Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 1

Matrix solution for the inverse problem of classical dynamics of a particle

Ana B. Calado, Juan D. Bulnes

Department de Ciências Exatas e Tecnologia, Universidade Federal do Amapá, Brazil

Correspondence: Juan D. Bulnes, Department de Ciências Exatas e Tecnologia, Universidade Federal do Amapá, Rod. Juscelino Kubitschek, 68903-419, Macapá-AP, Brazil

Received: January 25, 2023 | Published: February 7, 2023

Citation: Calado AB, Bulnes JD. Matrix solution for the inverse problem of classical dynamics of a particle. Phys Astron Int J. 2023;7(1):20-24 DOI: 10.15406/paij.2023.07.00279

Download PDF

Abstract

We solve the inverse problem corresponding to the fundamental problem of the classical dynamics of a material particle through a matrix treatment: assuming knowing the mass and the position (the trajectory, in relation to an inertial reference) of a particle at all times, we impose that this corresponds to the eigenvector of a “position matrix". Subsequent development leads to a “force matrix", which has the resultant force on the particle as its eigenvector. We identified some limitations of this matrix treatment.

Keywords: Classical dynamics of a particle, Problem of eigenvalues and eigenvectors with dependence on a variable, inverse problem.

Introduction

The physical law that governs the classical dynamics of a particle can, in principle, be written in a matrix form, although this does not reveal anything new. This possibility, however, illustrates a context that may be suitable for some problems. In this matrix format, such a classical law is written as,

  =   a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGaf8xmHyKb aSaacaGGGcGaaiiOaiabg2da9iaacckacaGGGcGae83mH0Kabmyya8 aagaWcaaaa@4A90@   (1)

 Where MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83mH0ea aa@42C3@ would be a matrix1 to be determined, which would necessarily have the mass m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gaaaa@3906@ of the particle as its eigenvalue and the acceleration as its eigenvector. Even more, the matrix MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83mH0ea aa@42C3@ would have the total strength MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGaf8xmHyKb aSaaaaa@42CC@ itself as an eigenvector (linearly dependent on a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadggapaGbaSaaaaa@391B@ ) associated with the same eigenvalue m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gaaaa@3906@ ,

( m a )  =  m( m a )         =  m . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaaaaaapeGae83mH00a aeWaa8aabaWdbiaad2gaceWGHbWdayaalaaapeGaayjkaiaawMcaai aacckacaGGGcGaeyypa0JaaiiOaiaacckacaWGTbWaaeWaa8aabaWd biaad2gaceWGHbWdayaalaaapeGaayjkaiaawMcaaiaacckacaGGGc GaaiiOaiabgkziUkaacckacaGGGcGaaiiOaiab=ntinjqb=ftigzaa laGaaiiOaiaacckacqGH9aqpcaGGGcGaaiiOaiaad2gacuWFXeIrga Wcaiaac6caaaa@6430@  

We emphasize the fact that there is nothing new in this, since the introduction of the matrix M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E6@ is nothing but a simple mathematical device that allows us to rewrite this dynamic law. It may be of some interest, however, to construct the matrix M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E6@ given m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gaaaa@3906@ and F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeaaaa@38DF@ , that is, to solve a simple inverse problem of matrix algebra.

In Applied Mathematics, Physics, Geophysics,1-3 among others, there are discussions of direct problems and inverse problems. In Classical Mechanics, for example, a typical direct problem consists of determining the physical path taken by a particle, or by the center of mass of a system of particles, under the action of a certain field or conservative force, to which a certain Lagrangian corresponds. The corresponding inverse problem consists of the following: Given a physical trajectory, determine the Lagrangian (or the family of Lagrangians) that would generate it. In Quantum Mechanics, the problem of determining the energy spectrum for a given quantum Hamiltonian of a microscopic physical system is a kind of direct problem, the corresponding inverse problem being to determine the quantum Hamiltonian (or the potential) that would generate a certain spectrum of energies, which could have been revealed experimentally. We found in recent literature several inverse problems.4-10

Problem definition

The inverse problem corresponding to the fundamental problem of the classical dynamics of a material particle is considered here through a matrix treatment. Consider a point particle, of mass m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbaaaa@3709@ , in motion relative to a certain terrestrial inertial reference frame (TIR), under the action of a known resultant force f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAgapaGbaSaaaaa@3920@ . With this information, and the corresponding initial conditions, it is possible to solve the (direct) problem of the dynamics of a classical particle, having as a solution the position, r ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3BDD@ , of the particle for every instant of time; that is, the path physically traveled by the particle. In what follows, we will contextualize our approach: we will require that the position r ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3BDD@ of the considered particle is an eigenvector of a certain matrix, to be defined, here represented by R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38EB@ , which we will call the position matrix. Consistent with this inverse context, we write,

R( t )   r ( t )  =  λ( t )   r ( t ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacckacaGG GcGabmOCa8aagaWca8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaiaacckacaGGGcGaeyypa0JaaiiOaiaacckacqaH7oaBdaqadaWd aeaapeGaamiDaaGaayjkaiaawMcaaiaacckacaGGGcGabmOCa8aaga Wca8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacYcaaaa@5249@   (2)

 where we have to consider the general situation in which the position matrix and the eigenvalue can also depend on the time variable, t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshaaaa@390D@ , as a consequence of which it is assumed that r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaaaaa@392C@ is known for each instant t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshaaaa@390D@ . The parameter λ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSnaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3C69@ , not being known initially, will be defined accordingly. The interesting thing is that, from expression (2), a “force matrix", F( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@3B80@ , can be defined, which will have, as a consequence of the construction presented here, the total force, f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAgapaGbaSaaaaa@3920@ , acting on the particle , as its eigenvector.

We anticipate below the order in which the calculations will be presented: having built the position matrix, R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@3B8C@ , under the requirement of having r ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3BDD@  as its eigenvector, we will be able to obtain what we will call the velocity matrix by differentiating2 the expression (2) in relation to the time variable, t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshaaaa@390D@ . A subsequent differentiation, in relation to the same variable, will generate what we call the acceleration matrix which, after being multiplied by the mass of the particle, will generate the force matrix, having as an eigenvector, precisely, the force f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAgapaGbaSaaaaa@3920@ . Complementary mathematical details will be specified in the course of the corresponding calculation. It is important to note that the matrices considered must carry a sufficient number of degrees of freedom (independent parameters) so that it is possible to satisfy certain requirements consistent with the matrix context considered.

Mathematical development

In our development, we did not consider the most general matrix possible (with nine free elements) but a simple one to show the idea involved. We consider, among many possibilities, a position matrix, R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@3B8C@ , with five free elements3,

R( t )  =  ( 0 R 12 ( t ) 0 0 0 R 23 ( t ) R 31 ( t ) R 32 ( t ) R 33 ( t ) ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacckacaGG GcGaeyypa0JaaiiOaiaacckadaqadaWdaeaafaqaaeWadaaabaWdbi aaicdaa8aabaWdbiaadkfajuaGpaWaaSbaaeaapeGaaGymaiaaikda a8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdae aapeGaaGimaaWdaeaapeGaaGimaaWdaeaapeGaaGimaaWdaeaapeGa amOuaKqba+aadaWgaaqaa8qacaaIYaGaaG4maaWdaeqaaOWdbmaabm aapaqaa8qacaWG0baacaGLOaGaayzkaaaapaqaa8qacaWGsbWdamaa BaaajuaGbaWdbiaaiodacaaIXaaal8aabeaak8qadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaaWdaeaapeGaamOuaKqba+aadaWgaaqa a8qacaaIZaGaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0baaca GLOaGaayzkaaaapaqaa8qacaWGsbWdamaaBaaajuaGbaWdbiaaioda caaIZaaal8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaaaaaiaawIcacaGLPaaacaGGUaaaaa@650E@   (3)

In matrix (3), the free elements will later be properly fixed. So, from (2) and (3) we have,

( 0 R 12 ( t ) 0 0 0 R 23 ( t ) R 31 ( t ) R 32 ( t ) R 33 ( t ) )( r 1 ( t ) r 2 ( t ) r 3 ( t ) )  =  λ( t )( r 1 ( t ) r 2 ( t ) r 3 ( t ) ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaauaabaqadmaaaeaapeGaaGimaaWdaeaapeGaamOua8aa daWgaaqcfayaa8qacaaIXaGaaGOmaaWcpaqabaGcpeWaaeWaa8aaba WdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiaaicdaa8aabaWdbiaa icdaa8aabaWdbiaaicdaa8aabaWdbiaadkfajuaGpaWaaSbaaeaape GaaGOmaiaaiodaa8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaaWdaeaapeGaamOuaKqba+aadaWgaaqaa8qacaaIZaGaaG ymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaa paqaa8qacaWGsbqcfa4damaaBaaabaWdbiaaiodacaaIYaaapaqaba GcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiaa dkfapaWaaSbaaKqbagaapeGaaG4maiaaiodaaSWdaeqaaOWdbmaabm aapaqaa8qacaWG0baacaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaa bmaapaqaauaabaqadeaaaeaapeGaamOCaKqba+aadaWgaaqaa8qaca aIXaaapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa a8aabaWdbiaadkhajuaGpaWaaSbaaeaapeGaaGOmaaWdaeqaaOWdbm aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaapaqaa8qacaWGYbWd amaaBaaajuaGbaWdbiaaiodaaSWdaeqaaOWdbmaabmaapaqaa8qaca WG0baacaGLOaGaayzkaaaaaaGaayjkaiaawMcaaiaacckacaGGGcGa eyypa0JaaiiOaiaacckacqaH7oaBdaqadaWdaeaapeGaamiDaaGaay jkaiaawMcaamaabmaapaqaauaabaqadeaaaeaapeGaamOCa8aadaWg aaqcfayaa8qacaaIXaaal8aabeaak8qadaqadaWdaeaapeGaamiDaa GaayjkaiaawMcaaaWdaeaapeGaamOCaKqba+aadaWgaaqaa8qacaaI YaaapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8 aabaWdbiaadkhapaWaaSbaaKqbagaapeGaaG4maaWcpaqabaGcpeWa aeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaaacaGLOaGaayzkaa GaaiOlaaaa@89B6@   (4)

 Assuming that none of the components of the position vector, r ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3BDD@ , is zero4 for any instant t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshaaaa@390D@ , we have,

R 12 ( t )   r 2 ( t )  =  λ( t )   r 1 ( t )      R 12 ( t )  =   λ( t )   r 1 ( t ) r 2 ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfajuaGpaWaaSbaaeaapeGaaGymaiaaikdaa8aabeaak8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacckacaGGGcGaamOCa8 aadaWgaaqcfayaa8qacaaIYaaal8aabeaak8qadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaiaacckacaGGGcGaeyypa0JaaiiOaiaacc kacqaH7oaBdaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaaccka caGGGcGaamOCaKqba+aadaWgaaqaa8qacaaIXaaapaqabaGcpeWaae Waa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGGcGaaiiOaiaaccka cqGHsgIRcaGGGcGaaiiOaiaadkfajuaGpaWaaSbaaeaapeGaaGymai aaikdaa8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMca aiaacckacaGGGcGaeyypa0JaaiiOaiaacckadaWcaaWdaeaapeGaeq 4UdW2aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGGcGaaiiO aiaadkhajuaGpaWaaSbaaeaapeGaaGymaaWdaeqaaOWdbmaabmaapa qaa8qacaWG0baacaGLOaGaayzkaaaapaqaa8qacaWGYbWdamaaBaaa juaGbaWdbiaaikdaaSWdaeqaaOWdbmaabmaapaqaa8qacaWG0baaca GLOaGaayzkaaaaaiaacYcaaaa@7C6D@   (5)

R 23 ( t )   r 3 ( t )=λ( t )   r 2 ( t )      R 23 ( t )= λ( t )   r 2 ( t ) r 3 ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfajuaGpaWaaSbaaeaapeGaaGOmaiaaiodaa8aabeaak8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacckacaGGGcGaamOCaK qba+aadaWgaaqaa8qacaaIZaaapaqabaGcpeWaaeWaa8aabaWdbiaa dshaaiaawIcacaGLPaaacqGH9aqpcqaH7oaBdaqadaWdaeaapeGaam iDaaGaayjkaiaawMcaaiaacckacaGGGcGaamOCaKqba+aadaWgaaqa a8qacaaIYaaapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcaca GLPaaacaGGGcGaaiiOaiaacckacqGHsgIRcaGGGcGaaiiOaiaadkfa paWaaSbaaKqbagaapeGaaGOmaiaaiodaaSWdaeqaaOWdbmaabmaapa qaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aabaWdbiab eU7aSnaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiiOaiaacc kacaWGYbqcfa4damaaBaaabaWdbiaaikdaa8aabeaak8qadaqadaWd aeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaamOCa8aadaWgaa qcfayaa8qacaaIZaaal8aabeaak8qadaqadaWdaeaapeGaamiDaaGa ayjkaiaawMcaaaaacaGGSaaaaa@7355@   (6)

and also,

R 31 ( t )   r 1 ( t )  +   R 32 ( t )   r 2 ( t )  +   R 33 ( t )   r 3 ( t )  =  λ( t )   r 3 ( t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfajuaGpaWaaSbaaeaapeGaaG4maiaaigdaa8aabeaak8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacckacaGGGcGaamOCaK qba+aadaWgaaqaa8qacaaIXaaapaqabaGcpeWaaeWaa8aabaWdbiaa dshaaiaawIcacaGLPaaacaGGGcGaaiiOaiabgUcaRiaacckacaGGGc GaamOuaKqba+aadaWgaaqaa8qacaaIZaGaaGOmaaWdaeqaaOWdbmaa bmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiiOaiaacckacaWGYb qcfa4damaaBaaabaWdbiaaikdaa8aabeaak8qadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaiaacckacaGGGcGaey4kaSIaaiiOaiaacc kacaWGsbqcfa4damaaBaaabaWdbiaaiodacaaIZaaapaqabaGcpeWa aeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGGcGaaiiOaiaadk hajuaGpaWaaSbaaeaapeGaaG4maaWdaeqaaOWdbmaabmaapaqaa8qa caWG0baacaGLOaGaayzkaaGaaiiOaiaacckacqGH9aqpcaGGGcGaai iOaiabeU7aSnaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiiO aiaacckacaWGYbWdamaaBaaajuaGbaWdbiaaiodaaSWdaeqaaOWdbm aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiOlaaaa@7DA5@   (7)

