Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 3

Metric physics

Aidagulov RR, Glavatsky ST

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Russia

Correspondence: Aidagulov Rustem Rimovich, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia

Received: April 27, 2018 | Published: June 6, 2018

Citation: Aidagulov RR, Glavatsky ST. Metric physics. Phys Astron Int J. 2018;2(3):204-211. DOI: 10.15406/paij.2018.02.00087

Download PDF

Abstract

Different axiomatics of metric spaces define different types of geometries. Standard axiomatics defines elliptic–type geometries, which are subdivided into Archimedean and non–Archimedean. The former are used in classical physics, the lattercompletely discontinuousare more correlated with quantum physics. Replacing axioms of metric spaces by other, with opposite conditions, we obtain the axioms of hyperbolic geometries underlying relativistic physics. In our work, the notion of hyperbolicity is given a certain meaning, namely, the mathematical expression of the physical principle of cause–effect through the axioms of the metric.

Keywords: metric spaces, geometries, relativistic physics, special theory of relativity, axioms, triangle, velocity, light, binary relation, planck constant, topology

PACS numbers

02.40.Ft

Introduction

Initially, the article was created for the presentation of the special theory of relativity (STR) on the basis of the Berwald–Moor metric. The operations of addition of unidirectional velocities and the Doppler Effect for radially moving objects in this geometry coincide with their values in the Minkowski geometry. However, there are also significant differences that have a direct relationship to the interpretation of cosmological observations. We have decided to separate (this) geometric part from the physical (exposition of STR based on the Berwald–Moore metric) because of the need for a large amount of material, so we will concentrate here only on the expression of cause–effect in terms of the axioms of the metric.

Attempts to present a special and general theory of relativity on more general, more fundamental principles have been made since the very beginning of the theory of relativity. Initially, the generalizations were based on the replacement of the Riemannian metric by Finsler one. Such an approach was used in the works of Asanov et al.,1,2 Bogoslovsky et al.,3–5 and others. However, the Finsler geometry in these works was used rather to describe the anisotropy of the space–time, and not as a special form of ordering (cause–effect) and signature. In some works, the causality was introduced explicitly, with the metric6 or without it,7–9 through special axioms of the order. The order corresponding to the cause–effect there was introduced by replacing the triangle inequality by the opposite one. Connectivity and the elimination of the complete discontinuity of space were expressed through the property of divisibility of the metric, called its Archimedean property. In mathematics, hyperbolic geometry is often understood as the geometry of Lobachevsky. In our work this concept obtained a slightly different meaning, namely, the mathematical expression of the physical principle of cause–effect through the axioms of the metric. Here is an analogy with hyperbolicity with respect to the time parameter in differential equations that determines the cause–effect in their solutions and the finite rate of diffusion of perturbations. Replacing the triangle inequality in the axioms of the metric by the opposite one also determines the order (cause–effect) and the finiteness of the perturbation velocity (the speed of light). The infinite velocity of the light, which exists in the Galileo–Newton geometry, in this sense refers to parabolic geometry. The analogue of Lobachevsky’s geometry also rather refers to the geometry induced from a hyperbolic space to a sphere of imaginary radius. Non–Archimedean completely discontinuous spaces are more suitable for describing the quantum world.

It is quite possible that in the future the quantumness of space–time will also be expressed by the divisibility of the metric with certain accuracy ε>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLjaai6dacaaIWaaaaa@3C77@ with an additional modification of the triangle inequality (opposite inequality):

ρ(x,y)()ρ(x,z)+ρ(z,y)ε, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYjaaiIcacaWG4bGaaGilaiaadMhacaaIPaGaeyiz ImQaaGjbVlaaiIcacqGHLjYScaaIPaGaaGjbVlaaysW7cqaHbpGCca aIOaGaamiEaiaaiYcacaWG6bGaaGykaiabgUcaRiabeg8aYjaaiIca caWG6bGaaGilaiaadMhacaaIPaGaeyOeI0IaeqyTduMaaGilaaaa@5886@

With a small constant ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLbaa@3AF5@ , similarly the Planck constant. Recall that a metric on the set X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIfaaaa@3A2B@ is defined by specifying pairwise distances:

r(x,y):X×X + , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaaiQda caWGybGaey41aqRaamiwaiabgkziUkabl2riHMqbaoaaBaaajeaiba qcLbmacqGHRaWkaSqabaqcLbsacaaISaaaaa@4A86@

Which determine the binary relation. In mathematics by a binary relation on the set A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeaaaa@3A14@ any subset of the Cartesian square A×A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeacqGHxdaTcaWGbbaaaa@3CF1@ is usually understood. This is equivalent to specifying the function A×A 2 ={0,1} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeacqGHxdaTcaWGbbGaeyOKH4QaeSijHi6cdaWgaaqc basaaKqzadGaaGOmaaqcbasabaqcLbsacaaI9aGaaG4Eaiaaicdaca aISaGaaGymaiaai2haaaa@484D@ . In physics under the relation a more fuzzy notion is more often understood, when instead of a value from 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiablssiIUWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaaaa @3D30@ is taken a certain numerical value from MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHcaa@3ABE@ . In particular in physics a unary relation means a function from A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeaaaa@3A14@ to + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaaSbaaKqaGeaajugWaiabgUcaRaqcbasabaaa aa@3D4E@ (for example, in determining a density or a fuzzy subset) or a function   A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeacqGHsgIRcqWIceYOaaa@3D58@ with complex values (in determining a wave function). The metric specification, from the physics point of view, is the definition of a binary relation with values in + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaaSbaaKqaGeaajugWaiabgUcaRaqcbasabaaa aa@3D4E@ . From the mathematical point of view, the metric is not a relation, but a function defined on the Cartesian product A×A + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeacqGHxdaTcaWGbbGaeyOKH4QaeSyhHeAcfa4aaSba aKqaGeaajugWaiabgUcaRaqcbasabaaaaa@4361@ , which takes non–negative values and satisfies certain conditions.

Next, we consider the basic mathematical concepts from geometry with giving them a certain physical meaning.

Metric and hyperbolic metric spaces

A metric on the set X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIfaaaa@3A2B@ is defined by the function r(x,y):X×X + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaaiQda caWGybGaey41aqRaamiwaiabgkziUkabl2riHMqbaoaaBaaajeaiba qcLbmacqGHRaWkaKqaGeqaaaaa@4960@ , satisfying the following conditions:

  1. r(x,y)=0x=y, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai2da caaIWaGaeyi1HSTaamiEaiaai2dacaWG5bGaaGilaaaa@45B0@
  2. r(x,y)=r(y,x), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai2da caWGYbGaaGikaiaadMhacaaISaGaamiEaiaaiMcacaaISaaaaa@44E5@
  3. r(x,z)r(x,y)+r(y,z). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaiabgsMi JkaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgUcaRiaadk hacaaIOaGaamyEaiaaiYcacaWG6bGaaGykaiaai6caaaa@4BC7@

The first property is the property of reflexivity, the second–of symmetry. The last property, called the triangle inequality, corresponds to the relation of nearness transitivity.

Here the defining property is the triangle inequality. Indeed, if only this one is satisfied for the function r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhaaaa@3A45@ , then we can symmetrise the distance as follows: ρ(x,y)= 1 2 (r(x,y)+r(y,x)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYjaaiIcacaWG4bGaaGilaiaadMhacaaIPaGaaGyp aKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaaaacaaIOa GaamOCaiaaiIcacaWG4bGaaGilaiaadMhacaaIPaGaey4kaSIaamOC aiaaiIcacaWG5bGaaGilaiaadIhacaaIPaGaaGykaaaa@4F93@ (the triangle inequality is not violated in this case) and, if necessary, to factorize by the equivalence relation xyρ(x,y)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhacqGHfjcqcaWG5bGaeyi1HSTaeqyWdiNaaGikaiaa dIhacaaISaGaamyEaiaaiMcacaaI9aGaaGimaaaa@462F@ . Further, we will assume that the condition (2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaaIYaGaaGykaaaa@3B6F@ for the function r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhaaaa@3A45@ is satisfied.

Then from the condition r(x,y)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai2da caaIWaaaaa@3FDC@ it follows that r(y,x)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamyEaiaaiYcacaWG4bGaaGykaiaai2da caaIWaaaaa@3FDC@ , and from the conditions r(x,y)=0,r(y,z)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai2da caaIWaGaaGilaiaaysW7caWGYbGaaGikaiaadMhacaaISaGaamOEai aaiMcacaaI9aGaaGimaaaa@48AF@ , according to the triangle inequality, it follows that r(x,z)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaiaai2da caaIWaaaaa@3FDD@ . Therefore, we can factorize the set by the relation xyr(x,y)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhacqWI8iIocaWG5bGaeyi1HSTaamOCaiaaiIcacaWG 4bGaaGilaiaadMhacaaIPaGaaGypaiaaicdaaaa@455C@ . Moreover, according to the triangle inequality, we get that xyr(x,z)=r(y,z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhacqWI8iIocaWG5bGaeyO0H4TaamOCaiaaiIcacaWG 4bGaaGilaiaadQhacaaIPaGaaGypaiaadkhacaaIOaGaamyEaiaaiY cacaWG6bGaaGykaaaa@49B3@ , hence the distance between the equivalent points is uniquely determined and the triangle inequality is not violated.

The triangle inequality here determines the fact that the open balls {y|ρ(x,y)<ε,ε>0} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWG5bGaaGjbVlaaiYhacaaMe8UaeqyWdiNaaGik aiaadIhacaaISaGaamyEaiaaiMcacaaI8aGaeqyTduMaaGilaiaays W7cqaH1oqzcaaI+aGaaGimaiaai2haaaa@4E27@ form a basis of the induced topology. The distance function determines the closeness of points for which a property of the kind of transitivity is true: "close plus close" is "close". According to this approach, "far plus far" may be "close" , but "far plus close" remains "far".

The triangle inequality is also a nonlinear an a log of the ball convexity condition. Indeed, if the distance function is defined on a linear space, then the ball convexity condition is equivalent to the triangle inequality. Another reason for using the axiom of triangle inequality is the possibility of measuring the objective distances by integrating (summing) of small distances along some path. Let the two farmers divide the land plot and measure the appropriate distances using a certain standard, for example a common bipedal, fastened with a third stick so that the distance between the ends of the two–knife remains constant. For one of them (we denote him the first) it is advantageous for the measured valuethe distance between the points A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeaaaa@3A14@ and B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkeaaaa@3A15@ –to be as large as possible, and for the second–as small as possible. When the triangle inequality is satisfied, the second will never trust the measurement of the first, since that can move deviating very far from side to side and so get an arbitrarily large value of the measured distance between the points A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeaaaa@3A14@ and B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkeaaaa@3A15@ . But the first can entrust the measurement to the second, since, according to the triangle inequality, the objective distance does not exceed the distance measured by the second as a sum of distances: i=1 n r( A i1 , A i )=n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaaeWaGcbeqcbasaaKqzadGaamyAaiaai2dacaaIXaaajeai baqcLbmacaWGUbaajugibiabggHiLdGaamOCaiaaiIcacaWGbbWcda WgaaqcbasaaKqzadGaamyAaiabgkHiTiaaigdaaKqaGeqaaKqzGeGa aGilaiaadgealmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugibi aaiMcacaaI9aGaamOBaaaa@503A@ , where A 0 =A, A n =B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgealmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaai2dacaWGbbGaaGilaiaaysW7caWGbbWcdaWgaaqcbasaaKqzad GaamOBaaqcbasabaqcLbsacaaI9aGaamOqaaaa@465F@ . Respectively, for the first is beneficial (at least not to the detriment of) any measurement by summing the distances. Thus, by measuring, they can measure the objective distances between points if the triangle inequality holds (convexity of the balls holds). In essence, this means the presence of a variational principle of measuring distances along paths as ρ(A,B)=in f A= A 0 ,..., A n =B i ρ( A i , A i+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYjaaiIcacaWGbbGaaGilaiaadkeacaaIPaGaaGyp aiaadMgacaWGUbGaamOzaKqbaoaaBaaaleaajugWaiaadgeacaaI9a GaamyqaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzadGaaGil aiaai6cacaaIUaGaaGOlaiaaiYcacaWGbbWcdaWgaaqcbasaaKqzad GaamOBaaqcbasabaqcLbmacaaI9aGaamOqaaWcbeaajuaGdaaeqaGc beWcbaqcLbsacaWGPbaaleqajugibiabggHiLdGaeqyWdiNaaGikai aadgealmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugibiaaiYca caWGbbWcdaWgaaqcbasaaKqzadGaamyAaiabgUcaRiaaigdaaKqaGe qaaKqzGeGaaGykaaaa@65BC@ .

