Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Note Volume 2 Issue 2

Non–existence of potential vorticity in a stationary axisymmetric adiabatic fluid configuration

Prasad G

Department of Physics, Kamla Nehru Institute of Physical and Social Sciences, India

Correspondence: Gunraj Prasad, Department of Physics, Kamla Nehru Institute of Physical and Social Sciences, Sultanpur, Uttar Pradesh, India, Tel 9452328706

Received: December 15, 2017 | Published: March 21, 2018

Citation: Prasad G. Non–existence of potential vorticity in a stationary axisymmetric adiabatic fluid configuration. Phys Astron Int J. 2018;2(2):102-103. DOI: 10.15406/paij.2018.02.00069

Download PDF

Abstract

It is found that the value of relativistic potential vorticity is zero in the case of a stationary axisymmetric adiabatic fluid flows. The fluid’s vorticity flux vector lies in the level surfaces of constant entropy per baryon and thereby leads to conservation of fluid helicity.

Keywords: potential vorticity, fluid’s vorticity, vector, entropy, kelvin’s circulation theorem, fluid helicity, euler’s equation

Fluid vorticity flux and potential vorticity

The conservation of relativistic potential vorticity along adiabatic fluid flow lines in connection with Kelvin’s circulation conservation has been demonstrated by Katz.1 In particular, the stream line invariance of potential vorticity is intimately related to a weak version of Kelvin’s circulation theorem. Bekenstein2 has pointed out that there is an intrinsic relation between potential vorticity and fluid helicity. The purpose of present note is to obtain an explicit expression of fluid vorticity flux3 in a stationary axisymmetric adiabatic fluid flows and use this expression to show that the value of potential vorticity is zero and the fluid helicity is conserved.

We begin with Euler’s equation of motion given by4

W ab u b =T s ,a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4vaSWdamaaBaaajeaibaqcLbmapeGa amyyaiaadkgaaKqaG8aabeaajugib8qacaWG1bqcfa4damaaCaaale qajeaibaqcLbmapeGaamOyaaaajugibiabg2da9iaadsfacaWGZbWc paWaaSbaaKqaGeaajugWa8qacaGGSaGaamyyaaqcbaYdaeqaaaaa@497E@ ,(1)

Where T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaaaa@3A48@ and s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4Caaaa@3A67@ denote, respectively, the local temperature and the entropy per baryon measured in the fluid’s rest frame. u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyDaSWdamaaCaaajeaibeqaaKqzadWd biaadggaaaaaaa@3CF3@ is the 4-velocity of the fluid and obeys the normalization condition u a u a =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyDaSWdamaaCaaajeaibeqaaKqzadWd biaadggaaaqcLbsacaWG1bWcpaWaaSbaaKqaGeaajugWa8qacaWGHb aajeaipaqabaqcLbsapeGaeyypa0JaeyOeI0IaaGymaaaa@448B@ . The particle vorticity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4vaSWdamaaBaaajeaibaqcLbmapeGa amyyaiaadkgaaKqaG8aabeaaaaa@3DF4@ is expressible as

W ab =( μ u b )   ;a   ( μ u a )   ;b   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4vaSWdamaaBaaajeaibaqcLbmapeGa amyyaiaadkgaaKqaG8aabeaajugib8qacqGH9aqpjuaGdaqadaGcpa qaaKqzGeWdbiabeY7aTjaadwhal8aadaWgaaqcbasaaKqzadWdbiaa dkgaaKqaG8aabeaaaOWdbiaawIcacaGLPaaajuaGpaWaa0raaSqaaK qzGeWdbiaacUdacaWGHbaal8aabaqcLbsapeGaaiiOaaaacaGGGcGa eyOeI0scfa4aaeWaaOWdaeaajugib8qacqaH8oqBcaWG1bWcpaWaaS baaKqaGeaajugWa8qacaWGHbaajeaipaqabaaak8qacaGLOaGaayzk aaWcpaWaa0raaKqaGeaajugWa8qacaGG7aGaamOyaaqcbaYdaeaaju gWa8qacaGGGcaaaiaacckaaaa@5E57@ , (2)

Where μ= ρ+p n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd0Maeyypa0tcfa4aaSaaaOWdaeaa jugib8qacqaHbpGCcqGHRaWkcaWGWbaak8aabaqcLbsapeGaamOBaa aaaaa@42C3@ denotes the relativistic enthalpy per baryon. Adiabaticity condition u a s ,a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyDaSWdamaaCaaajeaibeqaaKqzadWd biaadggaaaqcLbsacaWGZbWcpaWaaSbaaKqaGeaajugWa8qacaGGSa GaamyyaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaicdaaaa@444B@ follows from (1). The proper energy density and pressure are respectively, designated by ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdihaaa@3B2F@ and  p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadchaaaa@3B87@ . The baryon conservation law is given by