As, so far, λ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSnaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3C69@ is not defined, we can make the choice5: λ( t ) r 3 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSnaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyyyIORa amOCa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaaaa@42FB@ , with which λ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSnaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3C69@ will not assume null value at any instant of time. Another consequence of this choice is that the elements of the matrix R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38EB@ will necessarily be units of length. With λ( t ) r 3 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSnaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyyyIORa amOCa8aadaWgaaqcfayaa8qacaaIZaaal8aabeaak8qadaqadaWdae aapeGaamiDaaGaayjkaiaawMcaaaaa@4389@ , expressions (5) and (6) are written as,

R 12 ( t )= r 3 ( t )   r 1 ( t ) r 2 ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfajuaGpaWaaSbaaeaapeGaaGymaiaaikdaa8aabeaak8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9maalaaapaqaa8 qacaWGYbWdamaaBaaajuaGbaWdbiaaiodaaSWdaeqaaOWdbmaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaGaaiiOaiaacckacaWGYbqcfa 4damaaBaaabaWdbiaaigdaa8aabeaak8qadaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaaWdaeaapeGaamOCa8aadaWgaaqcfayaa8qaca aIYaaal8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMca aaaacaGGSaaaaa@523D@   (8)

R 23 ( t )= r 2 ( t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfajuaGpaWaaSbaaeaapeGaaGOmaiaaiodaa8aabeaak8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da9iaadkhajuaGpa WaaSbaaeaapeGaaGOmaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0baa caGLOaGaayzkaaGaaiOlaaaa@44FF@   (9)

 Substituting (8) and (9) into (7) we have,

R 31 ( t )= r 3 (t) 2 r 1 ( t ) r 3 ( t ) R 33 r 1 ( t ) r 2 ( t ) R 32 r 1 ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfapaWaaSbaaKqbagaapeGaaG4maiaaigdaaSWdaeqaaOWdbmaa bmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8aaba WdbiaadkhapaWaaSbaaKqbagaapeGaaG4maaWcpaqabaGcpeGaaiik aiaadshacaGGPaWdamaaCaaaleqajuaGbaWdbiaaikdaaaaak8aaba WdbiaadkhajuaGpaWaaSbaaeaapeGaaGymaaWdaeqaaOWdbmaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaaaaiabgkHiTmaalaaapaqaa8 qacaWGYbWdamaaBaaajuaGbaWdbiaaiodaaSWdaeqaaOWdbmaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaGaamOuaKqba+aadaWgaaqaa8 qacaaIZaGaaG4maaWdaeqaaaGcbaWdbiaadkhapaWaaSbaaKqbagaa peGaaGymaaWcpaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcaca GLPaaaaaGaeyOeI0YaaSaaa8aabaWdbiaadkhapaWaaSbaaKqbagaa peGaaGOmaaWcpaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcaca GLPaaacaWGsbqcfa4damaaBaaabaWdbiaaiodacaaIYaaapaqabaaa keaapeGaamOCaKqba+aadaWgaaqaa8qacaaIXaaapaqabaGcpeWaae Waa8aabaWdbiaadshaaiaawIcacaGLPaaaaaGaaiilaaaa@6A0F@   (10)

 and so we are left with the matrix,

R=( 0 r 3 ( t )   r 1 ( t ) r 2 ( t ) 0 0 0 r 2 ( t ) r 3 (t) 2 r 1 ( t ) r 3 ( t ) R 33 r 1 ( t ) r 2 ( t ) R 32 r 1 ( t ) R 32 ( t ) R 33 ( t ) ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfacqGH9aqpdaqadaWdaeaafaqaaeWadaaabaWdbiaaicdaa8aa baWdbmaalaaapaqaa8qacaWGYbWdamaaBaaajuaGbaWdbiaaiodaaS WdaeqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiiO aiaacckacaWGYbqcfa4damaaBaaabaWdbiaaigdaa8aabeaak8qada qadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaamOCa8aa daWgaaqcfayaa8qacaaIYaaal8aabeaak8qadaqadaWdaeaapeGaam iDaaGaayjkaiaawMcaaaaaa8aabaWdbiaaicdaa8aabaWdbiaaicda a8aabaWdbiaaicdaa8aabaWdbiaadkhapaWaaSbaaKqbagaapeGaaG OmaaWcpaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa a8aabaWdbmaalaaapaqaa8qacaWGYbWdamaaBaaajuaGbaWdbiaaio daaSWdaeqaaOWdbiaacIcacaWG0bGaaiyka8aadaahaaWcbeqcfaya a8qacaaIYaaaaaGcpaqaa8qacaWGYbWdamaaBaaajuaGbaWdbiaaig daaSWdaeqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaa aiabgkHiTmaalaaapaqaa8qacaWGYbWdamaaBaaajuaGbaWdbiaaio daaSWdaeqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGa amOuaKqba+aadaWgaaqaa8qacaaIZaGaaG4maaWdaeqaaaGcbaWdbi aadkhajuaGpaWaaSbaaeaapeGaaGymaaWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaaaiabgkHiTmaalaaapaqaa8qaca WGYbWdamaaBaaajuaGbaWdbiaaikdaaSWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaGaamOua8aadaWgaaqcfayaa8qaca aIZaGaaGOmaaWcpaqabaaakeaapeGaamOCaKqba+aadaWgaaqaa8qa caaIXaaapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPa aaaaaapaqaa8qacaWGsbqcfa4damaaBaaabaWdbiaaiodacaaIYaaa paqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aaba WdbiaadkfajuaGpaWaaSbaaeaapeGaaG4maiaaiodaa8aabeaak8qa daqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaaaiaawIcacaGLPa aacaGGUaaaaa@8E53@   (11)

 Consequently, under the specific form given to the matrix R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38EB@ , only R 32 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfapaWaaSbaaKqbagaapeGaaG4maiaaikdaaSWdaeqaaOWdbmaa bmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3E07@  and R 33 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfapaWaaSbaaKqbagaapeGaaG4maiaaiodaaSWdaeqaaOWdbmaa bmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3E08@  remain as the only free parameters.

By a straightforward procedure, it is simple to verify that the matrix R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38EB@ , in (11), has λ( t )= r 3 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSnaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amOCa8aadaWgaaqcfayaa8qacaaIZaaal8aabeaak8qadaqadaWdae aapeGaamiDaaGaayjkaiaawMcaaaaa@42C6@ as its eigenvalue and r ( t )= ( r 1 ( t ), r 2 ( t ), r 3 ( t )) T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa cqGH9aqpcaGGOaGaamOCaKqba+aadaWgaaqaa8qacaaIXaaapaqaba GcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGSaGaamOC a8aadaWgaaqcfayaa8qacaaIYaaal8aabeaak8qadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaiaacYcacaWGYbWdamaaBaaajuaGbaWd biaaiodaaSWdaeqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaay zkaaGaaiykaKqba+aadaahaaqabeaapeGaamivaaaaaaa@513B@ as its eigenvector, independently of the expressions that can be assigned to elements R 32 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfajuaGpaWaaSbaaeaapeGaaG4maiaaikdaa8aabeaak8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@3DFC@ and R 33 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfajuaGpaWaaSbaaeaapeGaaG4maiaaiodaa8aabeaak8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@3DFD@ . Recall that an inverse context was assumed in which r ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3BDD@ is known at all times.

To proceed further, we derive expression (2) in relation to the variable t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshaaaa@390D@ with the purpose of building the velocity matrix, V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfaaaa@38EF@ . This matrix, adjusting to the defined context, will have: r = v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kqadkhapaGbaSaapeGaeyypa0JabmODa8aagaWcaaaa@3CC4@ the velocity6 of the particle, as its corresponding eigenvector. The corresponding construction, being simple, is not straightforward, requiring an intermediate step. Let’s see this.

Deriving expression (2), in relation to the variable t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0bGaaGPaVdaa@389B@ , we arrive at the expression,

( R ) r   +  R( r )  =  ( λ ) r   +  λ( r ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacqGHciITcaWGsbaacaGLOaGaayzkaaGabmOCa8aa gaWca8qacaGGGcGaaiiOaiabgUcaRiaacckacaGGGcGaamOuamaabm aapaqaa8qacqGHciITceWGYbWdayaalaaapeGaayjkaiaawMcaaiaa cckacaGGGcGaeyypa0JaaiiOaiaacckadaqadaWdaeaapeGaeyOaIy Raeq4UdWgacaGLOaGaayzkaaGabmOCa8aagaWca8qacaGGGcGaaiiO aiabgUcaRiaacckacaGGGcGaeq4UdW2aaeWaa8aabaWdbiabgkGi2k qadkhapaGbaSaaa8qacaGLOaGaayzkaaGaaiOlaaaa@5F2E@   (12)

 Arranging the terms in (12) we have,

 [( R ) r     ( λ ) r ]  +  R v   =  λ v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckacaGGBbWaaeWaa8aabaWdbiabgkGi2kaadkfaaiaawIcacaGL PaaaceWGYbWdayaalaWdbiaacckacaGGGcGaeyOeI0IaaiiOaiaacc kadaqadaWdaeaapeGaeyOaIyRaeq4UdWgacaGLOaGaayzkaaGabmOC a8aagaWca8qacaGGDbGaaiiOaiaacckacqGHRaWkcaGGGcGaaiiOai aadkfaceWG2bWdayaalaWdbiaacckacaGGGcGaeyypa0JaaiiOaiaa cckacqaH7oaBceWG2bWdayaalaaaaa@5B47@   (13)

 Note that to proceed we have, in principle, two options: [ i ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaa8qacaWGPbaacaGLBbGaayzxaaaaaa@3B13@ Rewrite the term in square brackets, in (13), as the product of a suitable matrix “ M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E6@ " by the vector v ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAhapaGbaSaapeGaai4oaaaa@39FF@ that is: ( R ) r ( λ ) r M v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacqGHciITcaWGsbaacaGLOaGaayzkaaGabmOCa8aa gaWca8qacqGHsisldaqadaWdaeaapeGaeyOaIyRaeq4UdWgacaGLOa GaayzkaaGabmOCa8aagaWca8qacqGHHjIUcaWGnbGabmODa8aagaWc aaaa@47AF@ , which would be convenient, since M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E6@ could be chosen with a sufficient number of free parameters, with only three conditions (requirements) to be satisfied for this equality to occur, or [ ii ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaa8qacaWGPbGaamyAaaGaay5waiaaw2faaaaa@3C01@  impose adequate conditions on the free elements of the matrix R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadkfaaaa@3A51@ so that: ( R ) r ( λ ) r = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacqGHciITcaWGsbaacaGLOaGaayzkaaGabmOCa8aa gaWca8qacqGHsisldaqadaWdaeaapeGaeyOaIyRaeq4UdWgacaGLOa GaayzkaaGabmOCa8aagaWca8qacqGH9aqpceaIWaWdayaalaaaaa@45D9@ . Option [ii], however, would not be possible to be satisfied because the matrix R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38EB@ , as it was processed, until reaching (11) from (3), presents, in this step, only two free parameters, and there are three independent mathematical relations to be satisfied for such situation (see Appendix) Then, we must take option [ i ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaa8qacaWGPbaacaGLBbGaayzxaaaaaa@3B13@ above, ie, determine the matrix M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E6@ with R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38EB@ , λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeU7aSbaa@39C8@ and   v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckaceWG2bWdayaalaaaaa@3A54@ known.