The variational principle also works in the case of concavity of balls, i.e. an objective measurement of distances is possible even in the case when the opposite inequality is satisfied instead of the triangle inequality. In this case, the first farmer will not trust the second, since he can significantly understate the measured value in comparison with the objective one. The second farmer can entrust the measurement to the first, since the distance measured first, which is the sum of the distances i=1 n r( A i1 , A i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaaeWaGcbeWcbaqcLbsacaWGPbGaaGypaiaaigdaaKqaGeaa jugWaiaad6gaaKqzGeGaeyyeIuoacaWGYbGaaGikaiaadgealmaaBa aajeaibaqcLbmacaWGPbGaeyOeI0IaaGymaaqcbasabaqcLbsacaaI SaGaamyqaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaaG ykaaaa@4DC2@ , is always not greater than the objective value, which is the upper limit of the measured distances. Here another type of variational principle is fulfilled. In this case, distances, generally speaking, do not define a topology. Apparently, therefore, this type of metrics has not been studied in detail: here the principle of transitivity of range is fulfilled–"far plus something" is "far". But here "close plus close" can also turn out to be "far". Correspondingly, in linear spaces the function x+y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhacqGHRaWkcaWG5baaaa@3C2B@ of a sum of two arguments will not be continuous when the closeness on the product of spaces is consistent with closeness as in the categorical product of spaces. Apparently, this is the main reason why mathematicians did not pay much attention to geometry of another type, where the triangle inequality is satisfied in the opposite direction, which corresponds to the concavity of the ball (convexity of the complement). We call such geometry concave or hyperbolic (the hyperbola restricts the concave region, the ellipseconvex). In this case, we must abandon the condition (2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaaIYaGaaGykaaaa@3B6F@ for the distance function, and also on the condition that distances are defined for any pairs of points. Correspondingly, we define a concave (hyperbolic) metric as a distance function on the Cartesian product taking values from + {*} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaaSbaaKqaGeaajugWaiabgUcaRaqcbasabaqc LbsacqGHQicYcaaI7bGaaGOkaiaai2haaaa@423D@ , where * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiQcaaaa@3A02@ means that in this case the distance between points is not defined (its value is some unknown negative number). Thus, a hyperbolic metric on the space X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIfaaaa@3A2B@ satisfies the following conditions:

  1. r(x,x)=*; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG4bGaaGykaiaai2da caaIQaGaaGjbVlaaiUdaaaa@4227@
  2. r(x,y)>0r(y,x)=*; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai6da caaIWaGaeyO0H4TaamOCaiaaiIcacaWG5bGaaGilaiaadIhacaaIPa GaaGypaiaaiQcacaaMe8UaaG4oaaaa@4B14@
  3. r(x,z)r(x,y)+r(y,z). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaiabgwMi ZkaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgUcaRiaadk hacaaIOaGaamyEaiaaiYcacaWG6bGaaGykaiaaysW7caaIUaaaaa@4D65@

The last condition means that if r(x,y)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai6da caaIWaaaaa@3FDD@ and r(y,z)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamyEaiaaiYcacaWG6bGaaGykaiaai6da caaIWaaaaa@3FDF@ are defined, then r(x,z)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaiaai6da caaIWaaaaa@3FDE@ is also defined. Here the condition (1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaaIXaGaaGykaaaa@3B6E@ corresponds to the anti–reflexivity (and can be obtained from condition (2)), the condition (2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaaIYaGaaGykaaaa@3B6F@  corresponds to anti-symmetry. The distance function determines here not a "physical" distance, but something corresponding to a relativistic interval. The distance can be corresponded to the inverse values that are not defined for the zero value. This justifies the anti–reflexivity condition. With such axioms, all distances can be considered positive. Any way, it is more convenient to work with zero values for distances, changing the first two axioms the following way:

  1. r(x,x)=0; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG4bGaaGykaiaai2da caaIWaGaaGjbVlaaiUdaaaa@422D@
  2. r(x,y)0,xyr(y,x)=*. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgwMi ZkaaicdacaaISaGaaGjbVlaadIhacqGHGjsUcaWG5bGaeyO0H4Taam OCaiaaiIcacaWG5bGaaGilaiaadIhacaaIPaGaaGypaiaaiQcacaaM e8UaaGOlaaaa@520A@

For relativistic events, the condition r(x,y)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai6da caaIWaaaaa@3FDD@ can be interpreted as follows: the event y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhaaaa@3A4C@ occurs after the event x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@  (performed in any inertial frame of reference) on the "time” r(x,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaysW7caWGYbGaaGikaiaadIhacaaISaGaamyEaiaaiMca aaa@3FE8@ . This determines the order: (independent of the frame of reference) y>xr(x,y)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhacaaI+aGaamiEaiabgsDiBlaadkhacaaIOaGaamiE aiaaiYcacaWG5bGaaGykaiaai6dacaaIWaaaaa@44FC@ . The inequality of a triangle means the fulfilment of the axioms of order for such a relation "later".

In the first case, the distance between the points x,y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhacaaISaGaamyEaaaa@3BFF@ is determined by the variational principle inf( i ρ( x i1 , x i )| x 0 =x, x n =y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMgacaWGUbGaamOzaiaaiIcajuaGdaaeqaGcbeWcbaqc LbsacaWGPbaaleqajugibiabggHiLdGaeqyWdiNaaGikaiaadIhalm aaBaaajeaibaqcLbmacaWGPbGaeyOeI0IaaGymaaqcbasabaqcLbsa caaISaGaamiEaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGe GaaGykaiaaysW7caaI8bGaaGjbVlaadIhalmaaBaaajeaibaqcLbma caaIWaaajeaibeaajugibiaai2dacaWG4bGaaGilaiaaysW7caWG4b WcdaWgaaqcbasaaKqzadGaamOBaaqcbasabaqcLbsacaaI9aGaamyE aiaaiMcaaaa@61E5@ , in the second–by sup( i ρ( x i1 , x i )| x 0 =x, x n =y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohacaWG1bGaamiCaiaaiIcajuaGdaaeqaGcbeWcbaqc LbsacaWGPbaaleqajugibiabggHiLdGaeqyWdiNaaGikaiaadIhaju aGdaWgaaqcbasaaKqzadGaamyAaiabgkHiTiaaigdaaSqabaqcLbsa caaISaGaamiEaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGe GaaGykaiaaysW7caaI8bGaaGjbVlaadIhajuaGdaWgaaqcbasaaKqz adGaaGimaaWcbeaajugibiaai2dacaWG4bGaaGilaiaaysW7caWG4b WcdaWgaaqcbasaaKqzadGaamOBaaqcbasabaqcLbsacaaI9aGaamyE aiaaiMcaaaa@62C8@ , where sup MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadohacaWG1bGaamiCaaaa@3C35@ is computed over all measurable paths. If both the triangle inequality and the opposite inequality are not satisfied, in general, it would not be possible to measure the distance by summing the standard (meter). As it will be seen below, in this case it is possible that inf=0,sup= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMgacaWGUbGaamOzaiaai2dacaaIWaGaaGilaiaaysW7 caGGZbGaaiyDaiaacchacaaI9aGaeyOhIukaaa@44FA@ .

In hyperbolic space, the open balls do not define a topology.10 In such a space, however, one can determine the interval topology by taking U xy ={z|r(x,z)>0,r(z,y)>0,x<z<y} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwfalmaaBaaajeaibaqcLbmacaWG4bGaamyEaaqcbasa baqcLbsacaaI9aGaaG4EaiaadQhacaaMe8UaaGiFaiaaysW7caWGYb GaaGikaiaadIhacaaISaGaamOEaiaaiMcacaaI+aGaaGimaiaaiYca caaMe8UaamOCaiaaiIcacaWG6bGaaGilaiaadMhacaaIPaGaaGOpai aaicdacaaISaGaaGjbVlaadIhacaaI8aGaamOEaiaaiYdacaWG5bGa aGyFaaaa@5C7F@  as the base of open sets. This can be interpreted as follows: the event z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQhaaaa@3A4D@ occurs later than x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ , but before y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhaaaa@3A4C@ . However, such a topology turns out to be stronger than the continuous structure determined by the distance function: one can choose a sequence x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CE7@ of points for which lim n r(x, x n )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqfqaGcbeqcbasaaKqzadGaamOBaiabgkziUkabg6HiLcWc beGcbaqcLbsacaGGSbGaaiyAaiaac2gaaaGaamOCaiaaiIcacaWG4b GaaGilaiaadIhalmaaBaaajeaibaqcLbmacaWGUbaajeaibeaajugi biaaiMcacaaI9aGaaGimaaaa@4C5D@ , but this sequence does not converges in the proposed interval topology. The interval topology for hyperbolic metrics is not defined by a uniform structure (as for usual metrics) and, accordingly, is not suitable for testing of completeness or for the completion of the space.

We can define a base of neighbourhoods of the point x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ in terms of the system of sets U x,ε ={y|0r(x,y)<ε} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwfajuaGdaWgaaqcbasaaKqzadGaamiEaiaaiYcacqaH 1oqzaSqabaqcLbsacaaI9aGaaG4EaiaadMhacaaMe8UaaGiFaiaays W7caaIWaGaeyizImQaamOCaiaaiIcacaWG4bGaaGilaiaadMhacaaI PaGaaGipaiabew7aLjaai2haaaa@51FD@ . Such neighbourhoods do not induce (in general) a topology, since they can contain no neighbourhoods of other points because of the hyperbolicity of neighbourhoods (with "tails" leaving to infinity). But they form a quasi–topology10 and are suitable for determining many characteristics defined in topological spaces.

Note that geodesic lines can be determined even without introducing the Finsler metric. By definition, the curve x(τ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhacaaIOaGaeqiXdqNaaGykaaaa@3D75@ is geodesic if it is covered by open subintervals, and the distance between two points coincides with the limit of sums of distances in the decomposition. For a hyperbolic geometry, a measurable (geodesic) curve has an orientation (in the other direction it is immeasurable), respectively, the subdivisions into small intervals are also oriented, and the curve in a certain "sense" is smooth.

With such definition of geodesics, non–Archimedean geometry (a subclass of convex elliptic geometries) looks in a special way, where instead of the triangle inequality the stronger inequality holds:

r(x,z)max(r(x,y),r(y,z)). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaiabgsMi Jkaad2gacaWGHbGaamiEaiaaiIcacaWGYbGaaGikaiaadIhacaaISa GaamyEaiaaiMcacaaISaGaaGjbVlaadkhacaaIOaGaamyEaiaaiYca caWG6bGaaGykaiaaiMcacaaIUaaaaa@5162@ (1)

The interval (geodesic) between two points A,B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeacaaISaGaamOqaaaa@3B91@ with measurable ρ(A,B) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYjaaiIcacaWGbbGaaGilaiaadkeacaaIPaaaaa@3EB6@ is defined as the set of points C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoeaaaa@3A16@ for which satisfy the condition: ρ(A,B)=ρ(A,C)+ρ(C,B) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYjaaiIcacaWGbbGaaGilaiaadkeacaaIPaGaaGyp aiabeg8aYjaaiIcacaWGbbGaaGilaiaadoeacaaIPaGaey4kaSIaeq yWdiNaaGikaiaadoeacaaISaGaamOqaiaaiMcaaaa@4B32@ . The interval can consist only of the start and end points. This happens in the case of non–Archimedean spaces. Indeed, the inequality (1) implies that there is no point y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhaaaa@3A4C@  between the points x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ and z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQhaaaa@3A4D@ such that r(x,y)<r(x,z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaaiYda caWGYbGaaGikaiaadIhacaaISaGaamOEaiaaiMcaaaa@442F@ and r(y,z)<r(x,z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaysW7caWGYbGaaGikaiaadMhacaaISaGaamOEaiaaiMca caaI8aGaamOCaiaaiIcacaWG4bGaaGilaiaadQhacaaIPaaaaa@45BE@ . Such spaces look like discrete, indivisible (quantized). However, they can be nondiscrete in the topological sense. Here, another term is more suitable: a completely discontinuous space.

In non–Archimedean space, if Achilles has a step length of not more than 1, he can never leave a distance more than 1 from the starting position, i.e. Achilles in the non–Archimedean space will never catch up with the Turtle, if the initial distance between them is greater than the maximum of the steps of Achilles and the Turtle. In general, Achilles will not be able to move away from his initial position by a distance greater than r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3CAD@ if each step does not exceed r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3CAD@ . Archimedes’ principle is to deny such a statement: “For any r 0 >0,R>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaai6dacaaIWaGaaGilaiaaysW7caWGsbGaaGOpaiaaicdaaaa@435A@ , from any initial position x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ it is possible to attain some point y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhaaaa@3A4C@ by a distance r(x,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaaaa@3E5B@ greater than R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfaaaa@3A25@ (that is, r(x,y)>R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai6da caWGsbaaaa@3FFA@ ) in a finite number of steps, moving only by steps that do not exceed r 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3CAD@ ”. This means the asymptotic connection of space. However, a space with the metric defined above can be disconnected, for example, such is the set of hyperbolas xy=n,x>0,n=1,2,3,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhacaWG5bGaaGypaiaad6gacaaISaGaaGjbVlaadIha caaI+aGaaGimaiaaiYcacaaMe8UaamOBaiaai2dacaaIXaGaaGilai aaikdacaaISaGaaG4maiaaiYcacaaIUaGaaGOlaiaai6caaaa@4C40@ . Therefore, by analogy with,11 under the Archimedean metric we mean a narrower class of metrics when is fulfilled the condition of uniform divisibility: “for any two points x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhaaaa@3A4C@ , where r(x,y)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai6da caaIWaaaaa@3FDD@ , and for any ε>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLjaai6dacaaIWaaaaa@3C77@ there exists a point z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQhaaaa@3A4D@ such that |r(x,z) 1 2 r(x,y)|<ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWGYbGaaGikaiaadIhacaaISaGaamOEaiaaiMca cqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaa GaamOCaiaaiIcacaWG4bGaaGilaiaadMhacaaIPaGaaGiFaiaaiYda cqaH1oqzaaa@4C16@  and |r(z,y) 1 2 r(x,y)|<ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWGYbGaaGikaiaadQhacaaISaGaamyEaiaaiMca cqGHsisljuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaa GaamOCaiaaiIcacaWG4bGaaGilaiaadMhacaaIPaGaaGiFaiaaiYda cqaH1oqzaaa@4C17@ ”.

