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Abstract

Kaluza-Klein cosmological models have been investigated for barotropic fluid distribution
with time dependent gravitational constant and cosmological constant in the context of
general relativity. We have used Hybrid Expansion Law (HEL), a product of power-law
and exponential type of functions, to obtain determinate solutions of the Einstein’s field
equations. In this paper, we have mainly discussed the graphical behavior of the results for

three different cases of interest in modern cosmology.

Keywords: Kaluza-Klein cosmology, cosmological constant, barotropic fluid, hybrid

expansion law

Volume | Issue 3 - 2017

Mohammad Amjad Hossain,' Mohammad
Moksud Alam,' AHM Mahbubur Rahman?
'Department of Mathematics, University of Chittagong,
Bangladesh

2Department of Mathematics and Natural Sciences, BRAC
University, Bangladesh

Correspondence: AHM Mahbubur Rahman, Department of
Mathematics and Natural Sciences, BRAC University, Bangladesh,

Tel +88-0181-5467093, Email mahbubur.rahman@bracu.ac.bd

Received: August 23,2017 | Published: October 05,2017

Introduction

From astronomical observations, the 2.72548+0.00057K!
isotropic microwave background radiation (CMBR) motivated many
researchers to explore the FRW metric with a two-fluid source.>* The
radiation field corresponding to the experimental CMB radiation is
one of the fluids preferred while another is a perfect fluid represent
by the matter content of the Universe.’ Recently, many researchers
investigated different aspects of FRW cosmological models and
Kaluza-Klein cosmological models®!? in the context of AR,T) theory
of gravity. Higher dimensional plane symmetric cosmological models
studied by Mete et al.'! and Amirhashchi et al.'> also conferred
interrelating two-fluid viscous dark energy models in a non-flat
Universe. In particular, Samantha et al.,"* have considered two-fluid
cosmological models in Kaluza-Klein space-time.

The Kaluza-Klein theory was led to unify Maxwell’s
electromagnetic theory and Einstein’s gravitational theory by
counting the fifth dimension." Kaluza®® has revealed that General
Relativity (GR) when construed as a vacuum 5D theory contains
four-dimensional GR in the existence of electromagnetic field,
unruffled with Maxwell’s electromagnetism. To this problem, Kaluza
proposed that — GR is not modified, just extended to five dimensions,
and there is no physical dependence on the fifth dimension. Klein'
recommended the compactification of the fifth dimension. Chodos
et al.,'” have shown in their five dimensional models that the extra
dimension contracts for cosmic evolution.

Einstein’s field equations are highly nonlinear differential
equations. It is not easy to understand what qualitative type of
solution they might possess. After the cosmological constant was
introduced into general relativity, many cosmologists believe that the
simplest candidate for the dark energy is the cosmological constant or
vacuum energy. The cosmological constant A and phantom fields are
violating weak energy conditions p + p > 0."* On the other hand this
cosmological constant always suffers from the theoretical problems —
“fine-tuning’ and ‘cosmic coincidence’.! For this reason, the equation

of state (EoS) of dark energy o = % where p is the pressure and

pis the energy density, in the universe transit from @ > -1 to
® < —1. Steinhardt et al."” Caldwell et a]lz" have proposed @ > -1,
and Santhi et al.?! have proposed @ < —— in their recent paper. In
general relativity the dynamics of the spatially flat RW spacetime,
the fluids with constant EoS parameter @ > —1 give either a power-
law expansion of the Universe a oc ¢“ or an exponential expansion

awe” , where a, 8 > 0 are constant.”> The Hybrid Expansion Law
(HEL) leads to S =0 ,a = 0 which are the special cases of the HEL
in early universe. Surprisingly, if the « > 0and £ > 0 leads to a new
cosmology ascending from the HEL.

A time variation of the gravitational constant G was first proposed
by Dirac? in his large number hypothesis. Other outstanding solutions
were studied by Weinberg® and Padmanabhan® Cosmological
models with time-dependent G and A, the relation Aowa’ ga
is the scale factor of the Robertson-Walker metric) and A oct |
were first obtained by Bertolami®® Sharif et al.?” Gamal et al.”® and
Mukhopadhyay et al*® are some of the authors who have investigated
several aspects of Kaluza-Klein cosmology with varying gravitational
constant and cosmological constant and also deceleration perameter
q. For the range of o, the transition from deceleration to acc¢'leration
phase of the universe for HEL take place at ¢ = (\/E —a) /B

There are different cases of interest in modern cosmology, the
matter dominated eras, the radiation dominated eras, and stiff fluid
eras. In the matter dominated era, the main energy density is that of
ordinary matter in galaxies, whose random velocities are small and
which therefore behave like dust p = 0. In the radiation dominated
era, which is in the early universe, the principal energy density is
in radiation or relativistic particles which have an equation of state
p =-—p . The cosmological model of Zeldovich®® in which the
primordial universe is supposed to be constituted of a cold gas of
baryons. For positive energy density in the presence of stiff matter,
the primordial universe is singular which begins with infinite density
from a state with a vanishing scale factor.