The equation for M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E6@ is,

M v   =  ( R ) r     ( λ ) r . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaceWG2bWdayaalaWdbiaacckacaGGGcGaeyypa0JaaiiOaiaa cckadaqadaWdaeaapeGaeyOaIyRaamOuaaGaayjkaiaawMcaaiqadk hapaGbaSaapeGaaiiOaiaacckacqGHsislcaGGGcGaaiiOamaabmaa paqaa8qacqGHciITcqaH7oaBaiaawIcacaGLPaaaceWGYbWdayaala Wdbiaac6caaaa@50CE@   (14)

An immediate consequence of (14) is that the elements of matrix M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E6@ have units of length, as in the case of matrix R. Writing (14) explicitly we have,

( M 11 M 12 M 13 M 21 M 22 M 23 M 31 M 32 M 33 )( v 1 v 2 v 3 )=[ ( 0 R ˙ 12 0 0 0 v 2 R ˙ 31 R ˙ 32 R ˙ 33 )( λ ˙ 0 0 0 λ ˙ 0 0 0 λ ˙ ) ]( r 1 r 2 r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaauaabaqadmaaaeaapeGaamyta8aadaWgaaqcfayaa8qa caaIXaGaaGymaaWcpaqabaaakeaapeGaamytaKqba+aadaWgaaqaa8 qacaaIXaGaaGOmaaWdaeqaaaGcbaWdbiaad2eapaWaaSbaaKqbagaa peGaaGymaiaaiodaaSWdaeqaaaGcbaWdbiaad2eajuaGpaWaaSbaae aapeGaaGOmaiaaigdaa8aabeaaaOqaa8qacaWGnbWdamaaBaaajuaG baWdbiaaikdacaaIYaaal8aabeaaaOqaa8qacaWGnbqcfa4damaaBa aabaWdbiaaikdacaaIZaaapaqabaaakeaapeGaamyta8aadaWgaaqc fayaa8qacaaIZaGaaGymaaWcpaqabaaakeaapeGaamyta8aadaWgaa qcfayaa8qacaaIZaGaaGOmaaWcpaqabaaakeaapeGaamyta8aadaWg aaqcfayaa8qacaaIZaGaaG4maaWcpaqabaaaaaGcpeGaayjkaiaawM caamaabmaapaqaauaabaqadeaaaeaapeGaamODaKqba+aadaWgaaqa a8qacaaIXaaapaqabaaakeaapeGaamODa8aadaWgaaqcfayaa8qaca aIYaaal8aabeaaaOqaa8qacaWG2bWdamaaBaaajuaGbaWdbiaaioda aSWdaeqaaaaaaOWdbiaawIcacaGLPaaacqGH9aqpdaWadaWdaeaape WaaeWaa8aabaqbaeaabmWaaaqaa8qacaaIWaaapaqaa8qaceWGsbWd ayaacaqcfa4aaSbaaeaapeGaaGymaiaaikdaa8aabeaaaOqaa8qaca aIWaaapaqaa8qacaaIWaaapaqaa8qacaaIWaaapaqaa8qacaWG2bWd amaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiqadkfapaGbaiaaju aGdaWgaaqaa8qacaaIZaGaaGymaaWdaeqaaaGcbaWdbiqadkfapaGb aiaadaWgaaqcfayaa8qacaaIZaGaaGOmaaWcpaqabaaakeaapeGabm Oua8aagaGaamaaBaaajuaGbaWdbiaaiodacaaIZaaal8aabeaaaaaa k8qacaGLOaGaayzkaaGaeyOeI0YaaeWaa8aabaqbaeaabmWaaaqaa8 qacuaH7oaBpaGbaiaaaeaapeGaaGimaaWdaeaapeGaaGimaaWdaeaa peGaaGimaaWdaeaapeGafq4UdW2dayaacaaabaWdbiaaicdaa8aaba Wdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbiqbeU7aS9aagaGaaaaa a8qacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaeWaa8aabaqbaeaabm qaaaqaa8qacaWGYbqcfa4damaaBaaabaWdbiaaigdaa8aabeaaaOqa a8qacaWGYbWdamaaBaaajuaGbaWdbiaaikdaaSWdaeqaaaGcbaWdbi aadkhapaWaaSbaaKqbagaapeGaaG4maaWcpaqabaaaaaGcpeGaayjk aiaawMcaaaaa@9009@   (15)

 from which the following three independent relations result,

M 11 v 1 + M 12 v 2 + M 13 v 3 =( λ ) r 1 +( R 12 ) r 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaKqbagaapeGaaGymaiaaigdaaSWdaeqaaOWdbiaa dAhajuaGpaWaaSbaaeaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaad2 eapaWaaSbaaKqbagaapeGaaGymaiaaikdaaSWdaeqaaOWdbiaadAha juaGpaWaaSbaaeaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaad2eapa WaaSbaaKqbagaapeGaaGymaiaaiodaaSWdaeqaaOWdbiaadAhapaWa aSbaaKqbagaapeGaaG4maaWcpaqabaGcpeGaeyypa0JaeyOeI0Yaae Waa8aabaWdbiabgkGi2kabeU7aSbGaayjkaiaawMcaaiaadkhajuaG paWaaSbaaeaapeGaaGymaaWdaeqaaOWdbiabgUcaRmaabmaapaqaa8 qacqGHciITcaWGsbWdamaaBaaajuaGbaWdbiaaigdacaaIYaaal8aa beaaaOWdbiaawIcacaGLPaaacaWGYbWdamaaBaaajuaGbaWdbiaaik daaSWdaeqaaOWdbiaacYcaaaa@5FD0@   (16)

M 21 v 1 + M 22 v 2 + M 23 v 3 =( λ ) r 2 + v 2 r 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGOmaiaaigdaa8aabeaak8qacaWG 2bqcfa4damaaBaaabaWdbiaaigdaa8aabeaak8qacqGHRaWkcaWGnb qcfa4damaaBaaabaWdbiaaikdacaaIYaaapaqabaGcpeGaamODaKqb a+aadaWgaaqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaamytaKqba+ aadaWgaaqaa8qacaaIYaGaaG4maaWdaeqaaOWdbiaadAhajuaGpaWa aSbaaeaapeGaaG4maaWdaeqaaOWdbiabg2da9iabgkHiTmaabmaapa qaa8qacqGHciITcqaH7oaBaiaawIcacaGLPaaacaWGYbqcfa4damaa BaaabaWdbiaaikdaa8aabeaak8qacqGHRaWkcaWG2bqcfa4damaaBa aabaWdbiaaikdaa8aabeaak8qacaWGYbWdamaaBaaajuaGbaWdbiaa iodaaSWdaeqaaOWdbiaacYcaaaa@5BF9@   (17)

M 31 v 1 + M 32 v 2 + M 33 v 3 = R ˙ 31 r 1 + R ˙ 32 r 2 +( R ˙ 33 ( λ ) ) r 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaG4maiaaigdaa8aabeaak8qacaWG 2bqcfa4damaaBaaabaWdbiaaigdaa8aabeaak8qacqGHRaWkcaWGnb qcfa4damaaBaaabaWdbiaaiodacaaIYaaapaqabaGcpeGaamODaKqb a+aadaWgaaqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaamyta8aada Wgaaqcfayaa8qacaaIZaGaaG4maaWcpaqabaGcpeGaamODaKqba+aa daWgaaqaa8qacaaIZaaapaqabaGcpeGaeyypa0JabmOua8aagaGaaK qbaoaaBaaabaWdbiaaiodacaaIXaaapaqabaGcpeGaamOCaKqba+aa daWgaaqaa8qacaaIXaaapaqabaGcpeGaey4kaSIabmOua8aagaGaam aaBaaajuaGbaWdbiaaiodacaaIYaaal8aabeaak8qacaWGYbqcfa4d amaaBaaabaWdbiaaikdaa8aabeaak8qacqGHRaWkdaqadaWdaeaape GabmOua8aagaGaaKqbaoaaBaaabaWdbiaaiodacaaIZaaapaqabaGc peGaeyOeI0YaaeWaa8aabaWdbiabgkGi2kabeU7aSbGaayjkaiaawM caaaGaayjkaiaawMcaaiaadkhajuaGpaWaaSbaaeaapeGaaG4maaWd aeqaaOWdbiaacYcaaaa@687C@   (18)

 the same ones that will take three, of the nine, elements of M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E5@ to be dependent on the remaining elements (the independent ones).

Taking into account that the matrix M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E5@ will be added to R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38EA@ , and that the matrix R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38EA@ , in (11), has null elements only in positions 11, 13, 21 and 22, it will be very convenient to leave (if possible) the corresponding elements in with non-null values to have free parameters available distributed among the largest number of positions in the sum matrix and not concentrated only in a few elements. On the other hand, from expressions (16) – (18), it is possible to highlight two of the following four elements: M 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGymaiaaigdaa8aabeaaaaa@3B38@ , M 13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaKqbagaapeGaaGymaiaaiodaaSWdaeqaaaaa@3B45@ , M 21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaKqbagaapeGaaGOmaiaaigdaaSWdaeqaaaaa@3B44@ and M 22 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGOmaiaaikdaa8aabeaaaaa@3B3A@ . Let these elements be M 11 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaKqbagaapeGaaGymaiaaigdaaSWdaeqaaaaa@3B43@  and M 21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGOmaiaaigdaa8aabeaaaaa@3B39@ ,

M 11 = 1 v 1 ( ( λ ) r 1 +( r 3 r 1 r 2 ) r 2 M 12 v 2 M 13 v 3 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGymaiaaigdaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamODaKqba+aadaWgaa qaa8qacaaIXaaapaqabaaaaOWdbmaabmaapaqaa8qacqGHsisldaqa daWdaeaapeGaeyOaIyRaeq4UdWgacaGLOaGaayzkaaGaamOCaKqba+ aadaWgaaqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaeyOaIy7aaeWa a8aabaWdbmaalaaapaqaa8qacaWGYbWdamaaBaaajuaGbaWdbiaaio daaSWdaeqaaOWdbiaadkhapaWaaSbaaKqbagaapeGaaGymaaWcpaqa baaakeaapeGaamOCa8aadaWgaaqcfayaa8qacaaIYaaal8aabeaaaa aak8qacaGLOaGaayzkaaGaamOCa8aadaWgaaqcfayaa8qacaaIYaaa l8aabeaak8qacqGHsislcaWGnbqcfa4damaaBaaabaWdbiaaigdaca aIYaaapaqabaGcpeGaamODa8aadaWgaaqcfayaa8qacaaIYaaal8aa beaak8qacqGHsislcaWGnbWdamaaBaaajuaGbaWdbiaaigdacaaIZa aal8aabeaak8qacaWG2bqcfa4damaaBaaabaWdbiaaiodaa8aabeaa aOWdbiaawIcacaGLPaaacaGGUaaaaa@6781@   (19)

M 21 = 1 v 1 ( ( λ ) r 2 + v 2 r 3 M 22 v 2 M 23 v 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGOmaiaaigdaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamODaKqba+aadaWgaa qaa8qacaaIXaaapaqabaaaaOWdbmaabmaapaqaa8qacqGHsisldaqa daWdaeaapeGaeyOaIyRaeq4UdWgacaGLOaGaayzkaaGaamOCa8aada Wgaaqcfayaa8qacaaIYaaal8aabeaak8qacqGHRaWkcaWG2bqcfa4d amaaBaaabaWdbiaaikdaa8aabeaak8qacaWGYbqcfa4damaaBaaaba Wdbiaaiodaa8aabeaak8qacqGHsislcaWGnbWdamaaBaaajuaGbaWd biaaikdacaaIYaaal8aabeaak8qacaWG2bWdamaaBaaajuaGbaWdbi aaikdaaSWdaeqaaOWdbiabgkHiTiaad2eapaWaaSbaaKqbagaapeGa aGOmaiaaiodaaSWdaeqaaOWdbiaadAhapaWaaSbaaKqbagaapeGaaG 4maaWcpaqabaaak8qacaGLOaGaayzkaaaaaa@5E3C@   (20)

In addition, from expression (18), we chose to highlight the element M 32 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaG4maiaaikdaa8aabeaaaaa@3B3B@ ,

M 32 = 1 v 2 ( ( R 31 ) r 1 +( R 32 ) r 2 +( R 33 λ ) r 3 M 31 v 1 M 33 v 3 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaKqbagaapeGaaG4maiaaikdaaSWdaeqaaOWdbiab g2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWG2bWdamaaBaaaju aGbaWdbiaaikdaaSWdaeqaaaaak8qadaqadaWdaeaapeWaaeWaa8aa baWdbiabgkGi2kaadkfajuaGpaWaaSbaaeaapeGaaG4maiaaigdaa8 aabeaaaOWdbiaawIcacaGLPaaacaWGYbqcfa4damaaBaaabaWdbiaa igdaa8aabeaak8qacqGHRaWkdaqadaWdaeaapeGaeyOaIyRaamOua8 aadaWgaaqcfayaa8qacaaIZaGaaGOmaaWcpaqabaaak8qacaGLOaGa ayzkaaGaamOCa8aadaWgaaqcfayaa8qacaaIYaaal8aabeaak8qacq GHRaWkdaqadaWdaeaapeGaeyOaIyRaamOuaKqba+aadaWgaaqaa8qa caaIZaGaaG4maaWdaeqaaOWdbiabgkHiTiabgkGi2kabeU7aSbGaay jkaiaawMcaaiaadkhapaWaaSbaaKqbagaapeGaaG4maaWcpaqabaGc peGaeyOeI0IaamytaKqba+aadaWgaaqaa8qacaaIZaGaaGymaaWdae qaaOWdbiaadAhajuaGpaWaaSbaaeaapeGaaGymaaWdaeqaaOWdbiab gkHiTiaad2eajuaGpaWaaSbaaeaapeGaaG4maiaaiodaa8aabeaak8 qacaWG2bWdamaaBaaajuaGbaWdbiaaiodaaSWdaeqaaaGcpeGaayjk aiaawMcaaiaac6caaaa@7130@   (21)

