Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 3 Issue 6

N-dimensional plane symmetric solutions in f(R,T) theory of gravity

Sadia Sattar, Farhat Imtiaz, M Jamil Amir, Aamir Zaman

Department of Mathematics, University of Lahore Sargodha Campus, Pakistan

Correspondence: Sadia Sattar, Department of Mathematics, University of Lahore Sargodha Campus, Sargodha-40100, Pakistan

Received: October 30, 2019 | Published: December 13, 2019

Citation: Sattar S, Imtiaz F, Amir MJ, et al. N-dimensional plane symmetric solutions in f (R,T) theory of gravity. Phys Astron Int J. 2019;3(6):276-280. DOI: 10.15406/paij.2019.03.00194

Download PDF

Abstract

In this Paper, we have evaluated the N-dimensional plane-symmetric space times solutions in f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ theory of gravity. For this purpose we use the more general class of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ model, i.e., f( R,T )= f 1 ( R )+ f 2 ( T ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaKqzGeGaeyypa0JaamOzaKqbaoaaBaaabaqcLbmacaaIXaaaju aGbeaadaqadaqaaKqzGeGaamOuaaqcfaOaayjkaiaawMcaaiabgUca RKqzGeGaamOzaKqbaoaaBaaabaqcLbmacaaIYaaajuaGbeaadaqada qaaiaadsfaaiaawIcacaGLPaaacaGGUaaaaa@4EBD@  Here, also we make the assumption that f( R )α f 0 R q , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaacqaHXoqy jugibiaadAgajuaGdaWgaaqaaKqzadGaaGimaaqcfayabaqcLbsaca WGsbqcfa4aaWbaaeqabaqcLbmacaWGXbaaaKqbakaacYcaaaa@4731@ where f 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3A95@  and q are arbitrary constants. To find the solutions, we assume the dust case with p=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb Gaeyypa0JaaGimaiaac6caaaa@39EC@ The field equations are solved by assuming exponential and power law forms of metric coefficient. Moreover, we have evaluated the energy densities and corresponding functions of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@  model.

Keywords: Modified gravity, f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ theory of gravity, Plane symmetric solutions

Introduction

Our universe is going through an accelerating expansion phase shown by the results obtained from different observations and experiments. General view is that this expansion is due to an enigmatic force dubbed as dark energy carrying large amount of negative pressure. In order to study its complete features, researchers have proposed alternative approaches to general relativity (GR) either by modifying the geometric part or matter part of the Einstein Hilbert action. The modified theories of gravity such as Gauss-Bonnet theory, Brans-Dick theory, String theory, Scalar tensor theory of gravity, f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@ theory and f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@  theory of gravity have extend GR. These theories can simply be obtained by applying the Einstein-Hilbert action. The f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@  theory of gravity is the modification of GR, where f is an arbitrary function of the Ricci scalar R Hollenstein et al.1 examined the exact solution of static spherically symmetric space times linked to non-linear electrodynamics in f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@ modified theory of gravity. In metric f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@  theory of gravity, cylindrically symmetric vacuum solutions is suggested by Azadi2 and his co-workers.2 In f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@  gravity, plane symmetric solutions is explored by Sharif and Shamir.3 Amendola et al.4 discovered the circumstances subordinate which dark energy f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@ models are cosmologically suitable. Locally Rotationally Symmetric vacuum solutions in f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@ gravity is explored by Jamil and Sadia 6.

Obviously f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@ theory of gravity is the simplest generalization of GR but still generally there are some f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@  models which are not consistent with the solar system tests. Recently, a new modified theory has been found by Harko et al.7 is called the f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ theory of gravity. It can be obtained new modified theory of gravity known as f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@  theory of gravity which is by replacing the general function f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@ with the scalar curvature R and the trace of energy-momentum tensor T in the Einstein-Hilbert Lagrangian of GR. The f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ theory of gravity is examined to be most attractive modified theory in all modified theories of gravity. Myrzakulov8 discussed f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ gravity in which he gave point like Lagrangian. Adhav9 explored the exact solutions of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ field equations for locally rotationally symmetric Bianchi type I spacetime. Sharif et al.10 studied the laws of thermodynamics in f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@  theory of gravity. Houndjo11 rebuilt f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ gravity by taking f( R,T )= f 1 ( R )+ f 2 ( T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaiabg2da9KqzGeGaamOzaKqbaoaaBaaabaqcLbmacaaIXaaaju aGbeaadaqadaqaaKqzGeGaamOuaaqcfaOaayjkaiaawMcaaiabgUca RKqzGeGaamOzaKqbaoaaBaaabaqcLbmacaaIYaaajuaGbeaadaqada qaaiaadsfaaiaawIcacaGLPaaaaaa@4E0B@  in which he investigated that f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ gravity permitted transition of matter from dominated phase to an acceleration phase.

Shamir12 investigated the solutions of Bianchi type-I in the context of gravity f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ and he explored two exact solutions by assuming constant deceleration parameter and the variation law of hubble parameter. Shamir and Raza13 explored the cylindrically symmetric spacetimes solutions in the background of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ gravity. Shamir14 has also explored the locally rotationally symmetric Bianchi type-I cosmology in f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ gravity. He found the solution of modified field equations by using the assumption of expansion scalarproportional to shear scalar σ. In f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ theory of gravity, Adhav15 Chaubey et al.16 and Shamir et al.17 explored different cosmological models. Amir et al.18 studied spherically symmetric perfect fluid collapse in the frame work of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ by considering the nonstatic spherically symmetric background in the interior regions and static spherically symmetric background in the exterior regions of the star.

Higher dimensional cosmological model play a vital role in many aspects of early stage of cosmological problems. The study of higher dimensional space- time provides an idea that our universe is much smaller at early stage of evolution as observed today. There is nothing in the equation of relativity which restrict them to four dimensions. Kaluza19 and Klein20 have done remarkable work by introducing an idea of higher dimension spacetime. Many researcher inspired to entered in to the field of higher dimension theory to explore knowledge of universe.

Lorentz et al.21 Ibanez22 Khadekar and Gaikwad have studied the multidimensional cosmological models in GR23 and Adhav et al.15 have studied the multidimensional cosmological models in modified theories of gravitations.24 Samanta25 investigated higher dimensional cosmological models filled with perfect fluid in f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@  gravity. Mishra26 studied the existence and behavior of solutions to some nonlinear integral equations. Vandana et al.27 explored the duality relations for a class of a multi objective fractional programming problem involving support functions. Mishra28 explained few problems on approximations of functions in Banach Spaces. Deepmala et al.29 generalized the differential geometry by using deferential operators over modules and rings. Piscoran and his coauthors studied a Projective flatness of a new class of ( a, )( α,β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGHbGaaiilaaGaayjkaiaawMcaamaabmaabaGaeqySdeMaaiil aiabek7aIbGaayjkaiaawMcaaaaa@3F1C@ -metrics.

Shamir et al.6 explored the n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb Gaey4kaSIaaGymaaaa@3915@  plane symmetric solutions in f( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B7B@  gravity. In this paper, we extended their work in f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ theory of gravity. This paper contains the study of the solutions of the N-dimensional plane symmetric spacetime. The scheme of the paper is as follows: In next section, we discuss the field equation of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ theory of gravity and section 3 contains the solutions of N-dimensional plan symmetric spacetime using the power law and exponential assumptions. Moreover, we have evaluated the energy densities and corresponding functions of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ model in this section. The summary and final remarks are available in the last section.29

Field Equations in f (R,T) theory of gravity

In this section, we formulate the field equations for N=n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGob Gaeyypa0JaamOBaiabgUcaRiaaigdaaaa@3AEE@ dimensional plane symmetric spacetime in f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ gravity. The action of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ gravity given by Harko et al.7 for higher dimensional is generalized as

s= 1 2k g f( R,T ) d n+1 x+ g L mtr d n+1 x, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaGa am4AaaaajuaGdaWdbaGcbaqcfa4aaOaaaOqaaKqzGeGaeyOeI0Iaam 4zaaWcbeaaaeqabeqcLbsacqGHRiI8aiaadAgajuaGdaqadaGcbaqc LbsacaWGsbGaaiilaiaadsfaaOGaayjkaiaawMcaaKqzGeGaamizaK qbaoaaCaaabeqaaKqzadGaamOBaiabgUcaRiaaigdaaaqcLbsacaWG 4bGaey4kaSscfa4aa8qaaOqaaKqbaoaakaaakeaajugibiabgkHiTi aadEgaaSqabaqcLbsacaWGmbqcfa4aaSbaaeaajugWaiaad2gacaWG 0bGaamOCaaqcfayabaqcLbsacaWGKbqcfa4aaWbaaeqabaqcLbmaca WGUbGaey4kaSIaaGymaaaajugibiaadIhacaGGSaaaleqabeqcLbsa cqGHRiI8aaaa@6637@   (1)

Where f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@ is taken as the arbitrary function of the scalar curvature R and of the trace T of the energy momentum tensor  T αβ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaeaajugWaiabeg7aHjabek7aIbqcfayabaGaaiOlaaaa @3DBB@ L mtr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGmb qcfa4aaSbaaeaajugWaiaad2gacaWG0bGaamOCaaqcfayabaaaaa@3CA3@ represents the matter Lagrangian. By varying the action with respect to the metric tensor gαβ, one can obtain the following field equation

f R ( R,T ) R αβ 1 2 f( R,T ) g αβ ( α β g αβ ) f R ( R,T )=k T αβ f T ( R,T )( T αβ + Θ αβ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaeaajugWaiaadkfaaKqbagqaamaabmaakeaajugibiaa dkfacaGGSaGaamivaaGccaGLOaGaayzkaaqcLbsacaWGsbqcfa4aaS baaSqaaKqzadGaeqySdeMaeqOSdigaleqaaKqzGeGaeyOeI0scfa4a aSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIYaaaaiaadAgajuaGda qadaGcbaqcLbsacaWGsbGaaiilaiaadsfaaOGaayjkaiaawMcaaKqz GeGaam4zaKqbaoaaBaaabaqcLbmacqaHXoqycqaHYoGyaKqbagqaaK qzGeGaeyOeI0scfa4aaeWaaeaajugibiabgEGirNqbaoaaBaaabaqc LbmacqaHXoqyaKqbagqaaKqzGeGaey4bIeDcfa4aaSbaaeaajugWai abek7aIbqcfayabaqcLbsacqGHsislcaWGNbqcfa4aaSbaaeaajugW aiabeg7aHjabek7aIbqcfayabaqcLbsacqWIHwYvaKqbakaawIcaca GLPaaajugibiaadAgajuaGdaWgaaqaaKqzadGaamOuaaqcfayabaWa aeWaaOqaaKqzGeGaamOuaiaacYcacaWGubaakiaawIcacaGLPaaaju gibiabg2da9iaadUgacaWGubqcfa4aaSbaaeaajugWaiabeg7aHjab ek7aIbqcfayabaqcLbsacqGHsislcaWGMbqcfa4aaSbaaeaajugWai aadsfaaKqbagqaamaabmaakeaajugibiaadkfacaGGSaGaamivaaGc caGLOaGaayzkaaqcfa4aaeWaaeaajugibiaadsfajuaGdaWgaaqaaK qzadGaeqySdeMaeqOSdigajuaGbeaajugibiabgUcaRiabfI5arLqb aoaaBaaabaqcLbmacqaHXoqycqaHYoGyaKqbagqaaaGaayjkaiaawM caaKqzGeGaaiilaaaa@A1FA@   (2)

