Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 2

Fixed point theorems for relation-theoretic F-interpolative in branciari distance with an application

Lucas Wangwe

Department of Mathematics, College of Natural and Applied Sciences, Mbeya University of Science and Technology, Tanzania

Correspondence: Lucas Wangwe, Department of Mathematics, College of Natural and Applied Sciences, Mbeya University of Science and Technology, Tanzania

Received: April 12, 2023 | Published: May 22, 2023

Citation: Wangwe L. Fixed point theorems for relation-theoretic F-interpolative in branciari distance with an application. Phys Astron Int J. 2023;7(2):122-129. DOI: 10.15406/paij.2023.07.00296

Download PDF

Abstract

This paper proves fixed point theorems for relation-theoretic F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@382A@ -interpolative mapping endowed with binary relation in Branciari Distance. Henceforth, the results obtained will be verified with the help of illustrative examples. Also, we demonstrate the results with an application in matrix equations.

Mathematics Subject Classification 2010: 47H10, 54H25.

Keywords: Fixed point, interpolative mapping, F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@382A@ -contraction, metric space, binary relation, matrix equation.

Introduction

Fixed point theory is a fascinating area of research for the researchers studying non-linear phenomena. It has many applications for non-linear functional analysis, Approximation theory, Optimization Theory (Saddle function), Variation inequalities, Game theory (Nash equilibrium) and Economics (Black Scholes theorem). Fixed point theory is quite and sequel to the existing theory of Differential, Integral, Partial, Fractional differential, functional equations and matrix equations. Fixed point theory as well as Banach contraction principle have been studied and generalized in different spaces and various fixed point theorems are developed. In 1968 Kannan1 introduced a discontinuity of contraction mappings that can possess a fixed point on a complete metric space by filling the gap created by Banach for more than thirty years. Reich proved the fixed point theorem using three metric points by combining the concept of Banach and Kanann on complete metric space. Dass-Gupta proved the results of the fixed point theorem of the rational type operator by using contraction mapping in metric space.

In 2000, Branciari2 introduced a class of generalized metric spaces by replacing triangular inequality with similar ones which involve four or more points instead of three and improved Banach contraction mapping principle. In 2008, Azam and Arshad3 using the concept of Branciari investigated the mappings given by Kannan by applying the rectangular properties in a generalized metric space. In 2011, Moradi and Alimohammadi4 generalized Kannan’s results, by using the sequentially convergent mappings and rectangular properties in metric space. Furthermore, Morandi and Alimohammadi investigated and extended Kannan’s mapping by using the ideal due to Branciari. Since then, several authors involved in investigations of Banach’s contraction mappings using rectangular properties in different spaces.

In 2004, Ran and Reurings5 proved an order-theoretic analogue of Banach contraction principle which marks the beginning of a vigorous research activity. This result was discovered while investigating the solutions to some special matrix equations.. In continuation of Ran and Reurings, Nieto and Rodríguez-López6 who proved two very useful results and used them to solve some differential equations.

In 2012, Wardowski7 initiated the study of fixed points of a new type of contractive mappings in complete metric spaces. In 2014, Wardowski and Dung,8 proved fixed points of F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@382A@ -weak contractions on complete metric spaces. Acar et al.9 and Altun et al.10 gave Generalized multivalued F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@382A@ -contractions on complete metric spaces. In 2014, Minak et al.,11 proved Ćirić type generalized F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@382A@ -contractions on complete metric spaces and fixed point results. Paesano and Vetro12 gave the proof on Multi-valued F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGHsi slaaa@38F6@ contractions in 0-complete partial metric spaces with application to Volterra type integral equation. Piri and Kumam13 proved some fixed point theorems concerning F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGHsi slaaa@38F6@ contraction in complete metric spaces. Sawangsup and Sintunavarat14 proved the fixed point theorems for F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa qcfayaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaa qaaaaaaaaaWdbiab=XrisbWcpaqabaaaaa@44C7@ contractions with applications to the solution of non-linear matrix equations, Tomar and Sharma15 proved some coincidence and common fixed point theorems concerning F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGHsi slaaa@38F6@ contraction and applications and Bashir16 proved the fixed point results of a generalized reversed F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGHsi slaaa@38F6@ contraction mapping and its application.

On the other hand, Alam and Imdad17 gave a generalizatiFor more res on of the Banach contraction principle in a complete metric space equipped with binary relation. Their results show that the contraction condition holds only for those elements linked with the binary relation, not for every pair of elements. Recently, Kannan’s and Reich’s18 fixed point theorems have been studied and extended in several directions, Karapinar19 modified the classical Kannan contraction phenomena to an interpolative Kannan contraction one to maximize the rate of convergence of an operator to a unique fixed point. However, by giving a counter-example, Karapinar and Agarwal20 pointed out a gap in the paper about the assumption of the fixed point being unique and came up with a corrected version. They provided a counter-example to verify that the fixed point need not be unique and invalidate the assumption of a unique fixed point. Since then, several results for variants of interpolative mapping proved for single and multivalued in various abstract spaces.

Further, Karapinar and Agarwal21 proved interpolative Rus-Reich-Ćirić type contractions via simulation functions. Errai et al.22 gave some new results of interpolative Hardy-Rogers and Reich-Rus-Ćirić type contraction in-metric spaces to prove the existence of the coincidence point. Mishra et al.23 proved the common fixed point theorems for interpolative Hardy-Rogers and Reich-Rus-Ćirić type contraction on quasi partial -metric space. Aydi et al.24 proved -interpolative Reich-Rus-Ćirić type contractions on metric spaces. Aydi et al.25 proved an interpolative Ćirić-Reich-Rus type contractions via the Branciari distance. Gautam et al.26 proved the fixed point of interpolative Rus-Reich-Ćirić contraction mapping on rectangular quasi-partial -metric space.

This manuscripts prove a fixed points theorem for relation-theoretic -contraction mappings via an arbitrary binary relation concept in Branciari distance metric space. In particular, we improve and extend the works due to Alam and Imdad,27 Ahmadullah et al.,28 Ahmadullah et al.,29 Eke et al.,30 Sawangsup and Sintunavarat,14 Aydi et al.31 and Karapinar et al.20 In doing so, we will generalize several other works in the literature having the same setting.

Material and methods

This section introduces some definitions, theorems and preliminary results, which will help develop the main result.

