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Introduction
Our universe is going through an accelerating expansion 

phase shown by the results obtained from different observations 
and experiments. General view is that this expansion is due to an 
enigmatic force dubbed as dark energy carrying large amount of 
negative pressure. In order to study its complete features, researchers 
have proposed alternative approaches to general relativity (GR) 
either by modifying the geometric part or matter part of the Einstein 
Hilbert action. The modified theories of gravity such as Gauss-Bonnet 
theory, Brans-Dick theory, String theory, Scalar tensor theory of 
gravity, ( )f R theory and ( ),Tf R  theory of gravity have extend 
GR. These theories can simply be obtained by applying the Einstein-
Hilbert action. The ( )f R  theory of gravity is the modification of GR, 
where f is an arbitrary function of the Ricci scalar R Hollenstein et 
al.1 examined the exact solution of static spherically symmetric space 
times linked to non-linear electrodynamics in ( )f R modified theory 
of gravity. In metric ( )f R  theory of gravity, cylindrically symmetric 
vacuum solutions is suggested by Azadi2 and his co-workers.2 In
( )f R  gravity, plane symmetric solutions is explored by Sharif and 

Shamir.3 Amendola et al.4 discovered the circumstances subordinate 
which dark energy ( )f R models are cosmologically suitable. 
Locally Rotationally Symmetric vacuum solutions in ( )f R gravity is 
explored by Jamil and Sadia.6

Obviously ( )f R theory of gravity is the simplest generalization 
of GR but still generally there are some ( )f R  models which are 
not consistent with the solar system tests. Recently, a new modified 
theory has been found by Harko et al.7 is called the ( ),Tf R theory of 
gravity. It can be obtained new modified theory of gravity known as
( ),Tf R  theory of gravity which is by replacing the general function
( )f R with the scalar curvature R and the trace of energy-momentum 

tensor T in the Einstein-Hilbert Lagrangian of GR. The ( ),Tf R
theory of gravity is examined to be most attractive modified theory 
in all modified theories of gravity. Myrzakulov8 discussed ( ),Tf R
gravity in which he gave point like Lagrangian. Adhav9 explored the 
exact solutions of ( ),Tf R field equations for locally rotationally 
symmetric Bianchi type I spacetime. Sharif et al.10 studied the laws 

of thermodynamics in ( ),Tf R  theory of gravity. Houndjo11 rebuilt
( ),Tf R gravity by taking ( ) ( ) ( )

1 2
,Tf R f R f T= +  in which he 

investigated that ( ),Tf R gravity permitted transition of matter from 
dominated phase to an acceleration phase.

Shamir12 investigated the solutions of Bianchi type-I in the context 
of gravity ( ),Tf R and he explored two exact solutions by assuming 
constant deceleration parameter and the variation law of hubble 
parameter. Shamir and Raza13 explored the cylindrically symmetric 
spacetimes solutions in the background of ( ),Tf R gravity. Shamir14 
has also explored the locally rotationally symmetric Bianchi type-I 
cosmology in ( ),Tf R gravity. He found the solution of modified field 
equations by using the assumption of expansion scalarθ proportional 
to shear scalar .σ In ( ),Tf R theory of gravity, Adhav15 Chaubey 
et al.16 and Shamir et al.17 explored different cosmological models. 
Amir et al.18 studied spherically symmetric perfect fluid collapse in 
the frame work of ( ),Tf R by considering the nonstatic spherically 
symmetric background in the interior regions and static spherically 
symmetric background in the exterior regions of the star.

Higher dimensional cosmological model play a vital role in many 
aspects of early stage of cosmological problems. The study of higher 
dimensional space- time provides an idea that our universe is much 
smaller at early stage of evolution as observed today. There is nothing 
in the equation of relativity which restrict them to four dimensions. 
Kaluza19 and Klein20 have done remarkable work by introducing an 
idea of higher dimension spacetime. Many researcher inspired to 
entered in to the field of higher dimension theory to explore knowledge 
of universe.