here fR( R,T )= f( R,T ) R ,fT( R,T )= f( R,T ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb GaamOuaKqbaoaabmaakeaajugibiaadkfacaGGSaGaamivaaGccaGL OaGaayzkaaqcLbsacqGH9aqpjuaGdaWcaaqaaKqzGeGaeyOaIyRaam OzaKqbaoaabmaabaqcLbsacaWGsbGaaiilaiaadsfaaKqbakaawIca caGLPaaaaeaajugibiabgkGi2kaadkfaaaGaaiilaiaadAgacaWGub qcfa4aaeWaaOqaaKqzGeGaamOuaiaacYcacaWGubaakiaawIcacaGL Paaajugibiabg2da9KqbaoaalaaabaqcLbsacqGHciITcaWGMbqcfa 4aaeWaaeaajugibiaadkfacaGGSaGaamivaaqcfaOaayjkaiaawMca aaqaaKqzGeGaeyOaIyRaamivaaaaaaa@5FD7@ and = α α . α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqWIHw YvcqGH9aqpcqGHhis0juaGdaahaaqabeaajugWaiabeg7aHbaajugi biabgEGirNqbaoaaBaaabaqcLbmacqaHXoqyaKqbagqaaKqzGeGaai OlaiabgEGirNqbaoaaBaaabaqcLbmacqaHXoqyaKqbagqaaaaa@4B2C@ represent the covariant derivative. The quantity Θ αβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHyo qujuaGdaWgaaqaaKqzadGaeqySdeMaeqOSdigajuaGbeaaaaa@3DA7@  is given as

Θ αβ =2 T αβ + g αβ L mtr 2 g μν 2 L mtr g μν g αβ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHyo qujuaGdaWgaaWcbaqcLbmacqaHXoqycqaHYoGyaSqabaqcLbsacqGH 9aqpcqGHsislcaaIYaGaamivaKqbaoaaBaaabaqcLbmacqaHXoqycq aHYoGyaKqbagqaaKqzGeGaey4kaSIaam4zaKqbaoaaBaaabaqcLbma cqaHXoqycqaHYoGyaKqbagqaaKqzGeGaamitaKqbaoaaBaaabaqcLb macaWGTbGaamiDaiaadkhaaKqbagqaaKqzGeGaeyOeI0IaaGOmaiaa dEgajuaGdaahaaqabeaajugWaiabeY7aTjabe27aUbaajuaGdaWcaa qaaKqzGeGaeyOaIyRaaGOmaiaadYeajuaGdaWgaaqaaKqzadGaamyB aiaadshacaWGYbaajuaGbeaaaeaajugibiabgkGi2kaadEgajuaGda ahaaqabeaajugWaiabeY7aTjabe27aUbaajugibiabgkGi2kaadEga juaGdaahaaqabeaajugWaiabeg7aHjabek7aIbaaaaqcfaOaaiilaa aa@78ED@   (3)

Harko et al.7 proposed some functional forms of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@  that are given as

  1. f( R,T )=R+2λT, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaiabg2da9iaadkfacqGHRaWkcaaIYaGaeq4UdWMaamivaiaacY caaaa@43BB@  where λ is a constant
  2. f( R,T )= f 1 ( R )+ f 2 ( T ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaiabg2da9iaadAgadaWgaaqaaKqzadGaaGymaaqcfayabaWaae WaaeaacaWGsbaacaGLOaGaayzkaaGaey4kaSIaamOzamaaBaaabaqc LbmacaaIYaaajuaGbeaadaqadaqaaiaadsfaaiaawIcacaGLPaaaca GGSaaaaa@4B64@  
  3. f( R,T )= f 1 ( R )+ f 2 ( R ) f 3 ( T ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaiabg2da9iaadAgadaWgaaqaaKqzadGaaGymaaqcfayabaWaae WaaeaacaWGsbaacaGLOaGaayzkaaGaey4kaSIaamOzamaaBaaabaqc LbmacaaIYaaajuaGbeaadaqadaqaaiaadkfaaiaawIcacaGLPaaaca WGMbWaaSbaaeaajugWaiaaiodaaKqbagqaamaabmaabaGaamivaaGa ayjkaiaawMcaaiaac6caaaa@514B@  

We consider more general class of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaaaa@3D03@  model, i.e., f( R,T )= f 1 ( R )+ f 2 ( T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaaiivaaqcfaOaayjkaiaa wMcaaiabg2da9iaadAgadaWgaaqaaKqzadGaaGymaaqcfayabaWaae WaaeaacaWGsbaacaGLOaGaayzkaaGaey4kaSIaamOzamaaBaaabaqc LbmacaaIYaaajuaGbeaadaqadaqaaiaadsfaaiaawIcacaGLPaaaaa a@4AB4@ for our study. Consequently for this model, Eq.(2) takes the form7

f 1R ( R ) R αβ 1 2 f 1 ( R ) g αβ ( α β g αβ ) f 1R ( R )=k T αβ + f 2T ( T ) T αβ + 1 2 f 2 ( T ) g αβ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaeaajugWaiaaigdacaWGsbaajuaGbeaadaqadaqaaKqz GeGaamOuaaqcfaOaayjkaiaawMcaaKqzGeGaamOuaKqbaoaaBaaaba qcLbmacqaHXoqycqaHYoGyaKqbagqaaKqzGeGaeyOeI0scfa4aaSaa aeaajugibiaaigdaaKqbagaajugibiaaikdaaaGaamOzaKqbaoaaBa aabaqcLbmacaaIXaaajuaGbeaadaqadaqaaKqzGeGaamOuaaqcfaOa ayjkaiaawMcaaKqzGeGaam4zaKqbaoaaBaaabaqcLbmacqaHXoqycq aHYoGyaKqbagqaaKqzGeGaeyOeI0scfa4aaeWaaeaajugibiabgEGi rNqbaoaaBaaabaqcLbmacqaHXoqyaKqbagqaaKqzGeGaey4bIeDcfa 4aaSbaaeaajugWaiabek7aIbqcfayabaqcLbsacqGHsislcaWGNbqc fa4aaSbaaeaadaWgaaqaaKqzadGaeqySdeMaeqOSdigajuaGbeaaae qaaKqzGeGaeSyOLCfajuaGcaGLOaGaayzkaaqcLbsacaWGMbqcfa4a aSbaaeaajugWaiaaigdacaWGsbaajuaGbeaadaqadaqaaKqzGeGaam OuaaqcfaOaayjkaiaawMcaaKqzGeGaeyypa0Jaam4AaiaadsfajuaG daWgaaqaaKqzadGaeqySdeMaeqOSdigajuaGbeaajugibiabgUcaRi aadAgajuaGdaWgaaqaaKqzadGaaGOmaiaadsfaaKqbagqaamaabmaa baqcLbsacaWGubaajuaGcaGLOaGaayzkaaqcLbsacaWGubqcfa4aaS baaeaajugWaiabeg7aHjabek7aIbqcfayabaqcLbsacqGHRaWkjuaG daWcaaqaaKqzGeGaaGymaaqcfayaaKqzGeGaaGOmaaaacaWGMbqcfa 4aaSbaaeaajugWaiaaikdaaKqbagqaamaabmaabaqcLbsacaWGubaa juaGcaGLOaGaayzkaaqcLbsacaWGNbqcfa4aaSbaaeaajugWaiabeg 7aHjabek7aIbqcfayabaqcLbsacaGGSaaaaa@ACD1@   (4)

where f 1R ( R )= R ( f 1 ( R ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaeaajugWaiaaigdacaWGsbaajuaGbeaadaqadaqaaKqz GeGaamOuaaqcfaOaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaSaaae aajugibiabgkGi2cqcfayaaKqzGeGaeyOaIyRaamOuaaaajuaGdaqa daqaaKqzGeGaamOzaKqbaoaaBaaabaqcLbmacaaIXaaajuaGbeaada qadaqaaKqzGeGaamOuaaqcfaOaayjkaiaawMcaaaGaayjkaiaawMca aaaa@50A0@  and f 2T ( T )= T ( f 2 ( T ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaeaajugWaiaaikdacaWGubaajuaGbeaadaqadaqaaKqz GeGaamivaaqcfaOaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaSaaae aajugibiabgkGi2cqcfayaaKqzGeGaeyOaIyRaamivaaaajuaGdaqa daqaaKqzGeGaamOzaKqbaoaaBaaabaqcLbmacaaIYaaajuaGbeaada qadaqaaiaadsfaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGUaaa aa@503F@ The stress energy tensor for dust case is given as

T αβ =ρ υ α υ β . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub qcfa4aaSbaaeaajugWaiabeg7aHjabek7aIbqcfayabaqcLbsacqGH 9aqpcqaHbpGCcqaHfpqDjuaGdaWgaaqaaKqzadGaeqySdegajuaGbe aajugibiabew8a1LqbaoaaBaaabaqcLbmacqaHYoGyaKqbagqaaiaa c6caaaa@4D43@   (5)

where ρ  is energy density. The contraction of the field equation (4) is given as,

R f 1R ( R )2 f 1 ( R )+3 f 1R ( R )=kT+T f 2T ( T )+2 f 2 ( T ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaamOzaKqbaoaaBaaabaqcLbmacaaIXaGaamOuaaqcfayabaWaaeWa aeaajugibiaadkfaaKqbakaawIcacaGLPaaajugibiabgkHiTiaaik dacaWGMbqcfa4aaSbaaeaajugWaiaaigdaaKqbagqaamaabmaabaqc LbsacaWGsbaajuaGcaGLOaGaayzkaaqcLbsacqGHRaWkcaaIZaGaeS yOLCLaamOzaKqbaoaaBaaabaqcLbmacaaIXaGaamOuaaqcfayabaWa aeWaaOqaaKqzGeGaamOuaaGccaGLOaGaayzkaaqcLbsacqGH9aqpju g4aiaadUgajugibiaadsfacqGHRaWkcaWGubGaamOzaKqbaoaaBaaa baqcLbmacaaIYaGaamivaaqcfayabaWaaeWaaOqaaKqzGeGaamivaa GccaGLOaGaayzkaaqcLbsacqGHRaWkcaaIYaGaamOzaKqbaoaaBaaa baqcLbmacaaIYaaajuaGbeaadaqadaGcbaqcLbsacaWGubaakiaawI cacaGLPaaajugibiaac6caaaa@6EB9@   (6)