Where,

R 31 =( r 3 2 r 1 r 3 R 33 r 1 r 2 R 32 r 1 )  =   1 r 1 2 (2 r 1 r 3 v 3      r 1 v 3 R 33      r 3 2 v 1   + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadkfajuaGpaWaaSbaaeaapeGaaG4maiaaigdaa8aabeaa k8qacqGH9aqpcqGHciITdaqadaWdaeaapeWaaSaaa8aabaWdbiaadk hajuaGpaWaa0baaeaapeGaaG4maaWdaeaapeGaaGOmaaaaaOWdaeaa peGaamOCaKqba+aadaWgaaqaa8qacaaIXaaapaqabaaaaOWdbiabgk HiTmaalaaapaqaa8qacaWGYbqcfa4damaaBaaabaWdbiaaiodaa8aa beaak8qacaWGsbWdamaaBaaajuaGbaWdbiaaiodacaaIZaaal8aabe aaaOqaa8qacaWGYbqcfa4damaaBaaabaWdbiaaigdaa8aabeaaaaGc peGaeyOeI0YaaSaaa8aabaWdbiaadkhajuaGpaWaaSbaaeaapeGaaG OmaaWdaeqaaOWdbiaadkfajuaGpaWaaSbaaeaapeGaaG4maiaaikda a8aabeaaaOqaa8qacaWGYbqcfa4damaaBaaabaWdbiaaigdaa8aabe aaaaaak8qacaGLOaGaayzkaaGaaiiOaiaacckacqGH9aqpcaGGGcGa aiiOamaalaaapaqaa8qacaaIXaaapaqaa8qacaWGYbqcfa4damaaDa aabaWdbiaaigdaa8aabaWdbiaaikdaaaaaaOGaaiikaiaaikdacaWG YbWdamaaBaaajuaGbaWdbiaaigdaaSWdaeqaaOWdbiaadkhajuaGpa WaaSbaaeaapeGaaG4maaWdaeqaaOWdbiaadAhajuaGpaWaaSbaaeaa peGaaG4maaWdaeqaaOWdbiaacckacaGGGcGaeyOeI0IaaiiOaiaacc kacaWGYbqcfa4damaaBaaabaWdbiaaigdaa8aabeaak8qacaWG2bWd amaaBaaajuaGbaWdbiaaiodaaSWdaeqaaOWdbiaadkfajuaGpaWaaS baaeaapeGaaG4maiaaiodaa8aabeaak8qacaGGGcGaaiiOaiabgkHi TiaacckacaGGGcGaamOCaKqba+aadaqhaaqaa8qacaaIZaaapaqaa8 qacaaIYaaaaOGaamODaKqba+aadaWgaaqaa8qacaaIXaaapaqabaGc peGaaiiOaiaacckacqGHRaWkaaa@8B0A@   

+   r 3 v 1 R 33   +   r 2 v 1 R 32      r 1 r 3 ( R 33 )     r 1 ( r 2 )( R 32 )     r 1 v 2 R 32 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgUcaRiaacckacaGGGcGaamOCaKqba+aadaWgaaqaa8qacaaIZaaa paqabaGcpeGaamODaKqba+aadaWgaaqaa8qacaaIXaaapaqabaGcpe GaamOuaKqba+aadaWgaaqaa8qacaaIZaGaaG4maaWdaeqaaOWdbiaa cckacaGGGcGaey4kaSIaaiiOaiaacckacaWGYbWdamaaBaaajuaGba WdbiaaikdaaSWdaeqaaOWdbiaadAhajuaGpaWaaSbaaeaapeGaaGym aaWdaeqaaOWdbiaadkfajuaGpaWaaSbaaeaapeGaaG4maiaaikdaa8 aabeaak8qacaGGGcGaaiiOaiabgkHiTiaacckacaGGGcGaamOCaKqb a+aadaWgaaqaa8qacaaIXaaapaqabaGcpeGaamOCaKqba+aadaWgaa qaa8qacaaIZaaapaqabaGcpeWaaeWaa8aabaWdbiabgkGi2kaadkfa juaGpaWaaSbaaeaapeGaaG4maiaaiodaa8aabeaaaOWdbiaawIcaca GLPaaacaGGGcGaaiiOaiabgkHiTiaacckacaGGGcGaamOCaKqba+aa daWgaaqaa8qacaaIXaaapaqabaGcpeWaaeWaa8aabaWdbiabgkGi2k aadkhapaWaaSbaaKqbagaapeGaaGOmaaWcpaqabaaak8qacaGLOaGa ayzkaaWaaeWaa8aabaWdbiabgkGi2kaadkfapaWaaSbaaKqbagaape GaaG4maiaaikdaaSWdaeqaaaGcpeGaayjkaiaawMcaaiaacckacaGG GcGaeyOeI0IaaiiOaiaacckacaWGYbqcfa4damaaBaaabaWdbiaaig daa8aabeaak8qacaWG2bqcfa4damaaBaaabaWdbiaaikdaa8aabeaa k8qacaWGsbWdamaaBaaajuaGbaWdbiaaiodacaaIYaaal8aabeaak8 qacaGGPaGaaiOlaaaa@86ED@   (22)

 having omitted, for simplicity, the symbol that indicates the explicit temporal dependence in the corresponding terms. Next, due to freedom of choice, we fix the elements R 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfajuaGpaWaaSbaaeaapeGaaG4maiaaiodaa8aabeaaaaa@3B41@  and R 32 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfajuaGpaWaaSbaaeaapeGaaG4maiaaikdaa8aabeaaaaa@3B40@ as follows,

R 33 =2 r 3     &     R 32 =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfajuaGpaWaaSbaaeaapeGaaG4maiaaiodaa8aabeaak8qacqGH 9aqpcaaIYaGaamOCaKqba+aadaWgaaqaa8qacaaIZaaapaqabaGcpe GaaiiOaiaacckacaGGGcGaaiiOaiaacAcacaGGGcGaaiiOaiaaccka caGGGcGaamOua8aadaWgaaqcfayaa8qacaaIZaGaaGOmaaWcpaqaba GcpeGaeyypa0JaaGimaiaac6caaaa@4F56@   (23)

Thus, expression (22) reduces to the following,

R 31 = 1 r 1 2   ( r 3 2 v 1 2 r 1 r 3 v 3 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadkfajuaGpaWaaSbaaeaapeGaaG4maiaaigdaa8aabeaa k8qacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOCaKqba+ aadaqhaaqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaakiaacckacaGG GcWaaeWaa8aabaWdbiaadkhajuaGpaWaa0baaeaapeGaaG4maaWdae aapeGaaGOmaaaakiaadAhajuaGpaWaaSbaaeaapeGaaGymaaWdaeqa aOWdbiabgkHiTiaaikdacaWGYbWdamaaBaaajuaGbaWdbiaaigdaaS WdaeqaaOWdbiaadkhapaWaaSbaaKqbagaapeGaaG4maaWcpaqabaGc peGaamODaKqba+aadaWgaaqaa8qacaaIZaaapaqabaaak8qacaGLOa GaayzkaaGaaiilaaaa@56AB@   (24)

and, in turn, expression (21) takes the form,

M 32 = 1 v 2 ( r 3 2 v 1 r 1 v 3 r 3 M 31 v 1 M 33 v 3 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaG4maiaaikdaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamODa8aadaWgaaqcfa yaa8qacaaIYaaal8aabeaaaaGcpeWaaeWaa8aabaWdbmaalaaapaqa a8qacaWGYbqcfa4damaaDaaabaWdbiaaiodaa8aabaWdbiaaikdaaa GccaWG2bqcfa4damaaBaaabaWdbiaaigdaa8aabeaaaOqaa8qacaWG Ybqcfa4damaaBaaabaWdbiaaigdaa8aabeaaaaGcpeGaeyOeI0Iaam ODaKqba+aadaWgaaqaa8qacaaIZaaapaqabaGcpeGaamOCaKqba+aa daWgaaqaa8qacaaIZaaapaqabaGcpeGaeyOeI0IaamytaKqba+aada Wgaaqaa8qacaaIZaGaaGymaaWdaeqaaOWdbiaadAhapaWaaSbaaKqb agaapeGaaGymaaWcpaqabaGcpeGaeyOeI0IaamytaKqba+aadaWgaa qaa8qacaaIZaGaaG4maaWdaeqaaOWdbiaadAhajuaGpaWaaSbaaeaa peGaaG4maaWdaeqaaaGcpeGaayjkaiaawMcaaiaac6caaaa@5F70@   (25)

 Note that, with the choice made in (23), we have completely defined the matrix R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38EA@ , given in (11), as follows,

R=( 0 r 3 r 1 / r 2 0 0 0 r 2 r 3 2 / r 1 0 2 r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfacqGH9aqpdaqadaWdaeaafaqaaeWadaaabaWdbiaaicdaa8aa baWdbiaadkhapaWaaSbaaKqbagaapeGaaG4maaWcpaqabaGcpeGaam OCa8aadaWgaaqcfayaa8qacaaIXaaal8aabeaak8qacaGGVaGaamOC a8aadaWgaaqcfayaa8qacaaIYaaal8aabeaaaOqaa8qacaaIWaaapa qaa8qacaaIWaaapaqaa8qacaaIWaaapaqaa8qacaWGYbqcfa4damaa BaaabaWdbiaaikdaa8aabeaaaOqaa8qacqGHsislcaWGYbqcfa4dam aaDaaabaWdbiaaiodaa8aabaWdbiaaikdaaaGccaGGVaGaamOCaKqb a+aadaWgaaqaa8qacaaIXaaapaqabaaakeaapeGaaGimaaWdaeaape GaaGOmaiaadkhapaWaaSbaaKqbagaapeGaaG4maaWcpaqabaaaaaGc peGaayjkaiaawMcaaaaa@568A@   (26)

 Continuing with the calculation of the elements of matrix M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E5@ , from (19) and (20), we have,

  M 11 = r 3 r 1 r 3 v 2 r 2 v 1 1 v 1 ( M 12 v 2 + M 13 v 3 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckacaWGnbqcfa4damaaBaaabaWdbiaaigdacaaIXaaapaqabaGc peGaeyypa0JaamOCa8aadaWgaaqcfayaa8qacaaIZaaal8aabeaak8 qacqGHsisldaWcaaWdaeaapeGaamOCaKqba+aadaWgaaqaa8qacaaI XaaapaqabaGcpeGaamOCa8aadaWgaaqcfayaa8qacaaIZaaal8aabe aak8qacaWG2bWdamaaBaaajuaGbaWdbiaaikdaaSWdaeqaaaGcbaWd biaadkhapaWaaSbaaKqbagaapeGaaGOmaaWcpaqabaGcpeGaamODaK qba+aadaWgaaqaa8qacaaIXaaapaqabaaaaOWdbiabgkHiTmaalaaa paqaa8qacaaIXaaapaqaa8qacaWG2bqcfa4damaaBaaabaWdbiaaig daa8aabeaaaaGcpeWaaeWaa8aabaWdbiaad2eapaWaaSbaaKqbagaa peGaaGymaiaaikdaaSWdaeqaaOWdbiaadAhajuaGpaWaaSbaaeaape GaaGOmaaWdaeqaaOWdbiabgUcaRiaad2eajuaGpaWaaSbaaeaapeGa aGymaiaaiodaa8aabeaak8qacaWG2bWdamaaBaaajuaGbaWdbiaaio daaSWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcaaaa@6299@   (27)

M 21 = 1 v 1 ( r 2 v 3 + r 3 v 2 M 22 v 2 M 23 v 3 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGOmaiaaigdaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamODaKqba+aadaWgaa qaa8qacaaIXaaapaqabaaaaOWdbmaabmaapaqaa8qacqGHsislcaWG Ybqcfa4damaaBaaabaWdbiaaikdaa8aabeaak8qacaWG2bqcfa4dam aaBaaabaWdbiaaiodaa8aabeaak8qacqGHRaWkcaWGYbWdamaaBaaa juaGbaWdbiaaiodaaSWdaeqaaOWdbiaadAhapaWaaSbaaKqbagaape GaaGOmaaWcpaqabaGcpeGaeyOeI0Iaamyta8aadaWgaaqcfayaa8qa caaIYaGaaGOmaaWcpaqabaGcpeGaamODa8aadaWgaaqcfayaa8qaca aIYaaal8aabeaak8qacqGHsislcaWGnbqcfa4damaaBaaabaWdbiaa ikdacaaIZaaapaqabaGcpeGaamODaKqba+aadaWgaaqaa8qacaaIZa aapaqabaaak8qacaGLOaGaayzkaaGaaiOlaaaa@5CD1@   (28)

 There are six elements of the matrix M, identified as: M 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGymaiaaikdaa8aabeaaaaa@3B3A@ , M 13 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGymaiaaiodaa8aabeaaaaa@3B3A@ , M 22 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGOmaiaaikdaa8aabeaaaaa@3B3A@ , M 23 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGOmaiaaiodaa8aabeaaaaa@3B3B@ , M 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaG4maiaaigdaa8aabeaaaaa@3B3A@ and M 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaG4maiaaiodaa8aabeaaaaa@3B3C@ , which, until now, remain independent. Once the matrix M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E5@ is formally defined, we substitute the expression (14) in (13), being able to write,

( M+R ) v =λ v         V v =λ v , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaWGnbGaey4kaSIaamOuaaGaayjkaiaawMcaaiqa dAhapaGbaSaapeGaeyypa0Jaeq4UdWMabmODa8aagaWca8qacaGGGc GaaiiOaiaacckacaGGGcGaeyOKH4QaaiiOaiaacckacaGGGcGaaiiO aiaadAfaceWG2bWdayaalaWdbiabg2da9iabeU7aSjqadAhapaGbaS aapeGaaiilaaaa@5302@   (29)

