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 Fluid vorticity flux and potential vorticity
The conservation of relativistic potential vorticity along adiabatic 

fluid flow lines in connection with Kelvin’s circulation conservation 
has been demonstrated by Katz.1 In particular, the stream line 
invariance of potential vorticity is intimately related to a weak version 
of Kelvin’s circulation theorem. Bekenstein2 has pointed out that there 
is an intrinsic relation between potential vorticity and fluid helicity. 
The purpose of present note is to obtain an explicit expression of fluid 
vorticity flux3 in a stationary axisymmetric adiabatic fluid flows and 
use this expression to show that the value of potential vorticity is zero 
and the fluid helicity is conserved.

We begin with Euler’s equation of motion given by4

,
b

ab aW u Ts= ,                           (1)

Where T and s denote, respectively, the local temperature and 
the entropy per baryon measured in the fluid’s rest frame. au is 
the 4-velocity of the fluid and obeys the normalization condition

1a
au u = − . The particle vorticity 2-form abW is expressible as

( ) ( )  
 ;

  ;ab b a bW u uaµ µ= − ,      (2)

Where 
p

n

ρ
µ

+
= denotes the relativistic enthalpy per baryon. 

Adiabaticity condition , 0a
au s = follows from (1). The proper energy 

density and pressure are respectively, designated by ρ and  p . The 
baryon conservation law is given by

 ( ) ;
  0a

anu = ,                             (3)

Where n is baryon number density. It follows from (2) that

[ ]; 0ab cW = ,                                 (4)

Where the square bracket around indices denotes skew–
symmetrization. Covariant derivative is denoted by semicolon while 
partial derivative is indicated by comma throughout the present text. It 
is evident from (1) and (4) that Euler’s equation appears as Maxwell’s 
like equation. We now assume that the fluid flows are stationary and 
axisymmetric. We take t andϕ to be the time and axial coordinates, 
respectively, in spherical coordinate system and r , θ are poloidal 
coordinates. All physical quantities including the metric tensor abg
are independent of toroidal coordinates t andϕ . In this coordinate 

system using symmetry assumption we obtain from (1)–(4) the first 
integrals as follows:
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r
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θ

ϕ = − ,                      (5)

rW An guϕθ = − − ,                 (6)

( ) tr t

r

W W
say

W W
θ

ϕ ϕθ

= = −

           

(7)

trW An guθ= − − ,                  (8)

r
tW An guθ = − ,                    (9)

.                                                 (10)

Where A is a constant of integration along the fluid flow lines and 
is called streamline invariant.Ω represents the mechanical rotation of 
fluid’s vortex lines. The magnetic part of abW can be defined as

*  = −a ab
bV W u ,                       (11)

Where 2µω=a aV and *
  

1

2
η=ab abcd

cdW W . The vector fieldω a is 

the fluid’s vorticity and is defined according as ;

1

2
ω η=a abcd

b c du u .5 

η abcd is the Levi-Civita alternating tensor. The quantity aV has been 
referred to as the fluid’s vorticity flux.3 Making use of (5), (6), (8), (9) 

and (10) in (11), a straightforward calculation yields that   

                 , (12)
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Which exhibits that the spatial variation of the entropy per baryon 
contributes to the generation of fluid’s vorticity flux in addition to the 
mechanical rotation of vortex lines. On account of (12) and adibaticity 
condition, we find that

0, =a
aV s ,                    (13)

Which shows that the vorticity flux vector lies in the level surfaces 
of constant entropy per baryon. The expression given by (12) is an 
explicit expression for the fluid’s vorticity flux. The potential vorticity 

defined by Katz1 is ,µω
=

a
as

e
n

. Because of (13), it is seen that 0=e

. Thus the potential vorticity is zero in a stationary axisymmetric 
adiabatic fluid flows. The fluid helicity introduced by Bekenstein2 is 
expressible as

*  µ=a ab
bH W u ,           (14)

Which in our case takes the form a aH Vµ= . The fluid helicity 
is conserved, i.e. 0a

aH =  because of (13). Further results will be 
published elsewhere.
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