From this, we obtain

f 1 ( R )= 3 f 1R  ( R ) +R f 1R  ( R )kTT f 2T  ( T )2 f 2  ( T ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaeaajugWaiaaigdaaKqbagqaamaabmaabaqcLbsacaWG sbaajuaGcaGLOaGaayzkaaqcLbsacqGH9aqpjuaGdaWcaaqaaKqzGe GaaG4maiablgAjxjaadAgajuaGdaWgaaqaaKqzadGaaGymaiaadkfa aKqbagqaaabaaaaaaaaapeGaaiiOa8aadaqadaqaaKqzGeGaamOuaa qcfaOaayjkaiaawMcaa8qacaGGGcqcLbsapaGaey4kaSIaamOuaiaa dAgajuaGdaWgaaqaaKqzadGaaGymaiaadkfaaKqbagqaa8qacaGGGc WdamaabmaabaqcLbsacaWGsbaajuaGcaGLOaGaayzkaaqcLbsacqGH sislcaWGRbGaamivaiabgkHiTiaadsfacaWGMbqcfa4aaSbaaeaaju gWaiaaikdacaWGubaajuaGbeaapeGaaiiOa8aadaqadaqaaKqzGeGa amivaaqcfaOaayjkaiaawMcaaKqzGeGaeyOeI0IaaGOmaiaadAgaju aGdaWgaaqaaKqzadGaaGOmaaqcfayabaWdbiaacckapaWaaeWaaeaa jugibiaadsfaaKqbakaawIcacaGLPaaaaeaajugibiaaikdaaaGaai Olaaaa@75EC@   (7)

Putting Eq.(7) in Eq.(4), we obtain

f 1R ( R ) R αβ α β f 1R ( R )( k+ f 2T ( T ) ) T α,β g αβ = 1 4 ×[ R f 1R ( R ) f 1R ( R )kTT f 2T ( T )4 f 2 ( T ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aajugibiaadAgajuaGdaWgaaqaaKqzadGaaGymaiaadkfaaKqbagqa amaabmaabaqcLbsacaWGsbaajuaGcaGLOaGaayzkaaqcLbsacaWGsb qcfa4aaSbaaeaajugWaiabeg7aHjabek7aIbqcfayabaqcLbsacqGH sislcqGHhis0juaGdaWgaaqaaKqzadGaeqySdegajuaGbeaajugibi abgEGirNqbaoaaBaaabaqcLbmacqaHYoGyaKqbagqaaKqzGeGaamOz aKqbaoaaBaaabaqcLbmacaaIXaGaamOuaaqcfayabaWaaeWaaeaaju gibiaadkfaaKqbakaawIcacaGLPaaajugibiabgkHiTKqbaoaabmaa baqcLbsacaWGRbGaey4kaSIaamOzaKqbaoaaBaaabaqcLbmacaaIYa GaamivaaqcfayabaWaaeWaaeaajugibiaadsfaaKqbakaawIcacaGL PaaaaiaawIcacaGLPaaajugibiaadsfajuaGdaWgaaqaaKqzadGaeq ySdeMaaiilaiabek7aIbqcfayabaaabaqcLbsacaWGNbqcfa4aaSba aeaajugWaiabeg7aHjabek7aIbqcfayabaaaaKqzGeGaeyypa0tcfa 4aaSaaaeaajugibiaaigdaaKqbagaajugibiaaisdaaaGaey41aqBc fa4aamWaaeaajugibiaadkfacaWGMbqcfa4aaSbaaeaajugWaiaaig dacaWGsbaajuaGbeaadaqadaqaaKqzGeGaamOuaaqcfaOaayjkaiaa wMcaaKqzGeGaeyOeI0IaeSyOLCLaamOzaKqbaoaaBaaabaqcLbmaca aIXaGaamOuaaqcfayabaWaaeWaaeaajugibiaadkfaaKqbakaawIca caGLPaaajugibiabgkHiTiaadUgacaWGubGaeyOeI0IaamivaiaadA gajuaGdaWgaaqaaKqzadGaaGOmaiaadsfaaKqbagqaamaabmaabaqc LbsacaWGubaajuaGcaGLOaGaayzkaaqcLbsacqGHsislcaaI0aGaam OzaKqbaoaaBaaabaqcLbmacaaIYaaajuaGbeaadaqadaqaaKqzGeGa amivaaqcfaOaayjkaiaawMcaaaGaay5waiaaw2faaKqzGeGaaiOlaa aa@B1CB@   (8)

N-dimensional plane symmetric solutions

The line element representing N-dimensional plane symmetric spacetimes is given by.

d s 2 =A( x )d t 2 C( x )d x 2 B( x ) i=2 n1 d x i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaKqbaoaaCaaabeqaaKqzadGaaGOmaaaajugibiabg2da9iaa dgeajuaGdaqadaqaaKqzGeGaamiEaaqcfaOaayjkaiaawMcaaKqzGe GaamizaiaadshajuaGdaahaaqabeaajugWaiaaikdaaaqcLbsacqGH sislcaWGdbqcfa4aaeWaaeaajugibiaadIhaaKqbakaawIcacaGLPa aajugibiaadsgacaWG4bqcfa4aaWbaaeqabaqcLbmacaaIYaaaaKqz GeGaeyOeI0IaamOqaKqbaoaabmaabaqcLbsacaWG4baajuaGcaGLOa GaayzkaaWaaabmaeaajugibiaadsgacaWG4bqcfa4aa0baaeaajugW aiaadMgaaKqbagaajugWaiaaikdaaaaajuaGbaqcLbmacaWGPbGaey ypa0JaaGOmaaqcfayaaKqzadGaamOBaiabgkHiTiaaigdaaKqzGeGa eyyeIuoaaaa@6B84@   (9)

where A and B are arbitrary functions ofFor easiness, we take C( x )=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb qcfa4aaeWaaeaajugibiaadIhaaKqbakaawIcacaGLPaaacqGH9aqp caaIXaGaaiilaaaa@3DEF@ so the above equation take the form

d s 2 =A( x )d t 2 d x 2 B( x ) i=2 n1 d x i 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaKqbaoaaCaaabeqaaKqzadGaaGOmaaaajugibiabg2da9iaa dgeajuaGdaqadaqaaKqzGeGaamiEaaqcfaOaayjkaiaawMcaaKqzGe GaamizaiaadshajuaGdaahaaqabeaajugWaiaaikdaaaqcLbsacqGH sislcaWGKbGaamiEaKqbaoaaCaaabeqaaKqzadGaaGOmaaaajugibi abgkHiTiaadkeajuaGdaqadaqaaKqzGeGaamiEaaqcfaOaayjkaiaa wMcaamaaqadabaqcLbsacaWGKbGaamiEaKqbaoaaDaaabaqcLbmaca WGPbaajuaGbaqcLbmacaaIYaaaaaqcfayaaKqzadGaamyAaiabg2da 9iaaikdaaKqbagaajugWaiaad6gacqGHsislcaaIXaaajugibiabgg HiLdqcfaOaaiOlaaaa@673C@   (10)

For this line element Ricci scalar given as

R= 1 2 [ 2A" A ( A' A ) 2 +( n2 ) A'B' AB +2( n2 ) B" B +( n2 )( n5 ) B ' 2 2 B 2 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaeyypa0tcfa4aaSaaaeaajugibiaaigdaaKqbagaajugibiaaikda aaGaai4waKqbaoaalaaakeaajugibiaaikdacaWGbbGaaiOiaaGcba qcLbsacaWGbbaaaiabgkHiTKqbaoaabmaakeaajuaGdaWcaaGcbaqc LbsacaWGbbGaai4jaaGcbaqcLbsacaWGbbaaaaGccaGLOaGaayzkaa qcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHRaWkjuaGdaqa daGcbaqcLbsacaWGUbGaeyOeI0IaaGOmaaGccaGLOaGaayzkaaqcfa 4aaSaaaeaacaWGbbGaai4jaiaadkeacaGGNaaabaGaamyqaiaadkea aaGaey4kaSIaaGOmamaabmaabaGaamOBaiabgkHiTiaaikdaaiaawI cacaGLPaaadaWcaaGcbaqcLbsacaWGcbGaaiOiaaGcbaqcLbsacaWG cbaaaiabgUcaRKqbaoaabmaakeaajugibiaad6gacqGHsislcaaIYa aakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsacaWGUbGaeyOeI0Ia aGynaaGccaGLOaGaayzkaaqcfa4aaSaaaOqaaKqzGeGaamOqaiaacE cajuaGdaahaaWcbeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGOmaiaa dkeajuaGdaahaaWcbeqaaKqzadGaaGOmaaaaaaqcLbsacaGGDbGaai ilaaaa@7852@   (11)

where prime shows the derivative with respect to x. Since the metric (10) depends only on x, we see that the equation (8)30,31 is the set of differential equations for f 1R ( x ), f 2T ( x ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaeaajugWaiaaigdacaWGsbaajuaGbeaadaqadaqaaKqz GeGaamiEaaqcfaOaayjkaiaawMcaaKqzGeGaaiilaiaadAgajuaGda WgaaqaaKqzadGaaGOmaiaadsfaaKqbagqaamaabmaabaqcLbsacaWG 4baajuaGcaGLOaGaayzkaaqcLbsacaGGSaaaaa@4A1C@ A and B. The field equations can be written as

