Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 1 Issue 3

Kaluza-klein cosmological models with barotropic fluid distribution

Mohammad Amjad Hossain,1 Mohammad Moksud Alam,1 AHM Mahbubur Rahman1

1Department of Mathematics, University of Chittagong, Bangladesh
2Department of Mathematics and Natural Sciences, BRAC University, Bangladesh

Correspondence: Mohammad Moksud Alam, Department of Mathematics, University of Chittagong, Bangladesh

Received: August 23, 2017 | Published: October 5, 2017

Citation: Hossain MA, Alam MM, Rahman AHMM. Kaluza-klein cosmological models with barotropic fluid distribution. Phys Astron Int J. 2017;1(3):98-103. DOI: 10.15406/paij.2017.01.00018

Download PDF

Abstract

Kaluza-Klein cosmological models have been investigated for barotropic fluid distribution with time dependent gravitational constant and cosmological constant in the context of general relativity. We have used Hybrid Expansion Law (HEL), a product of power-law and exponential type of functions, to obtain determinate solutions of the Einstein’s field equations. In this paper, we have mainly discussed the graphical behavior of the results for three different cases of interest in modern cosmology.

Keywords: Kaluza-Klein cosmology, cosmological constant, barotropic fluid, hybrid expansion law

Introduction

From astronomical observations, the 2.72548±0.00057 K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaaIYaGaaiOlaiaaiEdacaaIYaGaaGynaiaaisdacaaI4aGa eyySaeRaaGimaiaac6cacaaIWaGaaGimaiaaicdacaaI1aGaaG4nai aacckacaWGlbaaaa@44CB@ 1 isotropic microwave background radiation (CMBR) motivated many researchers to explore the FRW metric with a two-fluid source.24 The radiation field corresponding to the experimental CMB radiation is one of the fluids preferred while another is a perfect fluid represent by the matter content of the Universe.5 Recently, many researchers investigated different aspects of FRW cosmological models and Kaluza-Klein cosmological models610 in the context of f(R,T) theory of gravity. Higher dimensional plane symmetric cosmological models studied by Mete et al.11 and Amirhashchi et al.12 also conferred interrelating two-fluid viscous dark energy models in a non-flat Universe. In particular, Samantha & Debata et al.,13 have considered two-fluid cosmological models in Kaluza-Klein space-time.

The Kaluza-Klein theory was led to unify Maxwell’s electromagnetic theory and Einstein’s gravitational theory by counting the fifth dimension.14 Kaluza15 has revealed that General Relativity (GR) when construed as a vacuum 5D theory contains four-dimensional GR in the existence of electromagnetic field, unruffled with Maxwell’s electromagnetism. To this problem, Kaluza proposed that – GR is not modified, just extended to five dimensions, and there is no physical dependence on the fifth dimension. Klein16 recommended the compactification of the fifth dimension. Chodos and Detweiler et al.,17 have shown in their five dimensional models that the extra dimension contracts for cosmic evolution.

Einstein’s field equations are highly nonlinear differential equations. It is not easy to understand what qualitative type of solution they might possess. After the cosmological constant was introduced into general relativity, many cosmologists believe that the simplest candidate for the dark energy is the cosmological constant or vacuum energy. The cosmological constant Λ and phantom fields are violating weak energy conditions p+ρ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadchacqGHRaWkcqaHbpGCcqGH+aGpcaaIWaaaaa@3BFF@ 13 On the other hand this cosmological constant always suffers from the theoretical problems – ‘fine-tuning’ and ‘cosmic coincidence’.18 For this reason, the equation of state (EoS) of dark energy ω= p ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH9aqpdaWcaaWdaeaapeGaamiCaaWdaeaapeGa eqyWdihaaaaa@3C7B@  where p is the pressure and ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHbpGCaaa@3865@ is the energy density, in the universe transit from ω>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH+aGpcqGHsislcaaIXaaaaa@3B22@  to ω<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH8aapcqGHsislcaaIXaaaaa@3B1E@ . Steinhardt et al.19 Caldwell et al.20 have proposed ω>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH+aGpcqGHsislcaaIXaaaaa@3B22@ , and Santhi et al.21 have proposed ω< 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH8aapcqGHsisldaWcaaWdaeaapeGaaGymaaWd aeaapeGaaG4maaaaaaa@3C29@  in their recent paper. In general relativity the dynamics of the spatially flat RW spacetime, the fluids with constant EoS parameter ω>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH+aGpcqGHsislcaaIXaaaaa@3B22@ give either a power-law expansion of the Universe a t α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbGaeyyhIuRaamiDa8aadaahaaqabKqbGeaapeGaeqyS degaaaaa@3C12@ or an exponential expansion a e βt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGHbGaeyyhIuRaamyza8aadaahaaqabKqbGeaapeGaeqOS diMaamiDaaaaaaa@3CFE@ , where α,β0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHXoqycaGGSaGaeqOSdiMaeyyzImRaaGimaaaa@3D15@  are constant.22 The Hybrid Expansion Law (HEL) leads to β=0 , α=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycqGH9aqpcaaIWaGaaiiOaiaacYcacaGGGcGaeqyS deMaeyypa0JaaGimaaaa@405D@ which are the special cases of the HEL in early universe. Surprisingly, if the  α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaGGGcGaeqySdeMaeyOpa4JaaGimaaaa@3B29@ and β>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHYoGycqGH+aGpcaaIWaaaaa@3A07@ leads to a new cosmology ascending from the HEL.

A time variation of the gravitational constant G was first proposed by DiracDirac23 in his large number hypothesis. Other outstanding solutions were studied by WeinbergWeinberg24 and Padmanabhan25 Cosmological models with time-dependent G and Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae83MdW eaaa@376F@ , the relation  Λ a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcaccaWdaiab=T5amLqba+qacqGHDisTcaWGHbWdamaaCaaa juaibeqaa8qacqGHsislcaaIYaaaaaaa@3DDE@ (a is the scale factor of the Robertson-Walker metric) and  Λ t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcaccaWdaiab=T5amLqba+qacqGHDisTcaWG0bWdamaaCaaa juaibeqaa8qacqGHsislcaaIYaaaaaaa@3DF1@ , were first obtained Bertolami26 Sharif et al.27 Gamal et al.28 and Mukhopadhyay et al29 are some of the authors who have investigated several aspects of Kaluza-Klein cosmology with varying gravitational constant and cosmological constant and also deceleration parameter q. For the range of α, the transition from deceleration to acceleration phase of the universe for HEL take place at t=( α α )/β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWG0bGaeyypa0ZaaeWaa8aabaWdbmaakaaapaqaa8qacqaH XoqyaeqaaiabgkHiTiabeg7aHbGaayjkaiaawMcaaiaac+cacqaHYo Gyaaa@40FA@ .

