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Introduction: Diffeomorphic metrics to 
the Schwarzschild solution, firepoints and 
firewalls

The static spherically symmetric (SSS) vacuum solution of 
Einstein’s field equations1 that we learned from the text books is 
actually the Hilbert form of the original Schwarzschild solution2

2 2 1 2 2 22 2( )  = (1 ) ( )   (1 )  ( )    ( ) .GM GMds dt dr r d
r r

−− − − − Ω         (1.1)

Birkoff’s theorem states that all static spherically symmetric 
vacuum solutions to Einstein’s equations are diffeomorphic to the 
Hilbert-Schwarzchild solution. There are an infinite number of 
metrics3,4 which are diffeomorphic but not isometric to the Hilbert 
form of the Schwarzschild2 solution. In particular, given an areal 
radial function ( ) =r rρ  (in = 1c  units), the metric

2 2 1 2 2 22 2( )  = (1 ) ( )   (1 )  ( )   ( ) ( ) .
( ) ( )

GM GMds dt d r d
r r

ρ ρ
ρ ρ

−− − − − Ω (1.2)

is diffeomorphic but not isometric to the Hilbert form of the 
Schwarzschild2 solution. 2 2 2( ) = ( ( ) / ) ( )d d r dr drρ ρ , and the solid 

angle infinitesimal element is 2 2 2 2( ) = ( ) ( )( )d d sin dφ φ θΩ + . The 

surface area at each point r  is now given by 24 ( ( ))rπ ρ  so that ( )rρ  
plays the role of an effective radius and hence the name of “areal-
radial” function for ( )rρ .

The metric (1.2) is diffeomorphic but not isometric to the Hilbert 
form (1.1) of the Schwarzschild solution2 because the area elements 

2 2 2 2 ( ) = ( ) ( )r d r dρΩ Ω  are not equal, except in the trivial case when
( ) =r rρ . We have not relabelled the radial variable r by giving it 

another “name” and calling it " "ρ , because ( )rρ  is itself a function 

of r . Furthermore, one has not performed a naive change of radial 
coordinates r ρ→  because the metric (1.2) is still given in terms 
of r . Therefore, the metric (1.2) is not the Schwarzschild metric 
rewritten in terms of new radial coordinates, but it is obtained after 
performing an active diffeomorphism via the mappings ( )r rρ→ . 
Under active diffeomorphism the points of the manifold are displaced 
(except for the fixed points) and must not be confused with passive 
diffeomorphisms that amount to mere coordinate transformations 
(like rotation, translation of the coordinate axes) leaving all the points 
fixed. Consequently, the metric (1.2) assumes the same values as the 
Schwarzschild metric (1.1) but at different values of r  (at different 
radial locations). This is the reason why the horizon can be actively 
displaced from = 2r GM  to the value = 0r +  as we shall see below.

The boundary condition obeyed by the areal radial function ( )rρ  
at the origin is ( = 0) = 0rρ  since the point mass location must reside 
at the center of spherical symmetry. At infinity, an asymptotically 
flat metric would require ( )r rρ →∞ →∞ . In particular, the 
metric solutions (1.2) are invariant under the transformations 

;r r M M→− → −  for the particular choice of areal radial functions 
obeying the condition ( , ) = ( , )r M r Mρ ρ− − − . This allows us to 
extend the solutions to the < 0r  region.

The metric (1.2) leads to modifications of the Newtonian potential, 
and for this reason, it is very relevant to modified Newtonian dynamics 
(MOND) as described in the next section. One recovers the Newtonian 
potential in the regime when ( )r rρ  . In the next section we will 
show why modified Newtonian dynamics (MOND)5,6 associated with 
galaxies can be obtained from Finsler gravity, and which in turn, 
can be modeled by metrics (1.2) which are diffeomorphic but not 
isometric to the Hilbert-Schwarzschild metric. The key point is that 
one will have to dispense with the asymptotic flatness condition, and 
introduce an infrared-cut-off for the metric at =r ∞  in the form of

( = ) = =or finiteρ ρ∞ . Therefore, changing the boundary condition 
at =r ∞  leads to MONDian dynamics.
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Abstract