( n u a )   ;a   =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaabmaak8aabaqcLbsapeGaamOBaiaadwha l8aadaahaaqcbasabeaajugWa8qacaWGHbaaaaGccaGLOaGaayzkaa qcfa4damaaDeaajeaibaqcLbmapeGaai4oaiaadggaaSWdaeaajugi b8qacaGGGcaaaiaacckacqGH9aqpcaaIWaaaaa@48BE@ , (3)

Where n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOBaaaa@3A62@ is baryon number density. It follows from (2) that

W [ ab;c ] =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4vaKqba+aadaWgaaqcbasaaSWdbmaa dmaajeaipaqaaKqzadWdbiaadggacaWGIbGaai4oaiaadogaaKqaGi aawUfacaGLDbaaaSWdaeqaaKqzGeWdbiabg2da9iaaicdaaaa@44CE@ , (4)

Where the square bracket around indices denotes skew–symmetrization. Covariant derivative is denoted by semicolon while partial derivative is indicated by comma throughout the present text. It is evident from (1) and (4) that Euler’s equation appears as Maxwell’s like equation. We now assume that the fluid flows are stationary and axisymmetric. We take t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaaaa@3A68@ and φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOXdOgaaa@3B2C@ to be the time and axial coordinates, respectively, in spherical coordinate system and r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaaaa@3A66@ , θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiUdehaaa@3B25@ are poloidal coordinates. All physical quantities including the metric tensor g ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4zaSWdamaaBaaajeaibaqcLbmapeGa amyyaiaadkgaaKqaG8aabeaaaaa@3E04@ are independent of toroidal coordinates t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiDaaaa@3A68@ and φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOXdOgaaa@3B2C@ . In this coordinate system using symmetry assumption we obtain from (1)–(4) the first integrals as follows:

W φr=An g u θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4vaKqba+aadaWgaaWcbaqcLbmapeGa eqOXdOMaamOCaKqzGeGaeyypa0Jaamyqaiaad6gajuaGdaGcaaWcpa qaaKqzGeWdbiabgkHiTiaadEgaaWqabaaal8aabeaajugWa8qacaWG 1bWcpaWaaWbaaKqaGeqabaqcLbmapeGaeqiUdehaaaaa@4B3C@ , (5)

W φθ =An g u r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4vaSWdamaaBaaajeaibaqcLbmapeGa eqOXdOMaeqiUdehajeaipaqabaqcLbsapeGaeyypa0JaeyOeI0Iaam yqaiaad6gajuaGdaGcaaGcpaqaaKqzGeWdbiabgkHiTiaadEgaaSqa baqcLbsacaWG1bWcpaWaaWbaaKqaGeqabaqcLbmapeGaamOCaaaaaa a@4B43@ , (6)

W tr W φr = W tθ W φθ = ( say ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGqaaaaaaaaaWdbmaalaaak8aabaqcLbsapeGaam4vaSWdamaa BaaajeaibaqcLbmapeGaamiDaiaadkhaaKqaG8aabeaaaOqaaKqzGe WdbiaadEfal8aadaWgaaqcbasaaKqzadWdbiabeA8aQjaadkhaaKqa G8aabeaaaaqcLbsapeGaeyypa0tcfa4aaSaaaOWdaeaajugib8qaca WGxbqcfa4damaaBaaajeaibaqcLbmapeGaamiDaiabeI7aXbWcpaqa baaakeaajugib8qacaWGxbWcpaWaaSbaaKqaGeaajugWa8qacqaHgp GAcqaH4oqCaKqaG8aabeaaaaqcLbsapeGaeyypa0JaeyOeI0IaaiiO aKqbaoaabmaak8aabaqcLbsapeGaam4CaiaadggacaWG5baakiaawI cacaGLPaaaaaa@5DF8@ (7)

W tr =An g u θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4vaSWdamaaBaaajeaibaqcLbmapeGa amiDaiaadkhaaKqaG8aabeaajugib8qacqGH9aqpcqGHsislcaWGbb GaamOBaKqbaoaakaaak8aabaqcLbsapeGaeyOeI0Iaam4zaaWcbeaa jugibiaadwhajuaGpaWaaWbaaSqabKqaGeaajugWa8qacqaH4oqCaa aaaa@4B0D@ , (8)

W tθ =An g u r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4vaSWdamaaBaaajeaibaqcLbmapeGa amiDaiabeI7aXbqcbaYdaeqaaKqzGeWdbiabg2da9iaadgeacaWGUb qcfa4aaOaaaOWdaeaajugib8qacqGHsislcaWGNbaaleqaaKqzGeGa amyDaSWdamaaCaaajeaibeqaaKqzadWdbiaadkhaaaaaaa@4992@ , (9)