There are different cases of interest in modern cosmology, the matter dominated eras, the radiation dominated eras, and stiff fluid eras. In the matter dominated era, the main energy density is that of ordinary matter in galaxies, whose random velocities are small and which therefore behave like dust p=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbGaeyypa0JaaGimaaaa@395A@ . In the radiation dominated era, which is in the early universe, the principal energy density is in radiation or relativistic particles which have an equation of state p= 1 4 ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGWbGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbiaa isdaaaGaeqyWdihaaa@3C27@ . The cosmological model of Zeldovich30 in which the primordial universe is supposed to be constituted of a cold gas of baryons. For positive energy density in the presence of stiff matter, the primordial universe is singular which begins with infinite density from a state with a vanishing scale factor.

Inspired by the above investigations and discussions, we have studied KK cosmological models with variable G and Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGBoaaaa@37C5@ by taking different barotropic fluid distributions into account. In this work we have 4 sections. Section 2 represents the field equations where the universe filled with perfect fluid. An explicit solution of the equations with graphs is presented in section 3. Graphical discussion and conclusion are given in the last two sections.

Model and field equations

The metric of the Kaluza-Klein cosmology is given by15

d s 2 =d t 2 a 2 (t)[ d r 2 1k r 2 + r 2 d Ω 2 +(1k r 2 )d ψ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai aadohadaahaaqabKqbGeaacaaIYaaaaKqbakabg2da9iaadsgacaWG 0bWaaWbaaeqajuaibaGaaGOmaaaajuaGcqGHsislcaWGHbWaaWbaaK qbGeqabaGaaGOmaaaajuaGcaGGOaGaamiDaiaacMcadaWadaqaamaa laaabaGaamizaiaadkhadaahaaqcfasabeaacaaIYaaaaaqcfayaai aaigdacqGHsislcaWGRbGaamOCamaaCaaabeqcfasaaiaaikdaaaaa aKqbakabgUcaRiaadkhadaahaaqcfasabeaacaaIYaaaaKqbakaads gacqqHPoWvlmaaCaaajuaibeqaaKqzadGaaGOmaaaajuaGcqGHRaWk caGGOaGaaGymaiabgkHiTiaadUgacaWGYbWaaWbaaKqbGeqabaGaaG OmaaaajuaGcaGGPaGaamizaiabeI8a5naaCaaajuaibeqaaiaaikda aaaajuaGcaGLBbGaayzxaaaaaa@6357@ (1)

Where d Ω 2 =(d θ 2 + sin 2 θd ϕ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamizai abfM6axnaaCaaajuaibeqaaiaaikdaaaqcfaOaeyypa0Jaaiikaiaa dsgacqaH4oqCdaahaaqcfasabeaacaaIYaaaaKqbakabgUcaRiGaco hacaGGPbGaaiOBamaaCaaajuaibeqaaiaaikdaaaqcfaOaeqiUdeNa amizaiabew9aMnaaCaaajuaibeqaaiaaikdaaaqcfaOaaiykaaaa@4C82@ and a( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyam aabmaabaGaamiDaaGaayjkaiaawMcaaaaa@39EC@  is the scale factor, k=1,0,1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iabgkHiTiaaigdacaGGSaGaaGPaVlaaicdacaGGSaGaaGPa Vlaaigdaaaa@400D@  is the curvature parameter for spatially open, flat and closed universe respectively.

The energy-momentum tensor where the universe is filled with perfect fluid is given by

T ij =(ρ+p) u i u j p g ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaBaaajuaibaGaamyAaiaadQgaaKqbagqaaiabg2da9iaacIcacqaH bpGCcqGHRaWkcaWGWbGaaiykaiaadwhadaWgaaqcfasaaiaadMgaaK qbagqaaiaadwhadaWgaaqcfasaaiaadQgaaKqbagqaaiabgkHiTiaa dchacaWGNbWaaSbaaKqbGeaacaWGPbGaamOAaaqcfayabaaaaa@4B20@ (2)

Where i,j=0,1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyAai aacYcacaWGQbGaeyypa0JaaGimaiaacYcacaaIXaGaaiilaiaaikda caGGSaGaaG4maiaacYcacaaI0aaaaa@4083@  and u i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaBaaajuaibaGaamyAaaqcfayabaaaaa@3949@  are the components of the five velocity satisfying u i u j =1; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDam aaCaaajuaibeqaaiaadMgaaaqcfaOaamyDamaaBaaajuaibaGaamOA aaqcfayabaGaeyypa0JaaGymaiaacUdaaaa@3E90@ ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@  is the energy density and p is the pressure of the cosmic fluid.

 The Einstein’s field equations are given by

R ij 1 2 R g ij +Λ g ij =8πG T ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuam aaBaaajuaibaGaamyAaiaadQgacaaMc8oabeaajuaGcqGHsisldaWc aaqaaiaaigdaaeaacaaIYaaaaiaadkfacaWGNbWaaSbaaeaacaWGPb qcfaIaamOAaaqcfayabaGaey4kaSIaeu4MdWKaam4zamaaBaaajuai baGaamyAaiaadQgaaKqbagqaaiabg2da9iabgkHiTiaaiIdacqaHap aCcaWGhbGaamivaSWaaSbaaKqbGeaajugWaiaadMgacaWGQbaajuai beaaaaa@5238@ (3)

Where R ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuam aaBaaajuaibaGaamyAaiaadQgaaeqaaaaa@3987@ , g ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4zam aaBaaajuaibaGaamyAaiaadQgaaeqaaaaa@399C@ and R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOuaa aa@375B@ are the Ricci tensor, metric tensor and Ricci scalar respectively.

Here, we have considered the gravitational constant G and cosmological constant Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae83MdW eaaa@376F@ as a function of time t.