 Where,

V=( M 11 M 12 +( r 3 r 1 / r 2 ) M 13 M 21 M 22 M 23 + r 2 M 31 ( r 3 2 / r 1 ) M 32 M 33 +2 r 3 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfacqGH9aqpdaqadaWdaeaafaqaaeWadaaabaWdbiaad2eajuaG paWaaSbaaeaapeGaaGymaiaaigdaa8aabeaaaOqaa8qacaWGnbWdam aaBaaajuaGbaWdbiaaigdacaaIYaaal8aabeaak8qacqGHRaWkdaqa daWdaeaapeGaamOCa8aadaWgaaqcfayaa8qacaaIZaaal8aabeaak8 qacaWGYbqcfa4damaaBaaabaWdbiaaigdaa8aabeaak8qacaGGVaGa amOCa8aadaWgaaqcfayaa8qacaaIYaaal8aabeaaaOWdbiaawIcaca GLPaaaa8aabaWdbiaad2eapaWaaSbaaKqbagaapeGaaGymaiaaioda aSWdaeqaaaGcbaWdbiaad2eapaWaaSbaaKqbagaapeGaaGOmaiaaig daaSWdaeqaaaGcbaWdbiaad2eapaWaaSbaaKqbagaapeGaaGOmaiaa ikdaaSWdaeqaaaGcbaWdbiaad2eajuaGpaWaaSbaaeaapeGaaGOmai aaiodaa8aabeaak8qacqGHRaWkcaWGYbWdamaaBaaajuaGbaWdbiaa ikdaaSWdaeqaaaGcbaWdbiaad2eajuaGpaWaaSbaaeaapeGaaG4mai aaigdaa8aabeaak8qacqGHsisldaqadaWdaeaapeGaamOCaKqba+aa daqhaaqaa8qacaaIZaaapaqaa8qacaaIYaaaaOGaai4laiaadkhapa WaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaaapaqa a8qacaWGnbWdamaaBaaajuaGbaWdbiaaiodacaaIYaaal8aabeaaaO qaa8qacaWGnbqcfa4damaaBaaabaWdbiaaiodacaaIZaaapaqabaGc peGaey4kaSIaaGOmaiaadkhajuaGpaWaaSbaaeaapeGaaG4maaWdae qaaaaaaOWdbiaawIcacaGLPaaacaGGSaaaaa@7628@   (30)

with M 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGymaiaaigdaa8aabeaaaaa@3B39@ , M 21 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaKqbagaapeGaaGOmaiaaigdaaSWdaeqaaaaa@3B45@ and M 32 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaKqbagaapeGaaG4maiaaikdaaSWdaeqaaaaa@3B47@ being the dependent elements given in expressions (27), (28) and (25), respectively. Note, for example, from (27), that when we fix M 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaKqbagaapeGaaGymaiaaikdaaSWdaeqaaaaa@3B45@ and M 13 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaKqbagaapeGaaGymaiaaiodaaSWdaeqaaaaa@3B46@ , the element M 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eajuaGpaWaaSbaaeaapeGaaGymaiaaigdaa8aabeaaaaa@3B39@ is defined. A similar situation is found among the elements in the other rows of the matrix V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfaaaa@38EF@ , as shown by expressions (28) and (25). Furthermore, in (30) it is observed, as in the cases of the matrices R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38EB@ and M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38E6@ , that all their elements have units of length.

To proceed further, we derive (29) with respect to the time variable, obtaining,

( V ) v   +  V( v )  =  ( λ ) v   +  λ( v ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacqGHciITcaWGwbaacaGLOaGaayzkaaGabmODa8aa gaWca8qacaGGGcGaaiiOaiabgUcaRiaacckacaGGGcGaamOvamaabm aapaqaa8qacqGHciITceWG2bWdayaalaaapeGaayjkaiaawMcaaiaa cckacaGGGcGaeyypa0JaaiiOaiaacckadaqadaWdaeaapeGaeyOaIy Raeq4UdWgacaGLOaGaayzkaaGabmODa8aagaWca8qacaGGGcGaaiiO aiabgUcaRiaacckacaGGGcGaeq4UdW2aaeWaa8aabaWdbiabgkGi2k qadAhapaGbaSaaa8qacaGLOaGaayzkaaGaaiOlaaaa@5F46@   (31)

 Arranging terms, we get,

[  ( V ) v     ( λ ) v   ]  +  V a   =  λ a , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaa8qacaGGGcWaaeWaa8aabaWdbiabgkGi2kaadAfaaiaa wIcacaGLPaaaceWG2bWdayaalaWdbiaacckacaGGGcGaeyOeI0Iaai iOaiaacckadaqadaWdaeaapeGaeyOaIyRaeq4UdWgacaGLOaGaayzk aaGabmODa8aagaWca8qacaGGGcaacaGLBbGaayzxaaGaaiiOaiaacc kacqGHRaWkcaGGGcGaaiiOaiaadAfaceWGHbWdayaalaWdbiaaccka caGGGcGaeyypa0JaaiiOaiaacckacqaH7oaBceWGHbWdayaalaWdbi aacYcaaaa@5D62@   (32)

where: v = a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kqadAhapaGbaSaapeGaeyypa0Jabmyya8aagaWcaaaa@3CB3@ , is the acceleration of the particle. Proceeding as before, we write for a matrix Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfaaaa@38EA@ , with elements that can be dependent on t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshaaaa@390D@ , the equation,

Q a =( V ) v ( λ ) v , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfaceWGHbWdayaalaWdbiabg2da9maabmaapaqaa8qacqGHciIT caWGwbaacaGLOaGaayzkaaGabmODa8aagaWca8qacqGHsisldaqada WdaeaapeGaeyOaIyRaeq4UdWgacaGLOaGaayzkaaGabmODa8aagaWc a8qacaGGSaaaaa@47A7@   (33)

 or explicitly,

( Q 11 Q 12 Q 13 Q 21 Q 22 Q 23 Q 31 Q 32 Q 33 )( a 1 a 2 a 3 )  = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaauaabaqadmaaaeaapeGaamyuaKqba+aadaWgaaqaa8qa caaIXaGaaGymaaWdaeqaaaGcbaWdbiaadgfajuaGpaWaaSbaaeaape GaaGymaiaaikdaa8aabeaaaOqaa8qacaWGrbWdamaaBaaajuaGbaWd biaaigdacaaIZaaal8aabeaaaOqaa8qacaWGrbWdamaaBaaajuaGba WdbiaaikdacaaIXaaal8aabeaaaOqaa8qacaWGrbWdamaaBaaajuaG baWdbiaaikdacaaIYaaal8aabeaaaOqaa8qacaWGrbqcfa4damaaBa aabaWdbiaaikdacaaIZaaapaqabaaakeaapeGaamyua8aadaWgaaqc fayaa8qacaaIZaGaaGymaaWcpaqabaaakeaapeGaamyuaKqba+aada Wgaaqaa8qacaaIZaGaaGOmaaWdaeqaaaGcbaWdbiaadgfajuaGpaWa aSbaaeaapeGaaG4maiaaiodaa8aabeaaaaaak8qacaGLOaGaayzkaa WaaeWaa8aabaqbaeaabmqaaaqaa8qacaWGHbqcfa4damaaBaaabaWd biaaigdaa8aabeaaaOqaa8qacaWGHbqcfa4damaaBaaabaWdbiaaik daa8aabeaaaOqaa8qacaWGHbqcfa4damaaBaaabaWdbiaaiodaa8aa beaaaaaak8qacaGLOaGaayzkaaGaaiiOaiaacckacqGH9aqpaaa@643A@   

{ ( V 11 V 12 V 13 V 21 V 22 V 23 V 31 V 32 V 33 )( λ 0 0 0 λ 0 0 0 λ ) }( v 1 v 2 v 3 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aacmaapaqaa8qadaqadaWdaeaafaqaaeWadaaabaWdbiabgkGi2kaa dAfajuaGpaWaaSbaaeaapeGaaGymaiaaigdaa8aabeaaaOqaa8qacq GHciITcaWGwbWdamaaBaaajuaGbaWdbiaaigdacaaIYaaal8aabeaa aOqaa8qacqGHciITjuaGcaWGwbWdamaaBaaabaWdbiaaigdacaaIZa aapaqabaaakeaapeGaeyOaIyRaamOva8aadaWgaaqcfayaa8qacaaI YaGaaGymaaWcpaqabaaakeaapeGaeyOaIyRaamOva8aadaWgaaqcfa yaa8qacaaIYaGaaGOmaaWcpaqabaaakeaapeGaeyOaIyRaamOvaKqb a+aadaWgaaqaa8qacaaIYaGaaG4maaWdaeqaaaGcbaWdbiabgkGi2k aadAfajuaGpaWaaSbaaeaapeGaaG4maiaaigdaa8aabeaaaOqaa8qa cqGHciITcaWGwbqcfa4damaaBaaabaWdbiaaiodacaaIYaaapaqaba aakeaapeGaeyOaIyRaamOva8aadaWgaaWcbaWdbiaajodacaqIZaaa paqabaaaaaGcpeGaayjkaiaawMcaaiabgkHiTmaabmaapaqaauaaba qadmaaaeaapeGaeyOaIyRaeq4UdWgapaqaa8qacaaIWaaapaqaa8qa caaIWaaapaqaa8qacaaIWaaapaqaa8qacqGHciITcqaH7oaBa8aaba Wdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbiaaicdaa8aabaWdbiab gkGi2kabeU7aSbaaaiaawIcacaGLPaaaaiaawUhacaGL9baadaqada WdaeaafaqaaeWabaaabaWdbiaadAhajuaGpaWaaSbaaeaapeGaaGym aaWdaeqaaaGcbaWdbiaadAhapaWaaSbaaKqbagaapeGaaGOmaaWcpa qabaaakeaapeGaamODa8aadaWgaaqcfayaa8qacaaIZaaal8aabeaa aaaak8qacaGLOaGaayzkaaGaaiilaaaa@81C5@   (34)

 from which the following three independent relations result,

Q 11 a 1 + Q 12 a 2 + Q 13 a 3 =( V 11 λ ) v 1 +( V 12 ) v 2 +( V 13 ) v 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfajuaGpaWaaSbaaeaapeGaaGymaiaaigdaa8aabeaak8qacaWG HbWdamaaBaaajuaGbaWdbiaaigdaaSWdaeqaaOWdbiabgUcaRiaadg fapaWaaSbaaKqbagaapeGaaGymaiaaikdaaSWdaeqaaOWdbiaadgga juaGpaWaaSbaaeaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaadgfaju aGpaWaaSbaaeaapeGaaGymaiaaiodaa8aabeaak8qacaWGHbWdamaa BaaajuaGbaWdbiaaiodaaSWdaeqaaOWdbiabg2da9maabmaapaqaa8 qacqGHciITcaWGwbqcfa4damaaBaaabaWdbiaaigdacaaIXaaapaqa baGcpeGaeyOeI0IaeyOaIyRaeq4UdWgacaGLOaGaayzkaaGaamODaK qba+aadaWgaaqaa8qacaaIXaaapaqabaGcpeGaey4kaSYaaeWaa8aa baWdbiabgkGi2kaadAfajuaGpaWaaSbaaeaapeGaaGymaiaaikdaa8 aabeaaaOWdbiaawIcacaGLPaaacaWG2bqcfa4damaaBaaabaWdbiaa ikdaa8aabeaak8qacqGHRaWkdaqadaWdaeaapeGaeyOaIyRaamOvaK qba+aadaWgaaqaa8qacaaIXaGaaG4maaWdaeqaaaGcpeGaayjkaiaa wMcaaiaadAhapaWaaSbaaKqbagaapeGaaG4maaWcpaqabaGcpeGaai ilaaaa@6E2B@   (35)

Q 21 a 1 + Q 22 a 2 + Q 23 a 3 =( V 21 ) v 1 +( V 22 λ ) v 2 +( V 23 ) v 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaKqbagaapeGaaGOmaiaaigdaaSWdaeqaaOWdbiaa dggajuaGpaWaaSbaaeaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaadg fajuaGpaWaaSbaaeaapeGaaGOmaiaaikdaa8aabeaak8qacaWGHbWd amaaBaaajuaGbaWdbiaaikdaaSWdaeqaaOWdbiabgUcaRiaadgfaju aGpaWaaSbaaeaapeGaaGOmaiaaiodaa8aabeaak8qacaWGHbqcfa4d amaaBaaabaWdbiaaiodaa8aabeaak8qacqGH9aqpdaqadaWdaeaape GaeyOaIyRaamOva8aadaWgaaqcfayaa8qacaaIYaGaaGymaaWcpaqa baaak8qacaGLOaGaayzkaaGaamODaKqba+aadaWgaaqaa8qacaaIXa aapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiabgkGi2kaadAfapaWa aSbaaKqbagaapeGaaGOmaiaaikdaaSWdaeqaaOWdbiabgkHiTiabgk Gi2kabeU7aSbGaayjkaiaawMcaaiaadAhapaWaaSbaaKqbagaapeGa aGOmaaWcpaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiabgkGi2kaadA fapaWaaSbaaKqbagaapeGaaGOmaiaaiodaaSWdaeqaaaGcpeGaayjk aiaawMcaaiaadAhajuaGpaWaaSbaaeaapeGaaG4maaWdaeqaaOWdbi aacYcaaaa@6E47@   (36)

Q 31 a 1 + Q 32 a 2 + Q 33 a 3 =( V 31 ) v 1 +( V 32 ) v 2 +( V 33 λ ) v 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfajuaGpaWaaSbaaeaapeGaaG4maiaaigdaa8aabeaak8qacaWG HbadpaWaaSbaaeaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaadgfapa WaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaOWdbiaadggapaWaaSba aSqaa8qacaaIYaaapaqabaGcpeGaey4kaSIaamyua8aadaWgaaWcba WdbiaaiodacaaIZaaapaqabaGcpeGaamyya8aadaWgaaWcbaWdbiaa iodaa8aabeaak8qacqGH9aqpdaqadaWdaeaapeGaeyOaIyRaamOva8 aadaWgaaWcbaWdbiaaiodacaaIXaaapaqabaaak8qacaGLOaGaayzk aaGaamODa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkda qadaWdaeaapeGaeyOaIyRaamOva8aadaWgaaWcbaWdbiaaiodacaaI Yaaapaqabaaak8qacaGLOaGaayzkaaGaamODa8aadaWgaaWcbaWdbi aaikdaa8aabeaak8qacqGHRaWkdaqadaWdaeaapeGaeyOaIyRaamOv a8aadaWgaaWcbaWdbiaaiodacaaIZaaapaqabaGcpeGaeyOeI0Iaey OaIyRaeq4UdWgacaGLOaGaayzkaaGaamODa8aadaWgaaWcbaWdbiaa iodaa8aabeaak8qacaGGUaaaaa@683D@   (37)