We revisit the construction of diffeomorphic but not isometric solutions to the Schwarzschild 
metric. The solutions relevant to Black Holes are those which require the introduction of 
non-trivial areal-radial functions that are characterized by the key property that the radial 
horizon’s location is displaced continuously towards the singularity (r=0). In the limiting 
case scenario the location of the singularity and horizon merges and any infalling observer 
hits a null singularity at the very moment he/she crosses the horizon. This fact may have 
important consequences for the resolution of the firewall problem and the complementarity 
controversy in black holes. It is shown next how modified Newtonian dynamics (MOND) 
can be obtained from solutions to Finsler gravity, and which in turn, can also be modelled 
by metrics which are diffeomorphic but not isometric to the Schwarzschild metric. The 
key point now is that one will have to dispense with the asymptotic flatness condition, 
by choosing an areal radial function which is finite at =r ∞ . Consequently, changing 
the boundary condition at =r ∞  leads to MONDian dynamics. We conclude with some 
discussions on the role of scale invariance and Born’s Reciprocal Relativity Theory based 
on the existence of a maximal proper forces.
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To model the scenario when the horizon merges precisely with the 
singularity one needs an area radial function defined at = 0r  and at 

= 0r , as follows3,4

| |/2 | | 1( = 0) = 0;  ( ) = (1  ) ,  = 0r G Mr r r e rρ ρ − −−  	                 (1.3)
Under ; r r M M→− → −  one has that ( ) ( )r rρ ρ→ −  so one can 

ensure the invariance of the metric (1.2) under these transformations 
and extend the solutions to the < 0r  region. ( )rρ  is antisymmetric 

( ) = ( )r rρ ρ− − , and as such it must vanish at = 0r .

Hence, we have in eq-(1.3) that ( = 0 ; ) = 2r M GMρ + , and 
( = 0 ; ) = 2r M GMρ − − − , but ( = 0) = 0rρ  since a point mass must 

have zero area and zero volume. The horizon is located at = 0hr
+  

and the singularity at = 0r . There is a discontinuity of ( )rρ  at = 0r
. The right = 0r + , and left = 0r −  limits of ( )rρ  give respectively

2GM± , while ( = 0) = 0rρ  which is the arithmetic mean of 2GM  
and 2GM− . This is similar to the behaviour of the step function 

( )rΘ  defined by = 1, > 0; = 1, < 0; = 0, = 0r r rΘ Θ − Θ . Θ  can be 
realized as / | |r r  which is an antisymmetric function, and as such, 
it must vanish at the origin, like the areal radial function in eq-(1.3).

Because a point mass is an infinitely compact source of infinite 
density, there is nothing wrong with the possibility of having 
a discontinuity of the metric at the location of the singularity

= 0r . Due to the boundary condition ( = 0) = 0rρ , there is 
a curvature tensor singularity and the Kretschmann invariant 

2 6(2 ) / ( )R R GM rµνρσ
µνρσ ρ  diverges at ( = 0) = 0rρ . In this 

extreme case, when the location of the horizon merges with the 
singularity, there is a null-line singularity at = 0r  and a null-surface 
at = 0r + . This may sound quite paradoxical but it is a consequence 
of the metric discontinuity at = 0r , the location of the point mass 
(singularity). This key fact may have important consequences for 
the resolution of the firewall problem and the complementarity 
controversy in black holes.7,8 We may label the null-line singularity 
at = 0r  as a firepoint, and the null-surface at = 0r +  as a firewall. A 
recent discussion of the notion of a firepoint can be found in8 where 
they propose the singularity itself as a “firepoint” capable to break the 
entanglement between the “in” and the “out” states created through 
the Hawking process.

When the areal-radial function ( )rρ  has the actual form in eq-
(1.3) there is no interior region beyond the horizon = 0r + , so that 
the metric (1.2) is truly static everywhere. The Fronsdal-Kruskal-
Szekeres analytical continuation of the metric (1.1) inside the horizon 
is no longer static. Klinkhamer9 provided earlier on a regularization 
of the standard Schwarzschild solution with a curvature singularity 
at the center by removing the interior region of a ball and identifying 
the antipodal points on the boundary. The resulting four-dim manifold 
has now the topology 3R M×   where 3M  is a nonsimply-connected 
manifold, which up to a point (the center), is homeomorphic 
to the 3-dim real projective space 3RP . In our case, there is no 
need to remove the interior region by surgery. The discontinuity 

( = 0) = 0; ( = 0 ) = 2r r GMρ ρ +  of the areal-radial function amounts 
to a sort of “point-splitting” creating a void (hole) in spacetime, 
isolating and expunging the curvature singularity at the center from 
the remaining region of space-time. The topology of the region free of 
the singularity at the center is 4 3=M R M×  , where 3

3 = {0}M R −  is 
the punctured 3-dim space.

