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Abstract

We revisit the construction of diffeomorphic but not isometric solutions to the Schwarzschild
metric. The solutions relevant to Black Holes are those which require the introduction of
non-trivial areal-radial functions that are characterized by the key property that the radial
horizon’s location is displaced continuously towards the singularity (r=0). In the limiting
case scenario the location of the singularity and horizon merges and any infalling observer
hits a null singularity at the very moment he/she crosses the horizon. This fact may have
important consequences for the resolution of the firewall problem and the complementarity
controversy in black holes. It is shown next how modified Newtonian dynamics (MOND)
can be obtained from solutions to Finsler gravity, and which in turn, can also be modelled
by metrics which are diffeomorphic but not isometric to the Schwarzschild metric. The
key point now is that one will have to dispense with the asymptotic flatness condition,
by choosing an areal radial function which is finite at 7 =00 . Consequently, changing
the boundary condition at 7 =00 leads to MONDian dynamics. We conclude with some
discussions on the role of scale invariance and Born’s Reciprocal Relativity Theory based
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Introduction: Diffeomorphic metrics to
the Schwarzschild solution, firepoints and
firewalls

The static spherically symmetric (SSS) vacuum solution of
Einstein’s field equations' that we learned from the text books is
actually the Hilbert form of the original Schwarzschild solution?

(ds) =(1-2M) (ary — (1= 2M 1 (a2 @@, (1)
r r

Birkoff’s theorem states that all static spherically symmetric
vacuum solutions to Einstein’s equations are diffeomorphic to the
Hilbert-Schwarzchild solution. There are an infinite number of
metrics** which are diffeomorphic but not isometric to the Hilbert
form of the Schwarzschild® solution. In particular, given an areal

radial function p(r) = r (in ¢ =1 units), the metric

(@ds)? = (1-2) (a2 - (1-20 )1 oy - () (2. (1.2)
po(r) p(r)

is diffeomorphic but not isometric to the Hilbert form of the
Schwarzschild® solution. (dp)* =(dp(r)/dr)*(dr)*, and the solid

angle infinitesimal element is (dQ)* = (d@)* +sin(¢)(d0)* . The

surface area at each point » is now given by 47(p(r))* so that p(r)
plays the role of an effective radius and hence the name of “areal-
radial” function for p(r).

The metric (1.2) is diffeomorphic but not isometric to the Hilbert
form (1.1) of the Schwarzschild solution? because the area elements
P (dQ)* =~ p2 () (dQ)? are not equal, except in the trivial case when

p(r)=r . We have not relabelled the radial variable by giving it
another “name” and calling it" p", because p(r) is itself a function

of . Furthermore, one has not performed a naive change of radial
coordinates r — p because the metric (1.2) is still given in terms
of . Therefore, the metric (1.2) is not the Schwarzschild metric
rewritten in terms of new radial coordinates, but it is obtained after
performing an active diffeomorphism via the mappings r — p(r) .
Under active diffeomorphism the points of the manifold are displaced
(except for the fixed points) and must not be confused with passive
diffeomorphisms that amount to mere coordinate transformations
(like rotation, translation of the coordinate axes) leaving all the points
fixed. Consequently, the metric (1.2) assumes the same values as the
Schwarzschild metric (1.1) but at different values of r (at different
radial locations). This is the reason why the horizon can be actively
displaced from »=2GM to the value » =0" as we shall see below.

The boundary condition obeyed by the areal radial function p(r)
at the origin is p(r =0)=0 since the point mass location must reside
at the center of spherical symmetry. At infinity, an asymptotically
flat metric would require p(r - o) ~r —>ow. In particular, the
metric solutions (1.2) are invariant under the transformations
r——-r;M — —M for the particular choice of areal radial functions
obeying the condition p(—r,—M)=—p(r,M). This allows us to
extend the solutions to the » <0 region.