W rθ =An g ( u t + u φ )+( T u θ ) s ,r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4vaSWdamaaBaaajeaibaqcLbmapeGa amOCaiabeI7aXbqcbaYdaeqaaKqzGeWdbiabg2da9iaadgeacaWGUb qcfa4aaOaaaOWdaeaajugib8qacqGHsislcaWGNbaaleqaaKqbaoaa bmaak8aabaqcLbsapeGaeyOeI0IaamyDaSWdamaaCaaajeaibeqaaK qzadWdbiaadshaaaqcLbsacqGHRaWkcaWG1bWcpaWaaWbaaKqaGeqa baqcLbmapeGaeqOXdOgaaaGccaGLOaGaayzkaaqcLbsacqGHRaWkju aGdaqadaGcpaqaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadsfaaOWd aeaajugib8qacaWG1bqcfa4damaaCaaaleqajeaibaqcLbmapeGaeq iUdehaaaaaaOGaayjkaiaawMcaaKqzGeGaam4CaKqba+aadaWgaaWc baqcLbsapeGaaiilaKqzadGaamOCaaWcpaqabaaaaa@63F7@ . (10)

Where A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyqaaaa@3A35@ is a constant of integration along the fluid flow lines and is called streamline invariant. Ω ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuqHPo Wvgaqeaaaa@382B@ represents the mechanical rotation of fluid’s vortex lines. The magnetic part of W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadEfal8aadaWgaaqcbasaaKqzadWdbiaadggacaWGIbaa jeaipaqabaaaaa@3B2B@ can be defined as

V a =     * W ab u b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfal8aadaahaaqcbasabeaajugWa8qacaWGHbaaaKqz GeGaeyypa0JaeyOeI0IaaiiOaKqba+aadaqhaaWcbaqcLbsapeGaai iOaaqcbaYdaeaajugWa8qacaGGQaaaaKqzGeGaam4vaSWdamaaCaaa jeaibeqaaKqzadWdbiaadggacaWGIbaaaKqzGeGaamyDaSWdamaaBa aajeaibaqcLbmapeGaamOyaaqcbaYdaeqaaaaa@4B8B@ , (11)

Where V a =2μ ω a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfal8aadaahaaqcbasabeaajugWa8qacaWGHbaaaKqz GeGaeyypa0JaaGOmaiabeY7aTjabeM8a3Lqba+aadaahaaqcbasabe aajugWa8qacaWGHbaaaaaa@42EB@ and     * W ab = 1 2 η abcd W cd MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbmaqaaaaa aaaaWdbiaacckal8aadaqhaaqcbasaaKqzadWdbiaacckaaKqaG8aa baqcLbmapeGaaiOkaaaajugibiaadEfal8aadaahaaqcbasabeaaju gWa8qacaWGHbGaamOyaaaajugibiabg2da9Kqbaoaalaaak8aabaqc LbsapeGaaGymaaGcpaqaaKqzGeWdbiaaikdaaaGaeq4TdGwcfa4dam aaCaaaleqajeaibaqcLbmapeGaamyyaiaadkgacaWGJbGaamizaaaa jugibiaadEfal8aadaWgaaqcbasaaKqzadWdbiaadogacaWGKbaaje aipaqabaaaaa@53E0@ . The vector field ω a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3TWdamaaCaaajeaibeqaaKqzadWdbiaadggaaaaa aa@3AFD@ is the fluid’s vorticity and is defined according as ω a = 1 2 η abcd u b;c u d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3TWdamaaCaaajeaibeqaaKqzadWdbiaadggaaaqc LbsacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiaaigdaaOWdaeaaju gib8qacaaIYaaaaiabeE7aOTWdamaaCaaajeaibeqaaKqzadWdbiaa dggacaWGIbGaam4yaiaadsgaaaqcLbsacaWG1bqcfa4damaaBaaaje aibaqcLbmapeGaamOyaiaacUdacaWGJbaal8aabeaajugib8qacaWG 1bWcpaWaaSbaaKqaGeaajugWa8qacaWGKbaajeaipaqabaaaaa@51BA@ .5 η abcd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeE7aOTWdamaaCaaajeaibeqaaKqzadWdbiaadggacaWG IbGaam4yaiaadsgaaaaaaa@3D93@ is the Levi-Civita alternating tensor. The quantity V a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfal8aadaahaaqcbasabeaajugWa8qacaWGHbaaaaaa @3A0A@ has been referred to as the fluid’s vorticity flux.3 Making use of (5), (6), (8), (9) and (10) in (11), a straightforward calculation yields that