From this fact that distances can be divided by 2 with any accuracy follows that it is possible to divide them into n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gaaaa@3A41@ parts with arbitrary accuracy. In addition, the condition of uniform divisibility also works for hyperbolic geometry. For a locally compact group G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEeaaaa@3A1A@ , even from the weak Archimedean condition (there exists a neighbourhood U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwfaaaa@3A28@ of the identity such that for any element gG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgacqGHiiIZcaWGhbaaaa@3C8A@ which is not identity, exists a positive integer n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gaaaa@3A41@  such that g n U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgalmaaCaaajeaibeqaaKqzadGaamOBaaaajugibiab gMGiplaadwfaaaa@3FA1@ ) it follows that on such a group one can introduce the Lie group structure.11 Here the uniformity is ensured by the degrees of non–identity elements. The local compactness of a topological group corresponds to its completeness and finite dimensionality. In this case, the powers of the element g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadEgaaaa@3A3A@ (starting from zero) correspond to direct paths from the identity point to some final point. Therefore, restricting our considering to complete spaces, by the Archimedeanness of the metric we mean the existence for any pair of points A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadgeaaaa@3A14@ and B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkeaaaa@3A15@ an isometry φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQbaa@3B0B@ of the interval [0,l],l=ρ(A,B) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUfacaaIWaGaaGilaiaadYgacaaIDbGaaGilaiaaysW7 caWGSbGaaGypaiabeg8aYjaaiIcacaWGbbGaaGilaiaadkeacaaIPa aaaa@46DE@ , from + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaaSbaaKqaGeaajugWaiabgUcaRaqcbasabaaa aa@3D4E@ to the given metric space, with the conditions: φ(0)=A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaaiIcacaaIWaGaaGykaiaai2dacaWGbbaaaa@3EB7@  and φ(l)=B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaaiIcacaWGSbGaaGykaiaai2dacaWGcbaaaa@3EEF@ .

The traditional non–Archimedean metrics are p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchaaaa@3A43@ –adic metrics. Another, also common non–Archimedean metric, is the distance between the vertices of the tree (graph): the maximum distance from the vertices to the closest common for both vertices of the ancestor vertex is taken as the distance between these vertices. Note that the p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchaaaa@3A43@ –adic distance between the numbers

x= i= x i p i ,y= i= y i p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhacaaI9aqcfa4aaabCaOqabKqaGeaajugWaiaadMga caaI9aGaeyOeI0IaeyOhIukajeaibaqcLbmacqGHEisPaKqzGeGaey yeIuoacaWG4bWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbsa caWGWbqcfa4aaWbaaSqabKqaGeaajugWaiaadMgaaaqcLbsacaaISa GaaGjbVlaadMhacaaI9aqcfa4aaabCaOqabKqaGeaajugWaiaadMga caaI9aGaeyOeI0IaeyOhIukajeaibaqcLbmacqGHEisPaKqzGeGaey yeIuoacaWG5bqcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsa caWGWbWcdaahaaqcbasabeaajugWaiaadMgaaaaaaa@66C8@

Is also defined as a maximum of distances to the common "ancestor". Such ancestor here is the following rational number (common prefix): z= i= k x i p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQhacaaI9aqcfa4aaabmaOqabKqaGeaajugWaiaadMga caaI9aGaeyOeI0IaeyOhIukajeaibaqcLbmacaWGRbaajugibiabgg HiLdGaamiEaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGa amiCaSWaaWbaaKqaGeqabaqcLbmacaWGPbaaaaaa@4D69@ , where k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgaaaa@3A3E@ is the maximal integer for which x i = y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugi biaai2dacaWG5bWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaaaa@41D7@ for ik MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgcGiIiaadMgacqGHKjYOcaWGRbaaaa@3DB1@ (remember that for p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchaaaa@3A43@ –adic numbers only a finite number of coefficients with negative indexes are different from 0).

Movings in spaces with a non–Archimedean metric have a jump type with a change in direction, like in the Markov processes. This is quite suitable for describing quantum processes. In one space, two types of metrics are not considered simultaneously. Therefore, to combine the classical approach with the quantum one, an adelic approach from the theory of numbers is usually used, which includes all compatible Archimedean and non–Archimedean completions.

In elliptic geometry, an inequality that is an immediate consequence of the triangle inequality is also true:

r(x,y)r(x,z)r(y,z). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgwMi ZkaadkhacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaiabgkHiTiaadk hacaaIOaGaamyEaiaaiYcacaWG6bGaaGykaiaai6caaaa@4BE3@

If the points x,y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhacaaISaGaamyEaaaa@3BFF@ in non–Archimedean geometry are at a distance r>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI+aGaaGimaaaa@3BC7@  ( r(x,y)=r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai2da caWGYbaaaa@4019@ ) and the point z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQhaaaa@3A4D@ is closer to the point y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhaaaa@3A4C@ ( r(y,z)<r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamyEaiaaiYcacaWG6bGaaGykaiaaiYda caWGYbaaaa@401A@ ), then the distance to the point x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@  is equal to r(x,z)=r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaiaai2da caWGYbaaaa@401A@ , i.e., the point z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQhaaaa@3A4D@ locates on a sphere with center at the point x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ . Thus, the sphere of radius r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhaaaa@3A45@ contains all open balls of radius r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhaaaa@3A45@ with center at any point on the sphere.

When determining the distance between living species of animals through the distance on the tree, defined as the maximum distance to the nearest common ancestor, we get a non–Archimedean distance. Defining the distances between species as the natural distance between the states of the Markov process of mutations, we also obtain a non–Archimedean distance. In general, the metric is naturally defined in the state space of the Markov process, and it is non–Archimedean. It should be noted that it is difficult to clearly determine the distances here. Their values can be calculated with some accuracy by simulating the Markov process. The calculations themselves are in fact calculations of Feynman integrals over all possible paths for the evolution of the Markov process. A different approach to the use of non–Archimedean (p–adic) metrics in quantum physics develops in the works of Volovich et al.,12 and his followers.

In a sense, non–Archimedean distances appear more often than Archimedean ones. So, in the theory of numbers, every prime ideal defines a non–Archimedean norm, and there are only a finite number of Archimedean norms (not greater than the degree of extension). An example of a non–Archimedean metric on words or texts is the following distance:

ρ(x,y)=( 0,x=y, c d ,xy. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg8aYjaaiIcacaWG4bGaaGilaiaadMhacaaIPaGaaGyp aKqbaoaabeaakeaajugibuaabeqadeaaaOqaaKqzGeGaaGimaiaaiY cacaaMe8UaamiEaiaai2dacaWG5bGaaGilaaGcbaqcLbsacaWGJbqc fa4aaWbaaSqabKqaGeaajugWaiabgkHiTiaadsgaaaqcLbsacaaISa GaaGjbVlaadIhacqGHGjsUcaWG5bGaaGOlaaGcbaaaaaGaay5Eaaaa aa@5608@

Here d0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacqGHLjYScaaIWaaaaa@3CB7@ is the length of the common prefix, c>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogacaaI+aGaaGymaaaa@3BB9@ is a constant, for example, the number of letters in the alphabet.

Remark: In mathematics, instead of the term "non–Archimedean metric" the term "ultrametrician" is used, and the term "ultrametric relation" is used for the defining relation. At the same time, when it comes to the norming of numbers, such as the p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchaaaa@3A43@ –adic or β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIbaa@3AEF@ –adic valuation ( β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIbaa@3AEF@  is a prime ideal, which is maximal by virtue of the Dedekind property), the term "non–Archimedean valuation" is used, despite the absence of order on the numbers. Some authors use the term "non–Archimedean" only for orders in ordered groups. A section of mathematics that uses instead of the field of real numbers MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHcaa@3ABE@ its ordered extension ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqdaaGcbaqcLbsacqWIDesOaaaaaa@3B67@ is called a non–standard analysis. In this case, the order on ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqdaaGcbaqcLbsacqWIDesOaaaaaa@3B67@ , consistent with the order of MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHcaa@3ABE@ , is necessarily non–Archimedean. The most interesting among such extensions is the set of surreal numbers of Conway. The topology on such extensions is almost discrete, in the sense that the (countable) sequence { x i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWG4bWcdaWgaaqcbasaaKqzadGaamyAaaqcbasa baqcLbsacaaI9baaaa@3F82@ converges to x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ if and only if all members of the sequence, starting with some, coincide with x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ . In this case, the distance between the points should be determined not in + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaaSbaaKqaGeaajugWaiabgUcaRaqcbasabaaa aa@3D4E@ , but in the extension ¯ + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaqdaaGcbaqcLbsacqWIDesOaaWcdaWgaaqcbasaaKqzadGa ey4kaScajeaibeaaaaa@3DF7@ . From mathematical logic it is known that any theorem of standard analysis, proved using nonstandard analysis, can be proved without it. Therefore, we will consider the use of non–standard analysis and the term "non–archimedean" (in the sense indicated) in physical applications as non–purposeful.

As we remarked above, the principal property of the ordinary metric is the triangle inequality, and for the hyperbolic metric–the opposite triangle inequality. So, a function defined on a Cartesian product and taking real–valued values (not necessarily only positive) we’ll call elliptic if

f(x,y)+f(y,z),x,y,z; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgUca RiaadAgacaaIOaGaamyEaiaaiYcacaWG6bGaaGykaiaaiYcacaaMe8 UaeyiaIiIaamiEaiaaiYcacaWG5bGaaGilaiaadQhacaaI7aaaaa@4C72@

call non–Archimedean if

f(x,z)max(f(x,y),f(y,z)),x,y,z; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaiabgsMi Jkaad2gacaWGHbGaamiEaiaaiIcacaWGMbGaaGikaiaadIhacaaISa GaamyEaiaaiMcacaaISaGaamOzaiaaiIcacaWG5bGaaGilaiaadQha caaIPaGaaGykaiaaiYcacaaMe8UaaGjbVlabgcGiIiaadIhacaaISa GaamyEaiaaiYcacaWG6bGaaG4oaaaa@58C4@

and call hyperbolic if

f(x,z)f(x,y)+f(y,z),x,y,z. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaiabgwMi ZkaadAgacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiabgUcaRiaadA gacaaIOaGaamyEaiaaiYcacaWG6bGaaGykaiaaiYcacaaMe8UaaGjb VlabgcGiIiaadIhacaaISaGaamyEaiaaiYcacaWG6bGaaGOlaaaa@54BA@

We list some simple properties of such classes of functions.

  1. A constant function is a metric elliptic and non–Archimedean if it is non–negative and hyperbolic–if not positive.
  2. Classes of elliptic, non–Archimedean and hyperbolic functions are closed with respect to sums, taking linear combinations with nonnegative coefficients.
  3. The classes of elliptic and non–Archimedean functions are closed with respect to taking a maximum, and hyperbolic–with respect to taking a minimum.
  4. Negative combinations (sums with negative coefficients) of elliptic functions are hyperbolic, and negative combinations of hyperbolic functions are elliptic.
  5. If φ(x): + + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaaiIcacaWG4bGaaGykaiaaiQdacqWIDesOlmaa BaaajeaibaqcLbmacqGHRaWkaKqaGeqaaKqzGeGaeyOKH4QaeSyhHe 6cdaWgaaqcbasaaKqzadGaey4kaScajeaibeaaaaa@48AD@ is a positive continuous function, then φ(f(x,z)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaaiIcacaWGMbGaaGikaiaadIhacaaISaGaamOE aiaaiMcacaaIPaaaaa@4172@  is hyperbolic if f(x,z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaaaa@3E50@  is hyperbolic and φ(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaaiIcacaWG4bGaaGykaaaa@3D6D@ is convex upward ( φ (x)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqbeA8aQzaafyaafaGaaGikaiaadIhacaaIPaGaaGOpaiaa icdaaaa@3F06@ ); φ(f(x,z)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaaiIcacaWGMbGaaGikaiaadIhacaaISaGaamOE aiaaiMcacaaIPaaaaa@4172@ is elliptic if f(x,z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgacaaIOaGaamiEaiaaiYcacaWG6bGaaGykaaaa@3E50@ is elliptic, φ(0)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaaiIcacaaIWaGaaGykaiaai2dacaaIWaaaaa@3EAB@ and φ(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaaiIcacaWG4bGaaGykaaaa@3D6D@ is convex downward ( φ (x)<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqbeA8aQzaafyaafaGaaGikaiaadIhacaaIPaGaaGipaiaa icdaaaa@3F04@ ).
  6. If { f i (x,y)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWGMbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasa baqcLbsacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai2haaaa@4386@ is a family of positive hyperbolic functions, then their product will also be a hyperbolic function.