The concept of a Branciari distance space has been introduced by Brianciari where the triangular inequality is replaced by a quadrilateral one, which states as follows:

Definition 12. Let MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaaqaaaaaaaaaWdbiab=nti nbaa@40C7@  be a non-empty set. Suppose that the mapping d:×[ 0, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaacQdatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=ntinjabgEna0kab=ntinjabgkziUoaajibapaqaa8qaca aIWaGaaiilaiabe6HiLcGaay5waiaawMcaaaaa@4DAA@ be a function for all and all distinct points z,w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiaacYcacaWG3bGaeyicI48efv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuaacqWFZestaaa@463D@ , each distinct from μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0gaaa@3914@ and ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4gaaa@3916@ .

(i) d( μ,ν )0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGa ayzkaaGaeyyzImRaaGimaaaa@408D@ and d( μ,ν )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGa ayzkaaGaeyypa0JaaGimaaaa@3FCD@ if and only if μ=ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maeyypa0JaeqyVd4gaaa@3BD2@ ;

(ii) d( μ,ν )=d( μ,ν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGa ayzkaaGaeyypa0Jaamizamaabmaapaqaa8qacqaH8oqBcaGGSaGaeq yVd4gacaGLOaGaayzkaaaaaa@45C2@ ;

(iii) d( μ,ν )d( μ,w )+d( w,z )+d( z,ν ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGa ayzkaaGaeyizImQaamizamaabmaapaqaa8qacqaH8oqBcaGGSaGaam 4DaaGaayjkaiaawMcaaiabgUcaRiaadsgadaqadaWdaeaapeGaam4D aiaacYcacaWG6baacaGLOaGaayzkaaGaey4kaSIaamizamaabmaapa qaa8qacaWG6bGaaiilaiabe27aUbGaayjkaiaawMcaaiaac6caaaa@535F@

Then is called a Branciari distance and the pair ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@  is called a Branciari distance space.

Definition 22. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@  be a metric space. A mapping Γ: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaaiOoamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae83mH0KaeyOKH4Qae83mH0eaaa@4747@ is said to be sequentially convergent if we have, for every sequence { ν n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabe27aU9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3CCD@ , if { Γ ν n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabfo5ahjabe27aU9aadaWgaaWcbaWdbiaad6ga a8aabeaaaOWdbiaawUhacaGL9baaaaa@3E35@ is convergence then { ν n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabe27aU9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3CCD@ also is convergence. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ is said to be subsequentially convergent if we have, for every sequence { ν n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabe27aU9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3CCD@ , if { Γ ν n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabfo5ahjabe27aU9aadaWgaaWcbaWdbiaad6ga a8aabeaaaOWdbiaawUhacaGL9baaaaa@3E35@  is convergence then { ν n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabe27aU9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3CCD@  has a convergent subsequence.

Definition 336. Let ( ,d) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiaacckatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=ntinjaacYcacaWGKbGaaiykaaaa@4624@ be a Branciari distance space and { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3CCB@  be a sequence in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ .

(i)A sequence { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3CCB@ is converges to point μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaOGaeyicI4Sae83mH0eaaa@47F0@ if lim n d( μ n , μ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamOBaiabgkziUkab e6HiLcWdaeqaaOWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaBa aaleaapeGaamOBaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaWbaaSqa beaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacq WFgls5aaaakiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@54F2@

(ii) A sequence { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaGadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqa aaGcpeGaay5Eaiaaw2haaaaa@3B84@  is said to be Cauchy if for every ϵ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWF1pG8 cqGH+aGpcaaIWaaaaa@4519@ , there exists a positive integer =( ϵ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFveIt cqGH9aqpcqWFveItdaqadaWdaeaatuuDJXwAK1uy0HwmaeXbfv3ySL gzG0uy0Hgip5wzaGGba8qacqGF1pG8aiaawIcacaGLPaaaaaa@51BB@ such that d( μ n , μ m )<ϵ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hzamaabmaapaqaa8qacaWF8oWdamaaBaaaleaapeGaa8NB aaWdaeqaaOWdbiaacYcacaWF8oWdamaaBaaaleaapeGaa8xBaaWdae qaaaGcpeGaayjkaiaawMcaaiabgYda8mrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae4x9diVaaiilaaaa@4D98@  for all n,m> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8NBaiaacYcacaWFTbGaeyOpa4Zefv3ySLgznfgDOjdaryqr 1ngBPrginfgDObcv39gaiuaacqGFveItaaa@45AA@ .

(iii) We say that ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuqapeGae83mH0KaaiilaGqadiaa+rgaaiaawIcacaGLPaaaaaa@4557@  is complete if each Cauchy sequence in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ is convergent.

Lemma 136. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@  be a Branciari distance space. A mapping Γ: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaaiOoamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae83mH0KaeyOKH4Qae83mH0eaaa@4747@ is continuous at μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaOGaeyicI4Sae83mH0eaaa@47F0@ , if we have Γ μ n Γ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiab gkziUkabfo5ahjabeY7aT9aadaahaaWcbeqaamrr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=zSiLdaaaaa@4D16@ or lim n d( Γ μ n ,Γ μ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamOBaiabgkziUkab e6HiLcWdaeqaaOWdbiaadsgadaqadaWdaeaapeGaeu4KdCKaeqiVd0 2damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacYcacqqHtoWrcqaH 8oqBpaWaaWbaaSqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqba8qacqWFgls5aaaakiaawIcacaGLPaaacqGH9aqpcaaI Waaaaa@57C2@ , for any sequence { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3CCB@  in MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuaaqaaaaaaaaaWdbiab=nti nbaa@40C7@  converges to μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaOGaeyicI4Sae83mH0eaaa@47F0@ , that is μ n μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabgkziUkab eY7aT9aadaahaaWcbeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbacfaWdbiab=zSiLdaaaaa@4A46@ .

Proposition 137. Suppose μ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaaaa@3A61@ is a Cauchy sequence in a Branciari distance space such that lim n d( μ n , μ )=d( μ n , w )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaaeaa aaaaaaa8qacaqGSbGaaeyAaiaab2gaaSWdaeaapeGaamOBaiabgkzi Ukabe6HiLcWdaeqaaOWdbiaadsgadaqadaWdaeaapeGaeqiVd02dam aaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaWba aSqabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqba8 qacqWFgls5aaaakiaawIcacaGLPaaacqGH9aqpcaWGKbWaaeWaa8aa baWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGSa Gaam4Da8aadaahaaWcbeqaa8qacqWFgls5aaaakiaawIcacaGLPaaa cqGH9aqpcaaIWaGaaiilaaaa@60B7@  where μ , w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaOGaaiilaiaadEhapaWaaWbaaS qabeaapeGae8NXIuoaaOGaeyicI4Sae83mH0eaaa@4C44@ . Then μ = w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaOGaeyypa0Jaam4Da8aadaahaa Wcbeqaa8qacqWFgls5aaaaaa@49E6@ .