Finsler geometry, modified Newtonian 
dynamics and areal radial functions

It has long been known that if one recurs to Newton’s inverse-
square law of gravity, the observed baryonic matter cannot provide 
enough force to attract the matter (stars) present in the outer edges 
of the galaxies.10,11 Postulating that galaxies are surrounded by 
massive, non-luminous dark matter is one of the most widely accepted 
proposals to solve the problem. No dark matter has been detected yet. 
An extensive overview with a vast number of references of the tests 
and problems of the standard model in Cosmology.12

Some models have been built as an alternative to the dark matter 
hypothesis. The main ideas are based on assuming that the Newtonian 
gravity or Newton’s dynamics is invalid on galactic scales. In the 
MOND model (modified Newtonian dynamics) of Milgrom5,6 it 
assumes that the Newtonian dynamics does not hold on galactic scales. 
In Extended Theories of Gravity, like ( )f R  gravity13−17 it is shown 
that several gravitating structures like stars, spiral galaxies, elliptical 
galaxies and clusters of galaxies can be self-consistently described 
without dark matter. There are other MONDian theories, for example, 
by introducing several scalar, vector and tensor fields, Bekenstein18 
rewrote the MOND model of Milgrom in a covariant formalism 
(the TeVeS model). There is the Einstein-aether theory admitting a 
preferred reference frame and broken local Lorentz invariance.19

The accurate measurement of the speed of gravitational waves 
(GW) compared to the speed of light in 2017 ruled out modified gravity 
theories, termed “dark matter emulators”, which dispense with the 
need for dark matter by making ordinary matter couple to a different 
metric from that of GW. These models have the property that, in the 
extreme weak field regime relevant to cosmology, gravitational waves 
propagate on different geodesics from those followed by photons and 
neutrinos. Therefore, the differential Shapiro delay between GWs 
and photons/neutrinos is due to the gravitational potential of only 
the dark matter. Some examples of these Dark Matter (DM) emulator 
theories include Bekenstein’s TeVeS theory18 and Moffat’s Scalar-
TensorVector gravity theory.20 It is important to understand that dark 
matter emulators constitute a special class of modified gravity theories 
which attempt to dispense with dark matter. Many modifications of 
gravity do not fall within this class,21 including Milgrom’s bi-metric 
formulation of MOND,22 nonlocal MOND,23−25 such as superfluid dark 
matter,26 or dipolar dark matter.27 Nor does it apply to certain types of 
Einstein-Aether theories28,29 whose vector kinetic terms are properly 
chosen. Therefore, other kinds of modified gravity theories which 
dispense with the need for dark matter and are still viable.21 Some 
recent studies on MOND, ( )f R gravity, clustering of galaxies, and 
large distance modification of the Newtonian potential.30−34

In this section we shall review the main ingredients of Finsler 
geometry;35−45 present a solution of the vacuum field equation in 
Finsler gravity, in the weak field approximation,46,47 and show how 
it reproduces the main results of MOND. The solution depends on 
the rotational velocity of the galaxy consistent with the relationship 
between the Tully-Fisher relation48 and MOND. We finalize by 
showing how this Finsler gravity solution leads to a metric that is 
diffeomorphic (but not isometric) to the Hilbert-Schwarzschild 
metric. The most salient feature is that the metric is not asymptotically 
flat due to the infrared cutoff of the areal radial function, and resulting 
from imposing different boundary conditions for the metric at =r ∞  
than in the Hilbert-Schwarzschild metric case.
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We shall begin with a very brief discussion of Finsler 
geometry35−45 before discussing the gravitational vacuum field 
equations. Finsler geometry is based on a non-negative real 

function ( , = )dxF x y
dτ

, obeying ( , ) = ( , )F x y F x yλ λ , and defined 

on the tangent bundle TM  represented by the coordinates
0 1

0 1 2, , , ; , ,
n

n dx dx dxx x x x x y
d d dτ τ τ

≡ ≡  . The fundamental metric 

tensor is given as

2 21( , )   
2

Fg x y
y yµν µ ν
∂

≡
∂ ∂

 				                    (2.1)

The arc-length is

0 1
0 1 0 1 0 1 =  ( , , ; , , )  =  ( , , ; , ) 

n
n n n dx dx dxL F x x x y y y d F x x x d

d d d
τ τ

τ τ τ∫ ∫   
	

                                                                                                                             (2.2)

The Cartan tensor (which measures the deviation from a 
Riemannian manifold) is given by the third derivative