Hence, as a consequence, the following remark about elliptic metrics is obtained. Let { f i (x,y)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWGMbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasa baqcLbsacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai2haaaa@4386@ be a family of elliptic functions, and all elements of the family { M i f i (x,y)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWGnbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasa baqcLbsacqGHsislcaWGMbWcdaWgaaqcbasaaKqzadGaamyAaaqcba sabaqcLbsacaaIOaGaamiEaiaaiYcacaWG5bGaaGykaiaai2haaaa@4870@ (with positive values { M i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWGnbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasa baqcLbsacaaI9baaaa@3F57@ ) satisfy the triangle inequality. Then a function F= i M i i ( M i f i (x,y)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAeacaaI9aqcfa4aaebuaOqabKqaGeaajugWaiaadMga aSqabKqzGeGaey4dIunacaWGnbWcdaWgaaqcbasaaKqzadGaamyAaa qcbasabaqcLbsacqGHsisljuaGdaqeqbGcbeqcbasaaKqzadGaamyA aaWcbeqcLbsacqGHpis1aiaaiIcacaWGnbWcdaWgaaqcbasaaKqzad GaamyAaaqcbasabaqcLbsacqGHsislcaWGMbWcdaWgaaqcbasaaKqz adGaamyAaaqcbasabaqcLbsacaaIOaGaamiEaiaaiYcacaWG5bGaaG ykaiaaiMcaaaa@592B@ satisfies the triangle inequality and, in the case of positivity of all its values, the usual metric is obtained from it. Such way, in particular, in13 he sensitivity of Jacquard metric has been enlarged for f i =f, M i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugi biaai2dacaWGMbGaaGilaiaaysW7caWGnbWcdaWgaaqcbasaaKqzad GaamyAaaqcbasabaqcLbsacaaI9aGaaGymaaaa@46D8@ .

Metrics in n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaaWbaaKqaGfqabaqcLbmacaWGUbaaaaaa@3D76@

Physicists in special theory of relativity (SRT) use translationally invariant metrics: here the distance from the point x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ to the point y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhaaaa@3A4C@ is determined by the norm of the displacement vector |yx| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG5bGaeyOeI0IaamiEaiaaiYhaaaa@3E42@ . In this case, the natural condition is that |λa|=λ|a| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacqaH7oaBcaWGHbGaaGiFaiaai2dacqaH7oaBcaaI 8bGaamyyaiaaiYhaaaa@4361@ for any positive number λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSbaa@3B02@ and for any vector a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggaaaa@3A34@ . Obviously, such metrics cannot be non–Archimedean. They are Archimedean even for a stronger condition: because of the Archimedean metric in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHcaa@3ABE@  and the fact that λ + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSjabgIGiolabl2riHUWaaSbaaKqaGeaajugWaiab gUcaRaqcbasabaaaaa@4086@ .

Metrics in n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaaWbaaKqaGeqabaqcLbmacaWGUbaaaaaa@3D36@ are defined by function–norms defined in a vector space for which the following conditions are satisfied:

  1. The unit ball is convex (in the case of an elliptic metric);
  2. The set {x||x|1} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWG4bGaaGjbVlaacYhacaaMe8UaaGiFaiaadIha caaI8bGaeyyzImRaaGymaiaai2haaaa@45FB@ convex (for a hyperbolic metric).

In a linear space, the concepts of convexity and concavity of metrics can also be expressed in another way, and they are equivalent to the properties of the triangle inequality and the opposite triangle inequality, respectively. The notion of strict convexity (or concavity) is also naturally defined here–when it follows from the equality in the indicated inequalities that the points x,y,z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhacaaISaGaaGjbVlaadMhacaaISaGaaGjbVlaadQha aaa@40CE@ lie on the same line.

Note that the hyperbolic metric is defined only for the interior of some cone and has the character of "directivity to the future", which specifies the ordering: if the distance yx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhacqGHsislcaWG4baaaa@3C36@ is measurable, then the event y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhaaaa@3A4C@ occurs later. If also the distance zy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQhacqGHsislcaWG5baaaa@3C38@ is measurable, then zx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQhacqGHsislcaWG4baaaa@3C37@ is also measurable, and |zx||yx|+|zy| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG6bGaeyOeI0IaamiEaiaaiYhacqGHLjYScaaI 8bGaamyEaiabgkHiTiaadIhacaaI8bGaey4kaSIaaGiFaiaadQhacq GHsislcaWG5bGaaGiFaaaa@4AD5@ . This corresponds to the (strengthened) transitivity property of the order "later".

Usually, the cone of measurable vectors, where a hyperbolic (concave) norm is defined, is a set of vectors for which all coordinates are non–negative, or it contains such a set. The metric on n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaaWbaaKqaGeqabaqcLbmacaWGUbaaaaaa@3D36@ also defines metric in the ad joint space of linear functional. The ad joint space is also a vector space n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaaWbaaKqaGeqabaqcLbmacaWGUbaaaaaa@3D36@ . For the hyperbolic metric defined in the cone + n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaa0baaKqaGeaajugWaiabgUcaRaqcbasaaKqz adGaamOBaaaaaaa@3F70@ , the adjoint metric is also defined in + n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHUWaa0baaKqaGeaajugWaiabgUcaRaqcbasaaKqz adGaamOBaaaaaaa@3F70@ . Namely:

|p|=su p |x|=1 px, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWGWbGaaGiFaiaai2dacaWGZbGaamyDaiaadcha lmaaBaaajeaibaqcLbmacaaI8bGaamiEaiaaiYhacaaI9aGaaGymaa qcbasabaqcLbsacaWGWbGaamiEaiaaiYcaaaa@496D@

In the elliptic case, and

|p|=in f |x|=1 px MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWGWbGaaGiFaiaai2dacaWGPbGaamOBaiaadAga lmaaBaaajeaibaqcLbmacaaI8bGaamiEaiaaiYhacaaI9aGaaGymaa qcbasabaqcLbsacaWGWbGaamiEaaaa@489C@

In the hyperbolic case. As a general example for both types of the metric we can consider the metric defined by the norm in L p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYealmaaBaaajeaibaqcLbmacaWGWbaajeaibeaaaaa@3CC2@ in an n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gaaaa@3A41@ –dimensional space:

|x|=( 1 n i=1 n | x i | p ) 1/p . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG4bGaaGiFaiaai2dacaaIOaqcfa4aaSaaaOqa aKqzGeGaaGymaaGcbaqcLbsacaWGUbaaaKqbaoaaqahakeqajeaiba qcLbmacaWGPbGaaGypaiaaigdaaKqaGeaajugWaiaad6gaaKqzGeGa eyyeIuoacaaI8bGaamiEaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGe qaaKqzGeGaaGiFaKqbaoaaCaaaleqajeaibaqcLbmacaWGWbaaaKqz GeGaaGykaSWaaWbaaKqaGeqabaqcLbmacaaIXaGaaG4laiaadchaaa qcLbsacaaIUaaaaa@5A66@ (2)

Here, we took the positive coefficients for convenience, in the case of a hyperbolic metric (taking into account the orientation) that the metric is defined only in the case when all the coordinates p1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacqGHLjYScaaIXaaaaa@3CC4@ are positive.

Theorem 3.1: For p1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacqGHLjYScaaIXaaaaa@3CC4@ , the metric (2) defines an elliptic norm, for p<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI8aGaaGymaaaa@3BC4@ –a hyperbolic. The adjoint space has the same metric L q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYealmaaBaaajeaibaqcLbmacaWGXbaajeaibeaaaaa@3CC3@ , where p+q=pq,(q= p p1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacqGHRaWkcaWGXbGaaGypaiaadchacaWGXbGaaGil aiaaysW7caaIOaGaamyCaiaai2dajuaGdaWcaaGcbaqcLbsacaWGWb aakeaajugibiaadchacqGHsislcaaIXaaaaiaaiMcaaaa@4994@ .

Proof: For p>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI+aGaaGymaaaa@3BC6@ , the triangle inequality (and its strictness) follows from the Minkowski inequality, and the statement for the adjoint space is a consequence of Holder’s inequality.1 In this case, a strict inequality holds. For p=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI9aGaaGymaaaa@3BC5@ , the triangle inequality is not strictly satisfied, and there exist many paths from the point O MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad+eaaaa@3A22@ (the origin) to the point x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ with length |x| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG4bGaaGiFaaaa@3C57@ . The adjoint space in this case is the space L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYealmaaBaaajeaibaqcLbmacqGHEisPaKqaGeqaaaaa @3D3E@ .

Now consider the case p<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI8aGaaGymaaaa@3BC4@ and x i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugi biaai6dacaaIWaaaaa@3EF8@ for all i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMgaaaa@3A3C@ . The opposite triangle inequality for 0<p<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaaI8aGaamiCaiaaiYdacaaIXaaaaa@3D44@ is also a direct consequence of Minkowski’s theorem for this case.14 For p<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI8aGaaGimaaaa@3BC3@ , this can be proved using the inequalities for the case p>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI+aGaaGimaaaa@3BC5@ and the Holder’s inequality. Fortunately, in Edvin et al.,14 there are already corresponding generalizations, the direct consequences of which are our assertions for vectors with positive coordinates. This completes the proof.

In the case p=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI9aGaaGymaaaa@3BC5@ , the metric will be both ordinary and hyperbolic. The latter is defined only in the case when each coordinate x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CE7@ is nonnegative.

By continuity, we can define the metric (2) and in the case p=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI9aGaaGimaaaa@3BC4@ . Moreover, the adjoint metric corresponds to the case q=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadghacaaI9aGaaGimaaaa@3BC5@ , i.e. coincides with the original one. This self–adjoint hyperbolic metric is called the Berwald–Moore metric:

|x | n = x 1 * x 2 ...* x n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG4bGaaGiFaSWaaWbaaKqaGeqabaqcLbmacaWG UbaaaKqzGeGaaGypaiaadIhalmaaBaaajeaibaqcLbmacaaIXaaaje aibeaajugibiaaiQcacaWG4bWcdaWgaaqcbasaaKqzadGaaGOmaaqc basabaqcLbsacaaIUaGaaGOlaiaai6cacaaIQaGaamiEaSWaaSbaaK qaGeaajugWaiaad6gaaKqaGeqaaKqzGeGaaGOlaaaa@5085@

Here the norm value is the geometric mean of the family of positive numbers. Note that the norm on the set of functional corresponds to the norm with another index L q : 1 p + 1 q =1pq=p+q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadYealmaaBaaajeaibaqcLbmacaWGXbaajeaibeaajugi biaaiQdajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaadchaaa Gaey4kaSscfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGXbaa aiaai2dacaaIXaGaeyO0H4TaamiCaiaadghacaaI9aGaamiCaiabgU caRiaadghaaaa@4F57@ . Self–adjoint (Hilbert) spaces are spaces with p=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI9aGaaGOmaaaa@3BC6@ (for an elliptic metric) and p=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI9aGaaGimaaaa@3BC4@ (the Berwald–Moore metric for the hyperbolic metric). In part, so, some physicists consider the Berwald–Moore metric to be the proper metric of space–time, and not the Minkowski metric. In fact, these metrics are close in the following sense. Newton’s geometry, based on Galileo transformations, coincides with these geometries in the first approximation, differing only by orders of O(( v c ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad+eacaaIOaGaaGikaKqbaoaalaaakeaajugibiaadAha aOqaaKqzGeGaam4yaaaacaaIPaWcdaahaaqcbasabeaajugWaiaaik daaaqcLbsacaaIPaaaaa@436F@ , where v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhaaaa@3A49@ is a speed, and c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadogaaaa@3A36@ –the speed of light. The geometries of Minkowski and Berwald–Moore themselves coincide in the second order of accuracy, differing only in the third order. And in dimension 2, these geometries are completely identical. Indeed, by changing the variables x 1 =tx, x 2 =t+x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biaai2dacaWG0bGaeyOeI0IaamiEaiaaiYcacaaMe8UaamiEaSWaaS baaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaaGypaiaadshacqGH RaWkcaWG4baaaa@4AC5@ , the Minkowski metric d s 2 =d t 2 d x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacaaI9aGaamizaiaadshalmaaCaaajeaibeqaaKqzadGaaGOmaa aajugibiabgkHiTiaadsgacaWG4bWcdaahaaqcbasabeaajugWaiaa ikdaaaaaaa@488C@ becomes the Berwald–Moore metric d s 2 =d x 1 d x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsgacaWGZbWcdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacaaI9aGaamizaiaadIhalmaaBaaajeaibaqcLbmacaaIXaaaje aibeaajugibiaadsgacaWG4bqcfa4aaSbaaKqaGeaajugWaiaaikda aSqabaaaaa@4858@ .

Consider now quadratic pseudometrics:

|x | 2 = x 1 2 +...+ x k 2 x k+1 2 ... x n 2 ,nk1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG4bGaaGiFaSWaaWbaaKqaGeqabaqcLbmacaaI YaaaaKqzGeGaaGypaiaadIhalmaaDaaajeaibaqcLbmacaaIXaaaje aibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaaGOlaiaai6cacaaIUaGa ey4kaSIaamiEaSWaa0baaKqaGeaajugWaiaadUgaaKqaGeaajugWai aaikdaaaqcLbsacqGHsislcaWG4bWcdaqhaaqcbasaaKqzadGaam4A aiabgUcaRiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacqGHsislca aIUaGaaGOlaiaai6cacqGHsislcaWG4bWcdaqhaaqcbasaaKqzadGa amOBaaqcbasaaKqzadGaaGOmaaaajugibiaaiYcacaWGUbGaeyyzIm Raam4AaiabgwMiZkaaigdacaaIUaaaaa@6A20@ (3)

Prove the following theorem:
Theorem 3.2: The pseudo metric (2) defines an elliptic metric for k=n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaamOBaaaa@3BF8@ , hyperbolic–for k=1<n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaaGymaiaaiYdacaWGUbaaaa@3D79@ , and none in other cases. In the latter case, for 1<k<n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaaI8aGaam4AaiaaiYdacaWGUbaaaa@3D78@ , for any two points of the space there exist smooth paths of any positive length connecting them.