Using equations (1), (2) and (3), we obtain the following two independent equations

6( a ˙ 2 a 2 + k a 2 )=8πGρ+Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOnam aabmaabaWaaSaaaeaaceWGHbGbaiaadaahaaqcfasabeaacaaIYaaa aaqcfayaaiaadggadaahaaqcfasabeaacaaIYaaaaaaajuaGcqGHRa WkdaWcaaqaaiaadUgaaeaacaWGHbWaaWbaaKqbGeqabaGaaGOmaaaa aaaajuaGcaGLOaGaayzkaaGaeyypa0JaaGioaiabec8aWjaadEeacq aHbpGCcqGHRaWkcqqHBoataaa@4AB0@ (4)

3( a ¨ a + a ˙ 2 a 2 + k a 2 )=8πGpΛ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaG4mamaabmaabaWaaSaaaeaaceWGHbGbamaaaeaacaWGHbaaaiab gUcaRmaalaaabaGabmyyayaacaWaaWbaaKqbGeqabaGaaGOmaaaaaK qbagaacaWGHbWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaey4kaSYa aSaaaeaacaWGRbaabaGaamyyamaaCaaajuaibeqaaiaaikdaaaaaaa qcfaOaayjkaiaawMcaaiabg2da9iaaiIdacqaHapaCcaWGhbGaamiC aiabgkHiTiabfU5ambaa@4DA2@                                          (5)

Equations (4) and (5) reduce to

6( H 2 + k a 2 )=8πGρ+Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOnam aabmaabaGaamisamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSYa aSaaaeaacaWGRbaabaGaamyyamaaCaaajuaibeqaaiaaikdaaaaaaa qcfaOaayjkaiaawMcaaiabg2da9iaaiIdacqaHapaCcaWGhbGaeqyW diNaey4kaSIaeu4MdWeaaa@47FE@ (6)

3( H ˙ +2 H 2 + k a 2 )=8πGpΛ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaaG4mamaabmaabaGabmisayaacaGaey4kaSIaaGOmaiaadIeadaah aaqcfasabeaacaaIYaaaaKqbakabgUcaRmaalaaabaGaam4Aaaqaai aadggadaahaaqcfasabeaacaaIYaaaaaaaaKqbakaawIcacaGLPaaa cqGH9aqpcaaI4aGaeqiWdaNaam4raiaadchacqGHsislcqqHBoataa a@4A9C@  (7)

H= a ˙ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai abg2da9maalaaabaGabmyyayaacaaabaGaamyyaaaaaaa@3A3C@  is the Hubble parameter and an overhead dot (.) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aac6cacaGGPaaaaa@388F@ hereafter, denote ordinary differentiation with respect to cosmic time ‘t ’ only.

The usual energy conservation equation T ;j ij =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaDaaajuaibaGaai4oaiaaykW7caWGQbaabaGaamyAaiaaykW7caWG QbaaaKqbakabg2da9iaaicdaaaa@409C@  yields

ρ ˙ +4H(p+ρ)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqyWdi NbaiaacqGHRaWkcaaI0aGaamisaiaacIcacaWGWbGaey4kaSIaeqyW diNaaiykaiabg2da9iaaicdaaaa@416A@ (8)

From (3) by taking the vanishing divergence of the Einstein tensor, we have

8π G ˙ ρ+ Λ ˙ +8πG[ ρ ˙ +4H(p+ρ)]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjqadEeagaGaaiabeg8aYjabgUcaRiqbfU5amzaacaGaey4k aSIaaGioaiabec8aWjaadEeacaGGBbGafqyWdiNbaiaacqGHRaWkca aI0aGaamisaiaacIcacaWGWbGaey4kaSIaeqyWdiNaaiykaiaac2fa cqGH9aqpcaaIWaaaaa@4ECB@  (9)

Substituting (8) in (9) it follows that

8π G ˙ ρ+ Λ ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGioai abec8aWjqadEeagaGaaiabeg8aYjabgUcaRiqbfU5amzaacaGaeyyp a0JaaGimaaaa@3FB8@  (10)

Equation (10) indicates that Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccaGae83MdW eaaa@376F@ is a constant whenever G is constant and vice versa.

The equation of state is given by

p=ωρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai abg2da9iabeM8a3jabeg8aYbaa@3C0C@ (11)

where ω[0,1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaeyicI4Saai4waiaaicdacaGGSaGaaGPaVlaaigdacaGGDbaaaa@3F45@  is a constant and can take the values 0, 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbIt LDhis9wBH5garqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7 rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9 pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaq aafaaakeaadaWcaaqaaiaaigdaaeaacaaI0aaaaaaa@3E6D@ , and 1 respectively for the pressure less dust, radiating and stiff or Zel’dovich fluids.

Solution of field equations

The system of equations (6)-(8) and (11) supply only four equations in five unknowns like a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyaa aa@376A@ , ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi haaa@3844@ , G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGhbaaaa@3770@ and Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaqGBoaaaa@37C5@ . One extra equation is needed to solve the system completely. Now we consider the following ansatz for the average scale factor of the universe which yields a time dependent deceleration parameter as

a=c t α e βt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai abg2da9iaadogacaWG0bWaaWbaaeqajuaibaGaeqySdegaaKqbakaa dwgadaahaaqcfasabeaacqaHYoGycaaMc8UaamiDaaaaaaa@422D@ (12)

where c>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai abg6da+iaaicdaaaa@392E@ , α0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaeyyzImRaaGimaaaa@3AA3@  and β0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaeyyzImRaaGimaaaa@3AA5@  are constants. This generalized form of scale factor is referred to as the Hybrid Expansion Law (HEL) and combines both exponential and power law. We assume α0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaeyyzImRaaGimaaaa@3AA3@  and β0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOSdi MaeyyzImRaaGimaaaa@3AA5@  to sustain HEL that leads to a new cosmology. Because of the time dependency, the obtained deceleration parameter exhibits the transition of the universe from the initial decelerating phase to the present accelerating phase. That is why this sort of average scale factor is physically meaningful. Akarsu et al.22 Vijaya Santhi31 Pradhan et al.,32 and Yadav33 are some of the authors who have taken into account the above consideration to investigate different cosmological models.