Lorentz and Petzold [21], Ibanez et.al [22] ,Khadekar and Gaikwad 
[23]have studied the multidimensional cosmological models in GR. 
Adhav et al [24] have studied the multidimensional cosmological 
models in modified theories of gravitations.24 Samanta25 investigated 
higher dimensional cosmological models filled with perfect fluid in
( ),Tf R  gravity. Mishra26 studied the existence and behavior of 

solutions to some nonlinear integral equations. Vandana et al.27 
explored the duality relations for a class of a multi objective fractional 
programming problem involving support functions. Mishra28 
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Abstract

In this Paper, we have evaluated the N-dimensional plane-symmetric space times solutions 
in ( ),Tf R theory of gravity. For this purpose we use the more general class of ( ),Tf R
model, i.e., ( ) ( ) ( )

1 2
,T .f R f R f T= +  Here, also we make the assumption that ( )

0
,qf R f Rα

where
0

f  and q are arbitrary constants. To find the solutions, we assume the dust case with
0.p = The field equations are solved by assuming exponential and power law forms of 

metric coeffcient. Moreover, we have evaluated the energy densities and corresponding 
functions of ( ),Tf R  model.
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explained few problems on approximations of functions in Banach 
Spaces. Deepmala et al.29 generalized the differential geometry by 
using deferential operators over modules and rings. Piscoran and his 
coauthors studied a Projective flatness of a new class of ( ) ( ), ,a α β
-metrics.

Shamir et al.6 explored the 1n +  plane symmetric solutions in 
( )f R  gravity. In this paper, we extended their work in ( ),Tf R

theory of gravity. This paper contains the study of the solutions of 
the N-dimensional plane symmetric spacetime. The scheme of the 
paper is as follows: In next section, we discuss the field equation 
of ( ),Tf R theory of gravity and section 3 contains the solutions of 
N-dimensional plan symmetric spacetime using the power law and 
exponential assumptions. Moreover, we have evaluated the energy 
densities and corresponding functions of ( ),Tf R model in this 
section. The summary and final remarks are available in the last 
section.29

Field Equations in ( ),Tf R theory of gravity
In this section, we formulate the field equations for 1N n= +

dimensional plane symmetric spacetime in ( ),Tf R gravity. The 
action of ( ),Tf R gravity given by Harko et al.7 for higher dimensional 
is generalized as 

          
( ) 1 11

, ,
2

n n

mtr
s g f R T d x gL d x

k
+ += − + −∫ ∫             (1)

Where ( ),Tf R is taken as the arbitrary function of the scalar 
curvature R and of the trace T of the energy momentum tensor .T

αβ
 

mtr
L represents the matter Lagrangian. By varying the action with 
respect to the metric tensor gαβ, one can obtain the following field 
equation

 
      

                                                                                                                                                                                                                          (2)

here ( ) ( ) ( ) ( ), ,
, , ,

f R T f R T
fR R T fT R T

R T
∂ ∂

= =
∂ ∂ and .α

α
= ∇ ∇ α

∇

represent the covariant derivative. The quantity
αβ

Θ  is given as

       

2
2 2 ,mtr

mtr

L
T g L g

g g
µν

αβ αβ αβ µν αβ

∂
Θ = − + −

∂ ∂
        (3)

Harko et al.7 proposed some functional forms of ( ),Tf R  that are 
given as

I.	 ( ),T 2 ,f R R Tλ= + where λ is a constant

II.	
( ) ( ) ( )

1 2
,T ,f R f R f T= +

III.	
( ) ( ) ( ) ( )

1 2 3
,T .f R f R f R f T= +

We consider more general class of ( ),Tf R  
model, i.e., ( ) ( ) ( )

1 2
,Tf R f R f T= + for our study. 

Consequently for this model, Eq.(2) takes the form7   

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 2

1 1
,

2 2R R T
f R R f R g g f R kT f T T f T gα β αβαβ αβ αβ αβ αβ

− − ∇ ∇ − = + +

   (4)

where ( ) ( )( )11R
f R f R

R
∂

=
∂  and ( ) ( )( )22

.
T

f T f T
T
∂

=
∂ The stress 

energy tensor for dust case is given as

                                
.T

αβ α β
ρυ υ=                                             (5)

where ρ  is energy density. The contraction of the field equation 
(4) is given as,

( ) ( ) ( ) ( ) ( )
1 1 1 2 2

2 3 2 .
R R T

kRf R f R f R T Tf T f T− + = + +    (6)

From this, we obtain

      
( ) ( ) ( ) ( ) ( )1 1 2 2

1

 3 2
.