The metric (1.2) leads to modifications of the Newtonian potential,
and for this reason, it is very relevant to modified Newtonian dynamics
(MOND) as described in the next section. One recovers the Newtonian
potential in the regime when p(r) >~ r . In the next section we will
show why modified Newtonian dynamics (MOND)>®¢ associated with
galaxies can be obtained from Finsler gravity, and which in turn,
can be modeled by metrics (1.2) which are diffeomorphic but not
isometric to the Hilbert-Schwarzschild metric. The key point is that
one will have to dispense with the asymptotic flatness condition, and
introduce an infrared-cut-off for the metric at » =o0 in the form of
p(r=w)=p, = finite . Therefore, changing the boundary condition

at r =00 leads to MONDian dynamics.
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On Finsler geometry, MOND and diffeomorphic metrics to the Schwarzschild solution

To model the scenario when the horizon merges precisely with the
singularity one needs an area radial function defined at » =0 and at
r =0, as follows**

p(r=0)=0; p(r)=r(1—e My =0 (13)

Under » - —r; M — —M one has that p(r) > —p(r) so one can
ensure the invariance of the metric (1.2) under these transformations
and extend the solutions to the » <0 region. p(r) is antisymmetric
p(=r)=—p(r) , and as such it must vanish at » =0 .

Hence, we have in eq-(1.3) thatp(r=0";M)=2GM , and

p(r=07;-M)=-2GM , but p(r=0)=0 since a point mass must
have zero area and zero volume. The horizon is located at 7, = 0"

and the singularity at » =0 . There is a discontinuity of p(r) at r=0
. The right» =07, and left »=0" limits of p(r) give respectively
+2GM , while p(r=0)=0 which is the arithmetic mean of 2GM

and —2GM . This is similar to the behaviour of the step function
O(r) defined by®=1,r>0;0=-1,r<0;0=0,r=0. ® can be

realized as r/|r| which is an antisymmetric function, and as such,
it must vanish at the origin, like the areal radial function in eq-(1.3).

Because a point mass is an infinitely compact source of infinite
density, there is nothing wrong with the possibility of having
a discontinuity of the metric at the location of the singularity
r=0. Due to the boundary condition p(r=0)=0, there is
a curvature tensor singularity and the Kretschmann invariant

2 6 . _ _ .
R, poeR*7 ~(2GM)™/ p(r)”  diverges atp(r=0)=0. In this
extreme case, when the location of the horizon merges with the

singularity, there is a null-line singularity at » =0 and a null-surface

at7=0". This may sound quite paradoxical but it is a consequence
of the metric discontinuity at7 =0, the location of the point mass
(singularity). This key fact may have important consequences for
the resolution of the firewall problem and the complementarity
controversy in black holes.”® We may label the null-line singularity
at »=0 as a firepoint, and the null-surface at » =0" as a firewall. A
recent discussion of the notion of a firepoint can be found in® where
they propose the singularity itself as a “firepoint” capable to break the
entanglement between the “in” and the “out” states created through
the Hawking process.

When the areal-radial function p(r) has the actual form in eq-

(1.3) there is no interior region beyond the horizon r=0", so that
the metric (1.2) is truly static everywhere. The Fronsdal-Kruskal-
Szekeres analytical continuation of the metric (1.1) inside the horizon
is no longer static. Klinkhamer’® provided earlier on a regularization
of the standard Schwarzschild solution with a curvature singularity
at the center by removing the interior region of a ball and identifying
the antipodal points on the boundary. The resulting four-dim manifold
has now the topology R x M 5 where M 5 1s a nonsimply-connected
manifold, which up to a point (the center), is homeomorphic

to the 3-dim real projective space RP®. In our case, there is no
need to remove the interior region by surgery. The discontinuity

p(r=0)=0;p(r=0")=2GM of the areal-radial function amounts
to a sort of “point-splitting” creating a void (hole) in spacetime,
isolating and expunging the curvature singularity at the center from
the remaining region of space-time. The topology of the region free of
the singularity at the center is M4 =Rx 1\;[3 , where M3 =R*—{0} is
the punctured 3-dim space.
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Finsler geometry, modified Newtonian
dynamics and areal radial functions

It has long been known that if one recurs to Newton’s inverse-
square law of gravity, the observed baryonic matter cannot provide
enough force to attract the matter (stars) present in the outer edges
of the galaxies.'*!! Postulating that galaxies are surrounded by
massive, non-luminous dark matter is one of the most widely accepted
proposals to solve the problem. No dark matter has been detected yet.
An extensive overview with a vast number of references of the tests
and problems of the standard model in Cosmology.'