 Proof: The case k=n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaamOBaaaa@3BF8@ is well known. The case k=1<n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaaGymaiaaiYdacaWGUbaaaa@3D79@ is considered in Edvin et al.,14 where a more general inequality is proved: let φ(x)=( x 1 p x 2 p ... x n p ) 1/p ,p>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaaiIcacaWG4bGaaGykaiaai2dacaaIOaGaamiE aSWaa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaadchaaaqcLb sacqGHsislcaWG4bWcdaqhaaqcbasaaKqzadGaaGOmaaqcbasaaKqz adGaamiCaaaajugibiabgkHiTiaai6cacaaIUaGaaGOlaiabgkHiTi aadIhalmaaDaaajeaibaqcLbmacaWGUbaajeaibaqcLbmacaWGWbaa aKqzGeGaaGykaSWaaWbaaKqaGeqabaqcLbmacaaIXaGaaG4laiaadc haaaqcLbsacaaISaGaaGjbVlaadchacaaI+aGaaGymaaaa@6044@ , then

φ(x+y)φ(x)+φ(y),x + n ,y + n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeA8aQjaaiIcacaWG4bGaey4kaSIaamyEaiaaiMcacqGH LjYScqaHgpGAcaaIOaGaamiEaiaaiMcacqGHRaWkcqaHgpGAcaaIOa GaamyEaiaaiMcacaaISaGaaGjbVlaadIhacqGHiiIZcqWIDesOlmaa DaaajeaibaqcLbmacqGHRaWkaKqaGeaajugWaiaad6gaaaqcLbsaca aISaGaaGjbVlaadMhacqGHiiIZcqWIDesOlmaaDaaajeaibaqcLbma cqGHRaWkaKqaGeaajugWaiaad6gaaaqcLbsacaaIUaaaaa@61D7@

This inequality in the case p=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchacaaI9aGaaGOmaaaa@3BC6@ is equivalent to the opposite triangle inequality for the Minkowski metric. In the case k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaaGimaaaa@3BBF@ , the pseudometric is negative definite and does not represent a hyperbolic metric.

For the remaining case 1<k<n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaaI8aGaam4AaiaaiYdacaWGUbaaaa@3D78@ , we find smooth measurable paths issuing from the origin and ending at another point r=( x 1 ,.., x k , x k+1 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhacaaI9aGaaGikaiaadIhajuaGdaWgaaqcbasaaKqz adGaaGymaaWcbeaajugibiaaiYcacaaIUaGaaGOlaiaaiYcacaWG4b WcdaWgaaqcbasaaKqzadGaam4AaaqcbasabaqcLbsacaaISaGaamiE aSWaaSbaaKqaGeaajugWaiaadUgacqGHRaWkcaaIXaaajeaibeaaju gibiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGaamiEaSWaaSbaaKqa GeaajugWaiaad6gaaKqaGeqaaKqzGeGaaGykaaaa@560E@ . Denote by r 1 =( x 1 , x 2 ,.., x k ,0,...,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugi biaai2dacaaIOaGaamiEaKqbaoaaBaaajeaibaqcLbmacaaIXaaale qaaKqzGeGaaGilaiaadIhalmaaBaaajeaibaqcLbmacaaIYaaajeai beaajugibiaaiYcacaaIUaGaaGOlaiaaiYcacaWG4bWcdaWgaaqcba saaKqzadGaam4AaaqcbasabaqcLbsacaaISaGaaGimaiaaiYcacaaI UaGaaGOlaiaai6cacaaISaGaaGimaiaaiMcaaaa@5596@ and r 2 =(0,...,0, x k+1 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biaai2dacaaIOaGaaGimaiaaiYcacaaIUaGaaGOlaiaai6cacaaISa GaaGimaiaaiYcacaWG4bWcdaWgaaqcbasaaKqzadGaam4AaiabgUca RiaaigdaaKqaGeqaaKqzGeGaaGilaiaai6cacaaIUaGaaGOlaiaaiY cacaWG4bqcfa4aaSbaaKqaGeaajugWaiaad6gaaSqabaqcLbsacaaI Paaaaa@5314@ the decomposition of the position vector into two parts. Let a= x 1 2 + x 2 2 +...+ x k 2 ,b= x k+1 2 +...+ x n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggacaaI9aqcfa4aaOaaaOqaaKqzGeGaamiEaSWaa0ba aKqaGeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRa WkcaWG4bWcdaqhaaqcbasaaKqzadGaaGOmaaqcbasaaKqzadGaaGOm aaaajugibiabgUcaRiaai6cacaaIUaGaaGOlaiabgUcaRiaadIhalm aaDaaajeaibaqcLbmacaWGRbaajeaibaqcLbmacaaIYaaaaaWcbeaa jugibiaaiYcacaaMe8UaamOyaiaai2dajuaGdaGcaaGcbaqcLbsaca WG4bWcdaqhaaqcbasaaKqzadGaam4AaiabgUcaRiaaigdaaKqaGeaa jugWaiaaikdaaaqcLbsacqGHRaWkcaaIUaGaaGOlaiaai6cacqGHRa WkcaWG4bWcdaqhaaqcbasaaKqzadGaamOBaaqcbasaaKqzadGaaGOm aaaaaSqabaaaaa@693B@ . Choosing a path of the form ( x 1 (t), x 2 (t),..., x n (t))=( x 1 (a+b) 2a t, x 2 (a+b) 2a t,..., x k (a+b) 2a t, x k+1 (a+b) 2b t,..., x n (a+b) 2b t),0t1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaWG4bqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqa baqcLbsacaaIOaGaamiDaiaaiMcacaaISaGaamiEaKqbaoaaBaaaje aibaqcLbmacaaIYaaaleqaaKqzGeGaaGikaiaadshacaaIPaGaaGil aiaai6cacaaIUaGaaGOlaiaaiYcacaWG4bWcdaWgaaqcbasaaKqzad GaamOBaaqcbasabaqcLbsacaaIOaGaamiDaiaaiMcacaaIPaGaaGyp aiaaiIcajuaGdaWcaaGcbaqcLbsacaWG4bqcfa4aaSbaaKqaGeaaju gWaiaaigdaaSqabaqcLbsacaaIOaGaamyyaiabgUcaRiaadkgacaaI PaaakeaajugibiaaikdacaWGHbaaaiaadshacaaISaqcfa4aaSaaaO qaaKqzGeGaamiEaSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqz GeGaaGikaiaadggacqGHRaWkcaWGIbGaaGykaaGcbaqcLbsacaaIYa GaamyyaaaacaWG0bGaaGilaiaai6cacaaIUaGaaGOlaiaaiYcajuaG daWcaaGcbaqcLbsacaWG4bWcdaWgaaqcbasaaKqzadGaam4Aaaqcba sabaqcLbsacaaIOaGaamyyaiabgUcaRiaadkgacaaIPaaakeaajugi biaaikdacaWGHbaaaiaadshacaaISaqcfa4aaSaaaOqaaKqzGeGaam iEaSWaaSbaaKqaGeaajugWaiaadUgacqGHRaWkcaaIXaaajeaibeaa jugibiaaiIcacaWGHbGaey4kaSIaamOyaiaaiMcaaOqaaKqzGeGaaG OmaiaadkgaaaGaamiDaiaaiYcacaaIUaGaaGOlaiaai6cacaaISaqc fa4aaSaaaOqaaKqzGeGaamiEaSWaaSbaaKqaGeaajugWaiaad6gaaK qaGeqaaKqzGeGaaGikaiaadggacqGHRaWkcaWGIbGaaGykaaGcbaqc LbsacaaIYaGaamOyaaaacaWG0bGaaGykaiaaiYcacaaMe8UaaGimai abgsMiJkaadshacqGHKjYOcaaIXaaaaa@A6BC@ , we get to the point ( y 1 ,..., y k , y k+1 ,..., y n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaWG5bWcdaWgaaqcbasaaKqzadGaaGymaaqcbasa baqcLbsacaaISaGaaGOlaiaai6cacaaIUaGaaGilaiaadMhajuaGda WgaaqcbasaaKqzadGaam4AaaWcbeaajugibiaaiYcacaWG5bqcfa4a aSbaaKqaGeaajugWaiaadUgacqGHRaWkcaaIXaaaleqaaKqzGeGaaG ilaiaai6cacaaIUaGaaGOlaiaaiYcacaWG5bWcdaWgaaqcbasaaKqz adGaamOBaaqcbasabaqcLbsacaaIPaaaaa@5570@ for a distance of zero.

Further, connecting this point with r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhaaaa@3A45@  by a segment of zero length ( y 1 + x 1 (ab) 2a t, y 2 + x 2 (ab) 2a t,..., y k + x k (ab) 2a t, y k+1 + x k+1 (ba) 2b ,..., y n + x n (ba) 2b ),0t1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaWG5bWcdaWgaaqcbasaaKqzadGaaGymaaqcbasa baqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWG4bWcdaWgaaqcba saaKqzadGaaGymaaqcbasabaqcLbsacaaIOaGaamyyaiaadkgacaaI PaaakeaajugibiaaikdacaWGHbaaaiaadshacaaISaGaamyEaSWaaS baaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaey4kaSscfa4aaSaa aOqaaKqzGeGaamiEaSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaK qzGeGaaGikaiaadggacaWGIbGaaGykaaGcbaqcLbsacaaIYaGaamyy aaaacaWG0bGaaGilaiaai6cacaaIUaGaaGOlaiaaiYcacaWG5bWcda WgaaqcbasaaKqzadGaam4AaaqcbasabaqcLbsacqGHRaWkjuaGdaWc aaGcbaqcLbsacaWG4bWcdaWgaaqcbasaaKqzadGaam4Aaaqcbasaba qcLbsacaaIOaGaamyyaiaadkgacaaIPaaakeaajugibiaaikdacaWG HbaaaiaadshacaaISaGaamyEaSWaaSbaaKqaGeaajugWaiaadUgacq GHRaWkcaaIXaaajeaibeaajugibiabgUcaRKqbaoaalaaakeaajugi biaadIhalmaaBaaajeaibaqcLbmacaWGRbGaey4kaSIaaGymaaqcba sabaqcLbsacaaIOaGaamOyaiaadggacaaIPaaakeaajugibiaaikda caWGIbaaaiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGaamyEaKqbao aaBaaajeaibaqcLbmacaWGUbaaleqaaKqzGeGaey4kaSscfa4aaSaa aOqaaKqzGeGaamiEaSWaaSbaaKqaGeaajugWaiaad6gaaKqaGeqaaK qzGeGaaGikaiaadkgacaWGHbGaaGykaaGcbaqcLbsacaaIYaGaamOy aaaacaaIPaGaaGilaiaaicdacqGHKjYOcaWG0bGaeyizImQaaGymaa aa@9EDB@ , we obtain a path of zero length. Since the end point does not coincide with the origin, then a+b>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggacqGHRaWkcaWGIbGaaGOpaiaaicdaaaa@3D7F@ . When a=b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggacaaI9aGaamOyaaaa@3BE2@ , the second segment is not needed. If ab=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggacaWGIbGaaGypaiaaicdaaaa@3C9C@ , then by a small perturbation we make ab0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadggacaWGIbGaeyiyIKRaaGimaaaa@3D9C@ . We smooth the path at the junction point with a slight perturbation and obtain a measurable path with any small length.

The path with any great length is obtained by making circles in the plane r 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkhalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugi biaai2dacaaIWaaaaa@3EBF@ . Note that for k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaaGymaaaa@3BC0@  we cannot go through closed paths, and for an achievable point there exists a maximal length (a segment) among the paths connecting this point to the origin. This completes the proof.

Note that the usual symmetric polynomials σ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaadUgaaKqaGeqaaaaa @3DAF@ on positive numbers x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CE7@ also give the hyperbolic metric |x | k = σ k ( x 1 , x 2 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG4bGaaGiFaSWaaWbaaKqaGeqabaqcLbmacaWG RbaaaKqzGeGaaGypaiabeo8aZTWaaSbaaKqaGeaajugWaiaadUgaaK qaGeqaaKqzGeGaaGikaiaadIhajuaGdaWgaaqcbasaaKqzadGaaGym aaWcbeaajugibiaaiYcacaWG4bWcdaWgaaqcbasaaKqzadGaaGOmaa qcbasabaqcLbsacaaISaGaaGOlaiaai6cacaaIUaGaaGilaiaadIha lmaaBaaajeaibaqcLbmacaWGUbaajeaibeaajugibiaaiMcaaaa@573D@ . In this case σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaaaa @3D7B@ corresponds to the Minkowski metric, σ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaad6gaaKqaGeqaaaaa @3DB2@ –to Berwald–Moore metric. The fulfilment of the opposite triangle inequality for these cases is proved in Edvin et al.,14.