Inspired by the above investigations and discussions, we have
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studied KK cosmological models with variable G and E by taking
different barotropic fluid distributions into account. In this work we
have 4 sections. Section 2 represents the field equations where the
universe filled with perfect fluid. An explicit solution of the equations
with graphs is presented in section 3. Graphical discussion and
conclusion are given in the last two sections.

Model and field equations
The metric of the Kaluza-Klein cosmology is given by'

dr?

ds*=dt*—a* (1)
1k

+r2d Q2 +(1-kr?)dy? (1)

Where dQ?=(d6*+sin® 0d¢*) and a(t) is the scale factor, k=-1,0,1
is the curvature parameter for spatially open, flat and closed universe
respectively.

The energy-momentum tensor where the universe is filled with
perfect fluid is given by

ij(p+p)uiuj_pgij (2)

Where i,,/=0,1,2,3,4 and u; are the components of the five velocity
satisfying u'u ,=1; p is the energy density and p is the pressure of the
cosmic fluid.

The Einstein’s field equations are given by

1
Rl.j _ERgij +Ag,-j =—87rG7;-j (3)

Where R, g; and R are the Ricci tensor, metric tensor and Ricci
scalar respectively.

Here, we have considered the gravitational constant G and
cosmological constant A as a function of time .

Using equations (1), (2) and (3), we obtain the following two
independent equations

a ok
6[a2+azJ=87sz+A 4)
i a k
3 42t 8aGp-A (5)
a g2 42
Equations (4) and (5) reduce to
6[H2+£2]:87er+/\ (6)
a
—3(H+2H2+i2}=87z6p—/\ @)
a

Where -4 is the Hubble parameter and an overhead dot ()

a
hereafter, denote ordinary differentiation with respect to cosmic time
‘t > only.

The usual energy conservation equation 77/=0 yields

p+4H (p+p)=0 ®)

From (3) by taking the vanishing divergence of the Einstein tensor,
we have

Copyright:
©2017 Hossain et al. 929

87G p+A+87G[ p+4H (p+p)]=0 9)

Substituting (8) in (9) it follows that

872G p+A=0 (10)

Equation (10) indicates that Ais a constant whenever G is
constant and vice versa.

The equation of state is given by

p=ap (11)

. 1
where wef0,1] is a constant and can take the values 0, —, and 1

respectively for the pressure less dust, radiating and stiff or Zel’dovich
fluids.

Solution of field equations

The system of equations (6)-(8) and (11) supply only four equations
in five unknowns like @ , p, G and E . One extra equation is needed
to solve the system completely. Now we consider the following
ansatz for the average scale factor of the universe which yields a time
dependent deceleration parameter as

aght (12)

a=ct

where ¢>0, >0 and g>0 are constants. This generalized form of
scale factor is referred to as the Hybrid Expansion Law (HEL) and
combines both exponential and power law. We assume >0 and
p=0 to sustain HEL that leads to a new cosmology. Because of the
time dependency, the obtained deceleration parameter exhibits the
transition of the universe from the initial decelerating phase to the
present accelerating phase. That is why this sort of average scale factor
is physically meaningful. Akarsu et al.”? Vijaya Santhi®' Pradhan et
al.,*> and Yadav* are some of the authors who have taken into account
the above consideration to investigate different cosmological models.