Some models have been built as an alternative to the dark matter
hypothesis. The main ideas are based on assuming that the Newtonian
gravity or Newton’s dynamics is invalid on galactic scales. In the
MOND model (modified Newtonian dynamics) of Milgrom™® it
assumes that the Newtonian dynamics does not hold on galactic scales.

In Extended Theories of Gravity, like f(R) gravity*"7 it is shown

that several gravitating structures like stars, spiral galaxies, elliptical
galaxies and clusters of galaxies can be self-consistently described
without dark matter. There are other MONDian theories, for example,
by introducing several scalar, vector and tensor fields, Bekenstein'®
rewrote the MOND model of Milgrom in a covariant formalism
(the TeVeS model). There is the Einstein-aether theory admitting a
preferred reference frame and broken local Lorentz invariance."

The accurate measurement of the speed of gravitational waves
(GW) compared to the speed of light in 2017 ruled out modified gravity
theories, termed “dark matter emulators”, which dispense with the
need for dark matter by making ordinary matter couple to a different
metric from that of GW. These models have the property that, in the
extreme weak field regime relevant to cosmology, gravitational waves
propagate on different geodesics from those followed by photons and
neutrinos. Therefore, the differential Shapiro delay between GWs
and photons/neutrinos is due to the gravitational potential of only
the dark matter. Some examples of these Dark Matter (DM) emulator
theories include Bekenstein’s TeVeS theory'® and Moffat’s Scalar-
TensorVector gravity theory.? Tt is important to understand that dark
matter emulators constitute a special class of modified gravity theories
which attempt to dispense with dark matter. Many modifications of
gravity do not fall within this class,” including Milgrom’s bi-metric
formulation of MOND,?? nonlocal MOND,* % such as superfluid dark
matter,” or dipolar dark matter.”” Nor does it apply to certain types of
Einstein-Aether theories®®** whose vector kinetic terms are properly
chosen. Therefore, other kinds of modified gravity theories which
dispense with the need for dark matter and are still viable.?! Some

recent studies on MOND, f(R) gravity, clustering of galaxies, and
large distance modification of the Newtonian potential >34

In this section we shall review the main ingredients of Finsler
geometry;>>* present a solution of the vacuum field equation in
Finsler gravity, in the weak field approximation,***’ and show how
it reproduces the main results of MOND. The solution depends on
the rotational velocity of the galaxy consistent with the relationship
between the Tully-Fisher relation® and MOND. We finalize by
showing how this Finsler gravity solution leads to a metric that is
diffeomorphic (but not isometric) to the Hilbert-Schwarzschild
metric. The most salient feature is that the metric is not asymptotically
flat due to the infrared cutoff of the areal radial function, and resulting
from imposing different boundary conditions for the metric at » =0
than in the Hilbert-Schwarzschild metric case.
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We shall begin with a very brief discussion of Finsler
geometry>>™®  before discussing the gravitational vacuum field
equations. Finsler geometry is based on a non-negative real

function F(x,y = Z—x) , obeying F(x,Ay)=AF(x,y), and defined
T

on the tangent bundle T7M represented by the coordinates
dx’ dx' ax” ,

xExO,x],x2,~~~x";yE—,i,m . The fundamental metric
dr dr dr

tensor is given as

1 8*F?
g‘”(x’y)EEW Q.0
The arc-length is
0 1 n
L= RGOy ey = [ PO s S0 288 g
(2.2)

The Cartan tensor (which measures the deviation from a
Riemannian manifold) is given by the third derivative

1 &F?

-z 23
4 ooy oy =

Cyva (x, y) =

If C,,;(x,y)=0 everywhere in the tangent space, the Finsler

space becomes a metric space with g, (x) independent on the

tangent space coordinates y (velocities). The geodesic equation on a
Finsler manifold is given by

2
d-x*
2

+2G*=0 (2.4)

dr

where the geodesic spray coefficients G* (dropping the x,y
dependence for convenience) are given by

G”=%g’”£y"

O’F  oF?
ox"oy?  ox”

2.5)

The corresponding nonlinear connection N/'(x,y) associated to
the geodesic spray coefficients is defined by

O*F?
[ ox"oy°

2GH(x,y)=Ni(x,») y" = lg’”

2

oF?
o ] (2.6)