 From expressions (35)  (37) it is convenient to choose Q 13 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaaaa@3A8C@ , Q 22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaaaa@3A8C@ and Q 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIZaGaaG4maaWdaeqaaaaa@3A8E@ as the dependent elements; the same ones that we put in evidence below,

Q 13 = 1 a 3 ( ( V 11 v 3 ) v 1 +( V 12 ) v 2 +( V 13 ) v 3 Q 12 a 2 Q 11 a 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaOWdbiabg2da 9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGHbWdamaaBaaaleaape GaaG4maaWdaeqaaaaak8qadaqadaWdaeaapeWaaeWaa8aabaWdbiab gkGi2kaadAfapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbi abgkHiTiaadAhapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGL OaGaayzkaaGaamODa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacq GHRaWkdaqadaWdaeaapeGaeyOaIyRaamOva8aadaWgaaWcbaWdbiaa igdacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGaamODa8aadaWgaa WcbaWdbiaaikdaa8aabeaak8qacqGHRaWkdaqadaWdaeaapeGaeyOa IyRaamOva8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaaak8qaca GLOaGaayzkaaGaamODa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qa cqGHsislcaWGrbWdamaaBaaaleaapeGaaGymaiaaikdaa8aabeaak8 qacaWGHbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaa dgfapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiaadggapa WaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaaiil aaaa@6984@   (38)

Q 22 = 1 a 2 ( ( V 21 ) v 1 +( V 22 v 3 ) v 2 +( V 23 ) v 3 Q 23 a 3 Q 21 a 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabg2da 9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGHbWdamaaBaaaleaape GaaGOmaaWdaeqaaaaak8qadaqadaWdaeaapeWaaeWaa8aabaWdbiab gkGi2kaadAfapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaaGcpe GaayjkaiaawMcaaiaadAhapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaey4kaSYaaeWaa8aabaWdbiabgkGi2kaadAfapaWaaSbaaSqaa8 qacaaIYaGaaGOmaaWdaeqaaOWdbiabgkHiTiaadAhapaWaaSbaaSqa a8qacaaIZaaapaqabaaak8qacaGLOaGaayzkaaGaamODa8aadaWgaa WcbaWdbiaaikdaa8aabeaak8qacqGHRaWkdaqadaWdaeaapeGaeyOa IyRaamOva8aadaWgaaWcbaWdbiaaikdacaaIZaaapaqabaaak8qaca GLOaGaayzkaaGaamODa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qa cqGHsislcaWGrbWdamaaBaaaleaapeGaaGOmaiaaiodaa8aabeaak8 qacaWGHbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgkHiTiaa dgfapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaOWdbiaadggapa WaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaaiil aaaa@698A@   (39)

Q 33 = 1 a 3 ( ( V 31 ) v 1 +( V 32 ) v 2 +( V 33 v 3 ) v 3 Q 32 a 2 Q 31 a 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIZaGaaG4maaWdaeqaaOWdbiabg2da 9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGHbWdamaaBaaaleaape GaaG4maaWdaeqaaaaak8qadaqadaWdaeaapeWaaeWaa8aabaWdbiab gkGi2kaadAfapaWaaSbaaSqaa8qacaaIZaGaaGymaaWdaeqaaaGcpe GaayjkaiaawMcaaiaadAhapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaey4kaSYaaeWaa8aabaWdbiabgkGi2kaadAfapaWaaSbaaSqaa8 qacaaIZaGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadAhapaWa aSbaaSqaa8qacaaIYaaapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbi abgkGi2kaadAfapaWaaSbaaSqaa8qacaaIZaGaaG4maaWdaeqaaOWd biabgkHiTiaadAhapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qaca GLOaGaayzkaaGaamODa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qa cqGHsislcaWGrbWdamaaBaaaleaapeGaaG4maiaaikdaa8aabeaak8 qacaWGHbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaa dgfapaWaaSbaaSqaa8qacaaIZaGaaGymaaWdaeqaaOWdbiaadggapa WaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaaiOl aaaa@6992@   (40)

 Leaving the elements Q 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaaaa@3A8A@ , Q 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaaaa@3A8B@ , Q 21 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaaaa@3A8B@ , Q 23 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIYaGaaG4maaWdaeqaaaaa@3A8D@ , Q 31 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIZaGaaGymaaWdaeqaaaaa@3A8C@ , Q 32 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaaaa@3A8D@ as the only independent elements. In expressions (38) - (40) we have that,

V 11 = v 3 1 r 2 v 1 ( r 1 r 3 a 2 + r 1 v 2 v 3 + r 3 v 1 v 2 )+ 1 r 2 2 v 1 2 ( r 1 r 3 v 1 v 2 2 + r 1 r 2 r 3 v 2 a 1 )  + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadAfapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWd biabg2da9iaadAhapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey OeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhapaWaaSbaaSqa a8qacaaIYaaapaqabaGcpeGaamODa8aadaWgaaWcbaWdbiaaigdaa8 aabeaaaaGcpeWaaeWaa8aabaWdbiaadkhapaWaaSbaaSqaa8qacaaI XaaapaqabaGcpeGaamOCa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8 qacaWGHbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiaa dkhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamODa8aadaWgaa WcbaWdbiaaikdaa8aabeaak8qacaWG2bWdamaaBaaaleaapeGaaG4m aaWdaeqaaOWdbiabgUcaRiaadkhapaWaaSbaaSqaa8qacaaIZaaapa qabaGcpeGaamODa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG 2bWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaai abgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGYbWdamaaDaaa leaapeGaaGOmaaWdaeaapeGaaGOmaaaakiaadAhapaWaa0baaSqaa8 qacaaIXaaapaqaa8qacaaIYaaaaaaakmaabmaapaqaa8qacaWGYbWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadkhapaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaamODa8aadaWgaaWcbaWdbiaaigdaa8aa beaak8qacaWG2bWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaa aakiabgUcaRiaadkhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa amOCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGYbWdamaaBa aaleaapeGaaG4maaWdaeqaaOWdbiaadAhapaWaaSbaaSqaa8qacaaI YaaapaqabaGcpeGaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaaaO WdbiaawIcacaGLPaaacaGGGcGaaiiOaiabgUcaRaaa@7DD1@   

   1 v 1 ( a 2 M 12 + v 2 ( M 12 )+ a 3 M 13 + v 3 ( M 13 ) )+ 1 v 1 2 ( v 2 a 1 M 12 + v 3 a 1 M 13 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkHiTiaacckacaGGGcWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa dAhapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaOWdbmaabmaapaqaa8 qacaWGHbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaad2eapaWa aSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadAhapa WaaSbaaSqaa8qacaaIYaaapaqabaGcpeWaaeWaa8aabaWdbiabgkGi 2kaad2eapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaadggapaWaaSbaaSqaa8qacaaIZaaapaqa baGcpeGaamyta8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpe Gaey4kaSIaamODa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qadaqa daWdaeaapeGaeyOaIyRaamyta8aadaWgaaWcbaWdbiaaigdacaaIZa aapaqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaSYa aSaaa8aabaWdbiaaigdaa8aabaWdbiaadAhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaaIYaaaaaaakmaabmaapaqaa8qacaWG2bWdamaa BaaaleaapeGaaGOmaaWdaeqaaOWdbiaadggapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaamyta8aadaWgaaWcbaWdbiaaigdacaaIYaaa paqabaGcpeGaey4kaSIaamODa8aadaWgaaWcbaWdbiaaiodaa8aabe aak8qacaWGHbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaad2ea paWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaaGcpeGaayjkaiaawM caaiaacYcaaaa@7238@   (41)

V 12 = M 12 + 1 r 1 ( r 2 v 3 r 3 v 2 )+ 1 r 1 2 ( r 2 r 3 v 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadAfapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWd biabg2da9iabgkGi2kaad2eapaWaaSbaaSqaa8qacaaIXaGaaGOmaa WdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG YbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaak8qadaqadaWdaeaape GaamOCa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWG2bWdamaa BaaaleaapeGaaG4maaWdaeqaaOWdbiabgkHiTiaadkhapaWaaSbaaS qaa8qacaaIZaaapaqabaGcpeGaamODa8aadaWgaaWcbaWdbiaaikda a8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkdaWcaaWdaeaapeGaaG ymaaWdaeaapeGaamOCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaa ikdaaaaaaOWaaeWaa8aabaWdbiaadkhapaWaaSbaaSqaa8qacaaIYa aapaqabaGcpeGaamOCa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qa caWG2bWdamaaBaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawM caaiaacYcaaaa@5E24@   (42)

V 13 = M 13 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadAfapaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaOWd biabg2da9iabgkGi2kaad2eapaWaaSbaaSqaa8qacaaIXaGaaG4maa WdaeqaaOWdbiaacYcaaaa@41EB@   (43)

V 21 = 1 v 1 ( r 2 a 3 + r 3 a 2 a 2 M 22 v 2 ( M 22 ) a 2 M 33 v 3 ( M 23 )  + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadAfapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaOWd biabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWG2bWdamaaBa aaleaapeGaaGymaaWdaeqaaaaak8qacaGGOaGaeyOeI0IaamOCa8aa daWgaaWcbaWdbiaaikdaa8aabeaak8qacaWGHbWdamaaBaaaleaape GaaG4maaWdaeqaaOWdbiabgUcaRiaadkhapaWaaSbaaSqaa8qacaaI ZaaapaqabaGcpeGaamyya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8 qacqGHsislcaWGHbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaa d2eapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiabgkHiTi aadAhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeWaaeWaa8aabaWd biabgkGi2kaad2eapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaa GcpeGaayjkaiaawMcaaiabgkHiTiaadggapaWaaSbaaSqaa8qacaaI YaaapaqabaGcpeGaamyta8aadaWgaaWcbaWdbiaaiodacaaIZaaapa qabaGcpeGaeyOeI0IaamODa8aadaWgaaWcbaWdbiaaiodaa8aabeaa k8qadaqadaWdaeaapeGaeyOaIyRaamyta8aadaWgaaWcbaWdbiaaik dacaaIZaaapaqabaaak8qacaGLOaGaayzkaaGaaiiOaiaacckacqGH RaWkaaa@6BB8@  

  a 1 v 1 2 ( r 2 v 3 r 3 v 2 + v 2 M 22 + v 3 M 23 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckadaWcaaWdaeaapeGaamyya8aadaWgaaWcbaWdbiaaigdaa8aa beaaaOqaa8qacaWG2bWdamaaDaaaleaapeGaaGymaaWdaeaapeGaaG OmaaaaaaGcdaqadaWdaeaapeGaamOCa8aadaWgaaWcbaWdbiaaikda a8aabeaak8qacaWG2bWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbi abgkHiTiaadkhapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaamOD a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcaWG2bWdam aaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaad2eapaWaaSbaaSqaa8qa caaIYaGaaGOmaaWdaeqaaOWdbiabgUcaRiaadAhapaWaaSbaaSqaa8 qacaaIZaaapaqabaGcpeGaamyta8aadaWgaaWcbaWdbiaaikdacaaI Zaaapaqabaaak8qacaGLOaGaayzkaaGaaiilaaaa@55B6@   (44)

V 22 = M 22 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadAfapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWd biabg2da9iabgkGi2kaad2eapaWaaSbaaSqaa8qacaaIYaGaaGOmaa WdaeqaaOWdbiaacYcaaaa@41EB@   (45)

V 23 = M 23 + v 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadAfapaWaaSbaaSqaa8qacaaIYaGaaG4maaWdaeqaaOWd biabg2da9iabgkGi2kaad2eapaWaaSbaaSqaa8qacaaIYaGaaG4maa WdaeqaaOWdbiabgUcaRiaadAhapaWaaSbaaSqaa8qacaaIYaaapaqa baGcpeGaaiilaaaa@44FA@   (46)

  V 31 = M 31 1 r 1 ( 2 r 3 v 3 )+ 1 r 1 2 ( v 1 r 3 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckacqGHciITcaWGwbWdamaaBaaaleaapeGaaG4maiaaigdaa8aa beaak8qacqGH9aqpcqGHciITcaWGnbWdamaaBaaaleaapeGaaG4mai aaigdaa8aabeaak8qacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaa peGaamOCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeWaaeWaa8 aabaWdbiaaikdacaWGYbWdamaaBaaaleaapeGaaG4maaWdaeqaaOWd biaadAhapaWaaSbaaSqaa8qacaaIZaaapaqabaaak8qacaGLOaGaay zkaaGaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadkhapaWa a0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaaaakmaabmaapaqaa8 qacaWG2bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadkhapaWa a0baaSqaa8qacaaIZaaapaqaa8qacaaIYaaaaaGccaGLOaGaayzkaa Gaaiilaaaa@5968@   (47)