Another noted attempt to extend the Banach contraction principle is essentially due to Wardowski.

The following explanations for developing the -contraction definition was obtained from Wardowski,7 Wardowski and Van Dung,8 and Cosentino et al.32

Let F: + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiaacQdatuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3B aGqbaiab=1ris9aadaahaaWcbeqaa8qacqGHRaWkaaGccqGHsgIRcq WFDeIuaaa@47D9@ be a mapping satisfying:

(F1) F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbaaaa@36E2@  is strictly increasing, i.e. for all J,K + ,J<K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFjeVs caGGSaGae8NcXVKaeyicI48efv3ySLgznfgDOjdarCqr1ngBPrginf gDObcv39gaiyaacqGFDeIupaWaaWbaaSqabeaapeGaey4kaScaaOGa aiilaiaaykW7cqWFjeVscqGH8aapcqWFke=saaa@5974@ implies F( J )<F( K ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOramaabmaapaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhA G8KBLbacfaWdbiab=Lq8kbGaayjkaiaawMcaaiabgYda8iaadAeada qadaWdaeaapeGae8NcXVeacaGLOaGaayzkaaaaaa@4A66@ ;

(F2) For each sequence { J n } n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4Eamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGa e8xcXR0damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaac2hapaWaaS baaSqaa8qacaWGUbGaeyicI48efv3ySLgznfgDOjdarCqr1ngBPrgi nfgDObcv39gaiyaacqGFveIta8aabeaaaaa@5396@ of positive numbers, lim n J n =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamOBaiabgkziUkab e6HiLcWdaeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfaGcpeGae8xcXR0damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiab g2da9iaaicdaaaa@4D66@ if and only if lim n F( J n )= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamOBaiabgkziUkab e6HiLcWdaeqaaOWdbiaadAeadaqadaWdaeaatuuDJXwAK1uy0Hwmae Hbfv3ySLgzG0uy0Hgip5wzaGqba8qacqWFjeVspaWaaSbaaSqaa8qa caWGUbaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0JaeyOeI0Iaeq OhIukaaa@517B@ ;

(F3) There exists z( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8NEaiabgIGiopaabmaapaqaa8qacaaIWaGaaiilaiaaigda aiaawIcacaGLPaaaaaa@3DB6@ satisfying lim J n 0 + J n z F( J n )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqba8qacqWFjeVspaWaaSbaaWqaa8qaca WGUbaapaqabaWcpeGaeyOKH4QaaGima8aadaahaaadbeqaa8qacqGH RaWkaaaal8aabeaak8qacqWFjeVspaWaa0baaSqaa8qacaWGUbaapa qaa8qacaWG6baaaOGaamOramaabmaapaqaa8qacqWFjeVspaWaaSba aSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0JaaG imaaaa@56CD@

We denote the family of all functions F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@3829@ satisfying conditions ( F1F3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadAeacaaIXaGaeyOeI0IaamOraiaaiodaaiaa wIcacaGLPaaaaaa@3D01@ by MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFXeIr aaa@4205@ . Some examples of functions F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8xmHyeaaa@4454@ are:

F 1 ( c )=lnc d( Γμ,Γν ) d( μ,ν ) e η ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraWWdamaaBaaaleaajugWa8qacaaIXaaal8aabeaak8qadaqa daWdaeaapeGaam4yaaGaayjkaiaawMcaaiabg2da9iaabYgacaqGUb Gaam4yaiabgkDiEpaalaaapaqaa8qacaWGKbWaaeWaa8aabaWdbiab fo5ahjabeY7aTjaacYcacqqHtoWrcqaH9oGBaiaawIcacaGLPaaaa8 aabaWdbiaadsgadaqadaWdaeaapeGaeqiVd0Maaiilaiabe27aUbGa ayjkaiaawMcaaaaacqGHKjYOcaWGLbWdamaaCaaaleqabaWdbiabgk HiTiabeE7aObaak8aacaGG7aaaaa@5A30@

F 2 ( c )=c+lnc d( Γμ,Γν ) d( μ,ν ) e η+d( μ,ν )d( Γμ,Γν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaqcLbmapeGaaGOmaaWcpaqabaGcpeWaaeWa a8aabaWdbiaadogaaiaawIcacaGLPaaacqGH9aqpcaWGJbGaey4kaS IaaeiBaiaab6gacaWGJbGaeyO0H49aaSaaa8aabaWdbiaadsgadaqa daWdaeaapeGaeu4KdCKaeqiVd0Maaiilaiabfo5ahjabe27aUbGaay jkaiaawMcaaaWdaeaapeGaamizamaabmaapaqaa8qacqaH8oqBcaGG SaGaeqyVd4gacaGLOaGaayzkaaaaaiabgsMiJkaadwgapaWaaWbaaS qabeaapeGaeyOeI0Iaeq4TdGMaey4kaSIaamizamaabmaapaqaa8qa cqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaGaeyOeI0Iaamizam aabmaapaqaa8qacqqHtoWrcqaH8oqBcaGGSaGaeu4KdCKaeqyVd4ga caGLOaGaayzkaaaaaaaa@6D14@ ;

F 3 ( c )= 1 c d( Γμ,Γν ) d( μ,ν ) 1 ( 1+η d( μ,ν ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraWWdamaaBaaaleaajugWa8qacaaIZaaal8aabeaak8qadaqa daWdaeaapeGaam4yaaGaayjkaiaawMcaaiabg2da9iabgkHiTmaala aapaqaa8qacaaIXaaapaqaa8qadaGcaaWdaeaapeGaam4yaaWcbeaa aaGccqGHshI3daWcaaWdaeaapeGaamizamaabmaapaqaa8qacqqHto WrcqaH8oqBcaGGSaGaeu4KdCKaeqyVd4gacaGLOaGaayzkaaaapaqa a8qacaWGKbWaaeWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawI cacaGLPaaaaaGaeyizIm6aaSaaa8aabaWdbiaaigdaa8aabaWdbmaa bmaapaqaa8qacaaIXaGaey4kaSIaeq4TdG2aaOaaa8aabaWdbiaads gadaqadaWdaeaapeGaeqiVd0Maaiilaiabe27aUbGaayjkaiaawMca aaWcbeaaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaa aaaaa@63DA@ ;