The nonlinear connection allows decomposing the tangent space
to the tangent bundle T, ,TM at the point (x,y) into a vertical

space spanned byaiﬂ , and a horizontal space spanned by the so-
y

called elongated derivatives o _9 N, o
ox* ox” o’

curvature derived from N/’ is

. The nonlinear

2.7)

Regarding the tangent bundle 7, as an 2(n+1)-dim manifold
of its own, one can construct linear covariant derivatives which are
compatible with the structure induced by the nonlinear connection
and which preserves the horizontal-vertical split of the tangent bundle

TM with basis i,i
ox oyt
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The nonlinear connection is unique, however the linear connections
are not, and many different choices are possible.** ™ For example, the
horizontal part of a torsionless linear connection is given in terms of
the elongated derivatives &/8x* as

1
rfa(X,y)zng(x,Y)(5vgm1(x>y) +§o-gv/1(x>y) _5Agvo'(x>y))

(2.8)
and the horizontal part of the curvature (dropping x,y ) is
Rl =6, =0, +TE, rfﬂ - Ffo' -Cy Rg/l (2.9)

In Finsler geometry there is a geometrical invariant (under
coordinate transformations) that only depends on the Finsler structure
F(x,y) and is insensitive to the choices of the linear connection. It is
the Ricci scalar defined in terms of the geodesic spray coefficients as

oG*  , 8*G*
— =2
oxt ox"op*

. 0°G* 0G* oG*
o ot ot
(2.10)
With these geometrical ingredients the analog of the Newtonian
limit in Finsler spaces based on the notion of “locally Minkowski”
spacetime.*#” A Finsler spacetime is “locally Minkowski” if there
is a coordinate system x with induced tangent space coordinates y,
such that F' only depends on y, but not on x. A “locally Minkowski”
spacetime is a solution of the Finslerian vacuum field equations.*** X
Li et al.¥ assumed a very small metric perturbation /,, (x,y) to the
locally Minkowski one 77, (»)

1

8y (5, 1) =10, (V) + By, (X, ), [y, (x,y) [<<1 (2.1D)

and found that to leading order in the post-Newtonian
approximation the explicit form of the Finslerian line element which
solves the vacuum field equations in a 4D Finsler spacetime is given

by

B 2GM 2 2GM 2 p2 2
RG) ](dt) {l + RG) J (dR)" —R*(r,v) (dQ)
(2.12)

F*(dr)* = (1

where the radial coordinate in the locally Minkowski space-time
of the galaxies is defined as R(r,v) =,/7; (v)x'x’ . In this spherically

symmetric case, the radial function is denoted by R(r,v) (which must
not be confused with the scalar curvature R), and now it depends on
both , and the velocity v, due to functional dependence of g, (x,y)
on both coordinates and velocities.

Li et al.**4” have shown that Finsler gravity reduces to MOND if
the spatial components of the locally Minkowski metric of galaxies
is of the form

2
GMa,(y°)* GMa
Moo =1, 17;(¥) =6 1‘[%) =5,~,(1—( V4“)2j
(2.13)
o _ (' )dr) Y
dx*  (dx’/dr)  y° (2.14)

where a,=1.2x10""m/s* is the acceleration constant of

2
MOND,>¢ and which is of the order of < , where R, is the present-
day Hubble scale. Ry
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In this particular case the radial coordinate in the locally Minkowski
space-time of the galaxies becomes

R =g, 0% ¥ =1 £, f0)= [1-(Eay =123,
%

(2.15)
and the modified Newtonian equations of motion associated with
the Finslerian line element (2.12) are given by

GM V? GMa,

2
oY = i (P

GM _ V?
R® R -

TR0 o) P

(2.16)
One may recover the MONDian behavior from eq-(2.16) if v(r)
satisfies the following relation
GMa, 1

o

AL
Vi) \/H(vz(r)jz
raa

upon inserting (2.17) into the last term of eq-(2.16) it allows to
rewrite the scaling factor f(v) interms of v and r, leading finally to
the desired result of MOND

2.17)

-
oM v — )——ZL= Vo 2.18)
r? [ 2 ]2 r ra,
1+ —
ra,

where

2
u(x) = x=— (2.19)