From equation (12), we have

(13)

and = (14)

From equations (8), (11) and (12), we obtain the energy density
- (15)
el
Where y=4(w+1) and / is a constant of integration.
The pressure of the cosmic fluid is
I (16)

p_cytme/f;ft

Adding equations (6) and (7) and hence using equations (13), (14)
and (15), the gravitational constant is calculated as

Gzi3 TPt g+7k
27[[}/ t2 thZan/]t

Equation (6) gives the cosmological constant as

(17)
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2
A=6(2+ ﬁ} _12a 6k(y=2) (18)
t ytz yczlzaez/n
The deceleration parameter is
_ed_ a (19)
a (a+pt)

¢=0 when ,:\/E‘“ where O<a<l. At this point of time the
B

expansion velocity has an extreme. Hence the universe expands with
decelerated velocity, 4-0, and accelerated velocity and 4<o (inflation),
for some ¢, but g can never be less than -1. This shows a transition
from deceleration to acceleration phase of the universe for Hybrid
expansion law (HEL). As the deceleration parameter g measures the
rate of change of the expansion of the universe, it is considered as the
most important observational quantity in cosmology.

From the relation between mean scale factor and red shift (%) R

we have
4,1 (20)

Where the present scale factor ¢ 0 L Combining (12) and (20),
we perform the following calculation to obtain time-red shift relation
as shown in [8].

Now choosing ¢=! we can write
t%e” .

Which implies

)
tea= — |
1+z

. 1 .
Substitute %=u to obtain

1,
u_ﬂ(uz]

ue =
[04
Which follows that
1
.
i)
u=W| ——""—
[24
Which implies that
Rl
A ) @1
N
a
{=
B

Where the Lambert-W function (also called the omega function or
product logarithm) is introduced.
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By using equations (21) and (19), we can determine the
deceleration parameter 4 which indicates the transition from
decelerated to accelerated phase as per observation occurs at some red
shift as obtained in.?

Discussion

In summary, we have discussed the Kaluza-Klein cosmological
model with the barotropic equation of state which exhibits a
number of interesting phenomena in different parameter regimes.
We have analyzed the variation of various parameters against time
graphically for the cosmological models. (Figure 1) shows that the
energy density (p) decreases with time and coincides after a certain
time at around (=0.5 for different values of @ and keep up a similar
trend to the evolution of universe for dust, radiation and stiff fluid
era. Figure 2, Figure 3 and Figure 4 show the plot for the variation
of the gravitational constant () against time for different epochs
representing flat, closed and open universes. From those figures, it can
be seen that the gravitational constant decreases with time showing
similar behavior for @=1/4 and @ =1/4, but sharply decrffases for
o =1. For all three prescribed fluid distributions, @ =0, —,1, it is
noticed from Figure 5, Figure 6 and Figure 7 that the cosmological
constant, A, approaches zero from negative values with the evolution
of the universe marking similarities for £ =0 and k = -1, but the
graphs show significant dissimilarities for & =1.

Energy Density(p)

0 0s 1 15 2 25 3 s 4 45 ]
Cosmic Time(t)

Figure | Plot for variation of energy density vs cosmic time; using equation
(15). The dotted, solid, and dashed curves (I =1,c=1,a = =0.1)
represent y = 4,5 and 8 respectively.

Gravitational Constant (G)

0 005 01 0.15 02 025 03
Cosmic Time(t)

Figure 2 Plot for variation of Gravitational constant (G) vs cosmic
time; using equation (17). The dotted, solid, and dashed curves
(I=1,7y=4,a = f =0.1) represent k=0,k=1,k=—1 respectively.
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Figure 3 Plot for variation of Gravitational constant (G) vs cosmic
time; using equation (17). The dotted, solid, and dashed curves
(I=1y=5a=/p=0.1) represent k=0,k=1,k=—1 respectively.

Gravitational Constant (G)

Cosmic Time(t)

Figure 4 Plot for variation of Gravitational constant (G) vs cosmic
time; using equation (17). The dotted, solid, and dashed
(l=1,y =8, = f =0.1) represent k=0,k=1,k=—1 respectively.
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5 10 15
Cosmic Time(t)

Figure 5 Plot for variation of Cosmological constant (A) Vs cosmic time; using

equation (18). The dotted, solid, and dashed curves (}/:4,C=1,0(:ﬂ=0.1)
represent k=0,k=1,k=—1 respectively.

w=1/4

733

8

Cosmological Constant (A)
RN

B 10 15
Cosmic Time(t)

Figure 6 Plot for variation of Cosmological constant (A) Vs cosmic time;using
equation (18). The dotted, solid, and dashed curves (y=5,c=l,a=ﬁ=0.l)
represent k=0,k=1,k=—1 respectively.
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Figure 7 Plot for variation of Cosmological constant (A) Vs cosmic time;using
equation (18). The dotted, solid, and dashed curves (7:8,c:l,a:ﬂ:0.l
represent k=0,k=1,k=—1 respectively.