F 4 ( c )=ln( c 2 +c ) d( Γμ,Γν )( 1+d( Γμ,Γν ) ) d( μ,ν )( 1+d( μ,ν ) ) e η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaqcLbmapeGaaGinaaWcpaqabaGcpeWaaeWa a8aabaWdbiaadogaaiaawIcacaGLPaaacqGH9aqpcaqGSbGaaeOBam aabmaapaqaa8qacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaGccqGH RaWkcaWGJbaacaGLOaGaayzkaaGaeyO0H49aaSaaa8aabaWdbiaads gadaqadaWdaeaapeGaeu4KdCKaeqiVd0Maaiilaiabfo5ahjabe27a UbGaayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaey4kaSIaamizam aabmaapaqaa8qacqqHtoWrcqaH8oqBcaGGSaGaeu4KdCKaeqyVd4ga caGLOaGaayzkaaaacaGLOaGaayzkaaaapaqaa8qacaWGKbWaaeWaa8 aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawIcacaGLPaaadaqadaWd aeaapeGaaGymaiabgUcaRiaadsgadaqadaWdaeaapeGaeqiVd0Maai ilaiabe27aUbGaayjkaiaawMcaaaGaayjkaiaawMcaaaaacqGHKjYO caWGLbWdamaaCaaaleqabaWdbiabgkHiTiabeE7aObaaaaa@748B@ .

Wardowski introduced a generalization of the Banach contraction principle in metric spaces as follows:

Definition 47.   Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@  be a metric space. A self-mapping Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@38C6@ on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ is called an F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@3829@ -contraction mapping if there exists F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae8xmHyeaaa@4454@ and η + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv 39gaiuaacqWFDeIupaWaaWbaaSqabeaapeGaey4kaScaaaaa@4674@ such that for all μ,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0eaaa@47B0@ , d( Γμ,Γν )  >0η+F( d( Γμ,Γν ) ) F( d( μ,ν ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeu4KdCKaeqiVd0Ma aiilaiabfo5ahjabe27aUbGaayjkaiaawMcaaiaacckacaGGGcGaey Opa4JaaGimaiabgkDiElabeE7aOjabgUcaRiaadAeadaqadaWdaeaa peGaamizamaabmaapaqaa8qacqqHtoWrcqaH8oqBcaGGSaGaeu4KdC KaeqyVd4gacaGLOaGaayzkaaaacaGLOaGaayzkaaaapaqaa8qacqGH KjYOa8aabaWdbiaadAeadaqadaWdaeaapeGaamizamaabmaapaqaa8 qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaaacaGLOaGaayzk aaGaaiOlaaaaaaa@619B@

Wardowski7 proved the following fixed point theorem:

Theorem 17. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@  be a complete metric space and Γ: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaaiOoamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae83mH0KaeyOKH4Qae83mH0eaaa@4747@ be a F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@3829@ -contraction mapping. If there exist η>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyOpa4JaaGimaaaa@3ACC@ such that for all μ,ν,d( Γμ,Γν )   >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0KaaiilaiaaykW7caWGKbWaae Waa8aabaWdbiabfo5ahjabeY7aTjaacYcacqqHtoWrcqaH9oGBaiaa wIcacaGLPaaacaGGGcGaaiiOaiaacckacqGH+aGpcaaIWaaaaa@5898@ , implies η+F( d( Γμ,Γν ) )F( d( μ,ν ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaey4kaSIaamOramaabmaapaqaa8qacaWGKbWaaeWaa8aa baWdbiabfo5ahjabeY7aTjaacYcacqqHtoWrcqaH9oGBaiaawIcaca GLPaaaaiaawIcacaGLPaaacqGHKjYOcaWGgbWaaeWaa8aabaWdbiaa dsgadaqadaWdaeaapeGaeqiVd0Maaiilaiabe27aUbGaayjkaiaawM caaaGaayjkaiaawMcaaiaacYcaaaa@5165@  then Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@38C6@ has a unique fixed point.

Kannan1 proved the following theorem:

Theorem 21. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@ be a complete metric space and a self-mapping Γ: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaaiOoamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae83mH0KaeyOKH4Qae83mH0eaaa@4747@ be a mapping such that d( Γμ,Γν )η{ d( μ,Γμ )+d( ν,Γν ) }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacqqHtoWrcqaH8oqBcaGGSaGaeu4KdCKa eqyVd4gacaGLOaGaayzkaaGaeyizImQaeq4TdG2aaiWaa8aabaWdbi aadsgadaqadaWdaeaapeGaeqiVd0Maaiilaiabfo5ahjabeY7aTbGa ayjkaiaawMcaaiabgUcaRiaadsgadaqadaWdaeaapeGaeqyVd4Maai ilaiabfo5ahjabe27aUbGaayjkaiaawMcaaaGaay5Eaiaaw2haaiaa cYcaaaa@584E@ for all μ,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0eaaa@47B0@ and 0η 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkabeE7aOjabgsMiJoaalaaapaqaa8qacaaIXaaa paqaa8qacaaIYaaaaiaac6caaaa@3FA5@  The Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@38C6@  has a unique fixed point δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuaacqWFZestaaa@4537@ and for any μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0MaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiuaacqWFZestaaa@4548@ the sequence of iterate { Γ n μ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabfo5ah9aadaahaaWcbeqaa8qacaWGUbaaaOGa eqiVd0gacaGL7bGaayzFaaaaaa@3E15@  converges to δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqgaaa@3903@ .