3 21( , ) = 
4

FC x y
y y yµνσ µ ν σ
∂

∂ ∂ ∂
 			                    (2.3)

If ( , ) = 0C x yµνσ  everywhere in the tangent space, the Finsler 
space becomes a metric space with ( )g xµν  independent on the 
tangent space coordinates y (velocities). The geodesic equation on a 
Finsler manifold is given by

2

2  2  = 0d x G
d

µ
µ

τ
+ 				                     (2.4)

where the geodesic spray coefficients Gµ  (dropping the ,x y  
dependence for convenience) are given by

2 2 21 =       
4

F FG g y
x y x

µ µν σ
ν σ ν

 ∂ ∂
−  ∂ ∂ ∂ 

			                 (2.5)

The corresponding nonlinear connection ( , )N x yµ
ν  associated to 

the geodesic spray coefficients is defined by

2 2 212 ( , ) = ( , )  =       
2

F FG x y N x y y g y
x y x

µ µ ν µν σ
ν ν σ ν

 ∂ ∂
−  ∂ ∂ ∂ 

            (2.6)

The nonlinear connection allows decomposing the tangent space 
to the tangent bundle ( , )x yT TM  at the point ( , )x y  into a vertical 

space spanned by
yµ
∂
∂

, and a horizontal space spanned by the so-

called elongated derivatives N
x x y

ν
µµ µ ν

δ
δ

∂ ∂
≡ −
∂ ∂

. The nonlinear 

curvature derived from N µ
ν  is

    ,  N NR N
x x x x y

µ µ
µ νν σ
νσ µσ ν µ µ ν

δ δ δ
δ δ δ

∂ ∂
≡ − ≡ −

∂ ∂
 		               (2.7)

Regarding the tangent bundle MT  as an 2( 1)n + -dim manifold 
of its own, one can construct linear covariant derivatives which are 
compatible with the structure induced by the nonlinear connection 
and which preserves the horizontal-vertical split of the tangent bundle 

TM  with basis ,
x yµ µ
δ
δ

∂
∂

.

The nonlinear connection is unique, however the linear connections 
are not, and many different choices are possible.38−40 For example, the 
horizontal part of a torsionless linear connection is given in terms of 
the elongated derivatives / xµδ δ  as

1( , ) =  ( , ) ( ( , )  ( , )  ( , ) )
2

x y g x y g x y g x y g x yµ µλ
νσ ν σλ σ νλ λ νσδ δ δΓ + −  		

	                                                                                                           (2.8)

and the horizontal part of the curvature (dropping ,x y ) is

 =            R C Rµ µ µ µ ξ µ ξ µ ξ
νσλ σ νλ λ νσ ξσ νλ ξλ νσ νξ σλδ δΓ − Γ + Γ Γ − Γ Γ −  	                  (2.9)

In Finsler geometry there is a geometrical invariant (under 
coordinate transformations) that only depends on the Finsler structure 

( , )F x y  and is insensitive to the choices of the linear connection. It is 
the Ricci scalar defined in terms of the geodesic spray coefficients as

2 2

2
1   =   2     2    G G G G GR R y G

F x x y y y y y

µ µ µ µ λ
µ λ λ
µ µ λ µ λ µ λ µ

 ∂ ∂ ∂ ∂ ∂
≡ − + −  ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 	

                                                                                                             (2.10)
With these geometrical ingredients the analog of the Newtonian 

limit in Finsler spaces based on the notion of “locally Minkowski” 
spacetime.46,47 A Finsler spacetime is “locally Minkowski” if there 
is a coordinate system x with induced tangent space coordinates y, 
such that F only depends on y, but not on x. A “locally Minkowski” 
spacetime is a solution of the Finslerian vacuum field equations.41-45 X 
Li et al.47 assumed a very small metric perturbation ( , )h x yµν  to the 
locally Minkowski one ( )yµνη

( , ) = ( )  ( , ),  | ( , ) |<< 1g x y y h x y h x yµν µν µν µνη +  	               (2.11)

and found that to leading order in the post-Newtonian 
approximation the explicit form of the Finslerian line element which 
solves the vacuum field equations in a 4D Finsler spacetime is given 
by 

2 2 2 2 2 22 2 ( )  = 1 ( )   1  ( )   ( , ) ( )
( , )) ( , ))
GM GMF d dt dR R r v d

R r v R r v
τ

   
− − + − Ω   

   
 	

	
                                                                                                             (2.12)

where the radial coordinate in the locally Minkowski space-time 

of the galaxies is defined as ( , ) ( ) i j
ijR r v v x xη≡ . In this spherically 

symmetric case, the radial function is denoted by ( , )R r v  (which must 
not be confused with the scalar curvature R), and now it depends on 
both r, and the velocity v, due to functional dependence of ( , )g x yµν  
on both coordinates and velocities.