From equation (12), we have

H= a ˙ a = α t +β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai abg2da9maalaaabaGabmyyayaacaaabaGaamyyaaaacqGH9aqpdaWc aaqaaiabeg7aHbqaaiaadshaaaGaey4kaSIaeqOSdigaaa@406D@        (13)

and H ˙ = α t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmisay aacaGaeyypa0JaeyOeI0YaaSaaaeaacqaHXoqyaeaacaWG0bWaaWba aeqajuaibaGaaGOmaaaaaaaaaa@3D01@        (14)

From equations (8), (11) and (12), we obtain the energy density

ρ= l c γ t γα e βγt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi Naeyypa0ZaaSaaaeaacaWGSbaabaGaam4yamaaCaaabeqcfasaaiab eo7aNbaajuaGcaWG0bWaaWbaaKqbGeqabaGaeq4SdCMaeqySdegaaK qbakaadwgadaahaaqcfasabeaacqaHYoGycaaMc8Uaeq4SdCMaaGPa Vlaadshaaaaaaaaa@4B66@        (15)

Where γ=4(ω+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGinaiaacIcacqaHjpWDcqGHRaWkcaaIXaGaaiykaaaa @3EB2@  and l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiBaa aa@3775@ is a constant of integration.

The pressure of the cosmic fluid is

p= ωl c γ t γα e βγt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai abg2da9maalaaabaGaeqyYdCNaamiBaaqaaiaadogadaahaaqcfasa beaacqaHZoWzaaqcfaOaamiDamaaCaaajuaibeqaaiabeo7aNjabeg 7aHbaajuaGcaWGLbWaaWbaaeqajuaibaGaeqOSdiMaaGPaVlabeo7a NjaaykW7caWG0baaaaaaaaa@4C68@ (16)

Adding equations (6) and (7) and hence using equations (13), (14) and (15), the gravitational constant is calculated as

G= 3 2πlγ [ c γ t γα e βγt ( α t 2 + k c 2 t 2α e 2βt ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4rai abg2da9maalaaabaGaaG4maaqaaiaaikdacqaHapaCcaWGSbGaeq4S dCgaamaadmaabaGaam4yamaaCaaabeqcfasaaiabeo7aNbaajuaGca WG0bWaaWbaaKqbGeqabaGaeq4SdCMaeqySdegaaKqbakaadwgadaah aaqcfasabeaacqaHYoGycqaHZoWzcaaMc8UaamiDaaaajuaGdaqada qaamaalaaabaGaeqySdegabaGaamiDamaaCaaajuaibeqaaiaaikda aaaaaKqbakabgUcaRmaalaaabaGaam4Aaaqaaiaadogadaahaaqcfa sabeaacaaIYaaaaKqbakaadshadaahaaqcfasabeaacaaIYaGaeqyS degaaKqbakaadwgadaahaaqcfasabeaacaaIYaGaeqOSdiMaamiDaa aaaaaajuaGcaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@63C3@                      (17)

Equation (6) gives the cosmological constant as

Λ=6 ( α t +β ) 2 12α γ t 2 + 6k(γ2) γ c 2 t 2α e 2βt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW Kaeyypa0JaaGOnamaabmaabaWaaSaaaeaacqaHXoqyaeaacaWG0baa aiabgUcaRiabek7aIbGaayjkaiaawMcaamaaCaaajuaibeqaaiaaik daaaqcfaOaeyOeI0YaaSaaaeaacaaIXaGaaGOmaiabeg7aHbqaaiab eo7aNjaaykW7caWG0bWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaey 4kaSYaaSaaaeaacaaI2aGaam4AaiaacIcacqaHZoWzcqGHsislcaaI YaGaaiykaaqaaiabeo7aNjaaykW7caWGJbWaaWbaaKqbGeqabaGaaG OmaaaajuaGcaWG0bWaaWbaaKqbGeqabaGaaGOmaiabeg7aHbaajuaG caWGLbWaaWbaaKqbGeqabaGaaGOmaiabek7aIjaaykW7caWG0baaaa aaaaa@6331@  (18)

The deceleration parameter is

q= a a ¨ a ˙ 2 = α ( α+βt ) 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abg2da9iabgkHiTmaalaaabaGaamyyaiqadggagaWaaaqaaiqadgga gaGaaSWaaWbaaKqbGeqabaqcLbmacaaIYaaaaaaajuaGcqGH9aqpda Wcaaqaaiabeg7aHbqaamaabmaabaGaeqySdeMaey4kaSIaeqOSdiMa amiDaaGaayjkaiaawMcaamaaCaaajuaibeqaaiaaikdaaaaaaKqbak abgkHiTiaaigdaaaa@4BB0@           (19)

q=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abg2da9iaaicdaaaa@393A@  when t= α α β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abg2da9maalaaabaWaaOaaaeaacqaHXoqyaeqaaiabgkHiTiabeg7a Hbqaaiabek7aIbaaaaa@3E6F@  where 0<α<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimai abgYda8iabeg7aHjabgYda8iaaigdaaaa@3BA0@ . At this point of time the expansion velocity has an extreme. Hence the universe expands with decelerated velocity, q>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abg6da+iaaicdaaaa@393C@ , and accelerated velocity and q<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abgYda8iaaicdaaaa@3938@  (inflation), for some t, but q can never be less than -1. This shows a transition from deceleration to acceleration phase of the universe for Hybrid expansion law (HEL). As the deceleration parameter q measures the rate of change of the expansion of the universe, it is considered as the most important observational quantity in cosmology.