For a hyperbolic metric, expressed as a homogeneous symmetric function of coordinates, the maximum of the norm for a fixed value σ 1 = x 1 + x 2 +...+ x n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqz GeGaaGypaiaadIhajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaju gibiabgUcaRiaadIhajuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaa jugibiabgUcaRiaai6cacaaIUaGaaGOlaiabgUcaRiaadIhalmaaBa aajeaibaqcLbmacaWGUbaajeaibeaaaaa@5053@ is attained when all variables are equal. So, it is more convenient to write the norm in terms of the variables:

y 0 = a n σ 1 , y i =α z i +β ji z j , z i =( x i+1 σ 1 n ),i=1,...,n1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaai2dajuaGdaWcaaGcbaqcLbsacaWGHbaakeaajugibiaad6gaaa Gaeq4Wdm3cdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaI SaGaaGjbVlaadMhalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaju gibiaai2dacqaHXoqycaWG6bWcdaWgaaqcbasaaKqzadGaamyAaaqc basabaqcLbsacqGHRaWkcqaHYoGyjuaGdaaeqbGcbeqcbasaaKqzad GaamOAaiabgcMi5kaadMgaaSqabKqzGeGaeyyeIuoacaWG6bWcdaWg aaqcbasaaKqzadGaamOAaaqcbasabaqcLbsacaaISaGaaGjbVlaadQ halmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugibiaai2dacaaI OaGaamiEaSWaaSbaaKqaGeaajugWaiaadMgacqGHRaWkcaaIXaaaje aibeaajugibiabgkHiTKqbaoaalaaakeaajugibiabeo8aZLqbaoaa BaaajeaibaqcLbmacaaIXaaaleqaaaGcbaqcLbsacaWGUbaaaiaaiM cacaaISaGaaGjbVlaadMgacaaI9aGaaGymaiaaiYcacaaIUaGaaGOl aiaai6cacaaISaGaamOBaiabgkHiTiaaigdacaaIUaaaaa@848A@            (4)

 Then the norm is written in the form:

|x|= y 0 f( v 1 , v 2 ,..., v n1 ), v i = y i y 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG4bGaaGiFaiaai2dacaWG5bqcfa4aaSbaaKqa GeaajugWaiaaicdaaSqabaqcLbsacaWGMbGaaGikaiaadAhalmaaBa aajeaibaqcLbmacaaIXaaajeaibeaajugibiaaiYcacaWG2bWcdaWg aaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacaaISaGaaGOlaiaai6 cacaaIUaGaaGilaiaadAhajuaGdaWgaaqcbasaaKqzadGaamOBaiab gkHiTiaaigdaaSqabaqcLbsacaaIPaGaaGilaiaaysW7caWG2bWcda WgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbsacaaI9aqcfa4aaSaa aOqaaKqzGeGaamyEaKqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaa GcbaqcLbsacaWG5bWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaa aKqzGeGaaGOlaaaa@67DA@    (5)

 In accordance with the above, f(0,0,...,0)=1=maxf( v 1 , v 2 ,..., v n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgacaaIOaGaaGimaiaaiYcacaaIWaGaaGilaiaai6ca caaIUaGaaGOlaiaaiYcacaaIWaGaaGykaiaai2dacaaIXaGaaGypai aad2gacaWGHbGaamiEaiaadAgacaaIOaGaamODaSWaaSbaaKqaGeaa jugWaiaaigdaaKqaGeqaaKqzGeGaaGilaiaadAhalmaaBaaajeaiba qcLbmacaaIYaaajeaibeaajugibiaaiYcacaaIUaGaaGOlaiaai6ca caaISaGaamODaSWaaSbaaKqaGeaajugWaiaad6gacqGHsislcaaIXa aajeaibeaajugibiaaiMcaaaa@5B88@ . In this case y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaaa@3D18@ expresses the time coordinates, v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAhalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CE5@ –speed coordinates.

Consider the adduction of the metric |x | k = σ k ( x 1 ,..., x n ),nk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG4bGaaGiFaSWaaWbaaKqaGeqabaqcLbmacaWG RbaaaKqzGeGaaGypaiabeo8aZTWaaSbaaKqaGeaajugWaiaadUgaaK qaGeqaaKqzGeGaaGikaiaadIhalmaaBaaajeaibaqcLbmacaaIXaaa jeaibeaajugibiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGaamiEaK qbaoaaBaaajeaibaqcLbmacaWGUbaaleqaaKqzGeGaaGykaiaaiYca caaMe8UaamOBaiabgwMiZkaadUgaaaa@587D@ to the form?? Using the coordinate transformation (4). Let’s start with the case k=2. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaaGOmaiaai6caaaa@3C79@  We get:

σ 2 = 1 2 ( σ 1 2 s 2 )= 1 2 σ 1 2 1 2 i ( x i σ 1 n ) 2 σ 1 2 ( 1 n 1 2 n 2 )= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZLqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqz GeGaaGypaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaa aacaaIOaGaeq4Wdm3cdaqhaaqcbasaaKqzadGaaGymaaqcbasaaKqz adGaaGOmaaaajugibiabgkHiTiaadohalmaaBaaajeaibaqcLbmaca aIYaaajeaibeaajugibiaaiMcacaaI9aqcfa4aaSaaaOqaaKqzGeGa aGymaaGcbaqcLbsacaaIYaaaaiabeo8aZTWaa0baaKqaGeaajugWai aaigdaaKqaGeaajugWaiaaikdaaaqcLbsacqGHsisljuaGdaWcaaGc baqcLbsacaaIXaaakeaajugibiaaikdaaaqcfa4aaabuaOqabKqaGe aajugWaiaadMgaaSqabKqzGeGaeyyeIuoacaaIOaGaamiEaSWaaSba aKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaeyOeI0scfa4aaSaaaO qaaKqzGeGaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaa keaajugibiaad6gaaaGaaGykaSWaaWbaaKqaGeqabaqcLbmacaaIYa aaaKqzGeGaeyOeI0Iaeq4Wdm3cdaqhaaqcbasaaKqzadGaaGymaaqc basaaKqzadGaaGOmaaaajugibiaaiIcajuaGdaWcaaGcbaqcLbsaca aIXaaakeaajugibiaad6gaaaGaeyOeI0scfa4aaSaaaOqaaKqzGeGa aGymaaGcbaqcLbsacaaIYaGaamOBaSWaaWbaaKqaGeqabaqcLbmaca aIYaaaaaaajugibiaaiMcacaaI9aaaaa@89A2@
= 1 2 ((1 1 n ) σ 1 ) 2 1 2 ( z 1 +...+ z n1 ) 2 1 2 i=1 n1 z i 2 = 1 2 ((1 1 n ) σ 1 ) 2 i=1 n1 (α z i +β ji z j ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaa ikdaaaGaaGikaiaaiIcacaaIXaGaeyOeI0scfa4aaSaaaOqaaKqzGe GaaGymaaGcbaqcLbsacaWGUbaaaiaaiMcacqaHdpWClmaaBaaajeai baqcLbmacaaIXaaajeaibeaajugibiaaiMcalmaaCaaajeaibeqaaK qzadGaaGOmaaaajugibiabgkHiTKqbaoaalaaakeaajugibiaaigda aOqaaKqzGeGaaGOmaaaacaaIOaGaamOEaSWaaSbaaKqaGeaajugWai aaigdaaKqaGeqaaKqzGeGaey4kaSIaaGOlaiaai6cacaaIUaGaey4k aSIaamOEaKqbaoaaBaaajeaibaqcLbmacaWGUbGaeyOeI0IaaGymaa WcbeaajugibiaaiMcajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa jugibiabgkHiTKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaG OmaaaajuaGdaaeWbGcbeqcbasaaKqzadGaamyAaiaai2dacaaIXaaa jeaibaqcLbmacaWGUbGaeyOeI0IaaGymaaqcLbsacqGHris5aiaadQ halmaaDaaajeaibaqcLbmacaWGPbaajeaibaqcLbmacaaIYaaaaKqz GeGaaGypaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOmaa aacaaIOaGaaGikaiaaigdacqGHsisljuaGdaWcaaGcbaqcLbsacaaI Xaaakeaajugibiaad6gaaaGaaGykaiabeo8aZTWaaSbaaKqaGeaaju gWaiaaigdaaKqaGeqaaKqzGeGaaGykaSWaaWbaaKqaGeqabaqcLbma caaIYaaaaKqzGeGaeyOeI0scfa4aaabCaOqabKqaGeaajugWaiaadM gacaaI9aGaaGymaaqcbasaaKqzadGaamOBaiabgkHiTiaaigdaaKqz GeGaeyyeIuoacaaIOaGaeqySdeMaamOEaSWaaSbaaKqaGeaajugWai aadMgaaKqaGeqaaKqzGeGaey4kaSIaeqOSdiwcfa4aaabuaOqabKqa GeaajugWaiaadQgacqGHGjsUcaWGPbaaleqajugibiabggHiLdGaam OEaKqbaoaaBaaajeaibaqcLbmacaWGQbaaleqaaKqzGeGaaGykaSWa aWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaGOlaaaa@B2C7@

Here, the values of the parameters α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHbaa@3AED@ and β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabek7aIbaa@3AEF@ are computed so that the equality to be satisfied. Thus, in the variables

y 0 = n1 n 2 i=1 n x i , y i =(αβ) z i +β j=1 n1 z j , z i = x i+1 σ 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugi biaai2dajuaGdaWcaaGcbaqcLbsacaWGUbGaeyOeI0IaaGymaaGcba qcLbsacaWGUbqcfa4aaOaaaOqaaKqzGeGaaGOmaaWcbeaaaaqcfa4a aabCaOqabKqaGeaajugWaiaadMgacaaI9aGaaGymaaqcbasaaKqzad GaamOBaaqcLbsacqGHris5aiaadIhalmaaBaaajeaibaqcLbmacaWG PbaajeaibeaajugibiaaiYcacaaMe8UaaGjbVlaadMhalmaaBaaaje aibaqcLbmacaWGPbaajeaibeaajugibiaai2dacaaIOaGaeqySdeMa eyOeI0IaeqOSdiMaaGykaiaadQhajuaGdaWgaaqcbasaaKqzadGaam yAaaWcbeaajugibiabgUcaRiabek7aILqbaoaaqahakeqajeaibaqc LbmacaWGQbGaaGypaiaaigdaaKqaGeaajugWaiaad6gacqGHsislca aIXaaajugibiabggHiLdGaamOEaSWaaSbaaKqaGeaajugWaiaadQga aKqaGeqaaKqzGeGaaGilaiaaysW7caaMe8UaamOEaSWaaSbaaKqaGe aajugWaiaadMgaaKqaGeqaaKqzGeGaaGypaiaadIhalmaaBaaajeai baqcLbmacaWGPbGaey4kaSIaaGymaaqcbasabaqcLbsacqGHsislju aGdaWcaaGcbaqcLbsacqaHdpWCjuaGdaWgaaqcbasaaKqzadGaaGym aaWcbeaaaOqaaKqzGeGaamOBaaaaaaa@8EB9@

The metric is adducted to the form of the Minkowski metric if the numbers α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjaaiYcacqaHYoGyaaa@3D44@ satisfy the system of equations:

α 2 + β 2 (n2)=1,4αβ+(n3) β 2 =1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa ey4kaSIaeqOSdi2cdaahaaqcbasabeaajugWaiaaikdaaaqcLbsaca aIOaGaamOBaiabgkHiTiaaikdacaaIPaGaaGypaiaaigdacaaISaGa aGjbVlaaysW7caaI0aGaeqySdeMaeqOSdiMaey4kaSIaaGikaiaad6 gacqGHsislcaaIZaGaaGykaiabek7aITWaaWbaaKqaGeqabaqcLbma caaIYaaaaKqzGeGaaGypaiaaigdacaaIUaaaaa@5BF0@

Here we assume that n3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gacqGHLjYScaaIZaaaaa@3CC4@ .
The case n=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gacaaI9aGaaGOmaaaa@3BC4@ is solved immediately: σ 2 = x 1 x 2 =( x 1 + x 2 2 ) 2 ( x 1 x 2 2 ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqz GeGaaGypaiaadIhajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaaju gibiaadIhalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaa i2dacaaIOaqcfa4aaSaaaOqaaKqzGeGaamiEaSWaaSbaaKqaGeaaju gWaiaaigdaaKqaGeqaaKqzGeGaey4kaSIaamiEaSWaaSbaaKqaGeaa jugWaiaaikdaaKqaGeqaaaGcbaqcLbsacaaIYaaaaiaaiMcajuaGda ahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabgkHiTiaaiIcajuaG daWcaaGcbaqcLbsacaWG4bWcdaWgaaqcbasaaKqzadGaaGymaaqcba sabaqcLbsacqGHsislcaWG4bWcdaWgaaqcbasaaKqzadGaaGOmaaqc basabaaakeaajugibiaaikdaaaGaaGykaSWaaWbaaKqaGeqabaqcLb macaaIYaaaaKqzGeGaaGOlaaaa@6823@ Such α,β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjaaiYcacqaHYoGyaaa@3D44@ are the following:

α= 7n13±4 3 (n2) n 2 +10n23 ,β= n+54 3 n 2 +10n23 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeg7aHjaai2dajuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqz GeGaaG4naiaad6gacqGHsislcaaIXaGaaG4maiabgglaXkaaisdaju aGdaGcaaGcbaqcLbsacaaIZaaaleqaaKqzGeGaaGikaiaad6gacqGH sislcaaIYaGaaGykaaGcbaqcLbsacaWGUbWcdaahaaqcbasabeaaju gWaiaaikdaaaqcLbsacqGHRaWkcaaIXaGaaGimaiaad6gacqGHsisl caaIYaGaaG4maaaaaSqabaqcLbsacaaISaGaaGjbVlabek7aIjaai2 dajuaGdaGcaaGcbaqcfa4aaSaaaOqaaKqzGeGaamOBaiabgUcaRiaa iwdacqWItisBcaaI0aqcfa4aaOaaaOqaaKqzGeGaaG4maaWcbeaaaO qaaKqzGeGaamOBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa ey4kaSIaaGymaiaaicdacaWGUbGaeyOeI0IaaGOmaiaaiodaaaaale qaaKqzGeGaaGOlaaaa@6DF9@