Li et al.46,47 have shown that Finsler gravity reduces to MOND if 
the spatial components of the locally Minkowski metric of galaxies 
is of the form

20 4
2

00 2 4
( ) = 1,  ( ) =   1  )   =   1  ( )  

( )
o o

ij ij ijm n
mn

GMa y GMay
y y v

η η δ δ
δ

     − −         
 	

	                                                                                                 
                                                                                                         (2.13)

0 0 0
( / )= = =
( / )

i i i
i dx dx d yv

dx dx d y
τ
τ

 					   
	                                                                                                      (2.14)

where 10 2= 1.2 10 /oa m s−×  is the acceleration constant of 

MOND,5,6 and which is of the order of 
2

H

c
R

, where HR  is the present-
day Hubble scale.
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In this particular case the radial coordinate in the locally Minkowski 
space-time of the galaxies becomes

2
4( , )  ( )   =  ( ),  ( )  1  ( ) ,  , = 1,2,3.i j o

ij
GMaR r v v x x r f v f v i j

v
η≡ ≡ −  	

	
                                                                                                                   (2.15)

and the modified Newtonian equations of motion associated with 
the Finslerian line element (2.12) are given by

2 2 2 2
2

2 2 2 2 4 =    =    = ( ) =  1  ( )
( )  ( )

oGMaGM v GM v GM v vf v
R rf v r rR r f v r v
⇒ ⇒ −  	

                                                                                                                 (2.16)
One may recover the MONDian behavior from eq-(2.16) if ( )v r  

satisfies the following relation

4 22

1= 
( ) ( )1  

o

o

GMa
v r v r

ra
 

+   
   

 		         
					                                    (2.17)

upon inserting (2.17) into the last term of eq-(2.16) it allows to 
rewrite the scaling factor ( )f v  in terms of v  and r, leading finally to 
the desired result of MOND 2

2 2 2 2

2 22
 = ( ) =   =   

1 

o

o

o

v
raGM v v v vf v

r r r rar v
ra

µ

 
        

  
+   
   

                    (2.18)

where 
2

2
( )  ,  

1 o

x vx x
rax

µ ≡ ≡
+

 			                (2.19)

is the interpolating function in MOND. From eqs-(2.18, 2.19) one 
learns

<< 1, ( ) ;  >> 1, ( ) 1x x x x xµ µ 

 
	                             (2.20a)

The deep-MOND regime is characterized by << 1, ( )x x xµ  , 
such that 

4,  ( ) ,  ( ) ,  ( ) 0o
o

o

GMa
r R r v r GMa f v

a
→∞ → → → 	           (2.20b)

and one recovers the Tully-Fisher relation 4
oGMa v .

Introducing the following definitions in the deep infrared 

( ),  ( )c cR R r v v r≡ →∞ ≡ →∞ 			           (2.21a)

one can then rewrite (2.20b) in the following more familiar form 
2 2

2  =  =   c
o

c Hc

vGM ca
R RR

 				              (2.21b)

Given that 22 / SGM c R≡  is the definition of the Schwarzschild 
radius associated to a point mass M gravitational source, from eq-
(2.21b) one arrives at the following scaling relations involving the 
Hubble radius HR , SR  and cR

4 21  1  = ( ) ,    = ( )
2 2

S c
S H c

H

R v R R R
R c  

	           		            (2.22)

Below we shall see the importance of these scaling relations 
(2.22) within the context of Black Hole Cosmology49−53 and Born’s 
Reciprocal Relativity Theory.54−56

Given a galaxy of size gL , from eq-(2.17) one can solve for 
= ( )v v r  and obtain the rotational velocities for point test masses in 

the region gr L≥
2 4

2

4
     4( )

( ) = ,  
2

o

g

GM GM GMa
r r

v r r L

   + +   
    ≥  	          (2.23)