X
Y, 1+ X2 ' raa

is the interpolating function in MOND. From eqs-(2.18, 2.19) one
learns

x <<1, u(x) ~x; x>>1, u(x) ~1 (2.20a)

The deep-MOND regime is characterized by x <<1, u(x)~x,
such that

JGMa,
r—o, R(r)y > +——7—,v'(r) > GMa,, f(v)—>0
a

(2.20b)
and one recovers the Tully-Fisher relation GMa, ~ v* .
Introducing the following definitions in the deep infrared
R.=R(r > ), v, =v(r > o) (2.21a)

one can then rewrite (2.20b) in the following more familiar form

~ (2.21b)

Given that 2GM /¢* = Ry is the definition of the Schwarzschild

radius associated to a point mass M gravitational source, from eq-
(2.21b) one arrives at the following scaling relations involving the
Hubble radius RH, R and R,

1Ry _
2R,

Below we shall see the importance of these scaling relations
(2.22) within the context of Black Hole Cosmology*~* and Born’s
Reciprocal Relativity Theory.’*¢

( )", R Ry =(R.)’ (2.22)

Given a galaxy of size L, , from eq-(2.17) one can solve for

v=v(r) and obtain the rotational velocities for point test masses in

Copyright:
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the region r2 L,

2 4
(@j +J[GMJ +4(GMa,))*
r r

vir= > ,r2L, (2.23)
Eq-(2.23) is equivalent to the following expression
4, 2
P2(v)= M, r2L, (2.24)
-1
(GMa y
4 2
/
v ) (v 2r) L,
GM a,
(2.25)
To sum up, given the range of scales
Rg<R(r=Ly,,v(L,)) =L, <R(r,v(r) <R.<Ry (2.26)

2

in the region R(r,v(r))2 L, one has = % leading then to

R’

the rotational velocities associated to MONDian dynamics. In the

interior region of the galaxy, ordinary Newtonian gravity is assumed
to be valid, and for spherical symmetric mass distributions one has
GM (r

() _ —, r<L

b
r? r &

2.27)

which just follows from Gauss theorem when the mass enclosed
M(r)s inside the spherical region of radius r<L, is given by

M(r)= I(:p(r’)4ﬁr'2dr’ .

Having gone through this Finsler geometric tour underlying
MONDian dynamics, we can finally relate the results of this section
with the previous one by noticing that in the regime (2GM / R) <<1,
a Taylor expansion yields

2GM

(1—T)*1 ~ 1+

26GM
25) (2.28)

and the Finslerian line element (2.12) in this regime reduces to

2GM =L )L (dR)? — R(r,v)? (dQ)*

2
F (do)? = (1-—22) (ary? — 1- Rerw)

R( v)

(2.29)

leading then to a metric which is diffeomorphic (but not isometric)

to the Hilbert-Schwarzchild one (after inserting the functional relation
v=v(r) given explicitly by eq-(2.23)) into the areal radial function

R(r,v)=R(r,v(r)) . In fact, the metric (2.29) is a solution to the
vacuum Einstein field equations in a 4D spacetime for any functional
formv=v(r) with the provision that R(-r,v(-r))=—R(r,v(r)) as
shown explicitly in the appendix a Lorentzian signature is used.

The particular form of v(r) in eq-(2.23) was dictated to us by
the empirical astronomical observations. Furthermore, from eq-(2.15)
one learns that under the transformations

r—>-r, M >-M, a, > —a, = R(r,v) > —R(r,v) (2.30)

The areal radial function changes sign as it should be in order for
the metric (2.29) to remain invariant.
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Despite that the metric (2.29) is diffeomorphic (but not isometric)
to the Hilbert-Schwarzschild one, it is not asymptotically flat.

2

The Kretschmann invariant R, RHV 32GM -0
R (r,v(r))

is non-vanishing at r=c due to the fact that

R(r=w)=R, =,/GMa, /a, = o as shown in eq-(2.20b). In the

limit thata, =0, the areal radial function becomes the trivial one

R =r,and one recovers the asymptotically flat Hilbert-Schwarzschild

metric associated with ordinary Newtonian mechanics (in the weak

field and slow moving bodies limit).