From the relation between mean scale factor and red shift (z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaacIcacaGG6bGaaiykaaaa@38FD@ , we have

a(t)= 1 1+z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aacIcacaWG0bGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaigda cqGHRaWkcaWG6baaaaaa@3E29@                (20)

Where the present scale factor a 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGHb qcfa4aaSbaaKqbGeaalmaaBaaajuaibaqcLbmacaaIWaaajuaibeaa aKqbagqaaKqzGeGaeyypa0JaaGymaaaa@3D96@ . Combining (12) and (20), we perform the following calculation to obtain time-red shift relation as shown in.8

Now choosing c=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4yai abg2da9iaaigdaaaa@392D@ we can write

t α e βt = 1 1+z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDam aaCaaabeqcfasaaiabeg7aHbaajuaGcaWGLbWaaWbaaeqajuaibaGa eqOSdiMaaGPaVlaadshaaaqcfaOaeyypa0ZaaSaaaeaacaaIXaaaba GaaGymaiabgUcaRiaadQhaaaaaaa@4454@

Which implies

t e βt α = ( 1 1+z ) 1 α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaamyzaSWaaWbaaKqbGeqabaWcdaWcaaqcfasaaKqzadGaeqOSdiMa aGPaVlaadshaaKqbGeaajugWaiabeg7aHbaaaaqcLbsacqGH9aqpju aGdaqadaqaamaalaaabaqcLbsacaaIXaaajuaGbaqcLbsacaaIXaGa ey4kaSIaamOEaaaaaKqbakaawIcacaGLPaaadaahaaqabKqbGeaalm aalaaajuaibaqcLbmacaaIXaaajuaibaqcLbmacqaHXoqyaaaaaaaa @5024@

Substitute βt α =u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqaHYoGycaWG0baabaGaeqySdegaaiabg2da9iaadwhaaaa@3CCD@  to obtain

u e u = β ( 1 1+z ) 1 α α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai aadwgadaahaaqabKqbGeaacaWG1baaaKqbakabg2da9maalaaabaGa eqOSdi2aaeWaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaam OEaaaaaiaawIcacaGLPaaadaahaaqcfasabeaajuaGdaWcaaqcfasa aiaaigdaaeaacqaHXoqyaaaaaaqcfayaaiabeg7aHbaaaaa@478A@

Which follows that

u=W[ β ( 1 1+z ) 1 α α ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyDai abg2da9iaadEfadaWadaqaamaalaaabaGaeqOSdi2aaeWaaeaadaWc aaqaaiaaigdaaeaacaaIXaGaey4kaSIaamOEaaaaaiaawIcacaGLPa aadaahaaqcfasabeaajuaGdaWcaaqcfasaaiaaigdaaeaacqaHXoqy aaaaaaqcfayaaiabeg7aHbaaaiaawUfacaGLDbaaaaa@4796@

Which implies that

t= αW[ β ( 1 1+z ) 1 α α ] β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abg2da9maalaaabaGaeqySdeMaam4vamaadmaabaWaaSaaaeaacqaH YoGydaqadaqaamaalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWG6b aaaaGaayjkaiaawMcaamaaCaaabeqcfasaaKqbaoaalaaajuaibaGa aGymaaqaaiabeg7aHbaaaaaajuaGbaGaeqySdegaaaGaay5waiaaw2 faaaqaaiabek7aIbaaaaa@4AE5@                     (21)

Where the Lambert-W function (also called the omega function or product logarithm) is introduced.

By using equations (21) and (19), we can determine the deceleration parameter q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCaa aa@377A@  which indicates the transition from decelerated to accelerated phase as per observation occurs at some red shift as obtained in.8

Discussion

In summary, we have discussed the Kaluza-Klein cosmological model with the barotropic equation of state which exhibits a number of interesting phenomena in different parameter regimes. We have analyzed the variation of various parameters against time graphically for the cosmological models.

(Figure 1) shows that the energy density (ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai abeg8aYjaacMcaaaa@399D@  decreases with time and coincides after a certain time at around t=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abg2da9iaaicdacaGGUaGaaGynaaaa@3AAE@  for different values of ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC haaa@3851@  and keep up a similar trend to the evolution of universe for dust, radiation and stiff fluid era. Figure-2, Figure-3 and Figure-4 show the plot for the variation of the gravitational constant (G) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbIt LDhis9wBH5garqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7 rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9 pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaq aafaaakeaacaGGOaGaam4raiaacMcaaaa@3F09@  against time for different epochs representing flat , closed and open universes. From those figures, it can be seen that the gravitational constant decreases with time showing similar behavior for ω=1/4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH9aqpcaaIXaGaai4laiaaisdaaaa@3BA4@  and ω=1/4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH9aqpcaaIXaGaai4laiaaisdaaaa@3BA4@ , but sharply decreases for ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH9aqpcaaIXaaaaa@3A33@ . For all three prescribed fluid distributions, ω=0,   1 4 , 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqaHjpWDcqGH9aqpcaaIWaGaaiilaiaacckacaGGGcWaaSaa a8aabaWdbiaaigdaa8aabaWdbiaaisdaaaGaaiilaiaacckacaaIXa aaaa@4180@ , it is noticed from Figure-5, Figure-6 and Figure-7 that the cosmological constant, Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHBoataaa@3819@ , approaches zero from negative values with the evolution of the universe marking similarities for k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaaGimaaaa@3955@ and k=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaeyOeI0IaaGymaaaa@3A43@ , but the graphs show significant dissimilarities for k=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaaGymaaaa@3956@ .

Figure 1 Plot for variation of energy density vs cosmic time; using equation (15). The dotted, solid, and dashed curves (l=1,c=1,α=β=0.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadYgacqGH9aqpcaaIXaGaaiilaiaadogacqGH9aqpcaaIXaGaaiil aiabeg7aHjabg2da9iabek7aIjabg2da9iaaicdacaGGUaGaaGymai aacMcaaaa@460B@  represent γ=4,5 and 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGinaiaacYcacaaI1aGaaGPaVRaeaaaaaaaaa8qacaGG Gcqcfa4daiaadggacaWGUbGaamizaOWdbiaacckajuaGpaGaaGPaVl aaiIdaaaa@45BE@ respectively.

Figure 2 Plot for variation of Gravitational constant (G) vs cosmic time; using equation (17). The dotted, solid, and dashed curves (l=1,γ=4,α=β=0.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadYgacqGH9aqpcaaIXaGaaiilaiabeo7aNjabg2da9iaaisdacaGG SaGaeqySdeMaeyypa0JaeqOSdiMaeyypa0JaaGimaiaac6cacaaIXa Gaaiykaaaa@46CD@  represent k=0,k=1,k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaaHdjuaGca WGRbGaeyypa0JaaGimaiaacYcacaWGRbGaeyypa0JaaGymaiaacYca caWGRbGaeyypa0JaeyOeI0IaaGymaaaa@4104@ respectively.