Eq-(2.23) is equivalent to the following expression

4 2
2

4
2

( / ) ( ) = ,  
( )  1

o
g

o

v ar v r L
v

GMa

≥
−

			            (2.24)

and 

22 4 4 2 2

4 2
2

 ( / )=  1     =  1  ,  
( )

o
o g

o

av v v v ra r L
r GM GMv a

GM

− ⇔ + ≥  		
	

                                                                                                    (2.25)
To sum up, given the range of scales

 < ( = , ( ))  < ( , ( )) <  < S g g g c HR R r L v L L R r v r R R  	          (2.26)

in the region ( , ( )) gR r v r L≥  one has 
2

2 =GM v
RR

 leading then to 

the rotational velocities associated to MONDian dynamics. In the 
interior region of the galaxy, ordinary Newtonian gravity is assumed 
to be valid, and for spherical symmetric mass distributions one has

2

2
( ) = ,  < g

GM r v r L
rr

 				               (2.27)

which just follows from Gauss theorem when the mass enclosed 
( )M r s inside the spherical region of radius < gr L  is given by 

2
0

( ) = ( )4rM r r r drρ π′ ′ ′∫ .

Having gone through this Finsler geometric tour underlying 
MONDian dynamics, we can finally relate the results of this section 
with the previous one by noticing that in the regime (2 / ) << 1GM R , 
a Taylor expansion yields

12 2(1 ) (1 )GM GM
R R

−− +

 
		            (2.28)

and the Finslerian line element (2.12) in this regime reduces to

2 2 2 1 2 2 22 2 ( )  = (1 ) ( )   (1 )  ( )   ( , )  ( )
( , ) ( , )
GM GMF d dt dR R r v d

R r v R r v
τ −− − − − Ω  	

	
                                                                                                                 (2.29)

leading then to a metric which is diffeomorphic (but not isometric) 
to the Hilbert-Schwarzchild one (after inserting the functional relation 

= ( )v v r  given explicitly by eq-(2.23)) into the areal radial function 
( , ) = ( , ( ))R r v R r v r . In fact, the metric (2.29) is a solution to the 

vacuum Einstein field equations in a 4D spacetime for any functional 
form = ( )v v r  with the provision that ( , ( )) = ( , ( ))R r v r R r v r− − −  as 
shown explicitly in the appendix a Lorentzian signature is used.

The particular form of ( )v r  in eq-(2.23) was dictated to us by 
the empirical astronomical observations. Furthermore, from eq-(2.15) 
one learns that under the transformations

,  ,    ( , ) ( , )o or r M M a a R r v R r v→− → − → − ⇒ →−  	            (2.30)

The areal radial function changes sign as it should be in order for 
the metric (2.29) to remain invariant.
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Despite that the metric (2.29) is diffeomorphic (but not isometric) 
to the Hilbert-Schwarzschild one, it is not asymptotically flat. 

The Kretschmann invariant 
2

3
2 = 0
( , ( ))
GMR R

R r v r
µνσλ

µνσλ
 
 
 

  

is non-vanishing at =r ∞  due to the fact that 

( = ) = = / =c o oR r R GMa a∞ ∞  as shown in eq-(2.20b). In the 

limit that = 0oa , the areal radial function becomes the trivial one
=R r , and one recovers the asymptotically flat Hilbert-Schwarzschild 

metric associated with ordinary Newtonian mechanics (in the weak 
field and slow moving bodies limit).

In a nutshell, simply by rewriting 2
GM
R

 as 2

( )effGM r
r

, in terms of 

an effective mass ( )effM r  enclosed in a spherical region of radius r, 

it leads to the relation 2( ) = / ( ( ))effM r M f v r M≥ , since ( ( )) 1f v r ≤

, and such that the enhanced value of the “effective” mass ( )effM r  
compared to M would seem as if non-luminous “dark matter” were 
present in the galaxies.

Concluding remarks : scale invariance and 
born’s reciprocal relativity theory

By simple inspection one can verify that eqs-(2.15-2.26) are scale 
invariant under

                         
1,  ,  ( , ) ( , ),  ,  ,  ,  o ot t r r R r v R r v M M a a v v c cλ λ λ λ λ−→ → → → → → →  		  (3.1)

with λ  = constant and which implies a flat rotation curve. Note 
the anomalous scaling of the macroscopic galactic mass M Mλ→  
as compared to the scaling 1m mλ−→  of a fundamental particle 
(consistent with the scaling of the Compton wavelength / mc

). Under these scalings (3.1) ( )f v  given by eq-(2.15) is invariant 
and the metric (2.29) scales 2 2 2( ) ( )ds dsλ→  as it occurs in Weyl’s 
geometry under conformal transformations.