GM (1)
2

7

In a nutshell, simply by rewriting (j{_AZ/[ as , in terms of

t—> At, r—> Ar, R(r,v) > AR(r,v), M > AM, a

o

with 4 = constant and which implies a flat rotation curve. Note
the anomalous scaling of the macroscopic galactic mass M — AM
as compared to the scaling m — A™'m of a fundamental particle
(consistent with the scaling of the Compton wavelength/%/mc
). Under these scalings (3.1) f(v) given by eq-(2.15) is invariant
and the metric (2.29) scales (ds)* — A%(ds)* as it occurs in Weyl’s
geometry under conformal transformations.

Another similar scaling occurs in Born’s Reciprocal Relativity
theory. It was shown that***¢ how one can implement a maximal proper
force principle within the context of Born’s Reciprocal Relativity
theory, Mach’s principle and Black-Hole Cosmology*~’ by setting
the following proper forces to be equal to the maximal proper force
value b ( “b” stands for Born)

2 2
M, (2—) =mp (Z—) =b (3.2)
H P

where M, is the Universe’s total mass inside the present-
day Hubble radius Ry ;mp,L, are the Planck mass, and length,

respectively. What (3.2) indicates is that the observed Universe’s total
mass M, coincides with the product of the maximal proper force

times the Hubble horizon scale (an infrared cutoff), and which in turn,
is the black hole horizon radius corresponding to a Universe-mass
black hole. The Planck mass is the product of the maximal proper
force times the Planck scale (ultraviolet cutoff), and which in turn, is
the black hole horizon radius corresponding to a Planck-mass black
hole. And so forth, namely a black hole’s mass M coincides with the
product of the maximal proper force b with its black hole horizon
radius R, .

Eq-(3.2) is also invariant under the scalings (3.1). Milgrom®®
long ago pointed out the importance of scale invariance for
MOND phenomenology, it is still impressive how much of that
phenomenology, (i.e. flat rotation curves and baryonic Tully Fisher)
is a consequence of scale invariance alone.

The recent new hypothesis®® is that this scale invariance is due
to the dark matter undergoing a second order phase transition in the
region normally associated with MONDian behavior. It is based on
the idea that dark matter has a super-fluid phase® which, if successful,
would explain the flattening of the rotation curves, the Tully-Fisher*

and acceleration relations and the relation between @, ~c¢*/ R, .

In this work we do not have to recur to these hypothesis.*® Eqs-

Copyright:
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an effective mass M, (r) enclosed in a spherical region of radius r,
it leads to the relation M, (r)=M/ f 2(w(r)) = M , since fv(r) <1

, and such that the enhanced value of the “effective” mass M, (r)
compared to M would seem as if non-luminous “dark matter” were

present in the galaxies.

Concluding remarks : scale invariance and
born’s reciprocal relativity theory

By simple inspection one can verify that eqs-(2.15-2.26) are scale
invariant under

—>[1au, VoV, c—cC

3.1)

(2.20, 2.21) lead to these acceleration relations. A proposal that
advocates the fall of dark matter can be found in.®*¢' Scale invariance
is assumed in the empty regions of space. The Weyl gauge field 4, of
dilatations contributes to modifications of the Christoffel connection
leading then to repulsive corrections to the geodesic equations. We
have not invoked the role of Quantum Gravity in this work nor what
are the asymptotic symmetries (if any).

What we find remarkable is how powerful is the diffeomorphism
symmetry of Einstein’s vacuum field equations to account for the
Finsler gravity solution described here, and which is able to model
MOND by simply replacing the radial coordinate ¥ with the areal
radial function R(r,v(r)) . The key relation in eq-(2.21b) could be
interpreted as a balance equation between an inward acceleration
due to MOND, and an outward acceleration due to the accelerated
expansion of the Universe (since the observed cosmological constant

A =3/R},). For this reason, it is warranted to find solutions of Finsler

gravity which incorporate the cosmological constant, and see whether
or not they can be recast in terms of diffeomorphic (but not isometric)

solutions to the de Sitter-Schwarzschild metric.