2
    R R Tf R Rf R kT Tf T f T

f R
+ − − −

=


        (7)

Putting Eq.(7) in Eq.(4), we obtain

                                                                                                   

                                                                                                                                                           (8)
( ) ( ) ( )( )

( ) ( ) ( ) ( )1 1 2 ,
1 1 2 2

1
4 .

4
R R T

R R T
f R R f R k f T T

Rf R f R kT Tf T f T
g

αβ α β α β

αβ

−∇ ∇ − +
 = × − − − − 

N-dimensional plane symmetric solutions
The line element representing N-dimensional plane symmetric 

spacetimes is given by.

   ( ) ( ) ( )2 2 2 21
2

n
i ids A x dt C x dx B x dx−
=∑= − −      (9)

where A and B are arbitrary functions of .x For easiness, we take
( ) 1,C x = so the above equation take the form

           ( ) ( )2 2 2 21
2 .n

i ids A x dt dx B x dx−
=∑= − −      (10)

For this line element Ricci scalar given as 

                                                                                                                                                                                                                                                                                                                                  (11)( ) ( ) ( ) ( )
2 2

2

2 " ' " '1 ' '
[ 2 2 2 2 5 ],

2 2

A A B BA B
R n n n n

ABA A B B
= − + − + − + − −

 
 
 

( ) ( ) ( ) ( ) ( ) ( )1
, , , , ,

2R R T
f R T R f R T g g f R T kT f R T Tα β αβ αβ αβαβ αβ αβ

− − ∇ ∇ − = − +Θ
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where prime shows the derivative with respect to x. Since the 
metric (10) depends only on x, we see that the equation (8)30,31 is the 
set of differential equations for ( ) ( )

1 2
, ,

R T
f x f x A and B. The field 

equations can be written as

     

( ) ( )( ) ( )( )1 1 2A .R R Tf R f R k f T T
g

α α αβ

α αβ

−∇ ∇ − +
=       (12)

Now put ( ) ( )
1R
f R F R=  and ( ) ( )

2
,

T
f T F T=  Since A

α
is just 

a notation for the traced quantity. Thus,
1 0

A 0A− =  gives

                                                                                                 
 

                                                                                                                                                                                                                            (13)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2

' ' " ' 2 ' (2 2 2 2 ' 4 " 4 ) 0
A B B B A

n F R n F R n F R F R F R k F T
AB B AB

ρ − − − − + − − + =  

Similarly the subtraction of
2 2 3 1
, , .....

n
A A A A

−
from

0
A then taking 

equal to zero yields a single independent equation of the for

                                                                                                                    

                                                                                                                                                                                                                     
 

                                                                                                                                                                                                                                  (14)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2

' ' " ' 2 " ' ' '
3 2 4 2 ' 2 ' 4 ( ) 0.

A B B B A A A B
n F R F R n F R F R F R F R F R k F T

AB B A A BB A
ρ − − − − + + − + = 

In this way we have obtained two non-linear differential 
equations involving unknown variables  , .,A and Bρ  Because of the 
conservation of energy momentum tensor, we can find the solutions 
by assuming the metric coeffcient A=constant, i.e., A = 1. Therefore, 
above two equations now reduce to

   
( ) ( ) ( ) ( ) ( )

2

2

" '
2 2 2 4 " 4 ( ) 0.

B B
n F R n F R F R k F T

B B
ρ − − + − − − + =    (15)

   
( ) ( ) ( ) ( )

2

2

" ' ' '
2 4 2 2 ' 4 ( ) 0.

B B B B
F R n F R F R k F T

B B BB
ρ − − − − − − + =       (16)

Subtracting above two equations, we obtain

( ) ( ) ( ) ( ) ( )
2

2

" ' '
2 3 2 3 4 " 2 0

B B B
n F R n F R F R

B BB
− − + − − + =       (17)

which implies

( ) ( ) ( ) ( ) ( )2

2

"" ' ' '
3 3 2 0.