Again we have plotted different cosmological parameters for
k=0,k=1 and k = —1representing the graphs for »=0, w=1/4 and
o =1 in the same coordinate diagram . It is observed from the Figure
8, Figure 9 and Figure 10 that G (¢) falls gradually as we move from
w=0 to @ =1 at the same time in Figure- 1, A(¢) increases when
moving from =0 to k=0,-1 and follows reverse order for & = —1
in Figure 13. According to Figure 12, A(¢) goes up sharply and
changes the trend dramatically after a certain age of the universe with
the change of epochs. Finally, Figure 14 is a plot of the deceleration
parameter against time and shows that the deceleration parameter
reaches -1 with the age of the universe. All these graphical results
indicate the dependency of the curvature parameter among the
fluid distributions and compatibility with the current cosmological
observations.

Gravitational Constant (G)

0 0.05 01 0.15 02 0.25 03
Cosmic Time(t)

Figure 8 Plot for variation of Gravitational constant (G) Vs cosmic time; using
equation (17).The dotted,solid,and dashed curves (k=0,l=1,c=l,a=ﬂ=0. 1,)
represent ¥ = 4,5 and 8 respectively.

K=1

N

Gravitational Constant (G)

o 0.05 01 015 02 0.25 03
Cosmic Time(t)

Figure 9 Plot for variation of Gravitational constant (G) Vs cosmic time; using
equation (17).The dotted, solid,and dashed curves (k=1,l=1,c=1,a=,5=0. 1,)
represent y=4,5 and 8 respectively.
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K=-1

Gravitational Constant (G)
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Cosmic Time(t)

Figure 10 Plot for variation of Gravitational constant (G)vs
cosmic time; using equation (17). The dotted, solid, and dashed curves
(k=—l,l=1,c=l,a=ﬂ=0.l,) represent y=4,5 and 8 respectively.
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Figure 11 Plot for variation of Cosmological constant (A) Vs cosmic time;
using equation (18).The dotted,solid,and dashed curves (k=0,c=1,a=ﬂ=0. l)
represent y=4,5 and 8 respectively.

Cosmological Constant (A)

Cosmic Time(t)

Figure 12 Plot for variation of Cosmological constant (A) Vs cosmic time;
using equation (18).The dotted,solid,and dashed curves (k=l,c=l,a=ﬂ=0. 1)
represent y=4,5 and 8 respectively.

Cosmological Constant (A)

0 1 2 3 4 5 6 7 8 9 10
Cosmic Time(t)
Figure 13 Plot for variation of Cosmological constant (A) Vs
cosmic time; using equation (18). The dotted, solid, and dashed curves
(k=—1,c=l,a=ﬂ=0.?) represent y=4,5 and 8 respectively.
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Deceleration Parameter (q)
©

[ 1 2 3 4 5 6 7 8 9 10
Cosmic Time(t)

Figure 14 Plot for variation of Deceleration parameter(q) Vs cosmic time
for a=£=0.1;using equation (19).

Conclusion

In this paper, we have investigated the Kaluza-Klein cosmological
model with time dependent gravitational and cosmological constant
taking the barotropic equation of state into account. We have presented
our solutions for the energy density, pressure, gravitational constant
and cosmological constant with respect to time ¢. We have plotted
these solutions and discussed graphical features with different fluid
distributions for flat and non-flat universe models. It is noticed that the
energy density p is a decreasing function of time ¢ and p approaches zero
with the evolution of time. Also we have shown that the gravitational
constant is a decreasing function of time as studied in the models
by Gren** Helling et al.”* and Rowan Robinson®® It is also observed
that the cosmological constant is negative throughout the evolution
of universe for k = 0,-1 (Figure 11 & Figure 13) irrespective of the
barotropic fluid distributions which is termed as an anti-de Sitter phase
with cyclic evolution of the universe. On the contrary, the universe
enters from anti-de Sitter phase to de Sitter phase within a the short
period after Big Bang and remains in that phase with the evolution
of universe until the cosmological constant reaches a small positive
value for k =1 (Figure 12) which is reasonable for the accelerating
expansion of the universe*’* that we observe at present. Moreover,
it can be deduced from equation (19) that the deceleration parameter
g<0 when t>@ . It means that the universe is accelerating because

. B . . . —
acceleration at certain stage in the evolution of the universe implies
g<0 for some time ¢.
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