A α = f 1R ( R ) α α ( f 1R ( R ) )( k+ f 2T ( T ) ) T αβ g αβ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGbb qcfa4aaSbaaeaajugWaiabeg7aHbqcfayabaqcLbsacqGH9aqpjuaG daWcaaqaaKqzGeGaamOzaKqbaoaaBaaabaqcLbmacaaIXaGaamOuaa qcfayabaWaaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaajugi biabgkHiTiabgEGirNqbaoaaBaaabaqcLbmacqaHXoqyaKqbagqaaK qzGeGaey4bIeDcfa4aaSbaaeaajugWaiabeg7aHbqcfayabaWaaeWa aeaajugibiaadAgajuaGdaWgaaqaaKqzadGaaGymaiaadkfaaKqbag qaamaabmaabaqcLbsacaWGsbaajuaGcaGLOaGaayzkaaaacaGLOaGa ayzkaaqcLbsacqGHsisljuaGdaqadaqaaKqzGeGaam4AaiabgUcaRi aadAgajuaGdaWgaaqaaKqzadGaaGOmaiaadsfaaKqbagqaamaabmaa baqcLbsacaWGubaajuaGcaGLOaGaayzkaaaacaGLOaGaayzkaaqcLb sacaWGubqcfa4aaSbaaeaajugWaiabeg7aHjabek7aIbqcfayabaaa baqcLbsacaWGNbqcfa4aaSbaaeaajugWaiabeg7aHjabek7aIbqcfa yabaaaaKqzGeGaaiOlaaaa@7BFB@   (12)

Now put f 1R ( R )=F( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaeaajugWaiaaigdacaWGsbaajuaGbeaadaqadaqaaiaa dkfaaiaawIcacaGLPaaacqGH9aqpcaWGgbWaaeWaaeaacaWGsbaaca GLOaGaayzkaaaaaa@41FE@  and f 2T ( T )= F ˜ ( T ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaeaajugWaiaaikdacaWGubaajuaGbeaadaqadaqaaKqz GeGaamivaaqcfaOaayjkaiaawMcaaKqzGeGaeyypa0JabmOrayaaia qcfa4aaeWaaeaajugibiaadsfaaKqbakaawIcacaGLPaaajugibiaa cYcaaaa@46AA@ Since A α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGbb qcfa4aaSbaaeaajugWaiabeg7aHbqcfayabaaaaa@3B54@ is just a notation for the traced quantity. Thus, A 1 A 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGbb qcfa4aaSbaaeaajugWaiaaigdaaKqbagqaaiabgkHiTiaadgeadaWg aaqaaKqzadGaaGimaaqcfayabaqcLbsacqGH9aqpcaaIWaaaaa@4109@  gives

( n2 ) A'B' AB F( R )2( n2 ) B" B F( R )( n2 ) B ' 2 B 2 F( R )+ 2A' A F'( R )4F"( R )4[ k+ F ( T) ]ρ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aajugibiaad6gacqGHsislcaaIYaaajuaGcaGLOaGaayzkaaWaaSaa aeaajugibiaadgeacaGGNaGaamOqaiaacEcaaKqbagaajugibiaadg eacaWGcbaaaiaadAeajuaGdaqadaqaaKqzGeGaamOuaaqcfaOaayjk aiaawMcaaKqzGeGaeyOeI0IaaGOmaKqbaoaabmaabaqcLbsacaWGUb GaeyOeI0IaaGOmaaqcfaOaayjkaiaawMcaamaalaaabaqcLbsacaWG cbGaaiOiaaqcfayaaKqzGeGaamOqaaaacaWGgbqcfa4aaeWaaeaaju gibiaadkfaaKqbakaawIcacaGLPaaadaqadaqaaKqzGeGaamOBaiab gkHiTiaaikdaaKqbakaawIcacaGLPaaadaWcaaqaaKqzGeGaamOqai aacEcajuaGdaahaaqabeaajugWaiaaikdaaaaajuaGbaqcLbsacaWG cbqcfa4aaWbaaeqabaqcLbmacaaIYaaaaaaajugibiaadAeajuaGda qadaqaaKqzGeGaamOuaaqcfaOaayjkaiaawMcaaKqzGeGaey4kaSsc fa4aaSaaaeaajugibiaaikdacaWGbbGaai4jaaqcfayaaKqzGeGaam yqaaaacaWGgbGaai4jaKqbaoaabmaabaqcLbsacaWGsbaajuaGcaGL OaGaayzkaaqcLbsacqGHsislcaaI0aGaamOraiaackcajuaGdaqada qaaKqzGeGaamOuaaqcfaOaayjkaiaawMcaaKqzGeGaeyOeI0IaaGin aKqbaoaadmaabaqcLbsacaWGRbGaey4kaSIaamOraKqbaoaaCaaabe qaaKqzGeGaaiikaaaacaWGubGaaiykaaqcfaOaay5waiaaw2faaKqz GeGaeqyWdiNaeyypa0JaaGimaaaa@8F3F@   (13)

Similarly the subtraction of A 2 , A 2 , A 3 ..... A n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaSbaaeaajugWaiaaikdaaKqbagqaaKqzGeGaaiilaiaadgea juaGdaWgaaqaaKqzadGaaGOmaaqcfayabaqcLbsacaGGSaGaamyqaK qbaoaaBaaabaqcLbmacaaIZaaajuaGbeaajugibiaac6cacaGGUaGa aiOlaiaac6cacaGGUaGaamyqaKqbaoaaBaaabaqcLbmacaWGUbGaey OeI0IaaGymaaqcfayabaaaaa@4EA0@ from A 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb qcfa4aaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3A70@ then taking equal to zero yields a single independent equation of the for

( n3 ) A'B' AB F( R )2 B" B F( R )( n4 ) B ' 2 B 2 F( R )+ 2A" A F( R ) A ' 2 A 2 F( R )+2 A' A F'( R )2 B' B F'( R )4[ k+ F ˜ (T) ]ρ=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aajugibiaad6gacqGHsislcaaIZaaajuaGcaGLOaGaayzkaaWaaSaa aeaajugibiaadgeacaGGNaGaamOqaiaacEcaaKqbagaajugibiaadg eacaWGcbaaaiaadAeajuaGdaqadaqaaKqzGeGaamOuaaqcfaOaayjk aiaawMcaaKqzGeGaeyOeI0IaaGOmaKqbaoaalaaabaqcLbsacaWGcb GaaiOiaaqcfayaaKqzGeGaamOqaaaacaWGgbqcfa4aaeWaaeaajugi biaadkfaaKqbakaawIcacaGLPaaacqGHsisldaqadaqaaKqzGeGaam OBaiabgkHiTiaaisdaaKqbakaawIcacaGLPaaadaWcaaqaaKqzGeGa amOqaiaacEcajuaGdaahaaqabeaajugWaiaaikdaaaaajuaGbaqcLb sacaWGcbqcfa4aaWbaaeqabaqcLbmacaaIYaaaaaaajugibiaadAea juaGdaqadaqaaKqzGeGaamOuaaqcfaOaayjkaiaawMcaaKqzGeGaey 4kaSscfa4aaSaaaeaajugibiaaikdacaWGbbGaaiOiaaqcfayaaKqz GeGaamyqaaaacaWGgbqcfa4aaeWaaeaajugibiaadkfaaKqbakaawI cacaGLPaaadaWcaaqaaiaadgeacaGGNaWaaWbaaeqabaqcLbmacaaI YaaaaaqcfayaaiaadgeadaahaaqabeaajugWaiaaikdaaaaaaKqzGe GaamOraKqbaoaabmaabaqcLbsacaWGsbaajuaGcaGLOaGaayzkaaGa ey4kaSIaaGOmamaalaaabaGaamyqaiaacEcaaeaacaWGbbaaaiaadA eacaGGNaWaaeWaaeaacaWGsbaacaGLOaGaayzkaaGaeyOeI0IaaGOm amaalaaabaGaamOqaiaacEcaaeaacaWGcbaaaiaadAeacaGGNaWaae WaaeaacaWGsbaacaGLOaGaayzkaaqcLbsacaaI0aqcfa4aamWaaeaa jugibiaadUgacqGHRaWkceWGgbGbaGaacaGGOaGaamivaiaacMcaaK qbakaawUfacaGLDbaajugibiabeg8aYjabg2da9iaaicdacaGGUaaa aa@9CF1@   (14)

In this way we have obtained two non-linear differential equations involving unknown variables ρ,A,and B. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcaGGSaGaamyqaiaacYcacaWGHbGaamOBaiaadsgaqaaaaaaaaaWd biaacckacaWGcbGaaiOlaaaa@3FEA@  Because of the conservation of energy momentum tensor, we can find the solutions by assuming the metric coefficient A=constant, i.e., A = 1. Therefore, above two equations now reduce to

2( n2 ) B" B F( R )+( n2 ) B ' 2 B 2 F( R )4F"( R )4[ k+ F ˜ (T) ]ρ=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcaaIYaqcfa4aaeWaaeaajugibiaad6gacqGHsislcaaIYaaajuaG caGLOaGaayzkaaWaaSaaaeaajugibiaadkeacaGGIaaajuaGbaqcLb sacaWGcbaaaiaadAeajuaGdaqadaqaaKqzGeGaamOuaaqcfaOaayjk aiaawMcaaKqzGeGaey4kaSscfa4aaeWaaeaajugibiaad6gacqGHsi slcaaIYaaajuaGcaGLOaGaayzkaaWaaSaaaeaajugibiaadkeacaGG Naqcfa4aaWbaaeqabaqcLbmacaaIYaaaaaqcfayaaKqzGeGaamOqaK qbaoaaCaaabeqaaKqzadGaaGOmaaaaaaqcLbsacaWGgbqcfa4aaeWa aeaajugibiaadkfaaKqbakaawIcacaGLPaaajugibiabgkHiTiaais dacaWGgbGaaiOiaKqbaoaabmaabaqcLbsacaWGsbaajuaGcaGLOaGa ayzkaaqcLbsacqGHsislcaaI0aqcfa4aamWaaeaajugibiaadUgacq GHRaWkceWGgbGbaGaacaGGOaGaamivaiaacMcaaKqbakaawUfacaGL Dbaajugibiabeg8aYjabg2da9iaaicdacaGGUaaaaa@73BF@   (15)

2 B" B F( R )( n4 ) B ' 2 B 2 F( R )2 B' B 2 B' B F'( R )4[ k+ F ˜ (T) ]ρ=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcaaIYaqcfa4aaSaaaeaajugibiaadkeacaGGIaaajuaGbaqcLbsa caWGcbaaaiaadAeajuaGdaqadaqaaKqzGeGaamOuaaqcfaOaayjkai aawMcaaKqzGeGaeyOeI0scfa4aaeWaaeaajugibiaad6gacqGHsisl caaI0aaajuaGcaGLOaGaayzkaaWaaSaaaeaajugibiaadkeacaGGNa qcfa4aaWbaaeqabaqcLbmacaaIYaaaaaqcfayaaKqzGeGaamOqaKqb aoaaCaaabeqaaKqzadGaaGOmaaaaaaqcLbsacaWGgbqcfa4aaeWaae aajugibiaadkfaaKqbakaawIcacaGLPaaajugibiabgkHiTiaaikda juaGdaWcaaqaaKqzGeGaamOqaiaacEcaaKqbagaajugibiaadkeaaa qcfaOaeyOeI0IaaGOmamaalaaabaqcLbsacaWGcbGaai4jaaqcfaya aKqzGeGaamOqaaaacaWGgbGaai4jaKqbaoaabmaabaqcLbsacaWGsb aajuaGcaGLOaGaayzkaaqcLbsacqGHsislcaaI0aqcfa4aamWaaeaa jugibiaadUgacqGHRaWkceWGgbGbaGaacaGGOaGaamivaiaacMcaaK qbakaawUfacaGLDbaajugibiabeg8aYjabg2da9iaaicdacaGGUaaa aa@793C@   (16)