V 32   =   1 r 1 2 v 2 2 ( r 1 r 3 2 v 2 a 1 +2 r 1 r 3 v 1 v 2 v 3 r 1 r 3 2 v 1 a 2 r 3 2 v 2 v 1 2 )  + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadAfapaWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaOWd biaacckacaGGGcGaeyypa0JaaiiOaiaacckadaWcaaWdaeaapeGaaG ymaaWdaeaapeGaamOCa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaa ikdaaaGccaWG2bWdamaaDaaaleaapeGaaGOmaaWdaeaapeGaaGOmaa aaaaGcdaqadaWdaeaapeGaamOCa8aadaWgaaWcbaWdbiaaigdaa8aa beaak8qacaWGYbWdamaaDaaaleaapeGaaG4maaWdaeaapeGaaGOmaa aakiaadAhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaamyya8aa daWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkcaaIYaGaamOCa8 aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGYbWdamaaBaaaleaa peGaaG4maaWdaeqaaOWdbiaadAhapaWaaSbaaSqaa8qacaaIXaaapa qabaGcpeGaamODa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaWG 2bWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgkHiTiaadkhapa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaamOCa8aadaqhaaWcbaWd biaaiodaa8aabaWdbiaaikdaaaGccaWG2bWdamaaBaaaleaapeGaaG ymaaWdaeqaaOWdbiaadggapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaeyOeI0IaamOCa8aadaqhaaWcbaWdbiaaiodaa8aabaWdbiaaik daaaGccaWG2bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaadAha paWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIYaaaaaGccaGLOaGaay zkaaGaaiiOaiaacckacqGHRaWkaaa@7622@  

a 2 v 2 2 ( r 3 v 3 + v 1 M 31 + v 3 M 33 ) v 2 ( v 3 2 + r 3 a 3 + a 1 M 31 + v 1 ( M 31 )+ a 3 M 33 + v 3 ( M 33 ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aalaaapaqaa8qacaWGHbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGc baWdbiaadAhapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIYaaaaa aakmaabmaapaqaa8qacaWGYbWdamaaBaaaleaapeGaaG4maaWdaeqa aOWdbiaadAhapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey4kaS IaamODa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWGnbWdamaa BaaaleaapeGaaG4maiaaigdaa8aabeaak8qacqGHRaWkcaWG2bWdam aaBaaaleaapeGaaG4maaWdaeqaaOWdbiaad2eapaWaaSbaaSqaa8qa caaIZaGaaG4maaWdaeqaaaGcpeGaayjkaiaawMcaaiabgkHiTiaadA hapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeWaaeWaa8aabaWdbiaa dAhapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaaIYaaaaOGaey4kaS IaamOCa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaWGHbWdamaa BaaaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRiaadggapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaamyta8aadaWgaaWcbaWdbiaaioda caaIXaaapaqabaGcpeGaey4kaSIaamODa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qadaqadaWdaeaapeGaeyOaIyRaamyta8aadaWgaaWc baWdbiaaiodacaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaey4kaS Iaamyya8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaWGnbWdamaa BaaaleaapeGaaG4maiaaiodaa8aabeaak8qacqGHRaWkcaWG2bWdam aaBaaaleaapeGaaG4maaWdaeqaaOWdbmaabmaapaqaa8qacqGHciIT caWGnbWdamaaBaaaleaapeGaaG4maiaaiodaa8aabeaaaOWdbiaawI cacaGLPaaaaiaawIcacaGLPaaacaGGSaaaaa@7941@   (48)

V 33 = M 33 +2 v 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkGi2kaadAfapaWaaSbaaSqaa8qacaaIZaGaaG4maaWdaeqaaOWd biabg2da9iabgkGi2kaad2eapaWaaSbaaSqaa8qacaaIZaGaaG4maa WdaeqaaOWdbiabgUcaRiaaikdacaWG2bWdamaaBaaaleaapeGaaG4m aaWdaeqaaOWdbiaac6caaaa@45BB@   (49)

Note the consistency of the units between the terms that appear in each of the expressions (41) to (49).

Following the anticipated sequence of calculations, of the expressions that define the matrices Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfaaaa@38BA@ and V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAfaaaa@38BF@ , we can write, using (32) and (33), the following expression,

( Q+V ) a =λ a , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaWGrbGaey4kaSIaamOvaaGaayjkaiaawMcaaiqa dggapaGbaSaapeGaeyypa0Jaeq4UdWMabmyya8aagaWca8qacaGGSa aaaa@41B7@   (50)

 being a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGHbWdayaalaaaaa@371E@  an eigenvector of the matrix “ Q+V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfacqGHRaWkcaWGwbaaaa@3A77@ ", we have that “ m a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gaceWGHbWdayaalaaaaa@39DD@ ", being  the numerical parameter corresponding to the mass of the particle, is also an eigenvector of this matrix,

( Q  +  V )m a   =  λ( m a ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aabmaapaqaa8qacaWGrbGaaiiOaiaacckacqGHRaWkcaGGGcGaaiiO aiaadAfaaiaawIcacaGLPaaacaWGTbGabmyya8aagaWca8qacaGGGc GaaiiOaiabg2da9iaacckacaGGGcGaeq4UdW2aaeWaa8aabaWdbiaa d2gaceWGHbWdayaalaaapeGaayjkaiaawMcaaiaacYcaaaa@4E63@   (51)

 The matrix in (51) we will call the force matrix, F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeaaaa@38AF@ , so that,

F f   =  λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeaceWGMbWdayaalaWdbiaacckacaGGGcGaeyypa0JaaiiOaiaa cckacqaH7oaBceWGMbWdayaalaaaaa@4250@   (52)

 If we write the matrix F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeaaaa@38DE@ as follows,

F  = ( F 11 F 12 F 13 F 21 F 22 F 23 F 31 F 32 F 33 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=PjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeacaGGGcGaaiiOaiabg2da9iaacckadaqadaqaa8aafaqaaeWa daaabaWdbiaadAeapaWaaSbaaKqbagaapeGaaGymaiaaigdaaSWdae qaaaGcbaWdbiaadAeapaWaaSbaaKqbagaapeGaaGymaiaaikdaaSWd aeqaaaGcbaWdbiaadAeapaWaaSbaaKqbagaapeGaaGymaiaaiodaaS WdaeqaaaGcbaWdbiaadAeapaWaaSbaaKqbagaapeGaaGOmaiaaigda aSWdaeqaaaGcbaWdbiaadAeapaWaaSbaaKqbagaapeGaaGOmaiaaik daaSWdaeqaaaGcbaWdbiaadAeapaWaaSbaaKqbagaapeGaaGOmaiaa iodaaSWdaeqaaaGcbaWdbiaadAeapaWaaSbaaKqbagaapeGaaG4mai aaigdaaSWdaeqaaaGcbaWdbiaadAeapaWaaSbaaKqbagaapeGaaG4m aiaaikdaaSWdaeqaaaGcbaWdbiaadAeapaWaaSbaaKqbagaapeGaaG 4maiaaiodaaSWdaeqaaaaaaOWdbiaawIcacaGLPaaacaGGGcGaaiil aaaa@5E4F@   (53)

 then its elements are defined as follows,

F 11   =   Q 11   +   M 11 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiaaccka caGGGcGaeyypa0JaaiiOaiaacckacaWGrbWdamaaBaaaleaapeGaaG ymaiaaigdaa8aabeaak8qacaGGGcGaaiiOaiabgUcaRiaacckacaGG GcGaamyta8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcpeGaai ilaaaa@4BCD@   (54)

 ( Q 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbWdamaaBaaaleaapeGaaGymaiaaigdaa8aabeaaaaa@38BD@  being an independent element and M 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaaaa@3A86@  given in (27)),

F 12   =   Q 12   +   M 12   +   r 1 r 3 r 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaOWdbiaaccka caGGGcGaeyypa0JaaiiOaiaacckacaWGrbWdamaaBaaaleaapeGaaG ymaiaaikdaa8aabeaak8qacaGGGcGaaiiOaiabgUcaRiaacckacaGG GcGaamyta8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqabaGcpeGaai iOaiaacckacqGHRaWkcaGGGcGaaiiOamaalaaapaqaa8qacaWGYbWd amaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaadkhapaWaaSbaaSqaa8 qacaaIZaaapaqabaaakeaapeGaamOCa8aadaWgaaWcbaWdbiaaikda a8aabeaaaaGcpeGaaiilaaaa@57E6@   (55)

 (where: Q 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaaaa@3A8B@ and M 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaaaa@3A87@ are independent elements; r 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkhapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@39F0@ , r 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkhapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@39F1@ and r 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkhapaWaaSbaaSqaa8qacaaIZaaapaqabaaaaa@39F2@  are assumed to be known),

F 13   =   Q 13   +   M 13 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeapaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaOWdbiaaccka caGGGcGaeyypa0JaaiiOaiaacckacaWGrbWdamaaBaaaleaapeGaaG ymaiaaiodaa8aabeaak8qacaGGGcGaaiiOaiabgUcaRiaacckacaGG GcGaamyta8aadaWgaaWcbaWdbiaaigdacaaIZaaapaqabaGcpeGaai ilaaaa@4BD3@   (56)

 ( Q 13 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGrbWdamaaBaaaleaapeGaaGymaiaaiodaa8aabeaaaaa@38BF@  being a dependent element given in (38) and M 13 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaSqaa8qacaaIXaGaaG4maaWdaeqaaaaa@3A88@ an independent element),

F 21   =   Q 21   +   M 21 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaOWdbiaaccka caGGGcGaeyypa0JaaiiOaiaacckacaWGrbWdamaaBaaaleaapeGaaG Omaiaaigdaa8aabeaak8qacaGGGcGaaiiOaiabgUcaRiaacckacaGG GcGaamyta8aadaWgaaWcbaWdbiaaikdacaaIXaaapaqabaGcpeGaai ilaaaa@4BD0@   (57)

 ( Q 21 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaaaa@3A8B@ being an independent element and M 21 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaSqaa8qacaaIYaGaaGymaaWdaeqaaaaa@3A87@  a dependent element given in (28)),

F 22   =   Q 22   +   M 22 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaOWdbiaaccka caGGGcGaeyypa0JaaiiOaiaacckacaWGrbWdamaaBaaaleaapeGaaG Omaiaaikdaa8aabeaak8qacaGGGcGaaiiOaiabgUcaRiaacckacaGG GcGaamyta8aadaWgaaWcbaWdbiaaikdacaaIYaaapaqabaGcpeGaai ilaaaa@4BD3@   (58)

 ( Q 22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaaaa@3A8C@ being a dependent element given in (39) and M 22 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaSqaa8qacaaIYaGaaGOmaaWdaeqaaaaa@3A88@  an independent element),

F 23   =   Q 23   +   M 23   +   r 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeapaWaaSbaaSqaa8qacaaIYaGaaG4maaWdaeqaaOWdbiaaccka caGGGcGaeyypa0JaaiiOaiaacckacaWGrbWdamaaBaaaleaapeGaaG Omaiaaiodaa8aabeaak8qacaGGGcGaaiiOaiabgUcaRiaacckacaGG GcGaamyta8aadaWgaaWcbaWdbiaaikdacaaIZaaapaqabaGcpeGaai iOaiaacckacqGHRaWkcaGGGcGaaiiOaiaadkhapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaaiilaaaa@536F@   (59)

 ( Q 23 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIYaGaaG4maaWdaeqaaaaa@3A8D@ and M 23 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaSqaa8qacaaIYaGaaG4maaWdaeqaaaaa@3A89@ being independent elements, r 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkhapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@39F1@ given initially),

F 31   =   Q 31   +   M 31      r 3 2 r 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeapaWaaSbaaSqaa8qacaaIZaGaaGymaaWdaeqaaOWdbiaaccka caGGGcGaeyypa0JaaiiOaiaacckacaWGrbWdamaaBaaaleaapeGaaG 4maiaaigdaa8aabeaak8qacaGGGcGaaiiOaiabgUcaRiaacckacaGG GcGaamyta8aadaWgaaWcbaWdbiaaiodacaaIXaaapaqabaGcpeGaai iOaiaacckacqGHsislcaGGGcGaaiiOamaalaaapaqaa8qacaWGYbWd amaaDaaaleaapeGaaG4maaWdaeaapeGaaGOmaaaaaOWdaeaapeGaam OCa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaGcpeGaaiilaaaa@56A9@   (60)

 ( Q 31 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIZaGaaGymaaWdaeqaaaaa@3A8C@ and  being independent elements),

F 32   =   Q 32   +   M 32 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeapaWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaOWdbiaaccka caGGGcGaeyypa0JaaiiOaiaacckacaWGrbWdamaaBaaaleaapeGaaG 4maiaaikdaa8aabeaak8qacaGGGcGaaiiOaiabgUcaRiaacckacaGG GcGaamyta8aadaWgaaWcbaWdbiaaiodacaaIYaaapaqabaGcpeGaai ilaaaa@4BD6@   (61)

 ( Q 32 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaaaa@3A8D@ being an independent element and M 32 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaSqaa8qacaaIZaGaaGOmaaWdaeqaaaaa@3A89@  a dependent element given in (25)),

F 33   =   Q 33   +   M 33   +   r 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeapaWaaSbaaSqaa8qacaaIZaGaaG4maaWdaeqaaOWdbiaaccka caGGGcGaeyypa0JaaiiOaiaacckacaWGrbWdamaaBaaaleaapeGaaG 4maiaaiodaa8aabeaak8qacaGGGcGaaiiOaiabgUcaRiaacckacaGG GcGaamyta8aadaWgaaWcbaWdbiaaiodacaaIZaaapaqabaGcpeGaai iOaiaacckacqGHRaWkcaGGGcGaaiiOaiaadkhapaWaaSbaaSqaa8qa caaIZaaapaqabaGcpeGaaiilaaaa@5373@   (62)

 ( Q 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfapaWaaSbaaSqaa8qacaaIZaGaaG4maaWdaeqaaaaa@3A8E@ being a dependent element given in (40) and M 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eapaWaaSbaaSqaa8qacaaIZaGaaG4maaWdaeqaaaaa@3A8A@  being an independent element), where each of the elements of the matrices Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfaaaa@38BA@ and M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38B6@ has been previously found. The choice made of independent elements for the matrices R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38BB@ , M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2eaaaa@38B6@ and Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgfaaaa@38BA@ has allowed each of the elements of F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeaaaa@38AF@ to be defined by at least one free parameter.