The following results for interpolative Kannan contraction have been proved in as follows:

Definition 519. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@ be a metric space, the mapping Γ: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaaiOoamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae83mH0KaeyOKH4Qae83mH0eaaa@4747@ is said to be interpolative Kannan contraction mappings if d( Γμ,Γν ) η [ d( μ,Γμ ) ] δ . [ d( ν,Γν ) ] 1δ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeu4KdCKaeqiVd0Ma aiilaiabfo5ahjabe27aUbGaayjkaiaawMcaaaWdaeaapeGaeyizIm kapaqaa8qacqaH3oaAdaWadaWdaeaapeGaamizamaabmaapaqaa8qa cqaH8oqBcaGGSaGaeu4KdCKaeqiVd0gacaGLOaGaayzkaaaacaGLBb GaayzxaaWdamaaCaaaleqabaWdbiabes7aKbaakiaac6cadaWadaWd aeaapeGaamizamaabmaapaqaa8qacqaH9oGBcaGGSaGaeu4KdCKaeq yVd4gacaGLOaGaayzkaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWd biaaigdacqGHsislcqaH0oazaaGccaGGSaaaaaaa@5FDC@ for all μ,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0eaaa@47B0@ with μΓμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0MaeyiyIKRaeu4KdCKaeqiVd0gaaa@3DF9@ , where η[ 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyicI48aaKGea8aabaWdbiaaicdacaGGSaGaaGymaaGa ay5waiaawMcaaaaa@3EA5@ and δ( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyicI48aaeWaa8aabaWdbiaaicdacaGGSaGaaGymaaGa ayjkaiaawMcaaaaa@3E54@ .

Theorem 319. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@ be a complete metric space and Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@38C6@ be an interpolative Kannan type contraction. Then Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@38C6@ has a unique fixed point in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ .

In 2018, Karapinar et al.21 proved an interpolative Reich-Rus-Ćirić type contractions fixed point result on partial metric space as follows.

Theorem 421. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@ be a complete metric space Γ: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaaiOoamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae83mH0KaeyOKH4Qae83mH0eaaa@4747@ . be a mapping such that p( Γμ,Γν ) η [ p( μ,ν ) ] δ . [ p( μ,Γμ ) ] α . [ p( ν,Γν ) ] 1αδ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadchadaqadaWdaeaapeGaeu4KdCKaeqiVd0Ma aiilaiabfo5ahjabe27aUbGaayjkaiaawMcaaaWdaeaapeGaeyizIm kapaqaa8qacqaH3oaAdaWadaWdaeaapeGaamiCamaabmaapaqaa8qa cqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaaacaGLBbGaayzxaa WdamaaCaaaleqabaWdbiabes7aKbaakiaac6cadaWadaWdaeaapeGa amiCamaabmaapaqaa8qacqaH8oqBcaGGSaGaeu4KdCKaeqiVd0gaca GLOaGaayzkaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiabeg7a Hbaakiaac6cadaWadaWdaeaapeGaamiCamaabmaapaqaa8qacqaH9o GBcaGGSaGaeu4KdCKaeqyVd4gacaGLOaGaayzkaaaacaGLBbGaayzx aaWdamaaCaaaleqabaWdbiaaigdacqGHsislcqaHXoqycqGHsislcq aH0oazaaGccaGGSaaaaaaa@6DFF@ for all μ,νFix( Γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0Kae8NfIiOaamOraiaadMgaca WG4bWaaeWaa8aabaWdbiabfo5ahbGaayjkaiaawMcaaaaa@4EB5@ where Fix( Γ )={ μ,Γμ=μ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiaadMgacaWG4bWaaeWaa8aabaWdbiabfo5ahbGaayjkaiaa wMcaaiabg2da9maacmaapaqaa8qacqaH8oqBcqGHiiIZtuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=ntinjaacYcacqqH toWrcqaH8oqBcqGH9aqpcqaH8oqBaiaawUhacaGL9baaaaa@54EE@ . Then Γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHtoWraaa@377F@  has a fixed point in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ .

Binary relation-theoretic in metric spaces

In this part, we will recall some definitions of relation theoretic notion related to binary relation with relevant relation-theoretical variants of some metrical concepts such as completeness and continuity which will be useful in developing our main results.

In the following discussion MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ stands for a nonempty binary relation while 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFveIt m8aadaWgaaWcbaqcLbmapeGaaGimaaWcpaqabaaaaa@4463@ denotes the set of whole numbers, i.e., { 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFveIt cqGHQicYdaGadaWdaeaapeGaaGimaaGaay5Eaiaaw2haaaaa@46B4@ .

Definition 638. A binary relation on a non-empty set MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ is defined as a subset of × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest cqGHxdaTcqWFZestaaa@454B@ , which will be denoted by MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ . We say that μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0gaaa@3914@ relates to ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4gaaa@3916@ under MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ iff ( μ,ν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawIcacaGLPaaa cqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbai ab=Trisbaa@4945@ .

Definition 717. Let MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ be a binary relation defined on a non-empty set MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ and μ,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0eaaa@47B0@ . We say that μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0gaaa@3914@ and ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4gaaa@3916@ are MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ -comparative if either ( μ,ν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawIcacaGLPaaa cqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbai ab=Trisbaa@4945@ or ( ν,μ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabe27aUjaacYcacqaH8oqBaiaawIcacaGLPaaa cqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbai ab=Trisbaa@4945@ . We denote it by [ μ,ν ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawUfacaGLDbaa cqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbai ab=Trisbaa@49AE@ .

Definition 838. Let MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@  be a binary relation defined on a non-empty set MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ . Then the symmetric closure of MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ is defined as the smallest symmetric relation containing ( i.e. s := 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu daqadaWdaeaapeGaamyAaiaac6cacaWGLbGaaiOlaiab=Tris9aada ahaaWcbeqaa8qacaWGZbaaaOGaaiOoaiabg2da9iab=TrisjabgQIi ilab=Tris9aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaGccaGLOa Gaayzkaaaaaa@50C8@ , where 1 ={ ( μ,ν ) 2 :( ν,μ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu paWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiabg2da9maacmaapa qaa8qadaqadaWdaeaapeGaeqiVd0Maaiilaiabe27aUbGaayjkaiaa wMcaaiabgIGiolab=ntin9aadaahaaWcbeqaa8qacaaIYaaaaOGaai Ooamaabmaapaqaa8qacqaH9oGBcaGGSaGaeqiVd0gacaGLOaGaayzk aaGaeyicI4Sae83gHifacaGL7bGaayzFaaaaaa@59EC@ .