Figure 3 Plot for variation of Gravitational constant (G) vs cosmic time; using equation (17). The dotted, solid, and dashed curves (l=1,γ=5,α=β=0.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadYgacqGH9aqpcaaIXaGaaiilaiabeo7aNjabg2da9iaaiwdacaGG SaGaeqySdeMaeyypa0JaeqOSdiMaeyypa0JaaGimaiaac6cacaaIXa Gaaiykaaaa@46CE@  represent k=0,k=1,k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaicdacaGGSaGaam4Aaiabg2da9iaaigdacaGGSaGaam4A aiabg2da9iabgkHiTiaaigdaaaa@40E3@ respectively.

Figure 4 Plot for variation of Gravitational constant (G) vs cosmic time; using equation (17). The dotted, solid, and dashed curves (l=1,γ=8,α=β=0.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadYgacqGH9aqpcaaIXaGaaiilaiabeo7aNjabg2da9iaaiIdacaGG SaGaeqySdeMaeyypa0JaeqOSdiMaeyypa0JaaGimaiaac6cacaaIXa Gaaiykaaaa@46D1@ represent k=0,k=1,k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaicdacaGGSaGaam4Aaiabg2da9iaaigdacaGGSaGaam4A aiabg2da9iabgkHiTiaaigdaaaa@40E3@ respectively.

Figure 5 Plot for variation of Cosmological constant ( Λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiabfU5ambWdaiaawIcacaGLPaaaaaa@39B1@  vs cosmic time; using equation (18). The dotted, solid, and dashed curves ( γ=4,c=1,α=β=0.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacqaHZoWzcqGH9aqpcaaI0aGaaiilaiaadogacqGH9aqpcaaIXaGa aiilaiabeg7aHjabg2da9iabek7aIjabg2da9iaaicdacaGGUaGaaG ymaaGaayjkaiaawMcaaaaa@46F4@  represent k=0,k=1,k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaicdacaGGSaGaam4Aaiabg2da9iaaigdacaGGSaGaam4A aiabg2da9iabgkHiTiaaigdaaaa@40E3@ respectively.

Figure 6 Plot for variation of Cosmological constant ( Λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiabfU5ambWdaiaawIcacaGLPaaaaaa@39B1@ vs cosmic time; using equation (18). The dotted, solid, and dashed curves ( γ=5,c=1,α=β=0.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacqaHZoWzcqGH9aqpcaaI1aGaaiilaiaadogacqGH9aqpcaaIXaGa aiilaiabeg7aHjabg2da9iabek7aIjabg2da9iaaicdacaGGUaGaaG ymaaGaayjkaiaawMcaaaaa@46F5@ represent k=0,k=1,k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaicdacaGGSaGaam4Aaiabg2da9iaaigdacaGGSaGaam4A aiabg2da9iabgkHiTiaaigdaaaa@40E3@ respectively.

Figure 7 Plot for variation of Cosmological constant ( Λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiabfU5ambWdaiaawIcacaGLPaaaaaa@39B1@  vs cosmic time; using equation (18). The dotted, solid, and dashed curves ( γ=8,c=1,α=β=0.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacqaHZoWzcqGH9aqpcaaI4aGaaiilaiaadogacqGH9aqpcaaIXaGa aiilaiabeg7aHjabg2da9iabek7aIjabg2da9iaaicdacaGGUaGaaG ymaaGaayjkaiaawMcaaaaa@46F8@  represent k=0,k=1,k=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai abg2da9iaaicdacaGGSaGaam4Aaiabg2da9iaaigdacaGGSaGaam4A aiabg2da9iabgkHiTiaaigdaaaa@40E3@ respectively.

Again we have plotted different cosmological parameters for k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaaGimaaaa@3955@ , k=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaaGymaaaa@3956@  and k=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaeyOeI0IaaGymaaaa@3A43@ representing the graphs for ω=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeyypa0JaaGimaaaa@3A11@ , ω=1/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeyypa0JaaGymaiaac+cacaaI0aaaaa@3B83@  and ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbIt LDhis9wBH5garqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7 rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9 pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaq aafaaakeaacqaHjpWDcqGH9aqpcaaIXaaaaa@4072@  in the same coordinate diagram . It is observed from the Figure-8, Figure-9 and Figure-10 that G( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGhbWdamaabmaabaWdbiaadshaa8aacaGLOaGaayzkaaaa aa@3A20@ falls gradually as we move from ω=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeyypa0JaaGimaaaa@3A11@  to ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbIt LDhis9wBH5garqqtubsr4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7 rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9 pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaq aafaaakeaacqaHjpWDcqGH9aqpcaaIXaaaaa@4072@  at the same time in Figure-11 , Λ(t) increases when moving from ω=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeyypa0JaaGimaaaa@3A11@  to k=0, 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaaGimaiaacYcacaGGGcGaeyOeI0IaaGym aaaa@3CD1@  and follows reverse order for k=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaeyOeI0IaaGymaaaa@3A43@ in Figure-13. According to Figure-12, Λ( t )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacqqHBoatpaWaaeWaaeaapeGaamiDaaWdaiaawIcacaGLPaaa peGaaiiOaaaa@3BFD@ goes up sharply and changes the trend dramatically after a certain age of the universe with the change of epochs. Finally, Figure-14 is a plot of the deceleration parameter against time and shows that the deceleration parameter reaches -1 with the age of the universe. All these graphical results indicate the dependency of the curvature parameter among the fluid distributions and compatibility with the current cosmological observations.

Figure 8 Plot for variation of Gravitational constant ( G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiaadEeaa8aacaGLOaGaayzkaaaaaa@3908@ vs cosmic time; using equation (17). The dotted, solid, and dashed curves ( k=0,l=1,c=1,α=β=0.1, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGRbGaeyypa0JaaGimaiaacYcacaWGSbGaeyypa0JaaGymaiaa cYcacaWGJbGaeyypa0JaaGymaiaacYcacqaHXoqycqGH9aqpcqaHYo GycqGH9aqpcaaIWaGaaiOlaiaaigdacaGGSaaacaGLOaGaayzkaaaa aa@4A4B@  represent γ=4,5 and 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGinaiaacYcacaaI1aaeaaaaaaaaa8qacaGGGcWdaiaa dggacaWGUbGaamiza8qacaGGGcWdaiaaiIdaaaa@4178@ respectively.