Concisely we say that, within a defined and particular context, the matrix given through expressions (53) to (62) and the matrix that we have called the force matrix were constructed. The name of this matrix is due to the fact that, precisely, the force (which acts on the considered particle) is its property; namely, its eigenvector. With the development presented in the previous sections, we have solved the inverse problem corresponding to the classical dynamics of a material particle in a simplified situation (when the maximum number of free elements in the matrices is not considered).

The matrix approach and Galileo’s transformations

Let two independent observers use different inertial frames, which we call O' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad+eacaqGNaaaaa@3962@ and O MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad+eaaaa@38B8@ , which use coordinates x',y',z' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhacaGGNaGaaiilaiaadMhacaGGNaGaaiilaiaadQhacaGGNaaa aa@3E3F@ and x,y,z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhacaGGSaGaamyEaiaacYcacaWG6baaaa@3C3E@ , respectively, and the (intervals of) times recorded by these observers are designated by t' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshacaGGNaaaaa@3988@ and t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshaaaa@38DD@ , respectively. Suppose that O' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad+eacaqGNaaaaa@3962@ is in motion relative to O MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGpbaaaa@36EB@  with constant speed O V =d ξ /dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad+eaceWGwbWdayaalaWdbiabg2da9iaadsgacuaH+oaEpaGbaSaa peGaai4laiaadsgacaWG0baaaa@403C@ , where ξ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abe67a4naabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3C48@ is the position of the origin of coordinates of O' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad+eacaqGNaaaaa@3962@ with respect to O MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGpbaaaa@36EB@  at time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadshaaaa@38DD@ . Suppose that the observers describe, separately, the motion of the same material particle of mass m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gaaaa@38D6@ on which a resultant force acts, described by f   ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAgapaGbaSaadaahaaWcbeqaa8qacaGGGcGaaiiOaiaabEcaaaaa aa@3C1F@  in the frame O' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad+eacaqGNaaaaa@3962@ , and by f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAgapaGbaSaaaaa@38F0@  in the frame O MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad+eaaaa@38B8@ .

From the Galileo transformations, given by the compact expressions,

r   '   =   r ξ         &        t'  =  t, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaadaahaaWcbeqaa8qacaGGGcGaaiiOaiaabEcaaaGc caGGGcGaaiiOaiabg2da9iaacckacaGGGcGabmOCa8aagaWca8qacq GHsislcuaH+oaEpaGbaSaapeGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGMaGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaWG0bGaai4jaiaacckacaGG GcGaeyypa0JaaiiOaiaacckacaWG0bGaaiilaaaa@61A1@   (63)

it is known that the forces f   ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAgapaGbaSaadaahaaWcbeqaa8qacaGGGcGaaiiOaiaabEcaaaaa aa@3C1F@  and f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAgapaGbaSaaaaa@38F0@  check,

f   ' ( r   ' , v   ' ,t' )  =   f ( r , v ,t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAgapaGbaSaadaahaaWcbeqaa8qacaGGGcGaaiiOaiaabEcaaaGc daqadaWdaeaapeGabmOCa8aagaWcamaaCaaaleqabaWdbiaacckaca GGGcGaae4jaaaakiaacYcaceWG2bWdayaalaWaaWbaaSqabeaapeGa aiiOaiaacckacaqGNaaaaOGaaiilaiaadshacaGGNaaacaGLOaGaay zkaaGaaiiOaiaacckacqGH9aqpcaGGGcGaaiiOaiqadAgapaGbaSaa peWaaeWaa8aabaWdbiqadkhapaGbaSaapeGaaiilaiqadAhapaGbaS aapeGaaiilaiaadshaaiaawIcacaGLPaaacaGGUaaaaa@5734@   (64)

 On the other hand, based on the context already defined and the development presented, we can consider that f   ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAgapaGbaSaadaahaaWcbeqaa8qacaGGGcGaaiiOaiaabEcaaaaa aa@3C1F@  is an eigenvector of a matrix F' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeacaGGNaaaaa@3959@ that can be constructed; this is,

F' f   ' =  η f   ' , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeacaGGNaGabmOza8aagaWcamaaCaaaleqabaWdbiaacckacaGG GcGaae4jaaaakiabg2da9iaacckacaGGGcGaeq4TdGMabmOza8aaga WcamaaCaaaleqabaWdbiaacckacaGGGcGaae4jaaaakiaacYcaaaa@478D@   (65)

where η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeE7aObaa@398F@ is the corresponding eigenvalue. Note that F' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeacaGGNaaaaa@3959@ must be distinct from F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeaaaa@38AE@ , because according to our matrix treatment, these matrices are constructed from position vectors, which are distinct in different RIT’s.

Assuming that matrix F' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeacaGGNaaaaa@3959@ has the same structure and the same number of free parameters as those of matrix F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeaaaa@38AE@ , we have that its elements, distinct from those of matrix F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeaaaa@38AE@ , will have the same relationships among themselves as those found in section 3. On the other hand , the matrices F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeaaaa@38AE@ and F' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAeacaGGNaaaaa@3959@ are expected to commute consistently with the fact that they have, according to (64), a common non-zero eigenvector. The choice of the values of the (previously free) elements of the matrices, consistent with the requirement that these matrices commute, requires the inclusion of the largest number of free parameters in each matrix and calculations similar to those presented, with the difference that these would be much more long.

1 Having enough free parameters or degrees of freedom

2 Of which we use indistinctly the symbols “ " or “ " (less visible) according to the available space.

3 It is not advisable to define the position matrix with all its non-zero elements, because in the subsequent calculations, although simple, one cannot avoid working with quite extensive expressions.

4 This implies, among other things, that the particle’s trajectory cannot cross any plane defined by two coordinate directions of the considered RIT. A proper choice of initial conditions will help to control this.

5 At the beginning of this section, anticipating that would take on some real value, we could have considered , in (3), as Symmetric or Hermitean, since this would guarantee real eigenvalues; but, as we are looking for a position matrix with the maximum number of independent elements, this choice was not essential.

6 Which is well defined because  is known for every instant .

Conclusion

A matrix solution was constructed for the inverse problem corresponding to the problem of determining the trajectory of a material particle, given its mass m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad2gaaaa@38D5@ and the total force   f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacckaceWGMbWdayaalaaaaa@3A13@  acting on it. Within a defined and particular context, in which it is considered that the position of the particle r ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3BAC@ , in relation to a given RIT, corresponds to an eigenvector of a “position matrix", R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38BA@ , the matrix given through the expressions (53) to (62) is what we have called the “force matrix". The name given to this matrix is due to the fact that, precisely, the force considered is its property; namely, its eigenvector. The matrix context presented could neither be applied, nor extended, to the component forces of the total force f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadAgapaGbaSaaaaa@38EF@ , as it is clear from the adopted procedure that, starting from a known r ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3BAC@ , one can only arrive at the total force and not to its components. Note that the solution obtained is not unique: it depends on the number of free parameters that are initially available in the position matrix, which is constructed assuming that the position r ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3BAC@ is known at all times.

Acknowledgments

ABC thanks professors Dr. Solange Cromianski (UNIFAP) and Dr. Gabriela Orsaria (UNLP) for her comments on the first version of this work.

Conflicts of interest

The author declares there is no conflict of interest.

Appendix

Suppose we consider a matrix R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbaaaa@36EE@ , of order three, which has no fixed elements; that is, it has the maximum number of free elements: nine. Therefore, when r ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadkhapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3BAC@  is required to be an eigenvector of R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaaaa@38BA@ , that is,

R( t )   r ( t )  =  λ( t )   r ( t ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacckacaGG GcGabmOCa8aagaWca8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaiaacckacaGGGcGaeyypa0JaaiiOaiaacckacqaH7oaBdaqadaWd aeaapeGaamiDaaGaayjkaiaawMcaaiaacckacaGGGcGabmOCa8aaga Wca8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaacYcaaaa@5218@   (66)

 we will have that three of these elements cannot be kept free, because in expression (66) there are three independent relations that must be satisfied; thus, we are left with (93) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaGyoai abgkHiTiaaiodacaGGPaaaaa@3B89@  six free elements (or degrees of freedom). Then we differentiate (66) with respect to the time variable, and the independent7 expression is obtained,

[  ( R ) r ( t )    ( λ ) r ( t )  ]  +  R v ( t )  =  λ v ( t ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaa8qacaGGGcWaaeWaa8aabaWdbiabgkGi2kaadkfaaiaa wIcacaGLPaaaceWGYbWdayaalaWdbmaabmaapaqaa8qacaWG0baaca GLOaGaayzkaaGaaiiOaiaacckacqGHsislcaGGGcGaaiiOamaabmaa paqaa8qacqGHciITcqaH7oaBaiaawIcacaGLPaaaceWGYbWdayaala Wdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiiOaaGaay5w aiaaw2faaiaacckacaGGGcGaey4kaSIaaiiOaiaacckacaWGsbGabm ODa8aagaWca8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaa cckacaGGGcGaeyypa0JaaiiOaiaacckacqaH7oaBceWG2bWdayaala Wdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaaiOlaaaa@67D1@   (67)

 Here we also have that, in order to satisfy the relation (67), three other parameters must be fixed, leaving only (63) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaGOnai abgkHiTiaaiodacaGGPaaaaa@3B86@  three free elements. Having done that, if we want to keep in (78) only the expression,

R v   =  λ v , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfaceWG2bWdayaalaWdbiaacckacaGGGcGaeyypa0JaaiiOaiaa cckacqaH7oaBceWG2bWdayaalaWdbiaacYcaaaa@430C@   (68)

 we must require the left term in (67) to be null, that is,

( R ) r ( t )    ( λ ) r ( t )  =   0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaeyOaIyRaamOuaaGaayjkaiaawMcaaiqadkha paGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaGGGc GaaiiOaiabgkHiTiaacckacaGGGcWaaeWaa8aabaWdbiabgkGi2kab eU7aSbGaayjkaiaawMcaaiqadkhapaGbaSaapeWaaeWaa8aabaWdbi aadshaaiaawIcacaGLPaaacaGGGcGaaiiOaiabg2da9iaacckacaGG GcGabGima8aagaWca8qacaGGSaaaaa@52FE@   (69)

 but for that we need the last three free parameters that are left to be used to guarantee the verification of this vector equality. By differentiating the expression (68) in relation to the variable t, we will have,

[   ( R ) v ( t )    ( λ ) v ( t )   ]  +  R a ( t )  =  λ a ( t ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbm aadmaapaqaa8qacaGGGcGaaiiOamaabmaapaqaa8qacqGHciITcaWG sbaacaGLOaGaayzkaaGabmODa8aagaWca8qadaqadaWdaeaapeGaam iDaaGaayjkaiaawMcaaiaacckacaGGGcGaeyOeI0IaaiiOaiaaccka daqadaWdaeaapeGaeyOaIyRaeq4UdWgacaGLOaGaayzkaaGabmODa8 aagaWca8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaaccka caGGGcaacaGLBbGaayzxaaGaaiiOaiaacckacqGHRaWkcaGGGcGaai iOaiaadkfaceWGHbWdayaalaWdbmaabmaapaqaa8qacaWG0baacaGL OaGaayzkaaGaaiiOaiaacckacqGH9aqpcaGGGcGaaiiOaiabeU7aSj qadggapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa caGGUaaaaa@69F7@   (70)

 but this equality, under the conditions considered, cannot be satisfied since we no longer have free parameters. The only way to get an expression consistent with this procedure is to rewrite the term in square brackets in (70) as the product of a suitable matrix (which is introduced into the problem with sufficient degrees of freedom) and the vector a ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi qadggapaGbaSaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3B9B@ .

7 Where, to simplify the notation, we have suppressed the symbol that indicates the temporal dependence in the corresponding terms.

References

  1. Prilepko A, Orlovsky D, Vasin I.  Methods for solving inverse problems in mathematical physics. Marcel Dekker, Inc.,New York;2000.
  2. Lantz V, Abiri N, Carlsson G, et al. Deep learning for inverse problems in quantum mechanics.  International Journal of Quantum Chemistry. 2021;121:e26599.
  3. Vasco D. An algebraic formulation of geophysical inverse problems. Geophysical Journal International. 2000;142:970–990.
  4. Fayziev Y, Buvaev Q, Juraev D, et al. The inverse problem for determining the source function in the equation with the Riemann–Liouville fractional derivative. Global and Stochastic Analysis. 2022;9(2):43–52.
  5. Yuldashev TK, Karimov ET. Inverse Problem for a Mixed Type Integro–Differential Equation with Fractional Order Caputo Operators and Spectral Parameters. Axioms. 2020;9:121.
  6. Ashurov R, Muhiddinova O. Inverse problem of determining the heat source density for the subdiffusion equation.  Differential equations. 2020;56(12):1550–1563.
  7. Hu G, Qu F, Zhang B. Direct and inverse problems for electromagnetic scattering by a doubly periodic structure with a partially coated dielectric.  Mathematical Methods in the Applied Sciences. 2010;33:147–156.
  8. Popova M, He S. Electromagnetic direct and inverse problems for a surface–breaking crack in a conductor at a high frequency.  Journal of Applied Physics. 1999;86(7):3997–4003.
  9. Dorren H, Muyzert E, Snieder R. The stability of one–dimensional inverse scattering. Inverse Problems. 1994;10:865–880.
  10. Sivardière J. On the inverse Kepler problem. European Journal of Physics. 1985;6:245–248.
Creative Commons Attribution License

©2023 Calado, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.