Proposition 217. If MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ is a binary relation defined on a non-empty set MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ , then ( μ,ν ) s [ μ,ν ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbmaabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4ga caGLOaGaayzkaaGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuaacqWFBeIupaWaaWbaaSqabeaapeGaam4CaaaaaOWd aeaapeGaeyi1HSnapaqaa8qadaWadaWdaeaapeGaeqiVd0Maaiilai abe27aUbGaay5waiaaw2faaiabgIGiolab=Trisjaac6caaaaaaa@56B5@

Definition 917. Let MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ be a binary relation defined on a non-empty set MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ . Then a sequence { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baacqGHckcZtuuDJXwAK1uy0HwmaeHbfv3ySL gzG0uy0Hgip5wzaGqbaiab=ntinbaa@4977@ is called MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ -preserving if ( μ n , μ n+1 ),     n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa k8qacaGGSaGaeqiVd02damaaBaaaleaapeGaamOBaiabgUcaRiaaig daa8aabeaaaOWdbiaawIcacaGLPaaacqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=TrisjaacYcacaGGGcGaai iOaiaacckacqGHaiIicaGGGcGaaiiOaiaad6gacqGHiiIZtuuDJXwA K1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+vrio9aadaWgaa WcbaWdbiaaicdaa8aabeaaaaa@631A@ .

Definition 1017. Let MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ be a non-empty set and Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@38C6@ a self-mapping on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ . A binary relation MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ on X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@383B@ is called Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@38C6@ -closed if for any μ,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0eaaa@47B0@ , ( μ,ν ) ( Γμ,Γν ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbmaabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4ga caGLOaGaayzkaaGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginf gDObYtUvgaiuaacqWFBeIua8aabaWdbiabgkDiEdWdaeaapeWaaeWa a8aabaWdbiabfo5ahjabeY7aTjaacYcacqqHtoWrcqaH9oGBaiaawI cacaGLPaaacqGHiiIZcqWFBeIucaGGUaaaaaaa@57CF@

Definition 1127. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@ be a metric space and MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ a binary relation on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ . We say that ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@ is MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ -complete if every MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ -preserving Cauchy sequence in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ converges.

Definition 1217. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@  be a metric space. A binary relation MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ defined on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ is called d-self closed if whenever { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3CCB@  is an MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ -preserving sequence and μ n d μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaOWaaCbiaeaapeGa eyOKH4kal8aabeqaa8qacaWGKbaaaOGaeqiVd0gaaa@3F79@ , then there is a sub sequence { μ n k } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gapaWaaSba aWqaa8qacaWGRbaapaqabaaaleqaaaGcpeGaay5Eaiaaw2haaaaa@3E12@ of { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3CCB@  with [ μ n k ,μ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gapaWaaSba aWqaa8qacaWGRbaapaqabaaaleqaaOWdbiaacYcacqaH8oqBaiaawU facaGLDbaacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGqbaiab=Trisbaa@4C5A@ for all k 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xfH40damaaBaaaleaapeGaaGimaaWdaeqaaaaa@4592@ .

Definition 1317. Let MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ be a non-empty set and MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ a binary relation on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ . A subset D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraaaa@3827@ of MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ is called MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ -directed if for each μ,νD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGiolaadseaaaa@3DC9@ , there exists z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaaaa@385D@  in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ such that ( μ,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeY7aTjaacYcacaWG6baacaGLOaGaayzkaaGa eyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacq WFBeIuaaa@488C@ and ( ν,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabe27aUjaacYcacaWG6baacaGLOaGaayzkaaGa eyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacq WFBeIuaaa@488E@ .

Definition 1439. Let MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@  be a non-empty set and MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ be a binary relation defined on a non-empty set MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@420E@ . Let k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@384E@ be a natural number, a path MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41FB@ from μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0gaaa@3914@ to is a finite sequence { z 0 , z 1 , z 2 ,..., z k } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiaadQhapaWaaSbaaSqaaKqzadWdbiaaicdaaSWd aeqaaOWdbiaacYcacaWG6badpaWaaSbaaSqaaKqzadWdbiaaigdaaS WdaeqaaOWdbiaacYcacaWG6badpaWaaSbaaSqaaKqzadWdbiaaikda aSWdaeqaaOWdbiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOEa8 aadaWgaaWcbaWdbiaadUgaa8aabeaaaOWdbiaawUhacaGL9baacqGH iiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=n tinbaa@5768@ which satisfies the following conditions:

  1. z 0 =μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaWWdamaaBaaaleaajugWa8qacaaIWaaal8aabeaak8qacqGH 9aqpcqaH8oqBaaa@3D8C@ and z 1 =μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaSWdamaaBaaabaqcLbmacaaIXaaaleqaaOWdbiabg2da9iab eY7aTbaa@3D32@ ;
  2. [ z i , z i+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadQhapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaaiilaiaadQhapaWaaSbaaSqaa8qacaWGPbGaey4kaSIaaGymaa WdaeqaaaGcpeGaay5waiaaw2faaiabgIGioprr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfaGae83gHifaaa@4C6F@ for each i{ 0,1,2,3,...k1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgIGiopaacmaapaqaa8qacaaIWaGaaiilaiaaigdacaGG SaGaaGOmaiaacYcacaaIZaGaaiilaiaac6cacaGGUaGaaiOlaiaadU gacqGHsislcaaIXaaacaGL7bGaayzFaaaaaa@464C@ for all μ,ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0Kaaiykaaaa@482D@ ;
  3. ( Γ, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfeaeaaaaaaaaa8qacqWFZest daqadaWdaeaaieWapeGaa43KdiaacYcacqWFBeIuaiaawIcacaGLPa aaaaa@466C@ : the collection of all points μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hVdiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhA G8KBLbacfeGae43mH0eaaa@44AE@ such that ( μ,Γμ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaacbmWdbiaa=X7acaGGSaGaa83Kdiaa=X7aaiaawIca caGLPaaacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGqbbiab+Trisbaa@494A@ ;

(vi) Let us denote γ( μ,ν, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2aaeWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBcaGGSaWe fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFBeIuai aawIcacaGLPaaaaaa@49E8@ : the collection of all paths { z 0 , z 1 , z 2 ,..., z k } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiaadQhapaWaaSbaaSqaaKqzadWdbiaaicdaaSWd aeqaaOWdbiaacYcacaWG6badpaWaaSbaaSqaaKqzadWdbiaaigdaaS WdaeqaaOWdbiaacYcacaWG6badpaWaaSbaaSqaaKqzadWdbiaaikda aSWdaeqaaOWdbiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOEa8 aadaWgaaWcbaWdbiaadUgaa8aabeaaaOWdbiaawUhacaGL9baaaaa@4B04@  joining μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0gaaa@38E4@ to ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4gaaa@38E6@ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ such that [ z i ,Γ z i ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadQhapaWaaSbaaSqaa8qacaWGPbaapaqabaGc peGaaiilaiabfo5ahjaadQhapaWaaSbaaSqaa8qacaWGPbaapaqaba aak8qacaGLBbGaayzxaaGaeyicI48efv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuaacqWFBeIuaaa@4C3A@ for each i{ 1,2,3,...k1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgIGiopaacmaapaqaa8qacaaIXaGaaiilaiaaikdacaGG SaGaaG4maiaacYcacaGGUaGaaiOlaiaac6cacaWGRbGaeyOeI0IaaG ymaaGaay5Eaiaaw2haaaaa@44E2@ .