Another similar scaling occurs in Born’s Reciprocal Relativity 
theory. It was shown that54-56 how one can implement a maximal proper 
force principle within the context of Born’s Reciprocal Relativity 
theory, Mach’s principle and Black-Hole Cosmology54−57 by setting 
the following proper forces to be equal to the maximal proper force 
value b ( “b” stands for Born)

2 2
 ( ) =  ( ) = U P

H P

c cM m b
R L

 	                                                  (3.2)

where UM  is the Universe’s total mass inside the present-
day Hubble radius ; ,H P PR m L  are the Planck mass, and length, 
respectively. What (3.2) indicates is that the observed Universe’s total 
mass UM  coincides with the product of the maximal proper force 
times the Hubble horizon scale (an infrared cutoff), and which in turn, 
is the black hole horizon radius corresponding to a Universe-mass 
black hole. The Planck mass is the product of the maximal proper 
force times the Planck scale (ultraviolet cutoff), and which in turn, is 
the black hole horizon radius corresponding to a Planck-mass black 
hole. And so forth, namely a black hole’s mass M coincides with the 
product of the maximal proper force b with its black hole horizon 
radius hR .

Eq-(3.2) is also invariant under the scalings (3.1). Milgrom5,6 
long ago pointed out the importance of scale invariance for 
MOND phenomenology, it is still impressive how much of that 
phenomenology, (i.e. flat rotation curves and baryonic Tully Fisher) 
is a consequence of scale invariance alone.

The recent new hypothesis58 is that this scale invariance is due 
to the dark matter undergoing a second order phase transition in the 
region normally associated with MONDian behavior. It is based on 
the idea that dark matter has a super-fluid phase59 which, if successful, 
would explain the flattening of the rotation curves, the Tully-Fisher48 
and acceleration relations and the relation between 2 /o Ha c R .

In this work we do not have to recur to these hypothesis.58 Eqs-

(2.20, 2.21) lead to these acceleration relations. A proposal that 
advocates the fall of dark matter can be found in.60,61 Scale invariance 
is assumed in the empty regions of space. The Weyl gauge field Aµ  of 
dilatations contributes to modifications of the Christoffel connection 
leading then to repulsive corrections to the geodesic equations. We 
have not invoked the role of Quantum Gravity in this work nor what 
are the asymptotic symmetries (if any).

What we find remarkable is how powerful is the diffeomorphism 
symmetry of Einstein’s vacuum field equations to account for the 
Finsler gravity solution described here, and which is able to model 
MOND by simply replacing the radial coordinate r  with the areal 
radial function ( , ( ))R r v r . The key relation in eq-(2.21b) could be 
interpreted as a balance equation between an inward acceleration 
due to MOND, and an outward acceleration due to the accelerated 
expansion of the Universe (since the observed cosmological constant

2= 3 / HRΛ ). For this reason, it is warranted to find solutions of Finsler 
gravity which incorporate the cosmological constant, and see whether 
or not they can be recast in terms of diffeomorphic (but not isometric) 
solutions to the de Sitter-Schwarzschild metric.

Appendix A: Schwarzschild-like solutions in 
D > 3  

In this Appendix we verify Birkhoff’s theorem by following 
closely the calculations of the static spherically symmetric vacuum 
solutions to Einstein’s equations in any dimension > 3D . Let us start 
with the line element with the Lorentzian signature ( , , , ,...., )− + + + +  

2 ( ) 2 ( ) 2 2= ( ) ( ) ( ) .r r i j
ijds e dt e dr R r g d dµ ν ξ ξ− + +   	           (A.1)

where the areal radial function ( )rρ  is now denoted by ( )R r  
and which must not be confused with the scalar curvature R. 
Here, the metric ijg  corresponds to a homogeneous space and 
, = 3,4,..., 2i j D −  and the temporal and radial indices are denoted 

by 1,2 respectively. In our text we denoted the temporal index by 0. 
The only non-vanishing Christoffel symbols are given in terms of the 
following partial derivatives with respect to the r variable and denoted 
with a prime

1 2 2
21 22 11

2
2

1 1 1= , = , = ,
2 2 2

= , = , = ,

' ' '

'
' i i i i

ij ij j j jk jk

e

Re RR g
R

µ ν

ν

µ ν µ

δ

−

−

Γ Γ Γ

Γ − Γ Γ Γ

	                (A.2)
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and the only nonvanishing Riemann tensor are

	
1 2 1
212 1

2 2 2
121 2

2

1 1 1 1= , = ,
2 4 4 2
1 1 1 1= ( ), = ( ) ,
2 4 4 2

= ( ).