F RB B F B
n F R n F R

B F FBB
− − − + − =    (18)

Now we follow the approach of Nojiri and Odintsov35 and make 
the assumption ( )

0
,qF R f Rα which implies that ( )

0
,qF R f R=  where

0
f  and q are arbitrary real constants. Thus Eq.(18) takes the form

    
( ) ( )

2 2

2 2

R' " ' ' B" '2 1 3 0.R B R Bq q q n
R BR BR B

    − + − + − − =                 
(19)

 
Further, we will solve the last equation by using following. two 

assumptions 

I.	Exponential Law assumption 

II.	Power Law assumption.

Exponential solution
In this case we assume that, 2

1
,c xB c e=  for the constraint 

( )2 1 0,q q− = solution of the metric takes the form

          
2 2 2 2 21

21
.c x n

i ids dt dx c e dx−
=∑= − −             (20)

Here we have two choices from the constraint.

CASE (A-I) 

For this case, by substituting 0,q = we obtain ( )
0

F R f= and we 
get

                                  
( )

1 0
.f R f

R
∂

=
∂

                                       (21)

Integrating above equation, we obtained

                                
( )

1 0 3
,f R f R c= +
                                    

 (22)

where 
3

c is the constant of integration. Hence ( )F R turn out to be

                    
( ) ( )

0 2 3
, ,f R T f R f T c= + + +                             (23)

For this case, the trace of energy-momentum T and energy density 
ρ are given

                    

( ) ( )
( )

2
2 0 3

2
.

4

n c f R c
T

k F T
ρ

− +
= − =

+  

                       (24)

Also the Ricci scalar R is given as

                       

( )( ) 2
21 2

0.
2

n n c
R

− −
= ≠                               (25) 

CASE (A-II) 
In this case, substituting 

1
,

2
q

−
=  we get

                                  
( )

0

1
2 ,F R f R

−
=                                     (26)

which implies

                                      

1

2
0

.f R
R

−∂
∂

                                          (27)

Integrating Eq.(27), we get

                                ( )
1 0 4

1
22 cF R f R= +                                 (28)

where
4

c is the constant of integration. So ( ),F R T becomes

                    
( ) ( )

0 2 4
, 2 .F R T f R f T c= + +

                         
(29)

For this case, the trace of energy-momentum T and energy density
ρ are given as
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( ) ( )
( )

1
22

2 0 4
2

.
4

n c f R c
T

k F T
ρ

− +
= − =

+  

                   (30)

Also the Ricci scalar R is given as

                              

( )( ) 2
21 2

0.
2

n n c
R

− −
= ≠                         (31)

Power law solutions
For this case, we assume that ,  B xωα whereω  is any real number. 

We substitute ( )
5

  x cB xω= in Eq.(18), where
5

c is an arbitrary 
constant. Now solving equation (19) by taking 2,ω = we get

                                  ( )24 4 3 0.q q n+ − − =                             (32)

The solution of the metric takes the form

               
2 2 2 21

25
.n

i ids dt dx c x dxω −
=∑= − −          (33)

The solution of Eq.(32) gives, 
1 2

.
2

n
q

− ± −
= Here, we have two 

case for two different roots of the Eq.(32).

CASE (B-I)

For
1 2

,
2

n
q

− ± −
= we have

                          
( )

0

1 2
,

2
F R f R

n− + −
=                                 (34)

                       
( )

1 0

1 2
.

2
f R f R

R
n−∂ + −

=
∂

                            (35)

Integrating Eq.(35) , we get

                 
( ) 0

1 6

2
1 2

1 2
c ,

2
f

f R
n

n
R

+ −
+=

+ −
                         (36)

which implies

               
( ) 0

1 2 6

2 2
1 2

1 2
c ,

2
f

f R
n x

n 
 =  + − 

+ −
+


                     (37)

where
6

c is the constant of integration. Hence ( ),f R T takes the 
form

        
( ) ( )0

2 62

1 2
c .