Further, we state some preliminary results which will be helpful to develop our main results.

Ahmadullah et al.33 proved the results in metric-like spaces as well as partial metric spaces equipped with a binary relation. Sawangsup and Sintunavarat14 by combining the concepts of Wardowski and proved the fixed point theorems for F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWdamaaBaaaleaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgi gjxyRrxDYbacfaWdbiab=XrisbWdaeqaaaaa@4311@ -contractions in metric space with applications to the solution of non-linear matrix equations with binary relation as follows:

Theorem 534. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@454F@ be a complete metric space, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ a binary relation on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DE@ and let Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ be a self-mapping on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DE@ . Suppose that the following conditions hold:

(i) ( Γ, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest daqadaWdaeaapeGaeu4KdCKaaiilaiab=TrisbGaayjkaiaawMcaaa aa@46B1@ is non-empty,

(ii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ is Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ -closed,

(iii) either Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is continuous or MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ is G -self-closed,

(iv)there exists F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8NraiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhA G8KBLbacfeGae4xmHyeaaa@442C@ and η + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa83TdiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGae4xhHi1damaaCaaaleqabaWdbiabgUcaRaaaaaa@45DE@ such that for all μ,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hVdiaacYcacaWF9oGaeyicI48efv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiuqacqGFZestaaa@469F@ with (μ,ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcaieWaqa aaaaaaaaWdbiaa=X7acaGGSaGaa8xVdiabgIGioprr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfeGae43gHi1daiaacMcaaaa@47F4@ , d( Γμ,Γν )>0η+F( d( Γμ,Γν ) ) F( d( μ,ν ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaieWaqaaaaaaaaaWdbiaa=rgadaqadaWdaeaapeGaa83Kdiaa=X7a caGGSaGaa83Kdiaa=17aaiaawIcacaGLPaaacqGH+aGpcaaIWaGaey O0H4Taa83TdiabgUcaRiaa=zeadaqadaWdaeaapeGaa8hzamaabmaa paqaa8qacaWFtoGaa8hVdiaacYcacaWFtoGaa8xVdaGaayjkaiaawM caaaGaayjkaiaawMcaaaWdaeaapeGaeyizImkapaqaa8qacaWFgbWa aeWaa8aabaWdbiaa=rgadaqadaWdaeaapeGaa8hVdiaacYcacaWF9o aacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiOlaaaaaaa@5A9F@

Then Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ has a fixed point. Moreover, for each x 0 ( Γ, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHiiIZtuuD JXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=ntinnaabm aapaqaa8qacqqHtoWrcaGGSaGae83gHifacaGLOaGaayzkaaaaaa@4A60@ the Picard sequence { Γ n x 0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabfo5ah9aadaahaaWcbeqaa8qacaWGUbaaaOGa amiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawUhacaGL9b aaaaa@3E5A@ is convergent to the fixed point Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ .

Results and discussion

Now, we prove the main results using interpolative Reich-Rus-Ćirić- -contraction mapping concepts via binary relation in generalized metric spaces.

Theorem 6. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@451F@  be a complete metric space, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ a binary relation on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DE@ and let Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ be an interpolative Reich-Rus-Ćirić type contractions mapping on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DE@ . Suppose that the following conditions hold:

(i) ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@451F@ is Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ complete,

(ii) ( Γ, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest daqadaWdaeaapeGaeu4KdCKaaiilaiab=TrisbGaayjkaiaawMcaaa aa@46B1@ is non-empty,

(iii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ is Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ -closed,

(iv) the sequence { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3C9B@  is MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ -preserving,

(v) either Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is continuous or MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ is d-self closed,

(vi) there exists a constant η>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyOpa4JaaGimaaaa@3A9C@ such that μ,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiaIiIaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfaGae83mH0eaaa@4850@ with (μ,ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiabeY7aTjaacYcacqaH9oGBcqGHiiIZtuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=TrisjaacMcaaaa@48C6@ η+F( d( Γμ,Γν ) ) F( ( μ,ν ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacqqHtoWrcqaH8oqBcaGGSaGaeu4KdCKaeq yVd4gacaGLOaGaayzkaaaacaGLOaGaayzkaaaapaqaa8qacqGHKjYO a8aabaWdbiaadAeadaqadaWdaeaatuuDJXwAK1uy0HwmaeHbfv3ySL gzG0uy0Hgip5wzaGqba8qacqWFZestpaWaaSbaaSqaa8qacqWFBeIu a8aabeaak8qadaqadaWdaeaapeGaeqiVd0Maaiilaiabe27aUbGaay jkaiaawMcaaaGaayjkaiaawMcaaiaacYcaaaaaaa@5CD1@ μ,νFix( Γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0Kae8NfIiOaamOraiaadMgaca WG4bWaaeWaa8aabaWdbiabfo5ahbGaayjkaiaawMcaaaaa@4E85@ where for all where Fix( Γ )={ μ,Γμ=μ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiaadMgacaWG4bWaaeWaa8aabaWdbiabfo5ahbGaayjkaiaa wMcaaiabg2da9maacmaapaqaa8qacqaH8oqBcqGHiiIZtuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=ntinjaacYcacqqH toWrcqaH8oqBcqGH9aqpcqaH8oqBaiaawUhacaGL9baaaaa@54BE@ . Then Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ has a fixed point. Also, if Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is subsequentially convergent then for every μ n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOBaiabgkHiTiaaigdaa8aabeaa k8qacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaG qbaiab=ntinbaa@4827@ the sequence of iterate { Γ n μ n1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabfo5ah9aadaahaaWcbeqaa8qacaWGUbaaaOGa eqiVd02damaaBaaaleaapeGaamOBaiabgkHiTiaaigdaa8aabeaaaO WdbiaawUhacaGL9baaaaa@40F4@  converges to this fixed point. Moreover, if

(vii) γ( μ,ν, s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdC2aaeWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBcaGGSaWe fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFBeIupa WaaWbaaSqabeaapeGaam4CaaaaaOGaayjkaiaawMcaaaaa@4B36@ is non-empty, for each μ,ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0eaaa@4780@ . Then Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ has a unique fixed point.