'' ' ' ' ' '
i j ij

'' ' ' ' ' ' ''
i j ij

i i ' i i
jkl jkl k jl l jk

e RR g

e e RR RR g

R R e g g

ν

µ ν ν

ν

µ µ ν µ µ

µ µ ν µ ν

δ δ

−

− −

−

− − + −

+ − −

− −







 

 

 



	
	

                                                                                                           (A.3)

The vacuum field equations are

2
11

1 1 1 ( 2)= ( ) = 0,
2 4 4 2

'
'' ' ' ' 'D Re

R
µ ν µ µ µν µ− −

+ − +  	           (A.4)

2
22

1 1 1 1= ( 2)( ) = 0,
2 4 4 2

' ''
'' ' ' ' ' R RD

R R
µ µ µν ν− − + + − −       (A.5)

and

2 2 21= ( ( ) ( 3) ) ( 3) = 0,
2

' ' ' '' '
ij ij ije R RR RR D R g kR D gν ν µ− − − − − + −   	

	
                                                                                                                (A.6)

where = 1( .6)k A± , depending if ijg  refers to positive or negative 

curvature. From the combination 11 22 = 0e R Rµ ν− + +  we get

2= .
''

' '
'

R
R

µ ν+  				                (A.7)

The solution of this equation is

2 = ln   ,'R Cµ ν+ +  				                 (A.8)

where C is an integration constant that one sets to zero if one 
wishes to recover the flat Minkowski spacetime metric in spherical 
coordinates in the asymptotic region r →∞ .

Substituting (A.7) into the equation (A.6) we find

2 ( 2 ( 3)  ) = ( 3)' ' '' 'e RR RR D R k Dν ν− − − − − −  	              (A.9)

or
22 ( 3) = ( 3),' ' '' 'RR RR D R k Dγ γ γ+ + − −  		              (A.10)

Where

= .e νγ −  					                 (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one 
temporal dimension ) corresponding to a D-2 -dim sphere for the 
homogeneous space can be written as

2
3

2

16= (1 ) ( )
( 2)

D
D

D

G M dR
drD R

πγ −
−

−

− ⇒
− Ω

1 2
3

2

16= = (1 )  ( ) .
( 2)

D
rr D

D

G M dRg e
drD R

ν π −
−

−

−
− Ω

 		           (A.12)

where 2D−Ω  is the appropriate solid angle in 2D − -dim and 

DG  is the D-dim gravitational constant whose units are 2( )Dlength −

. Thus DG M  has a unit of 3( )Dlength −  as it should. When = 4D  as 
a result that the 2-dim solid angle is 2 = 4πΩ  one recovers from eq-

(A.12) the 4-dim Schwarzchild solution. The solution in eq-(A.12) 
is consistent with Gauss law and Poisson’s equation in D-1 spatial 
dimensions obtained in the Newtonian limit.

For the most general case of the D-2-dim homogeneous space we 
should write 

3= ln( ) 2ln 'D D
D

G Mk R
R

βν −− − −  			              (A.13)

Dβ  is a constant equal to 216 / ( 2) DDπ −− Ω , where 2D−Ω  is the 

solid angle in the 2D −  transverse dimensions to ,r t  and is given by 
( 1)/22 / [( 1) / 2]D Dπ − Γ − .

Thus, according to (A.8) we get

3= ln( )  .D D
D

G Mk constant
R

βµ −− +  			          (A.14)

we can set the constant to zero, and this means the line element 
(A.1) can be written as

2
2 2 2 2

3

3

2 2 2
3

3

( / )= ( )( )   ( )   ( )  = 
( )

1( )( )   ( )   ( )
( )

i jD D
ijD

D D
D

i jD D
ijD

D D
D

G M dR drds k dt dr R r g d dG MR k
R

G Mk dt dR R r g d dG MR k
R

β ξ ξβ

β ξ ξβ

−

−

−

−

− − + +
−

− − + +
−





	
	

                                                                                                            (A.15)

One can verify, that the equations (A.4)-(A.6),leading to eqs-
(A.9)-(A.10), do not determine the form ( )R r . It is also interesting to 
observe that the only effect of the homogeneous metric ijg  is reflected 
in the = 1k ±  parameter, associated with a positive (negative) constant 

scalar curvature of the homogeneous 2D − -dim space. = 0k  
corresponds to a spatially flat 2D − -dim section. The metric solution 
in eq-(1.2) is associated to a different signature than the one chosen in 
this Appendix, and corresponds to = 4D  and = 1k .62−73
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