Figure 9 Plot for variation of Gravitational constant ( G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiaadEeaa8aacaGLOaGaayzkaaaaaa@3908@  vs cosmic time; using equation (17). The dotted, solid, and dashed curves ( k=1,l=1,c=1,α=β=0.1, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGRbGaeyypa0JaaGymaiaacYcacaWGSbGaeyypa0JaaGymaiaa cYcacaWGJbGaeyypa0JaaGymaiaacYcacqaHXoqycqGH9aqpcqaHYo GycqGH9aqpcaaIWaGaaiOlaiaaigdacaGGSaaacaGLOaGaayzkaaaa aa@4A4C@  represent γ=4,5 and 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGinaiaacYcacaaI1aaeaaaaaaaaa8qacaGGGcWdaiaa dggacaWGUbGaamiza8qacaGGGcWdaiaaiIdaaaa@4178@ respectively.

Figure 10 Plot for variation of Gravitational constant ( G ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiaadEeaa8aacaGLOaGaayzkaaaaaa@3908@ vs cosmic time; using equation (17). The dotted, solid, and dashed curves ( k=1,l=1,c=1,α=β=0.1, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGRbGaeyypa0JaeyOeI0IaaGymaiaacYcacaWGSbGaeyypa0Ja aGymaiaacYcacaWGJbGaeyypa0JaaGymaiaacYcacqaHXoqycqGH9a qpcqaHYoGycqGH9aqpcaaIWaGaaiOlaiaaigdacaGGSaaacaGLOaGa ayzkaaaaaa@4B39@  represent γ=4,5 and 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGinaiaacYcacaaI1aaeaaaaaaaaa8qacaGGGcWdaiaa dggacaWGUbGaamiza8qacaGGGcWdaiaaiIdaaaa@4178@ respectively.

Figure 11 Plot for variation of Cosmological constant ( Λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiabfU5ambWdaiaawIcacaGLPaaaaaa@39B1@  vs cosmic time; using equation (18). The dotted, solid, and dashed curves ( k=0,c=1,α=β=0.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGRbGaeyypa0JaaGimaiaacYcacaWGJbGaeyypa0JaaGymaiaa cYcacqaHXoqycqGH9aqpcqaHYoGycqGH9aqpcaaIWaGaaiOlaiaaig daaiaawIcacaGLPaaaaaa@4639@  represent γ=4,5 and 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGinaiaacYcacaaI1aaeaaaaaaaaa8qacaGGGcWdaiaa dggacaWGUbGaamiza8qacaGGGcWdaiaaiIdaaaa@4178@ respectively.

Figure 12 Plot for variation of Cosmological constant ( Λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiabfU5ambWdaiaawIcacaGLPaaaaaa@39B1@  vs cosmic time; using equation (18). The dotted, solid, and dashed curves ( k=1,c=1,α=β=0.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGRbGaeyypa0JaaGymaiaacYcacaWGJbGaeyypa0JaaGymaiaa cYcacqaHXoqycqGH9aqpcqaHYoGycqGH9aqpcaaIWaGaaiOlaiaaig daaiaawIcacaGLPaaaaaa@463A@  represent γ=4,5 and 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGinaiaacYcacaaI1aaeaaaaaaaaa8qacaGGGcWdaiaa dggacaWGUbGaamiza8qacaGGGcWdaiaaiIdaaaa@4178@ respectively.

Figure 13 Plot for variation of Cosmological constant ( Λ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaqaaaaaaaaaWdbiabfU5ambWdaiaawIcacaGLPaaaaaa@39B1@  vs cosmic time; using equation (18). The dotted, solid, and dashed curves ( k=1,c=1,α=β=0.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGRbGaeyypa0JaeyOeI0IaaGymaiaacYcacaWGJbGaeyypa0Ja aGymaiaacYcacqaHXoqycqGH9aqpcqaHYoGycqGH9aqpcaaIWaGaai OlaiaaigdaaiaawIcacaGLPaaaaaa@4727@  represent γ=4,5 and 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4SdC Maeyypa0JaaGinaiaacYcacaaI1aaeaaaaaaaaa8qacaGGGcWdaiaa dggacaWGUbGaamiza8qacaGGGcWdaiaaiIdaaaa@4178@ respectively.

Figure 14 Plot for variation of Deceleration parameter ( q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aacaWGXbaacaGLOaGaayzkaaaaaa@3903@  vs cosmic time for α=β=0.1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde Maeyypa0JaeqOSdiMaeyypa0JaaGimaiaac6cacaaIXaaaaa@3DF7@ ; using equation (19).

Conclusion

In this paper, we have investigated the Kaluza-Klein cosmological model with time dependent gravitational and cosmological constant taking the barotropic equation of state into account. We have presented our solutions for the energy density, pressure, gravitational constant and cosmological constant with respect to time t. We have plotted these solutions and discussed graphical features with different fluid distributions for flat and non-flat universe models. It is noticed that the energy density ρ is a decreasing function of time t and ρ approaches zero with the evolution of time. Also we have shown that the gravitational constant is a decreasing function of time as studied in the models by Grøn34 Helling et al.25 and Rowan Robinson36 It is also observed that the cosmological constant is negative throughout the evolution of universe for k=0, 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaaGimaiaacYcacaGGGcGaeyOeI0IaaGym aaaa@3CD1@ (Figure 11 & Figure 13) irrespective of the barotropic fluid distributions which is termed as an anti-de Sitter phase with cyclic evolution of the universe. On the contrary, the universe enters from anti-de Sitter phase to de Sitter phase within a the short period after Big Bang and remains in that phase with the evolution of universe until the cosmological constant reaches a small positive value for k=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGRbGaeyypa0JaaGymaaaa@3956@  (Figure 12) which is reasonable for the accelerating expansion of the universe3740 that we observe at present. Moreover, it can be deduced from equation (19) that the deceleration parameter q<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abgYda8iaaicdaaaa@3938@ when t> α α β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abg6da+maalaaabaWaaOaaaeaacqaHXoqyaeqaaiabgkHiTiabeg7a Hbqaaiabek7aIbaaaaa@3E71@ . It means that the universe is accelerating because acceleration at certain stage in the evolution of the universe implies q<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai abgYda8iaaicdaaaa@3938@  for some time t.

Acknowledgments

None.

Conflicts of interest

Authors declare that there are no conflicts of interests.