For k=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaaG4maaaa@3BC2@  we obtain:

σ 3 = 1 6 σ 1 3 1 2 σ 1 s 2 + 1 3 s 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZLqbaoaaBaaajeaibaqcLbmacaaIZaaaleqaaKqz GeGaaGypaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaaGOnaa aacqaHdpWClmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbmacaaI ZaaaaKqzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLb sacaaIYaaaaiabeo8aZTWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqa aKqzGeGaam4CaSWaaSbaaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGe Gaey4kaSscfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIZaaa aiaadohalmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaai6 caaaa@5EDC@

The metric reduces to
σ 3 = y 0 3 y 0 i=1 n1 y i 2 +a i y i 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeo8aZLqbaoaaBaaajeaibaqcLbmacaaIZaaaleqaaKqz GeGaaGypaiaadMhalmaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLb macaaIZaaaaKqzGeGaeyOeI0IaamyEaSWaaSbaaKqaGeaajugWaiaa icdaaKqaGeqaaKqbaoaaqahakeqajeaibaqcLbmacaWGPbGaaGypai aaigdaaKqaGeaajugWaiaad6gacqGHsislcaaIXaaajugibiabggHi LdGaamyEaSWaa0baaKqaGeaajugWaiaadMgaaKqaGeaajugWaiaaik daaaqcLbsacqGHRaWkcaWGHbqcfa4aaabuaOqabSqaaiaadMgaaeqa jugibiabggHiLdGaamyEaSWaa0baaKqaGeaajugWaiaadMgaaKqaGe aajugWaiaaiodaaaqcLbsacaaIUaaaaa@674C@

For k=4=n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaaGinaiaai2dacaWGUbaaaa@3D7D@ enter the coordinates:

2 y 0 = x 1 + x 2 + x 3 + x 4 ,2 y 1 = x 1 + x 2 x 3 x 4 ,2 y 2 = x 1 x 2 x 3 + x 4 ,2 y 3 = x 1 x 2 + x 3 x 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaWG5bqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqa baqcLbsacaaI9aGaamiEaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGe qaaKqzGeGaey4kaSIaamiEaSWaaSbaaKqaGeaajugWaiaaikdaaKqa GeqaaKqzGeGaey4kaSIaamiEaSWaaSbaaKqaGeaajugWaiaaiodaaK qaGeqaaKqzGeGaey4kaSIaamiEaSWaaSbaaKqaGeaajugWaiaaisda aKqaGeqaaKqzGeGaaGilaiaaysW7caaIYaGaamyEaSWaaSbaaKqaGe aajugWaiaaigdaaKqaGeqaaKqzGeGaaGypaiaadIhalmaaBaaajeai baqcLbmacaaIXaaajeaibeaajugibiabgUcaRiaadIhalmaaBaaaje aibaqcLbmacaaIYaaajeaibeaajugibiabgkHiTiaadIhajuaGdaWg aaqcbasaaKqzadGaaG4maaWcbeaajugibiabgkHiTiaadIhalmaaBa aajeaibaqcLbmacaaI0aaajeaibeaajugibiaaiYcacaaMe8UaaGOm aiaadMhalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaai2 dacaWG4bWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGH sislcaWG4bWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsacq GHsislcaWG4bWcdaWgaaqcbasaaKqzadGaaG4maaqcbasabaqcLbsa cqGHRaWkcaWG4bWcdaWgaaqcbasaaKqzadGaaGinaaqcbasabaqcLb sacaaISaGaaGjbVlaaikdacaWG5bWcdaWgaaqcbasaaKqzadGaaG4m aaqcbasabaqcLbsacaaI9aGaamiEaSWaaSbaaKqaGeaajugWaiaaig daaKqaGeqaaKqzGeGaeyOeI0IaamiEaSWaaSbaaKqaGeaajugWaiaa ikdaaKqaGeqaaKqzGeGaey4kaSIaamiEaSWaaSbaaKqaGeaajugWai aaiodaaKqaGeqaaKqzGeGaeyOeI0IaamiEaKqbaoaaBaaajeaibaqc LbmacaaI0aaaleqaaKqzGeGaaGOlaaaa@A223@

The reverse transition has an analogous form:

                2 x 1 = y 0 + y 1 + y 2 + y 3 ,2 x 2 = y 0 + y 1 y 2 y 3 ,2 x 3 = y 0 y 1 y 2 + y 3 ,2 x 4 = y 0 y 1 + y 2 y 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaWG4bWcdaWgaaqcbasaaKqzadGaaGymaaqcbasa baqcLbsacaaI9aGaamyEaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGe qaaKqzGeGaey4kaSIaamyEaSWaaSbaaKqaGeaajugWaiaaigdaaKqa GeqaaKqzGeGaey4kaSIaamyEaSWaaSbaaKqaGeaajugWaiaaikdaaK qaGeqaaKqzGeGaey4kaSIaamyEaSWaaSbaaKqaGeaajugWaiaaioda aKqaGeqaaKqzGeGaaGilaiaaysW7caaIYaGaamiEaSWaaSbaaKqaGe aajugWaiaaikdaaKqaGeqaaKqzGeGaaGypaiaadMhalmaaBaaajeai baqcLbmacaaIWaaajeaibeaajugibiabgUcaRiaadMhalmaaBaaaje aibaqcLbmacaaIXaaajeaibeaajugibiabgkHiTiaadMhalmaaBaaa jeaibaqcLbmacaaIYaaajeaibeaajugibiabgkHiTiaadMhalmaaBa aajeaibaqcLbmacaaIZaaajeaibeaajugibiaaiYcacaaMe8UaaGOm aiaadIhalmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaai2 dacaWG5bWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqGH sislcaWG5bWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacq GHsislcaWG5bWcdaWgaaqcbasaaKqzadGaaGOmaaqcbasabaqcLbsa cqGHRaWkcaWG5bqcfa4aaSbaaKqaGeaajugWaiaaiodaaSqabaqcLb sacaaISaGaaGjbVlaaikdacaWG4bWcdaWgaaqcbasaaKqzadGaaGin aaqcbasabaqcLbsacaaI9aGaamyEaSWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaKqzGeGaeyOeI0IaamyEaSWaaSbaaKqaGeaajugWaiaa igdaaKqaGeqaaKqzGeGaey4kaSIaamyEaKqbaoaaBaaajeaibaqcLb macaaIYaaaleqaaKqzGeGaeyOeI0IaamyEaSWaaSbaaKqaGeaajugW aiaaiodaaKqaGeqaaKqzGeGaaGOlaaaa@A1BF@

This transformation is similar to the transformation in the case k=2=n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaaGOmaiaai2dacaWGUbaaaa@3D7B@ at the transition from the metric |x | 2 = x 1 x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG4bGaaGiFaSWaaWbaaKqaGeqabaqcLbmacaaI YaaaaKqzGeGaaGypaiaadIhalmaaBaaajeaibaqcLbmacaaIXaaaje aibeaajugibiaadIhalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaa aaa@474A@ to 1 2 ( y 0 2 y 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaaikdaaaGaaGik aiaadMhalmaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaaIYa aaaKqzGeGaeyOeI0IaamyEaSWaa0baaKqaGeaajugWaiaaigdaaKqa GeaajugWaiaaikdaaaqcLbsacaaIPaaaaa@4A19@ by the transformation y 0 = 1 2 ( x 1 + x 2 ), y 1 = 1 2 ( x 1 x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajuaGdaGcaaGcba qcLbsacaaIYaaaleqaaaaajugibiaaiIcacaWG4bWcdaWgaaqcbasa aKqzadGaaGymaaqcbasabaqcLbsacqGHRaWkcaWG4bWcdaWgaaqcba saaKqzadGaaGOmaaqcbasabaqcLbsacaaIPaGaaGilaiaaysW7caWG 5bWcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacaaI9aqcfa 4aaSaaaOqaaKqzGeGaaGymaaGcbaqcfa4aaOaaaOqaaKqzGeGaaGOm aaWcbeaaaaqcLbsacaaIOaGaamiEaSWaaSbaaKqaGeaajugWaiaaig daaKqaGeqaaKqzGeGaeyOeI0IaamiEaSWaaSbaaKqaGeaajugWaiaa ikdaaKqaGeqaaKqzGeGaaGykaaaa@628B@ preserving the sums of squares y 0 2 + y 1 2 = x 1 2 + x 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbma caaIYaaaaKqzGeGaey4kaSIaamyEaSWaa0baaKqaGeaajugWaiaaig daaKqaGeaajugWaiaaikdaaaqcLbsacaaI9aGaamiEaSWaa0baaKqa GeaajugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkca WG4bWcdaqhaaqcbasaaKqzadGaaGOmaaqcbasaaKqzadGaaGOmaaaa aaa@52CC@ , x 1 2 + x 2 2 + x 3 2 + x 4 2 = y 0 2 + y 1 2 + y 2 2 + y 3 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaDaaajeaibaqcLbmacaaIXaaajeaibaqcLbma caaIYaaaaKqzGeGaey4kaSIaamiEaSWaa0baaKqaGeaajugWaiaaik daaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWG4bWcdaqhaaqc basaaKqzadGaaG4maaqcbasaaKqzadGaaGOmaaaajugibiabgUcaRi aadIhalmaaDaaajeaibaqcLbmacaaI0aaajeaibaqcLbmacaaIYaaa aKqzGeGaaGypaiaadMhalmaaDaaajeaibaqcLbmacaaIWaaajeaiba qcLbmacaaIYaaaaKqzGeGaey4kaSIaamyEaSWaa0baaKqaGeaajugW aiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWG5bWcda qhaaqcbasaaKqzadGaaGOmaaqcbasaaKqzadGaaGOmaaaajugibiab gUcaRiaadMhalmaaDaaajeaibaqcLbmacaaIZaaajeaibaqcLbmaca aIYaaaaKqzGeGaaGOlaaaa@6F25@  Here y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3CB4@ plays the role of the time coordinate, and the rest–the role of spatial coordinates, and take arbitrary values. A positive value of the norm have vectors for which y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3CB4@ is greater than the maximal root of the corresponding polynomial. In our case:

x 1 x 2 x 3 x 4 = 1 16 ( y 0 4 2 y 0 2 r 2 +8 y 0 y 1 y 2 y 3 +2( y 1 4 + y 2 4 + y 3 4 ) r 4 ), r 2 = y 1 2 + y 2 2 + y 3 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biaadIhalmaaBaaajeaibaqcLbmacaaIYaaajeaibeaajugibiaadI halmaaBaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaadIhajuaG daWgaaqcbasaaKqzadGaaGinaaWcbeaajugibiaai2dajuaGdaWcaa GcbaqcLbsacaaIXaaakeaajugibiaaigdacaaI2aaaaiaaiIcacaWG 5bWcdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGinaaaaju gibiabgkHiTiaaikdacaWG5bWcdaqhaaqcbasaaKqzadGaaGimaaqc basaaKqzadGaaGOmaaaajugibiaadkhalmaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiabgUcaRiaaiIdacaWG5bqcfa4aaSbaaKqaGeaa jugWaiaaicdaaSqabaqcLbsacaWG5bWcdaWgaaqcbasaaKqzadGaaG ymaaqcbasabaqcLbsacaWG5bqcfa4aaSbaaKqaGeaajugWaiaaikda aSqabaqcLbsacaWG5bWcdaWgaaqcbasaaKqzadGaaG4maaqcbasaba qcLbsacqGHRaWkcaaIYaGaaGikaiaadMhalmaaDaaajeaibaqcLbma caaIXaaajeaibaqcLbmacaaI0aaaaKqzGeGaey4kaSIaamyEaSWaa0 baaKqaGeaajugWaiaaikdaaKqaGeaajugWaiaaisdaaaqcLbsacqGH RaWkcaWG5bWcdaqhaaqcbasaaKqzadGaaG4maaqcbasaaKqzadGaaG inaaaajugibiaaiMcacqGHsislcaWGYbWcdaahaaqcbasabeaajugW aiaaisdaaaqcLbsacaaIPaGaaGilaiaaysW7caWGYbWcdaahaaqcba sabeaajugWaiaaikdaaaqcLbsacaaI9aGaamyEaSWaa0baaKqaGeaa jugWaiaaigdaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWG5b WcdaqhaaqcbasaaKqzadGaaGOmaaqcbasaaKqzadGaaGOmaaaajugi biabgUcaRiaadMhalmaaDaaajeaibaqcLbmacaaIZaaajeaibaqcLb macaaIYaaaaKqzGeGaaGOlaaaa@A952@

At first glance this metric is anisotropic. As will be seen later, this does not mean anisotropy of space, but reduces only to the possible different compression of space in the direction of motion for different directions of velocity. And the speed of light will remain the same, independent of direction. This compression is apparent from the side of another observer.