Subtracting above two equations, we obtain

2( n3 ) B" B F( R )+2( n3 ) B ' 2 B 2 F( R )4F"( R )+2 B' B =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHsi slcaaIYaqcfa4aaeWaaeaacaWGUbGaeyOeI0IaaG4maaGaayjkaiaa wMcaamaalaaabaqcLbsacaWGcbGaaiOiaaqcfayaaKqzGeGaamOqaa aacaWGgbqcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaa jugibiabgUcaRiaaikdajuaGdaqadaqaaiaad6gacqGHsislcaaIZa aacaGLOaGaayzkaaWaaSaaaeaajugibiaadkeacaGGNaqcfa4aaWba aeqabaqcLbmacaaIYaaaaaqcfayaaKqzGeGaamOqaKqbaoaaCaaabe qaaKqzadGaaGOmaaaaaaqcLbsacaWGgbqcfa4aaeWaaeaajugibiaa dkfaaKqbakaawIcacaGLPaaajugibiabgkHiTiaaisdacaWGgbGaai OiaKqbaoaabmaabaGaamOuaaGaayjkaiaawMcaaiabgUcaRiaaikda daWcaaqaaKqzGeGaamOqaiaacEcaaKqbagaajugibiaadkeaaaqcfa Oaeyypa0JaaGimaaaa@6991@   (17)

which implies

( n3 ) B" B F( R )( n3 ) B ' 2 B 2 F( R )+2 F"( R ) F F'B' FB =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGUbGaeyOeI0IaaG4maaGaayjkaiaawMcaamaalaaabaqcLbsa caWGcbGaaiOiaaqcfayaaKqzGeGaamOqaaaacaWGgbqcfa4aaeWaae aajugibiaadkfaaKqbakaawIcacaGLPaaajugibiabgkHiTKqbaoaa bmaabaGaamOBaiabgkHiTiaaiodaaiaawIcacaGLPaaadaWcaaqaaK qzGeGaamOqaiaacEcajuaGdaahaaqabeaajugWaiaaikdaaaaajuaG baqcLbsacaWGcbqcfa4aaWbaaeqabaqcLbmacaaIYaaaaaaajugibi aadAeajuaGdaqadaqaaKqzGeGaamOuaaqcfaOaayjkaiaawMcaaKqz GeGaey4kaSIaaGOmaKqbaoaalaaabaGaamOraiaackcadaqadaqaai aadkfaaiaawIcacaGLPaaaaeaacaWGgbaaaiabgkHiTmaalaaabaqc LbsacaWGgbGaai4jaiaadkeacaGGNaaajuaGbaqcLbsacaWGgbGaam OqaaaajuaGcqGH9aqpcaaIWaGaaiOlaaaa@69B8@   (18)

Now we follow the approach of Nojiri and Odintsov35 and make the assumption F( R )α f 0 R q , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaajugibiab eg7aHjaadAgajuaGdaWgaaqaaKqzadGaaGimaaqcfayabaqcLbsaca WGsbqcfa4aaWbaaeqabaqcLbmacaWGXbaaaKqzGeGaaiilaaaa@4712@ which implies that F( R )= f 0 R q , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaajugibiab g2da9iaadAgajuaGdaWgaaqaaKqzadGaaGimaaqcfayabaqcLbsaca WGsbqcfa4aaWbaaeqabaqcLbmacaWGXbaaaKqzGeGaaiilaaaa@4679@  where f 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGMb qcfa4aaSbaaeaajugWaiaaicdaaKqbagqaaaaa@3A95@  and q are arbitrary real constants. Thus Eq.(18) takes the form

2q( q1 ) R ' 2 R 2 +q( R" R B'R' BR )+( n3 )( B" B B ' 2 B 2 )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa GaamyCaKqbaoaabmaabaGaamyCaiabgkHiTiaaigdaaiaawIcacaGL PaaadaWcaaqaaKqzGeGaaiOuaiaacEcajuaGdaahaaqabeaajugWai aaikdaaaaajuaGbaGaamOuamaaCaaabeqaaKqzadGaaGOmaaaaaaqc faOaey4kaSIaamyCamaabmaabaWaaSaaaeaacaWGsbGaaiOiaaqaai aadkfaaaGaeyOeI0YaaSaaaeaacaWGcbGaai4jaiaadkfacaGGNaaa baGaamOqaiaadkfaaaaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaaca WGUbGaeyOeI0IaaG4maaGaayjkaiaawMcaamaabmaabaWaaSaaaeaa caGGcbGaaiOiaaqaaiaadkeaaaGaeyOeI0YaaSaaaeaacaWGcbGaai 4jamaaCaaabeqaaKqzadGaaGOmaaaaaKqbagaacaWGcbWaaWbaaeqa baqcLbmacaaIYaaaaaaaaKqbakaawIcacaGLPaaacqGH9aqpcaaIWa GaaiOlaaaa@64A9@   (19)

Further, we will solve the last equation by using following two assumptions

  1. Exponential Law assumption
  2. Power Law assumption.

Exponential solution

In this case we assume that, B= c 1 e c2x , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb Gaeyypa0Jaam4yaKqbaoaaBaaabaqcLbmacaaIXaaajuaGbeaajugi biaadwgajuaGdaahaaqabeaajugWaiaadogacaaIYaGaamiEaaaaju aGcaGGSaaaaa@4396@  for the constraint q( 2q1 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCam aabmaabaGaaGOmaiaadghacqGHsislcaaIXaaacaGLOaGaayzkaaGa eyypa0JaaGimaiaacYcaaaa@3ECD@ solution of the metric takes the form

d s 2 =d t 2 d x 2 c 1 e c2x i=2 n1 d x i 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaKqbaoaaCaaabeqaaKqzadGaaGOmaaaajugibiabg2da9iaa dsgacaWG0bqcfa4aaWbaaeqabaqcLbmacaaIYaaaaKqbakabgkHiTK qzGeGaamizaiaadIhajuaGdaahaaqabeaajugWaiaaikdaaaqcLbsa cqGHsislcaWGJbqcfa4aaSbaaeaajugWaiaaigdaaKqbagqaaKqzGe GaamyzaKqbaoaaCaaabeqaaKqzadGaam4yaiaaikdacaWG4baaaKqb aoaaqadabaqcLbsacaWGKbGaamiEaKqbaoaaDaaabaqcLbmacaWGPb aajuaGbaqcLbmacaaIYaaaaaqcfayaaKqzadGaamyAaiabg2da9iaa ikdaaKqbagaajugWaiaad6gacqGHsislcaaIXaaajugibiabggHiLd qcfaOaaiOlaaaa@67E0@   (20)

Here we have two choices from the constraint.

CASE (A-I)

For this case, by substituting q=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCaK qzGeGaeyypa0JaaGimaiaacYcaaaa@3A79@ we obtain F( R )= f 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaajugibiab g2da9iaadAgajuaGdaWgaaqaaKqzadGaaGimaaqcfayabaaaaa@4100@ and we get

R f 1 ( R )= f 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITaeaacqGHciITcaWGsbaaaiaadAgadaWgaaqaaKqzadGa aGymaaqcfayabaWaaeWaaeaacaWGsbaacaGLOaGaayzkaaGaeyypa0 JaamOzamaaBaaabaqcLbmacaaIWaaajuaGbeaacaGGUaaaaa@4554@   (21)

Integrating above equation, we obtained

f 1 ( R )= f 0 R+ c 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaabaqcLbmacaaIXaaajuaGbeaadaqadaqaaiaadkfaaiaawIca caGLPaaacqGH9aqpcaWGMbWaaSbaaeaajugWaiaaicdaaKqbagqaai aadkfacqGHRaWkcaWGJbWaaSbaaeaajugWaiaaiodaaKqbagqaaiaa cYcaaaa@46DA@   (22)

where c 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yam aaBaaabaqcLbmacaaIZaaajuaGbeaaaaa@3A06@ is the constant of integration. Hence F( R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaaaaa@3B5B@ turn out to be

f( R,T )= f 0 R+ f 2 ( T )++ c 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaGaeyypa0Ja amOzamaaBaaabaqcLbmacaaIWaaajuaGbeaacaWGsbGaey4kaSIaam OzamaaBaaabaqcLbmacaaIYaaajuaGbeaadaqadaqaaiaadsfaaiaa wIcacaGLPaaacqGHRaWkcqGHRaWkcaWGJbWaaSbaaeaajugWaiaaio daaKqbagqaaiaacYcaaaa@4D75@   (23)

For this case, the trace of energy-momentum T and energy density ρ are given

ρ= ( n2 ) c 2 2 ( f 0 R+ c 3 ) 4[ k+ F ˜ ( T ) ] =T. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcqGH9aqpcqGHsisljuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGa amOBaiabgkHiTiaaikdaaOGaayjkaiaawMcaaKqzGeGaam4yaKqbao aaDaaaleaajugWaiaaikdaaSqaaKqzadGaaGOmaaaajuaGdaqadaGc baqcLbsacaWGMbqcfa4aaSbaaeaajugWaiaaicdaaKqbagqaaKqzGe GaamOuaiabgUcaRiaadogajuaGdaWgaaqaaKqzadGaaG4maaqcfaya baaakiaawIcacaGLPaaaaeaajugibiaaisdajuaGdaWadaGcbaqcLb sacaWGRbGaey4kaSIabmOrayaaiaqcfa4aaeWaaOqaaKqzGeGaamiv aaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaaaKqzGeGaeyypa0Jaam ivaiaac6caaaa@612E@   (24)

Also the Ricci scalar R is given as

R= ( n1 )( n2 ) c 2 2 2 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaeyypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaad6gacqGH sislcaaIXaaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsacaWGUb GaeyOeI0IaaGOmaaGccaGLOaGaayzkaaqcLbsacaWGJbqcfa4aa0ba aSqaaKqzadGaaGOmaaWcbaqcLbmacaaIYaaaaaGcbaqcLbsacaaIYa aaaiabgcMi5kaaicdacaGGUaaaaa@4E4E@   (25)