References

  1. Fixen DJ. The Temperature of the Cosmic Microwave Background. The Astrophysical Journal. 2009;707(2):916–920.
  2. Davidson W. The Cosmological Implications of the Recent Counts of Radio Sources: II. An Evolutionary Model.Monthly Notices of the Royal Astronomical Society. 1962;124(1):79–93.
  3. McIntosh CBG. Relativistic Cosmological Models with both Radiation and Matter. Monthly Notices of the Royal Astronomical Society. 1968;140(4): 461–472.
  4. Coley AA, Tupper BOJ. Two-fluid cosmological models. Journal of Mathematical Physics. 1986;27(1):406
  5. Coley AA. Thermodynamics and two-fluid cosmological models. Astrophysics and Space Science. 1988;140(1):175–189.
  6. Shahoo PK, Mishra B. Kaluza-Klein Dark Energy Model in the Form of Wet Dark Fluid in f(R,T) Gravity. Canadian Journal of Physics. 2014;92(9):1062–1067.
  7. Shahoo PK. Kaluza-Klein Universe Filled with Wet Dark Fluid in f(R,T) Theory of Gravity. Acta Physica Polonica B Proceedings Supplement. 2017;10(2):369–372.
  8. Moraes PHRS, Shahoo PK. The Simplest non-minimal matter geometry coupling in the f(R,T) gravity. The European Physical Journal C. 2017;77:1–8.
  9. Shahoo PK, B Mishra, SK Tripathy. Kaluza-Klein cosmological model in f(R,T) gravity with Λ(T). Indian Journal of Physics. 2016;90(4):485–493.
  10. Biswal AK, KL Mahanta, Shahoo PK. Kaluza-Klein cosmological model in f(R,T) gravity with domain walls. Astrophysics and Space Science. 2015;359(42).
  11. Mete VG, Umarkar VM, Pund VM. Higher Dimensional Plane Symmetric Cosmological Models with Two-Fluid Source in General Relativity. International Journal of Theoretical Physics. 2013;52(12):4439–4444.
  12. Amirhashchi H, Pradhan A, Zainuddin H. Interacting two-fluid viscous dark energy models in a non-flat universe. Research in Astronomy and Astrophysics. 2013;13(2):129–138.
  13. Samanta GC, Debata S. Two- Fluid Cosmological Models in Kaluza-Klein Space Time. International Journal of Theoretical Physics. 2013;52(11):3999–4007.
  14. Wanas MI, Gamal GL Nashed, et al. Cosmological applications in Kaluza-Klein Theory. Chinese Physics B. 2012;21(4).
  15. Kaluza T. On the problem of unity in physics. Sitzungsber Preuss Akad Wiss Berlin (Math Phys). 1921;966:966–972.
  16. Klein O. Quantentheorie und fünfdimensionale Relativitätstheorie. Zeitschrift für Physik A. 1926;37(12):895–906.
  17. Chodos A, Detweiler S. Where has the fifth dimension gone? Physical Review D. 1980;21(8).
  18. Copeland EJ, Sami M, Tsujikava S. Dynamics of Dark Energy. International Journal of Modern Physics D. 2006;15(11):1753–1935.
  19. Steinhardt PJ, Wang LM, Zlatev I. Cosmological tracking solutions. Physical Review. 1999;59.
  20. Caldwell RR. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Physics Letters B. 2002;545:23–29.
  21. Santhi MV, Rao VUM, Aditya Y. Kaluza-Klein Cosmological Models With Two Fluids Source in Brans-Dicke Theory of Gravitation. The African Review of Physics. 2016;11(1):1–12.
  22. Akarsu O, Kumar S, Myrzakulov R, et al. Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints. 2013.
  23. Dirac PAM. The cosmological constants. Nature. 1937;139:323–323.
  24. Weinberg S. The cosmological constants problem. Reviews of Modern Physics. 1989;61(1).
  25. Padmanabhan T. Cosmological constant-the weight of the vacuum. Physics Reports. 2003;380:235–320.
  26. Bertolami O. Time-dependent cosmological term. Nuovo Cimento B. 1986;93(1):36–42.
  27. Sharif M, Khanum F. Kaluza-Klein cosmology with varying G and Λ. Astrophysics and Space Science. 2011;334(1):209–214.
  28. Gamal GL, Nashed. Open and Closed World Models in Kaluza-Klein-Theory with Variables G and Λ. International Journal of Theoretical Physics. 2014;53(11):3910–3926.
  29. Utpal Mukhopadhyay, Ipsita Chakraborty, Saibal Ray, et al. A Dark Energy Model in Kaluza-Klein Cosmology. International Journal of Theoretical Physics. 2016;55(1):388–395.
  30. Zeldevoch Yaa B. A Hypothesis, Unifying the Structure and the Entropy of the Universe. Monthly Notices of the Royal Astronomical Society. 1972;160:1–4.
  31. Vijaya Santhi M, Aditya Y, Rao VUM. Some Bianchi type generalized ghost piligrim dark energy models in general relativity. Astrophysics and Space Science. 2016;361(4):1–14.
  32. Pradhan A, Amirhashchi H. Accelerating Dark Energy Models in Bianchi Type-V Spacetime. Modern Physics Letters A. 2011;26(30):2261–2275.
  33. Yadav AK. Bianchi-V string cosmological model and late time acceleration. Research in Astronomy and Astrophysics. 2012;12(11): 1467–1474.
  34. Grøn. Repulsive gravitation and inflationary universe models. American Journal of Physics. 1986;54(1):46–53.
  35. Helling RW, PJ Adams, JD Anderson, et al. Experimental Test of the Variability of G Using Viking Lander Ranging Data. International Journal of Theoretical Physics. 1983;28(9):1035–1041.
  36. Rowan Robinson. Cosmology. Oxford University Press, USA. 1981.
  37. Tegmark M, Strauss M, Blanton M, et al. Cosmological parameters from SDSS and WMAP. Physical Review D. 2004;69(10).
  38. Speergel DN, L Verde, HV Peiris, et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. The Astrophysical Journal Supplement Series. 2003;148:175–194.
  39. Riess AG, Alexei V Filippenko, et al. Observational Evidence From Supernovae for an Accelerating Universe and a Cosmological Constant. Astronomical Journal. 1998;116:1009–1038.
  40. Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal. 1999;517(2):565–586.
Creative Commons Attribution License

©2017 Hossain, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.