2 2
2

,
1 2

f
f R T

n x

n
f T

 
 =  + −  

+ −
+ +         (38)

For this case, the trace of energy-momentum T and energy density 
ρ are given as 

( )( ) ( )
[ ]

1
0

1

22 2 2 3 2 2
.

2

nn n n n n f
T

x n k
ρ

λ

− +

−

−− + − − − − − −  
= =

+ − +
 (39)

Also the Ricci scalar R can be given as

                  

( ) ( )
2

2 1 4
0

2

n n
R

x

ω ω − − − = ≠                                  (40)

CASE (B-II)

For
1 2

,
2

n
q

− − −
=  we have

                          
( )

0

1 2
,

2
F R f R

n− − −
=                                 (41)

                       
( )

1 0

1 2
.

2
f R f R

R
n−∂ − −

=
∂

                             (42)

Integrating Eq.(42) , we get

                  
( ) 0

1 7

2
1

1 2
c ,

2 2
f

F R R
n

n
=

− −
− − −

+                     (43)

which implies

               
( ) 0

1 72

1 2
c ,

2 2
1 22

f

x

n
F R

n
 
 =  − − 

− −
+



−
                   (44)

where 
7

c is the constant of integration, so ( ),f R T  takes the form

       
( ) ( )0

2 72

1 2
c .

2 2
2

,
1 2

f
f R T

n x

n
f T

 
 =  

− − −
+

− −               
(45)

For this case, the trace of energy-momentum T and energy density
ρ are given as

( )( ) ( )
[ ]

1 21 2
0

1 2

2 2 3 2 2
.

nn

n

n n n n f
T

x k
ρ

λ

− − −− − −

− − −

− − − − + −  
= =

+
 (46)

While the Ricci scalar R turn out to be

                   

( ) ( )
2

2 1 4
0.

2

n n
R

x

ω ω − − − = ≠                          (47)

Summary and conclusion
We have evaluated the N-dimensional non-vacuum plane-

symmetric solutions in the context of ( ),f R T theory of gravity. 
For this purpose, we solve the field equations by considering the 
metric representing the N-dimensional planesymmetric space-time 
in GR. We investigate the solutions by using the general class of 
( ),f R T model, i.e., ( ) ( ) ( )

1 2
, .f R T f R f T= + Moreover, we find 

the solutions by making the assumption ( )
0

,qf R f Rα where
0

f and
q are arbitrary constants. To find the solutions, we also assume the 
dust case with 0.p = Initially, the field equations look complicated 
and it was diffcult to solve these equations because they are highly 
non-linear. So the corresponding field equations are solved using 
exponential law forms given in Eq. (20) and power law assumption of 
metric coeffcient given in Eq.(33). In exponential forms there arises 
two cases, case (A-I): for 0,m = yields the function of Ricci scalar
( ),f R T given in equation (23) and case(A-II): for

1
,

2
m = − yields 

the value of Ricci scalar function ( ),f R T given equation (29). The 
values of Ricci scalar R and matter density ρ are all evaluated in 
every case. However, the Riacci scalar is non-zero in both cases.

There also arises two cases in power law form, case(B-I): form 
1 2

,
2

n− + −
= yields the function of Ricci scalar ( ),f R T given in Eq.(31)
and case(B-II): for 1 2

,
2

n
m

− − −
=  yields the function of Ricci scalar

( ),f R T given in equation (33). The values of Ricci scalar R and 
matter density ρ are all evaluated in every case. However, the Riacci 
scalar is non-zero in both cases. Moreover, the energy densities are 
evaluated in each case. Finally, we conclude that this work contain 
some information about the crucial issues of the localization of energy 
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Table 1. Also this work provides the energy densities of different 
solutions with general classes ( ),f R T model which may be helpful 
to reduce the theoretical problems in cosmology. Thus, it is hoped 
that such types of solutions in the background of ( ),f R T gravity may 
explain the present phase of cosmic acceleration of our universe and 
may provide some attractive aspects of GR.31,35

Table1 Solutions of the N-dimensional plane-symmetric spacetimes

CASE SOLUTION

A

B
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