CASE (A-II)

In this case, substituting q= 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGXb Gaeyypa0tcfa4aaSaaaeaacqGHsislcaaIXaaabaGaaGOmaaaacaGG Saaaaa@3C33@  we get

F( R )= f 0 R 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaajugibiab g2da9iaadAgajuaGdaWgaaqaaKqzadGaaGimaaqcfayabaGaamOuam aaCaaabeqaaKqzadGaeyOeI0YcdaWcaaqaaiaaigdaaeaacaaIYaaa aaaajuaGcaGGSaaaaa@46E4@   (26)

which implies

R f 0 R 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITaeaacqGHciITcaWGsbaaaiaadAgadaWgaaqaaKqzadGa aGimaaqcfayabaGaamOuamaaCaaabeqaaKqzadGaeyOeI0YcdaWcaa qcfayaaKqzadGaaGymaaqcfayaaKqzadGaaGOmaaaaaaqcfaOaaiOl aaaa@4717@   (27)

Integrating Eq.(27), we get

F 1 ( R )=2 f 0 R 1 2 + c 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaeaajugWaiaaigdaaKqbagqaamaabmaabaqcLbsacaWG sbaajuaGcaGLOaGaayzkaaqcLbsacqGH9aqpcaaIYaGaamOzaKqbao aaBaaabaqcLbmacaaIWaaajuaGbeaacaWGsbWaaWbaaeqabaWcdaWc aaqaaiaaigdaaeaacaaIYaaaaaaajuaGcqGHRaWkcaGGJbWaaSbaae aajugWaiaaisdaaKqbagqaaaaa@4BD1@   (28)

where c 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaai4yam aaBaaabaqcLbmacaaI0aaajuaGbeaaaaa@3A06@ is the constant of integration. So F( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaamivaaqcfaOaayjkaiaa wMcaaaaa@3CE4@ becomes

F( R,T )=2 f 0 R + f 2 ( T )+ c 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaeWaaeaajugibiaadkfacaGGSaGaamivaaqcfaOaayjkaiaa wMcaaiabg2da9iaaikdacaWGMbWaaSbaaeaajugWaiaaicdaaKqbag qaamaakaaabaGaamOuaaqabaGaey4kaSIaamOzamaaBaaabaqcLbma caaIYaaajuaGbeaadaqadaqaaiaadsfaaiaawIcacaGLPaaacqGHRa WkcaWGJbWaaSbaaeaajugWaiaaisdaaKqbagqaaiaac6caaaa@4EEE@   (29)

For this case, the trace of energy-momentum T and energy densityare given as

ρ= ( n2 ) c 2 2 ( f 0 R 1 2 + c 4 ) 4[ k+ F ˜ ( T ) ] =T. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcqGH9aqpcqGHsisljuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGa amOBaiabgkHiTiaaikdaaOGaayjkaiaawMcaaKqzGeGaam4yaKqbao aaDaaaleaajugWaiaaikdaaSqaaKqzadGaaGOmaaaajuaGdaqadaGc baqcLbsacaWGMbqcfa4aaSbaaeaajugWaiaaicdaaKqbagqaaKqzGe GaamOuaKqbaoaaCaaabeqcfawaaWWaaSaaaeaacaaIXaaabaGaaGOm aaaaaaqcLbsacqGHRaWkcaWGJbqcfa4aaSbaaeaajugWaiaaisdaaK qbagqaaaGccaGLOaGaayzkaaaabaqcLbsacaaI0aqcfa4aamWaaOqa aKqzGeGaam4AaiabgUcaRiqadAeagaacaKqbaoaabmaakeaajugibi aadsfaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaaajugibiabg2da 9iaadsfacaGGUaaaaa@646F@   (30)

Also the Ricci scalar R is given as

R= ( n1 )( n2 ) c 2 2 2 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaeyypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaad6gacqGH sislcaaIXaaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsacaWGUb GaeyOeI0IaaGOmaaGccaGLOaGaayzkaaqcLbsacaWGJbqcfa4aa0ba aSqaaKqzadGaaGOmaaWcbaqcLbmacaaIYaaaaaGcbaqcLbsacaaIYa aaaiabgcMi5kaaicdacaGGUaaaaa@4E4E@   (31)

Power law solutions

For this case, we assume that B α  x ω , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb GcqaaaaaaaaaWdbiaacckajugib8aacqaHXoqyk8qacaGGGcqcLbsa paGaamiEaKqbaoaaCaaabeqaaKqzadGaeqyYdChaaKqbakaacYcaaa a@4299@ where ω is any real number. We substitute B ( x )= c 5   x ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGcb aeaaaaaaaaa8qacaGGGcqcfa4aaeWaaOqaaKqzGeGaamiEaaGccaGL OaGaayzkaaqcLbsacqGH9aqpcaWGJbqcfa4aaSbaaeaajugWaiaaiw daaKqbagqaaKqzGeGaaiiOa8aacaWG4bqcfa4aaWbaaeqabaqcLbma cqaHjpWDaaaaaa@4858@ in Eq.(18), where c 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadogajuaGdaWgaaqaaKqzadGaaGynaaqcfayabaaaaa@3AB7@ is an arbitrary constant. Now solving equation (19) by taking ω=2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDcqGH9aqpcaaIYaGaaiilaaaa@3AC4@ we get

4 q 2 +4q( n3 )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaisdacaWGXbqcfa4aaWbaaeqabaqcLbmacaaIYaaaaKqz GeGaey4kaSIaaGinaiaadghacqGHsisljuaGdaqadaqaaKqzGeGaam OBaiabgkHiTiaaiodaaKqbakaawIcacaGLPaaajugibiabg2da9iaa icdacaGGUaaaaa@47D7@   (32)

The solution of the metric takes the form

d s 2 =d t 2 d x 2 c 5 x ω i=2 n1 d x i 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaKqbaoaaCaaabeqaaKqzadGaaGOmaaaajugibiabg2da9iaa dsgacaWG0bqcfa4aaWbaaeqabaqcLbmacaaIYaaaaKqbakabgkHiTK qzGeGaamizaiaadIhajuaGdaahaaqabeaajugWaiaaikdaaaqcLbsa cqGHsislcaWGJbqcfa4aaSbaaeaajugWaiaaiwdaaKqbagqaaiaadI hadaahaaqabeaajugWaiabeM8a3baajuaGdaaeWaqaaKqzGeGaamiz aiaadIhajuaGdaqhaaqaaKqzadGaamyAaaqcfayaaKqzadGaaGOmaa aaaKqbagaajugWaiaadMgacqGH9aqpcaaIYaaajuaGbaqcLbmacaWG UbGaeyOeI0IaaGymaaqcLbsacqGHris5aKqbakaac6caaaa@6606@   (33)

The solution of Eq.(32) gives, q= 1± n2 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacqGH9aqpjuaGdaWcaaqaaiabgkHiTiaaigdacqGH XcqSdaGcaaqaaiaad6gacqGHsislcaaIYaaabeaaaeaacaaIYaaaai aac6caaaa@40EF@ Here, we have two case for two different roots of the Eq.(32).

CASE (B-I)

For q= 1± n2 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacqGH9aqpjuaGdaWcaaqaaiabgkHiTiaaigdacqGH XcqSdaGcaaqaaiaad6gacqGHsislcaaIYaaabeaaaeaacaaIYaaaai aacYcaaaa@40ED@ we have

F( R )= f 0 R 1+ n2 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaacqGH9aqp caWGMbWaaSbaaeaajugWaiaaicdaaKqbagqaaiaadkfaqaaaaaaaaa WdbmaalaaabaGaeyOeI0IaaGymaiabgUcaRmaakaaabaGaamOBaiab gkHiTiaaikdaaeqaaaqaaiaaikdaaaGaaiilaaaa@478C@   (34)

R f 1 ( R )= f 0 R 1+ n2 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITaeaacqGHciITcaWGsbaaaiaadAgadaWgaaqaaKqzadGa aGymaaqcfayabaWaaeWaaeaacaWGsbaacaGLOaGaayzkaaGaeyypa0 JaamOzamaaBaaabaqcLbmacaaIWaaajuaGbeaacaWGsbaeaaaaaaaa a8qadaWcaaqaaiabgkHiTiaaigdacqGHRaWkdaGcaaqaaiaad6gacq GHsislcaaIYaaabeaaaeaacaaIYaaaaiaac6caaaa@4C4D@   (35)

Integrating Eq.(35) , we get

f 1 ( R )= 2 f 0 1+ n2 R 1+ n2 2 + c 6 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaabaqcLbmacaaIXaaajuaGbeaadaqadaqaaiaadkfaaiaawIca caGLPaaacqGH9aqpdaWcaaqaaiaaikdacaWGMbWaaSbaaeaajugWai aaicdaaKqbagqaaaqaaiaaigdacqGHRaWkdaGcaaqaaiaad6gacqGH sislcaaIYaaabeaaaaGaamOuaabaaaaaaaaapeWaaSaaaeaacaaIXa Gaey4kaSYaaOaaaeaacaWGUbGaeyOeI0IaaGOmaaqabaaabaGaaGOm aaaacqGHRaWkcaGGJbWaaSbaaeaajugWaiaaiAdaaKqbagqaaiaacY caaaa@5126@   (36)

which implies

f 1 ( R )= 2 f 0 1+ n2 ( 2 x 2 ) 1+ n2 2 + c 6 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaabaqcLbmacaaIXaaajuaGbeaadaqadaqaaiaadkfaaiaawIca caGLPaaacqGH9aqpdaWcaaqaaiaaikdacaWGMbWaaSbaaeaajugWai aaicdaaKqbagqaaaqaaiaaigdacqGHRaWkdaGcaaqaaiaad6gacqGH sislcaaIYaaabeaaaaWaaeWaaeaadaWcaaqaaiaaikdaaeaacaWG4b WaaWbaaeqabaqcLbmacaaIYaaaaaaaaKqbakaawIcacaGLPaaaqaaa aaaaaaWdbmaalaaabaGaaGymaiabgUcaRmaakaaabaGaamOBaiabgk HiTiaaikdaaeqaaaqaaiaaikdaaaGaey4kaSIaai4yamaaBaaabaqc LbmacaaI2aaajuaGbeaacaGGSaaaaa@563B@   (37)

where c 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGJbWaaSbaaeaajugWaiaaiAdaaKqbagqaaaaa@3A28@ is the constant of integration. Hence f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaaaaa@3B58@ takes the form

f( R,T )= 2 f 0 1+ n2 ( 2 x 2 ) 1+ n2 2 + f 2 ( T )+ c 6 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaGaeyypa0Za aSaaaeaacaaIYaGaamOzamaaBaaabaqcLbmacaaIWaaajuaGbeaaae aacaaIXaGaey4kaSYaaOaaaeaacaWGUbGaeyOeI0IaaGOmaaqabaaa amaabmaabaWaaSaaaeaacaaIYaaabaGaamiEamaaCaaabeqaaKqzad GaaGOmaaaaaaaajuaGcaGLOaGaayzkaaaeaaaaaaaaa8qadaWcaaqa aiaaigdacqGHRaWkdaGcaaqaaiaad6gacqGHsislcaaIYaaabeaaae aacaaIYaaaaiabgUcaRiaadAgadaWgaaqaaKqzadGaaGOmaaqcfaya baWaaeWaaeaacaWGubaacaGLOaGaayzkaaGaey4kaSIaai4yamaaBa aabaqcLbmacaaI2aaajuaGbeaacaGGUaaaaa@5BF6@   (38)