An analogue of these transformations for the case k=n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaamOBaaaa@3BF8@ is the transformation using the Hadamard matrix with the normalization 1 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajuaGdaGcaaGcbaqcLbsa caWGUbaaleqaaaaaaaa@3CF0@ . In this case, the role of the time coordinates plays y 0 = 1 n ( x 1 + x 2 +...+ x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaai2dajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajuaGdaGcaaGcba qcLbsacaWGUbaaleqaaaaajugibiaaiIcacaWG4bWcdaWgaaqcbasa aKqzadGaaGymaaqcbasabaqcLbsacqGHRaWkcaWG4bWcdaWgaaqcba saaKqzadGaaGOmaaqcbasabaqcLbsacqGHRaWkcaaIUaGaaGOlaiaa i6cacqGHRaWkcaWG4bqcfa4aaSbaaKqaGeaajugWaiaad6gaaSqaba qcLbsacaaIPaaaaa@5579@ . However, not for all n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gaaaa@3A41@ there is a Hadamard matrix. Correspondingly, the orthonormal system of coordinates y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CE8@ must be sought as in the case k=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaaGOmaaaa@3BC1@ .

Let E k (x)= 1 C n k σ k ( x 1 , x 2 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwealmaaBaaajeaibaqcLbmacaWGRbaajeaibeaajugi biaaiIcacaWG4bGaaGykaiaai2dajuaGdaWcaaGcbaqcLbsacaaIXa aakeaajugibiaadoealmaaDaaajeaibaqcLbmacaWGUbaajeaibaqc LbmacaWGRbaaaaaajugibiabeo8aZTWaaSbaaKqaGeaajugWaiaadU gaaKqaGeqaaKqzGeGaaGikaiaadIhalmaaBaaajeaibaqcLbmacaaI XaaajeaibeaajugibiaaiYcacaWG4bWcdaWgaaqcbasaaKqzadGaaG OmaaqcbasabaqcLbsacaaISaGaaGOlaiaai6cacaaIUaGaaGilaiaa dIhalmaaBaaajeaibaqcLbmacaWGUbaajeaibeaajugibiaaiMcaaa a@5FC7@ . An analogue of the Holder inequality:

( 1 n i=1 n x i y i ) k E k (x) E k (y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcajuaGdaWcaaGcbaqcLbsacaaIXaaakeaajugibiaa d6gaaaqcfa4aaabCaOqabKqaGeaajugWaiaadMgacaaI9aGaaGymaa qcbasaaKqzadGaamOBaaqcLbsacqGHris5aiaadIhalmaaBaaajeai baqcLbmacaWGPbaajeaibeaajugibiaadMhalmaaBaaajeaibaqcLb macaWGPbaajeaibeaajugibiaaiMcajuaGdaahaaWcbeqcbasaaKqz adGaam4AaaaajugibiabgwMiZkaadwealmaaBaaajeaibaqcLbmaca WGRbaajeaibeaajugibiaaiIcacaWG4bGaaGykaiaadwealmaaBaaa jeaibaqcLbmacaWGRbaajeaibeaajugibiaaiIcacaWG5bGaaGykaa aa@61F2@

Is not satisfied without the additional requirement of the same ordering:

( x i x j )( y i y j )0i,j. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaWG4bWcdaWgaaqcbasaaKqzadGaamyAaaqcbasa baqcLbsacqGHsislcaWG4bWcdaWgaaqcbasaaKqzadGaamOAaaqcba sabaqcLbsacaaIPaGaaGikaiaadMhalmaaBaaajeaibaqcLbmacaWG PbaajeaibeaajugibiabgkHiTiaadMhalmaaBaaajeaibaqcLbmaca WGQbaajeaibeaajugibiaaiMcacqGHLjYScaaIWaGaaGjbVlaaysW7 cqGHaiIicaWGPbGaaGilaiaadQgacaaIUaaaaa@584B@

Only for k=n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadUgacaaI9aGaamOBaaaa@3BF8@ this inequality holds for of non–negative numbers, which means that the Berwald–Moore metric is self–adjoint.

In general, any metric (norm) in R n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkfalmaaCaaajeaibeqaaKqzadGaamOBaaaaaaa@3C9D@ can be adducted to the form:

|x|= E 1 φ( e 2 , e 3 ,..., e n ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiYhacaWG4bGaaGiFaiaai2dacaWGfbWcdaWgaaqcbasa aKqzadGaaGymaaqcbasabaqcLbsacqaHgpGAcaaIOaGaamyzaSWaaS baaKqaGeaajugWaiaaikdaaKqaGeqaaKqzGeGaaGilaiaadwgalmaa BaaajeaibaqcLbmacaaIZaaajeaibeaajugibiaaiYcacaaIUaGaaG Olaiaai6cacaaISaGaamyzaSWaaSbaaKqaGeaajugWaiaad6gaaKqa GeqaaKqzGeGaaGykaiaaiYcaaaa@54E3@

where e i = E i (x) E 1 i (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwgalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugi biaai2dajuaGdaWcaaGcbaqcLbsacaWGfbWcdaWgaaqcbasaaKqzad GaamyAaaqcbasabaqcLbsacaaIOaGaamiEaiaaiMcaaOqaaKqzGeGa amyraSWaa0baaKqaGeaajugWaiaaigdaaKqaGeaajugWaiaadMgaaa qcLbsacaaIOaGaamiEaiaaiMcaaaaaaa@4E92@ . This corresponds to dimension theory in mechanics. Removing the value of E 1 (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwealmaaBaaajeaibaqcLbmacaaIXaaajeaibeaajugi biaaiIcacaWG4bGaaGykaaaa@3F72@ we get a dimensionless formula, and the multiplier is expressed as a function of the dimensionless variables e i (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwgalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugi biaaiIcacaWG4bGaaGykaaaa@3FC5@ . For a hyperbolic metric, the opposite triangle inequality reduces to the negative definiteness of the quadratic form 2 s x i x j d x i d x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqGHciITlmaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiaadohaaOqaaKqzGeGaeyOaIyRaamiEaSWaaSbaaK qaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaeyOaIyRaamiEaKqbaoaa BaaajeaibaqcLbmacaWGQbaaleqaaaaajugibiaadsgacaWG4bWcda WgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbsacaWGKbGaamiEaSWa aSbaaKqaGeaajugWaiaadQgaaKqaGeqaaaaa@54D2@ on the indicatrix. The latter condition is often easier to verify.

Physicists often seem strange to have hyperbolic metrics defined in the region x i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugi biabgwMiZkaaicdaaaa@3FF6@ . But really, there are no grounds for this. We can always take the coordinate system y 0 ,..., y n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaaiYcacaaIUaGaaGOlaiaai6cacaaISaGaamyEaSWaaSbaaKqaGe aajugWaiaad6gacqGHsislcaaIXaaajeaibeaaaaa@461E@ , obtained by a linear transformation from the initial coordinates, where y 1 , y 2 ,..., y n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaStKqzGeGaamyEaKqbaoaaBaaajeaibaqcLbmacaaIXaaaleqa aKqzGeGaaGilaiaadMhalmaaBaaajeaibaqcLbmacaaIYaaajeaibe aajugibiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGaamyEaSWaaSba aKqaGeaajugWaiaad6gacqGHsislcaaIXaaajeaibeaaaaa@4BF6@ are arbitrary, and the restriction y 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaai6dacaaIWaaaaa@3EC5@ is superimposed on measurable vectors directivity to the future). And the strict opposite triangle inequality imposes on the indicatrix given by the homogeneous equation f( y 0 ,..., y n1 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgacaaIOaGaamyEaKqbaoaaBaaajeaibaqcLbmacaaI WaaaleqaaKqzGeGaaGilaiaai6cacaaIUaGaaGOlaiaaiYcacaWG5b qcfa4aaSbaaKqaGeaajugWaiaad6gacqGHsislcaaIXaaaleqaaKqz GeGaaGykaiaai2dacaaIXaaaaa@4B47@ of the first degree, or arbitrary y 0 =φ( y 1 ,..., y n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMhajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugi biaai2dacqaHgpGAcaaIOaGaamyEaSWaaSbaaKqaGeaajugWaiaaig daaKqaGeqaaKqzGeGaaGilaiaai6cacaaIUaGaaGOlaiaaiYcacaWG 5bWcdaWgaaqcbasaaKqzadGaamOBaiabgkHiTiaaigdaaKqaGeqaaK qzGeGaaGykaaaa@4EF0@ , which is the solution of the first, one condition:

The quadratic form is positive–definite.

ij 2 φ y i y j x i x j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaaeqbGcbeqcbasaaKqzadGaamyAaiaadQgaaSqabKqzGeGa eyyeIuoajuaGdaWcaaGcbaqcLbsacqGHciITlmaaCaaajeaibeqaaK qzadGaaGOmaaaajugibiabeA8aQbGcbaqcLbsacqGHciITcaWG5bWc daWgaaqcbasaaKqzadGaamyAaaqcbasabaqcLbsacqGHciITcaWG5b qcfa4aaSbaaKqaGeaajugWaiaadQgaaSqabaaaaKqzGeGaamiEaSWa aSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaamiEaSWaaSbaaK qaGeaajugWaiaadQgaaKqaGeqaaaaa@5A3A@        (6)

In a hyperbolic metric, there is always a (n1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIcacaWGUbGaeyOeI0IaaGymaiaaiMcaaaa@3D4E@ –dimensional light cone, the set of vectors with the norm 0. Any vector with a positive norm can be represented as the sum of two vectors with zero norms. The latter follows from the fact that two light cones with vertices at the point O MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad+eaaaa@3A22@ (origin) and at the point X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIfaaaa@3A2B@ at the end of the measurable vector, intersect.

Conclusion

One of the problems considered in the paper is a minimization of the set of axioms for geometries describing the physical space–time continuum. We were convinced that hyperbolicity determines the cause–effect and does not require a special definition of the signature of space. The continuity property follows from the Archimedean property of the standard topology on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHcaa@3ABE@ and from homogeneity axiom. For a quantum description of space–time, where the cause–and–effect can be not valid at short distances, probably it would be better to replace the standard topology on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabl2riHcaa@3ABE@ with a quasi–topology: when all the sequences (filters) { x i } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiUhacaWG4bWcdaWgaaqcbasaaKqzadGaamyAaaqcbasa baqcLbsacaaI9baaaa@3F82@ converging to the point x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ are defined by the fact that, starting from some i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadMgaaaa@3A3C@ , their elements fall into an ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLbaa@3AF5@ –neighborhood of the point x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadIhaaaa@3A4B@ , with the fixed value ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew7aLbaa@3AF5@ as a quantum number.

In Guts et al.,8 is presented a justification for STR, expressed in the principles of the space uniformity and the identity of the finite light speed in all inertial reference systems, like in the Minkowski geometry. In the future, we plan to show that STR represents itself a hyperbolic homogeneous and isotropic geometry. The property of isotropy corresponds more closely to the Berwald–Moore metric, rather than Minkowski one. The isotropy of hyperbolic geometries corresponds more closely to the invariance property with respect to the choice of scale for all possible variants, different in various directions. The role of generalized conformal transformations, as shown at the end of the second section of this article, is played by transformations of the metric with the hyperbolic functions. The Berwald–Moore geometry fully corresponds to the homogeneity property when replacing scales in all possible directions.

Acknowledgements

The authors are grateful to Dr. Yu. V. Popov for useful discussions and help.

Conflict of interest

Author declares there is no conflict of interest.

References

  1. Asanov GS. Observed in the general theory of relativity: Finsler approach. Russia: Bulletin of the Moscow State University of Physics; 1976. p. 84–88.
  2. Asanov GS. On the Finslerian generalization of the theory of relativity. Adding a second to the book X Rund Differential geometry of Finsler spaces. Moscow: Nauka; 1981. p. 439–471.
  3. Bogoslovsky GY. On the special relativistic theory of anisotropic space–time. USA: Doklady Akademii Nauk SSSR; 1978. p. 1055–1058.
  4. Bogoslovsky GY. A special–relativistic theory of the locally anisotropic space–time. The Nuovo Cimento B. 1977;40(1): 99–115.
  5. Bogoslovsky GY. A generalization of Einstein’s relativity theory for the anisotropic space–time. Hadronic Journal. 1984;7(6):1361–1408.
  6. Busemann H. Nime–like spaces. Dissertationes mathematicae. 1967;53:5–50.
  7. Guts AK. Axiomatic Theory of Relativity. Russian Mathematical Surveys. 1982;37:41–80.
  8. Guts AK. Semigroups in the foundations of geometry and axiomatic theory of space–time. In: Hofmann KH, Lawson JD, Vinberg de Gruyter EB, editors. Germany: Expositions in Mathematics; 1995. p. 57–76.
  9. Guts AK. Chronogeometry: Axiomatic theory of relativity. Russia: Lenand; 2018.
  10. Aidagulov RR, Shamolin MV. Topology on Polynumbers and Fractals. Journal of Mathematical Sciences. 2015;204(6):760–771.
  11. Aidagulov RR, Shamolin MV. Archimedean uniform structures. Journal of Mathematical Sciences. 2008;154(4):496–501.
  12. Volovich IV. P–Adic Numbers. Ultrametric Analysis and Applications. Germany: Springer; 2010. p. 77–87.
  13. Leskovec J, Rajaraman A, Ullman J. Mining Massive Datasets. USA: Stanford Textbook; 2014.
  14. Beckenbach EF, Bellman R. Introduction to Inequalities. Germany: Springer; 1961. p. 1–208.
Creative Commons Attribution License

©2018 Aidagulov, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.