physics C. 2013;37(12):123103.
  47. X Li, MH Li, HN Lin, et al. Finslerian MOND vs. observations of Bullet Cluster 1E0657−558. Mon Not Roy Astron Soc. 2013;428: 2939–2948.
  48. RB Tully, JR Fisher. A new method of determining distances to galaxies. Astron Astrophys. 1977;54(3):661−673.
  49. R Pathria. The Universe as a Black Hole. Nature. 1972;240(5379):298−299.
  50. IJ Goody. Chinese universes. Physics Today. 1972;25:7.
  51. P Landsberg. Mass Scales and the Cosmological Coincidences. Annalen der Physik. 1984;496(2):88−92.
  52. N Poplawski. Universe in a Black−Hole in Einstein-Cartan Gravity. Astrophys J. 2016;832(2):96.
  53. Black Hole Cosmology
  54.  C Castro. Is Dark Matter and Black−Hole Cosmology an Effect of Born’s Reciprocal Relativity Theory? Canadian Journal of Physics. 2018.
  55. C Castro. On Dual Phase Space Relativity, the Machian Principle and Modified Newtonian Mechanics. Progress in Physics. 2005;1:20−30.
  56. C Castro. Solutions to the Gravitational Field Equations in Curved Phase−Spaces. Electronic Journal of Theoretical Physics. 2018;14(37):145−160
  57. SK Blau, EI Guendelman, AH Guth. Dynamics of false-vacuum bubbles. Phys Rev D. 1987;35(6):1747.
  58. S Alexander, L Smolin. The Equivalence Principle and the Emergence of Flat Rotation Curves. arXiv:1804.09573.
  59. MP Silverman, RL Mallett. Dark matter as a cosmic Bose−Einstein condensate and possible superfluid. Gen Rel Grav. 2002;34(5):633−649.
  60. A Maeder. Dynamical effects of the scale invariance of the empty space: The fall of dark matter. 2017;849(2):158.
  61. A Maeder. An Alternative to the ɅCDM Model: The Case of Scale Invariance. The Astrophysical Journal. 2017;834(2):194.
  62. D Hilbert. Mathematische Probleme. Nachr Ges Wiss Gottingen Math Phys. 1917;K1:53.
  63. H Weyl. Republication of: 3. The theory of gravitation. Ann Physik (Leipzig). 1917;54:117−145.
  64. J Droste. Proc Ned Akad West Ser. 1917;A19:197.
  65. C Fronsdal. Completion and Embedding of the Schwarzschild Solution. Phys Rev. 1959;116:778.
  66. M Kruskal. Maximal Extension of Schwarzschild Metric. Phys Rev. 1960;119:1743.
  67. G Szekers. On the singularities of a Riemannian manifold. Publ Mat Debreca. 1960;7:285.
  68. A Akil, O Dahlsten, L Modesto. A Firepoint at the Black Hole Singularity. arXiv:1805.04368.
  69. J Oort Bull. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bulletin of the Astronomical Institutes of the Netherlands. 1932;6:249.
  70. F Zwicky Helv. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta. 1993;6:110−127.
  71. M Milgrom. Scale Invariance at low accelerations (aka MOND) and the dynamical anomalies in the Universe. Progress in physics. 2017;65(6−8):1600046.
  72. M Mordehai. MOND laws of galactic dynamics. Monthly Notices of the Royal Astronomical Society. 2014;437(3):2531−2541.
  73. M Milgrom. Dynamics with a Nonstandard Inertia-Acceleration Relation: An Alternative to Dark Matter in Galactic Systems. Annals of Physics. 1994;229(2):384−415.
Creative Commons Attribution License

©2018 Perelman. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.