For this case, the trace of energy-momentum T and energy density ρ are given as

ρ= 2+ n2 [ ( n2 )( n3 ) ] 1+ n2 ( n2 n2 ) f 0 x 1 + n2[ k+λ ] =T. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcqGH9aqpjuaGdaWcaaqaaiabgkHiTiaaikdacqGHRaWkdaGcaaqa aiaad6gacqGHsislcaaIYaaabeaadaWadaqaamaabmaabaGaamOBai abgkHiTiaaikdaaiaawIcacaGLPaaadaqadaqaaiaad6gacqGHsisl caaIZaaacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaeqabaqcLb macqGHsislcaaIXaGaey4kaSYcdaGcaaqaaiaad6gacqGHsislcaaI YaaameqaaaaajuaGdaqadaqaaiaad6gacqGHsislcaaIYaGaeyOeI0 YaaOaaaeaacaWGUbGaeyOeI0IaaGOmaaqabaaacaGLOaGaayzkaaGa amOzamaaBaaabaqcLbmacaaIWaaajuaGbeaaaeaacaWG4bWaaWbaae qabaqcLbmacqGHsislcaaIXaaaaKqbakabgUcaRmaakaaabaGaamOB aiabgkHiTiaaikdadaWadaqaaiaadUgacqGHRaWkcqaH7oaBaiaawU facaGLDbaaaeqaaaaacqGH9aqpcaWGubGaaiOlaaaa@6BE2@   (39)

Also the Ricci scalar R can be given as

R= ( n2 )ω[ ω( n1 )4 ] 2 x 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaeyypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaad6gacqGH sislcaaIYaaakiaawIcacaGLPaaajuaGcqaHjpWDdaWadaqaaiabeM 8a3naabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaacqGH sislcaaI0aaacaGLBbGaayzxaaaakeaajugibiaaikdacaWG4bqcfa 4aaWbaaeqabaqcLbmacaaIYaaaaaaajugibiabgcMi5kaaicdaaaa@5245@   (40)

CASE (B-II)

For q= 1 n2 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadghacqGH9aqpjuaGdaWcaaqaaiabgkHiTiaaigdacqGH sisldaGcaaqaaiaad6gacqGHsislcaaIYaaabeaaaeaacaaIYaaaai aacYcaaaa@3FEC@  we have

F( R )= f 0 R 1 n2 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaeWaaeaajugibiaadkfaaKqbakaawIcacaGLPaaacqGH9aqp caWGMbWaaSbaaeaajugWaiaaicdaaKqbagqaaiaadkfaqaaaaaaaaa WdbmaalaaabaGaeyOeI0IaaGymaiabgkHiTmaakaaabaGaamOBaiab gkHiTiaaikdaaeqaaaqaaiaaikdaaaGaaiilaaaa@4797@   (41)

R f 1 ( R )= f 0 R 1 n2 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITaeaacqGHciITcaWGsbaaaiaadAgadaWgaaqaaKqzadGa aGymaaqcfayabaWaaeWaaeaacaWGsbaacaGLOaGaayzkaaGaeyypa0 JaamOzamaaBaaabaqcLbmacaaIWaaajuaGbeaacaWGsbaeaaaaaaaa a8qadaWcaaqaaiabgkHiTiaaigdacqGHsisldaGcaaqaaiaad6gacq GHsislcaaIYaaabeaaaeaacaaIYaaaaiaac6caaaa@4C58@   (42)

Integrating Eq.(42) , we get

F 1 ( R )= 2 f 0 1 n2 R 1 n2 2 + c 7 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaeaajugWaiaaigdaaKqbagqaamaabmaabaqcLbsacaWG sbaajuaGcaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIYaGaamOzam aaBaaabaqcLbmacaaIWaaajuaGbeaaaeaacaaIXaGaeyOeI0YaaOaa aeaacaWGUbGaeyOeI0IaaGOmaaqabaaaaiaadkfaqaaaaaaaaaWdbm aalaaabaGaeyOeI0IaaGymaiabgkHiTmaakaaabaGaamOBaiabgkHi TiaaikdaaeqaaaqaaiaaikdaaaGaey4kaSIaai4yamaaBaaabaqcLb macaaI3aaajuaGbeaacaGGSaaaaa@53B6@   (43)

which implies

F 1 ( R )= 2 f 0 1 n2 ( 2 x 2 ) 1 n2 2 + c 7 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb qcfa4aaSbaaeaajugWaiaaigdaaKqbagqaamaabmaabaqcLbsacaWG sbaajuaGcaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIYaGaamOzam aaBaaabaqcLbmacaaIWaaajuaGbeaaaeaacaaIXaGaeyOeI0YaaOaa aeaacaWGUbGaeyOeI0IaaGOmaaqabaaaamaabmaabaWaaSaaaeaaca aIYaaabaGaamiEamaaCaaabeqaaKqzadGaaGOmaaaaaaaajuaGcaGL OaGaayzkaaaeaaaaaaaaa8qadaWcaaqaaiabgkHiTiaaigdacqGHsi sldaGcaaqaaiaad6gacqGHsislcaaIYaaabeaaaeaacaaIYaaaaiab gUcaRiaacogadaWgaaqaaKqzadGaaG4naaqcfayabaGaaiilaaaa@58CB@   (44)

where c 7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGJbWaaSbaaeaajugWaiaaiEdaaKqbagqaaaaa@3A29@ is the constant of integration, so f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaaaaa@3B58@  takes the form

f( R,T )= 2 f 0 1 n2 ( 2 x 2 ) 1 n2 2 + f 2 ( T ) c 7 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaGaeyypa0Za aSaaaeaacaaIYaGaamOzamaaBaaabaqcLbmacaaIWaaajuaGbeaaae aacaaIXaGaeyOeI0YaaOaaaeaacaWGUbGaeyOeI0IaaGOmaaqabaaa amaabmaabaWaaSaaaeaacaaIYaaabaGaamiEamaaCaaabeqaaKqzad GaaGOmaaaaaaaajuaGcaGLOaGaayzkaaaeaaaaaaaaa8qadaWcaaqa aiabgkHiTiaaigdacqGHsisldaGcaaqaaiaad6gacqGHsislcaaIYa aabeaaaeaacaaIYaaaaiabgUcaRiaadAgadaWgaaqaaKqzadGaaGOm aaqcfayabaWaaeWaaeaacaWGubaacaGLOaGaayzkaaGaai4yamaaBa aabaqcLbmacaaI3aaajuaGbeaacaGGUaaaaa@5C18@   (45)

For this case, the trace of energy-momentum T and energy density ρ are given as

ρ= 2 1 n2 [ ( n2 )( n3 ) ] 1 n2 ( n2+ n2 ) f 0 x 1 n2 [ k+λ ] =T. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcqGH9aqpjuaGdaWcaaqaaiabgkHiTiaaikdadaahaaqabeaajugW aiabgkHiTiaaigdacqGHsisllmaakaaabaqcLbmacaWGUbGaeyOeI0 IaaGOmaaadbeaaaaqcfa4aamWaaeaadaqadaqaaiaad6gacqGHsisl caaIYaaacaGLOaGaayzkaaWaaeWaaeaacaWGUbGaeyOeI0IaaG4maa GaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaabeqaaKqzadGaeyOe I0IaaGymaiabgkHiTSWaaOaaaeaajugWaiaad6gacqGHsislcaaIYa aameqaaaaajuaGdaqadaqaaiaad6gacqGHsislcaaIYaGaey4kaSYa aOaaaeaacaWGUbGaeyOeI0IaaGOmaaqabaaacaGLOaGaayzkaaGaam OzamaaBaaabaqcLbmacaaIWaaajuaGbeaaaeaacaWG4bWaaWbaaeqa baqcLbmacqGHsislcaaIXaGaeyOeI0YcdaGcaaqaaKqzadGaamOBai abgkHiTiaaikdaaWqabaaaaKqbaoaadmaabaGaam4AaiabgUcaRiab eU7aSbGaay5waiaaw2faaaaacqGH9aqpcaWGubGaaiOlaaaa@7336@   (46)

While the Ricci scalar R turn out to be

R= ( n2 )ω[ ω( n1 )4 ] 2 x 2 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb Gaeyypa0tcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaad6gacqGH sislcaaIYaaakiaawIcacaGLPaaajuaGcqaHjpWDdaWadaqaaiabeM 8a3naabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGLPaaacqGH sislcaaI0aaacaGLBbGaayzxaaaakeaajugibiaaikdacaWG4bqcfa 4aaWbaaeqabaqcLbmacaaIYaaaaaaajugibiabgcMi5kaaicdacaGG Uaaaaa@52F7@   (47)

Summary & Conclusion

We have evaluated the N-dimensional non-vacuum plane-symmetric solutions in the context of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaaaaa@3B58@ theory of gravity. For this purpose, we solve the field equations by considering the metric representing the N-dimensional planesymmetric space-time in GR. We investigate the solutions by using the general class of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaaaaa@3B58@ model, i.e., f( R,T )= f 1 ( R )+ f 2 ( T ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaGaeyypa0Ja amOzamaaBaaabaqcLbmacaaIXaaajuaGbeaadaqadaqaaiaadkfaai aawIcacaGLPaaacqGHRaWkcaWGMbWaaSbaaeaajugWaiaaikdaaKqb agqaamaabmaabaGaamivaaGaayjkaiaawMcaaiaac6caaaa@49BB@ Moreover, we find the solutions by making the assumption f( R )α f 0 R q , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaaGaayjkaiaawMcaaiabeg7aHjaadAgadaWgaaqa aKqzadGaaGimaaqcfayabaGaamOuamaaCaaabeqaaKqzadGaamyCaa aajuaGcaGGSaaaaa@434B@ where f 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@3A06@ and q are arbitrary constants. To find the solutions, we also assume the dust case with p=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb Gaeyypa0JaaGimaiaac6caaaa@39EC@ Initially, the field equations look complicated and it was difficult to solve these equations because they are highly non-linear. So the corresponding field equations are solved using exponential law forms given in Eq. (20) and power law assumption of metric coefficient given in Eq.(33). In exponential forms there arises two cases, case (A-I): for m=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb Gaeyypa0JaaGimaiaacYcaaaa@39E7@ yields the function of Ricci scalar f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaaaaa@3B58@ given in equation (23) and case(A-II): for m= 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb Gaeyypa0JaeyOeI0scfa4aaSaaaeaacaaIXaaabaGaaGOmaaaacaGG Saaaaa@3C2F@ yields the value of Ricci scalar function f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaaaaa@3B58@ given equation (29). The values of Ricci scalar R and matter density ρ are all evaluated in every case. However, the Riacci scalar is non-zero in both cases.