Appendix A: Schwarzschild-like solutions in
D>3

In this Appendix we verify Birkhoff’s theorem by following
closely the calculations of the static spherically symmetric vacuum
solutions to Einstein’s equations in any dimension D >3 . Let us start
with the line element with the Lorentzian signature (—,+,+,+,....,+)

2 i) a2 L V(N2 L p2eNg g gz)
ds™ =—e""(dt)” +e"" (dr)" + R°(r)g;d&'d& . (A1)

where the areal radial function p(r) is now denoted by R(r)
and which must not be confused with the scalar curvature R.
Here, the metric g,.j corresponds to a homogeneous space and

i,j=3,4,..,D—-2 and the temporal and radial indices are denoted
by 1,2 respectively. In our text we denoted the temporal index by 0.
The only non-vanishing Christoffel symbols are given in terms of the
following partial derivatives with respect to the r variable and denoted
with a prime

1. 1. 1o
rlzlzgﬂs ngzg‘/s rlzl_Eﬂe# >
: (A2)
- e i R i =i
I =-¢"RRg,;, Fy == Tu=Th
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and the only nonvanishing Riemann tensor are

R R NS N L

73212“5/1 M +ZV,U, = 2,ue VRRgU,

2 oyl Lo me —erdvRR - RRDz
Ry = qu +gpu=qvu), Rpj=e’ (v gy
R;kl = R;kl —R%™ (51£g~‘/1 _51l§jk)-

(A.3)

The vacuum field equations are

1 D-2
Ry e b b L L O2D Ko
1 1 1 'R R
Ly L L vo-ndv BB D (as
Ry = 2# 4;1 ZHY D=y =) = (A5)

and

_ —vp2 1 ! ! ! " 2N ~ 2 ~
R = ¢ RS0/ = )RR ~RR ~(D=3)R™)g; + kR*(D=3)g; =0,

(A.6)
where k =+£1(4.6), depending if éij refers to positive or negative
curvature. From the combination e "R, + R,, =0 we get
.+ 2R
v = A7
u 2 (A7)
The solution of this equation is
u+v=mR*+C, (A.8)

where C is an integration constant that one sets to zero if one
wishes to recover the flat Minkowski spacetime metric in spherical
coordinates in the asymptotic region » — oo .

Substituting (A.7) into the equation (A.6) we find

e (VRR —2RR" —(D-3)R*)=-k(D-3) (A.9)
or

7 RR +2yRR" +(D-3)yR? =k(D-3), (A.10)
Where

y=e. (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one
temporal dimension ) corresponding to a D-2 -dim sphere for the
homogeneous space can be written as

167G, M _
=(l-———7D77 (X
7=( (D—2)QD2RD3)( )
162G, M 4 dR
=" =(l———27D" 1222 A12
g,=¢e =( (D—Z)QMRD’}) (dr) (A.12)

where Q,_, is the appropriate solid angle in D—2-dim and
G is the D-dim gravitational constant whose units are (length)”™
. Thus Gp,M has a unit of (length)®™ as it should. When D=4 as
a result that the 2-dim solid angle is Q, =47 one recovers from eq-
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(A.12) the 4-dim Schwarzchild solution. The solution in eq-(A.12)
is consistent with Gauss law and Poisson’s equation in D-1 spatial
dimensions obtained in the Newtonian limit.

For the most general case of the D-2-dim homogeneous space we

should write

—v=In(k- ’BDGD
RP-

£ ) —2InR (A.13)

By is a constant equal to 167 /(D-2)Q2), ,, where Q,_, is the
solid angle in the D —2 transverse dimensions to r,¢ and is given by
2202 T(D-1)/2].

Thus, according to (A.8) we get

22— + constant. (A.14)

=In(k— BpG D
RP-

we can set the constant to zero, and this means the line element
(A.1) can be written as

(dR / dr)?

— (k- />’D )(dz) . oGyl )(dr)2 + R (r)gd&'de’ =
RD -3
—(k- ﬂf;eGD Y(dt)? + ﬂD G (dR)* + R*(r)g;d&'d&’
(k—=255-)
R
(A.15)

One can verify, that the equations (A.4)-(A.6),leading to eqs-
(A.9)-(A.10), do not determine the form R(r). It is also interesting to
observe that the only effect of the homogeneous metric g;; is reflected

inthe k =+1 parameter, associated with a positive (negative) constant

scalar curvature of the homogeneous ID —2 -dim space. k=0
corresponds to a spatially flat D —2 -dim section. The metric solution
in eq-(1.2) is associated to a different signature than the one chosen in

this Appendix, and corresponds to D=4 and k=1 .7
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