V a =An[ ( δ t a + δ φ a )+( u t + u φ ) u a ]+( T u θ ) s ,r ( δ φ a u t δ t a u φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfal8aadaahaaqcbasabeaajugWa8qacaWGHbaaaKqz GeGaeyypa0Jaamyqaiaad6gajuaGdaWadaGcpaqaaKqba+qadaqada GcpaqaaKqzGeWdbiabes7aKTWdamaaDaaajeaibaqcLbmapeGaamiD aaqcbaYdaeaajugWa8qacaWGHbaaaKqzGeGaey4kaSIaeqiTdq2cpa Waa0baaKqaGeaajugWa8qacqaHgpGAaKqaG8aabaqcLbmapeGaamyy aaaaaOGaayjkaiaawMcaaKqzGeGaey4kaSscfa4aaeWaaOWdaeaaju gib8qacaWG1bWcpaWaaSbaaKqaGeaajugWa8qacaWG0baajeaipaqa baqcLbsapeGaey4kaSIaamyDaSWdamaaBaaajeaibaqcLbmapeGaeq OXdOgajeaipaqabaaak8qacaGLOaGaayzkaaqcLbsacaWG1bWcpaWa aWbaaKqaGeqabaqcLbmapeGaamyyaaaaaOGaay5waiaaw2faaKqzGe Gaey4kaSscfa4aaeWaaOWdaeaajuaGpeWaaSaaaOWdaeaajugib8qa caWGubaak8aabaqcLbsapeGaamyDaSWdamaaCaaajeaibeqaaKqzad WdbiabeI7aXbaaaaaakiaawIcacaGLPaaajugibiaadohajuaGpaWa aSbaaSqaaKqzGeWdbiaacYcajugWaiaadkhaaSWdaeqaaKqba+qada qadaGcpaqaaKqzGeWdbiabes7aKTWdamaaDaaajeaibaqcLbmapeGa eqOXdOgajeaipaqaaKqzadWdbiaadggaaaqcLbsacaWG1bWcpaWaaS baaKqaGeaajugWa8qacaWG0baajeaipaqabaqcLbsapeGaeyOeI0Ia eqiTdq2cpaWaa0baaKqaGeaajugWa8qacaWG0baajeaipaqaaKqzad WdbiaadggaaaqcLbsacaWG1bqcfa4damaaBaaajeaibaqcLbmapeGa eqOXdOgal8aabeaaaOWdbiaawIcacaGLPaaaaaa@91E7@ , (12)

Which exhibits that the spatial variation of the entropy per baryon contributes to the generation of fluid’s vorticity flux in addition to the mechanical rotation of vortex lines. On account of (12) and adibaticity condition, we find that

V a s ,a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAfal8aadaahaaqcbasabeaajugWa8qacaWGHbaaaKqz GeGaam4CaKqba+aadaWgaaWcbaqcLbsapeGaaiilaKqzadGaamyyaa WcpaqabaqcLbsapeGaeyypa0JaaGimaaaa@4237@ , (13)

Which shows that the vorticity flux vector lies in the level surfaces of constant entropy per baryon. The expression given by (12) is an explicit expression for the fluid’s vorticity flux. The potential vorticity defined by Katz1 is e= μ ω a s ,a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwgacqGH9aqpjuaGdaWcaaGcpaqaaKqzGeWdbiabeY7a TjabeM8a3TWdamaaCaaajeaibeqaaKqzadWdbiaadggaaaqcLbsaca WGZbWcpaWaaSbaaKqaGeaajugWa8qacaGGSaGaamyyaaqcbaYdaeqa aaGcbaqcLbsapeGaamOBaaaaaaa@468E@ . Because of (13), it is seen that e=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadwgacqGH9aqpcaaIWaaaaa@3950@ . Thus the potential vorticity is zero in a stationary axisymmetric adiabatic fluid flows. The fluid helicity introduced by Bekenstein2 is expressible as

H a =     * W ab μ u b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadIeal8aadaahaaqcbasabeaajugWa8qacaWGHbaaaKqz GeGaeyypa0JaaiiOaKqba+aadaqhaaWcbaqcLbsapeGaaiiOaaqcba YdaeaajugWa8qacaGGQaaaaKqzGeGaam4vaSWdamaaCaaajeaibeqa aKqzadWdbiaadggacaWGIbaaaKqzGeGaeqiVd0MaamyDaSWdamaaBa aajeaibaqcLbmapeGaamOyaaqcbaYdaeqaaaaa@4C46@ , (14)

Which in our case takes the form H a =μ V a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamisaSWdamaaCaaajeaibeqaaKqzadWd biaadggaaaqcLbsacqGH9aqpcqaH8oqBcaWGwbWcpaWaaWbaaKqaGe qabaqcLbmapeGaamyyaaaaaaa@4376@ . The fluid helicity is conserved, i.e. H a a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamisaSWdamaaDaaajeaibaqcLbmapeGa amyyaaqcbaYdaeaajugWa8qacaWGHbaaaKqzGeGaeyypa0JaaGimaa aa@4172@  because of (13). Further results will be published elsewhere.

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

Creative Commons Attribution License

©2018 Prasad. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.