There also arises two cases in power law form, case(B-I): form = 1+ n2 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabg2da9KqbaoaalaaabaGaeyOeI0IaaGymaiabgUcaRmaa kaaabaGaamOBaiabgkHiTiaaikdaaeqaaaqaaiaaikdaaaGaaiilaa aa@3EEB@ yields the function of Ricci scalar f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaaaaa@3B58@ given in Eq.(31)and case(B-II): for m= 1 n2 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2gacqGH9aqpjuaGdaWcaaqaaiabgkHiTiaaigdacqGH sisldaGcaaqaaiaad6gacqGHsislcaaIYaaabeaaaeaacaaIYaaaai aacYcaaaa@3FE8@  yields the function of Ricci scalar f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaaaaa@3B58@ given in equation (33). The values of Ricci scalar R and matter density ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCaaa@3845@ are all evaluated in every case. However, the Riacci scalar is non-zero in both cases. Moreover, the energy densities are evaluated in each case. Finally, we conclude that this work contain some information about the crucial issues of the localization of energy (Table 1). Also this work provides the energy densities of different solutions with general classes f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaaaaa@3B58@ model which may be helpful to reduce the theoretical problems in cosmology. Thus, it is hoped that such types of solutions in the background of f( R,T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOzam aabmaabaGaamOuaiaacYcacaWGubaacaGLOaGaayzkaaaaaa@3B58@ gravity may explain the present phase of cosmic acceleration of our universe and may provide some attractive aspects of GR.31,35

CASE

SOLUTION

A

d s 2 =d t 2 d x 2 c 1 e c2x i=2 n1 d x i 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaKqbaoaaCaaabeqaaKqzadGaaGOmaaaajugibiabg2da9iaa dsgacaWG0bqcfa4aaWbaaeqabaqcLbmacaaIYaaaaKqbakabgkHiTK qzGeGaamizaiaadIhajuaGdaahaaqabeaajugWaiaaikdaaaqcLbsa cqGHsislcaWGJbqcfa4aaSbaaeaajugWaiaaigdaaKqbagqaaiaadw gadaahaaqabeaajugWaiaadogacaaIYaGaamiEaaaajuaGdaaeWaqa aKqzGeGaamizaiaadIhajuaGdaqhaaqaaKqzadGaamyAaaqcfayaaK qzadGaaGOmaaaaaKqbagaajugWaiaadMgacqGH9aqpcaaIYaaajuaG baqcLbmacaWGUbGaeyOeI0IaaGymaaqcLbsacqGHris5aKqbakaac6 caaaa@66C3@  

B

d s 2 =d t 2 d x 2 c 5 x ω i=2 n1 d x i 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb Gaam4CaKqbaoaaCaaabeqaaKqzadGaaGOmaaaajugibiabg2da9iaa dsgacaWG0bqcfa4aaWbaaeqabaqcLbmacaaIYaaaaKqbakabgkHiTK qzGeGaamizaiaadIhajuaGdaahaaqabeaajugWaiaaikdaaaqcLbsa cqGHsislcaWGJbqcfa4aaSbaaeaajugWaiaaiwdaaKqbagqaaiaadI hadaahaaqabeaajugWaiabeM8a3baajuaGdaaeWaqaaKqzGeGaamiz aiaadIhajuaGdaqhaaqaaKqzadGaamyAaaqcfayaaKqzadGaaGOmaa aaaKqbagaajugWaiaadMgacqGH9aqpcaaIYaaajuaGbaqcLbmacaWG UbGaeyOeI0IaaGymaaqcLbsacqGHris5aKqbakaac6caaaa@6606@  

Table 1 Solutions of the N-dimensional plane-symmetric spacetimes

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Hollenstein L, Lobo FS. Exact solutions of f(R) gravity coupled to nonlinear electrodynamics. Physical Review D. 2008;78(12):124007.
  2. Azadi A, Momeni D, Nouri-Zonoz M. Cylindrical solutions in metric f(R) gravity. Physics Letters B. 2008;670(3):210–214.
  3. Sharif M, Shamir MF. Plane symmetric solutions in f(R) gravity. Modern Physics Letters A. 2010;25(15):1281–1288.
  4. Amendola L, Polarski D, Tsujikawa S. Are f(R) dark energy models cosmologically viable. Physical review letters. 2007;98(13):131302.
  5. Amir MJ, Sattar S. Locally Rotationally Symmetric Vacuum Solutions in f(R) Gravity. International Journal of Theoretical Physics. 2014;53(3):773–787.
  6. Shamir MF, Jhangeer A. A Note on Plane Symmetric Solutions in f(R) Gravity. International Journal of Theoretical Physics. 2013;52(7):2326–2328.
  7. Harko T, Lobo FS, Nojiri SI, et al.  f(R,T) gravity. Physical Review D. 2011;84(2):024020.
  8. Momeni D, Myrzakulov Y, Tsyba P, et al. Fermionic DBI and Chaplygin gas unified models of dark energy and dark matter from f-essence. In Journal of Physics: Conference Series. 2012;354(1):012011.
  9. Adhav KS. LRS Bianchi type-I cosmological model in f(R,T) theory of gravity. Astrophysics and Space Science. 2012;339(2):365–369.
  10. Sharif M, Zubair M. Thermodynamics in f(R,T) theory of gravity. Journal of Cosmology and Astroparticle Physic. 2012; 2012(03):028.
  11. Houndjo MJS. Reconstruction of f(R,T) gravity describing matter dominated and accelerated phases. International Journal of Modern Physics D. 2012;21(01):1250003.
  12. Shamir MF. Bianchi type-I cosmology in f(R,T) gravity. Journal of Experimental and Theoretical Physics. 2014;119(2):242–250.
  13. Shamir MF, Raza Z. Cylindrically symmetric solutions in f(R,T) gravity. Astrophysics and Space Science. 2015;356(1):111–118.
  14. Shamir MF. Locally rotationally symmetric Bianchi type I cosmology in f(R,T) gravity. The European Physical Journal C. 2015;75(8):354.
  15. Adhav KS. LRS Bianchi type-I cosmological model in f(R,T) theory of gravity. Astrophysics and Space Science. 2012;339(2):365–369.
  16. Chaubey R, Shukla AK. A new class of Bianchi cosmological models in f(R,T) gravity. Astrophysics and Space Science. 2013;343(1):415–422.
  17. Shamir MF, JhangeSer A, Bhatti AA. Exact Solutions of Bianchi Types I and V Models in f(R,T) Gravity. 2012;arXiv preprint arXiv:1207.0708.
  18. Amir MJ, Sattar S. Spherical Symmetric Perfect Fluid Collapse in f(R,T) Gravity. International Journal of Theoretical Physics. 2016;5(4):1988–2000.
  19. Kaluza T. Zum unittsproblem der physik. Sitzungsber Preuss Akad Wiss Berlin. (Math. Phys.). 1921;45:966972.
  20. Klein O. Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English). Surveys High Energ Phys. 1926;5:895906.
  21. Lorenz-Petzold D. Higher-dimensional Brans-Dicke cosmologies. General relativity and gravitation. 1985;17(12):1189–1203.
  22. Ibez J, Verdaguer E. Radiative isotropic cosmologies with extra dimensions. Physical Review D. 1986;34(4):1202.
  23. Khadekar G, Gaikwad M. Higher dimensional Bianchi type V cosmological model in Bimetric theory of relativity. Proceedings of Einstein Foundation International. 2001;11:95–100.
  24. Adhav KS, Nimkar AS, Dawande MV. N-dimensional string cosmological model in Brans-Dicke theory of gravitation. Astrophysics and Space Science. 2007;310(3–4):231.
  25. Samanta GC, Dhal SN. Higher dimensional cosmological models filled with perfect fluid in f(R,T) theory of gravity. International Journal of Theoretical Physics. 2013;52(4):1334–1344.
  26. Mishra LN. On existence and behavior of solutions to some nonlinear integral equations with applications. Ph.D. Thesis, National Institute of technology, Silchar 788 010, Assam, India. 2017.
  27. Vandana D, Dubey R, Mishra LN, et al. Duality relations for a class of a multiobjective fractional programming problem involving support functions. American J Operations Research. 2018;8(4):294–311.
  28. Mishra VN. Some Problems on Approximations of Functions in Banach Spaces. Ph.D. Thesies, Indian Institute of Technology, Roorkee 247 667 Uttarakhand, India. 2007.
  29. Deepmala, Mishra LN. Deferential operators over modules and rings as a path to the generalized differential geometry. FACTA UNIVERSITATIS (NIˇS) Ser Math Inform. 2015;30(5):753–764.
  30. Piscoran LI, Mishra VN. Projective flatness of a new class of (a,)(α,β)-metrics. Georgian Mathematical Journal. 2019;26(1):133–139.
  31. Tolman RC. Effect of Inhomogeneity on Cosmological Models. Proc Natl Acad Sci USA. 1934;20(3):169–176.
  32. Bondi H. Spherically symmetrical models in general relativity. Monthly Notices of the Royal Astronomical Society. 1947;107(5–6):410–425.
  33. Tiwari RN, Nayak BK. Plane symmetric vacuum solutions in the Brans-Dicke theory of gravitation. Journal of Physics A Mathematical and General. 1976;9(3):369.
  34. Sharif M, Zaeem Ul Haq Bhatti M. Structure scalars in charged plane symmetry. Modern Physics Letters A. 2012;27(27):1250141.
  35. Nojiri SI, Odintsov SD. Modified f(R) gravity consistent with realistic cosmology: From a matter dominated epoch to a dark energy universe. Physical Review D. 2006;74(8):086005.
Creative Commons Attribution License

©2019 Sattar, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.