Proof. Assume x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393F@ be an arbitrary point in ( Γ, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest daqadaWdaeaapeGaeu4KdCKaaiilaiab=TrisbGaayjkaiaawMcaaa aa@46B1@ . We construct a sequence { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3C9B@ of Picard iterates such that μ n = Γ n μ 0 =Γ μ n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabg2da9iab fo5ah9aadaahaaWcbeqaa8qacaWGUbaaaOGaeqiVd02damaaBaaale aapeGaaGimaaWdaeqaaOWdbiabg2da9iabfo5ahjabeY7aT9aadaWg aaWcbaWdbiaad6gacqGHsislcaaIXaaapaqabaaaaa@47FF@ for all n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xfH4eaaa@4451@ . By condition ( iii ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaamyAaiaadMgacaWGPbaacaGLOaGaayzkaaaa aa@3A89@  of Theorem 6, we have ( μ 0 ,Γ μ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaaicdaa8aabeaa k8qacaGGSaGaeu4KdCKaeqiVd02damaaBaaaleaapeGaaGimaaWdae qaaaGcpeGaayjkaiaawMcaaiabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83gHifaaa@4CD7@ and MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ is Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ -closed, therefore

( Γ μ n1 , Γ n+1 μ n1 ),( Γ n+1 μ n1 , Γ n+2 μ n1 ),,( Γ n μ n1 , Γ n+2 μ n1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabfo5ahjabeY7aT9aadaWgaaWcbaWdbiaad6ga cqGHsislcaaIXaaapaqabaGcpeGaaiilaiabfo5ah9aadaahaaWcbe qaa8qacaWGUbGaey4kaSIaaGymaaaakiabeY7aT9aadaWgaaWcbaWd biaad6gacqGHsislcaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaai ilamaabmaapaqaa8qacqqHtoWrpaWaaWbaaSqabeaapeGaamOBaiab gUcaRiaaigdaaaGccqaH8oqBpaWaaSbaaSqaa8qacaWGUbGaeyOeI0 IaaGymaaWdaeqaaOWdbiaacYcacqqHtoWrpaWaaWbaaSqabeaapeGa amOBaiabgUcaRiaaikdaaaGccqaH8oqBpaWaaSbaaSqaa8qacaWGUb GaeyOeI0IaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcacqGH MacVcaGGSaWaaeWaa8aabaWdbiabfo5ah9aadaahaaWcbeqaa8qaca WGUbaaaOGaeqiVd02damaaBaaaleaapeGaamOBaiabgkHiTiaaigda a8aabeaak8qacaGGSaGaeu4KdC0damaaCaaaleqabaWdbiaad6gacq GHRaWkcaaIYaaaaOGaeqiVd02damaaBaaaleaapeGaamOBaiabgkHi Tiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@73C5@ .

Using $(\ref{Eqt 3.3})$, we note that

( Γ n μ n1 , Γ n+1 μ n1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabeaaae aaqaaaaaaaaaWdbmaabmaapaqaa8qacqqHtoWrpaWaaWbaaSqabeaa peGaamOBaaaakiabeY7aT9aadaWgaaWcbaWdbiaad6gacqGHsislca aIXaaapaqabaGcpeGaaiilaiabfo5ah9aadaahaaWcbeqaa8qacaWG UbGaey4kaSIaaGymaaaakiabeY7aT9aadaWgaaWcbaWdbiaad6gacq GHsislcaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaeyicI48efv3y SLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFBeIucaGGSa aaaaaa@56EC@

n 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabeaaae aaqaaaaaaaaaWdbiabgcGiIiaad6gacqGHiiIZtuuDJXwAK1uy0HMm aeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vrio9aadaWgaaWcbaWdbi aaicdaa8aabeaak8qacaGGUaaaaaaa@470D@  Therefore the sequence { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhaqaaaaa aaaaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaakiaac2ha aaa@3C3B@ is MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ -preserving.

If there exists n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaaaa@3821@ such that μ n = μ n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabg2da9iab eY7aT9aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXaaapaqabaaaaa@3FF1@ , then μ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaaaa@3A31@ is a fixed pint of Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ . The proof is completed. For that case, we assume that μ n μ n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabgcMi5kab eY7aT9aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXaaapaqabaaaaa@40B2@ for each n0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgwMiZkaaicdaaaa@3AA1@ . Therefore

lim n d( μ n , μ n+1 ) = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aadaWfqaqaaabaaaaaaaaapeGaaeiBaiaabMgacaqGTbaal8aabaWd biaad6gacqGHsgIRcqaHEisPa8aabeaak8qacaWGKbWaaeWaa8aaba WdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGSaGa eqiVd02damaaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aabeaaaO WdbiaawIcacaGLPaaaa8aabaWdbiabg2da9aWdaeaapeGaaGimaiaa c6caaaaaaa@4CA1@

To show this, let μ= μ n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maeyypa0JaeqiVd02damaaBaaaleaapeGaamOBaiabgkHi Tiaaigdaa8aabeaaaaa@3E95@ and ν= μ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4Maeyypa0JaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqa aaaa@3CEF@ , using $(\ref{eqt 3.1})$ for all n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xfH40damaaBaaaleaapeGaaGimaaWdaeqaaaaa@4565@ , we deduce that

η+F( d( Γ μ n1 ,Γ μ n ) ) F( ( μ n1 , μ n ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacqqHtoWrcqaH8oqBpaWaaSbaaSqaa8qaca WGUbGaeyOeI0IaaGymaaWdaeqaaOWdbiaacYcacqqHtoWrcqaH8oqB paWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaaaca GLOaGaayzkaaaapaqaa8qacqGHKjYOa8aabaWdbiaadAeadaqadaWd aeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacq WFZestpaWaaSbaaSqaa8qacqWFBeIua8aabeaak8qadaqadaWdaeaa peGaeqiVd02damaaBaaaleaapeGaamOBaiabgkHiTiaaigdaa8aabe aak8qacaGGSaGaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaaGc peGaayjkaiaawMcaaaGaayjkaiaawMcaaiaacYcaaaaaaa@65B9@

where

( μ n1 , μ n ) = [ d( μ n1 , μ n ) ] δ . [ d( μ n1 ,Γ μ n1 ) ] α . [ d( μ n ,Γ μ n ) ] 1αδ , [ d( μ n1 , μ n ) ] δ . [ d( μ n1 , μ n ) ] α . [ d( μ n , μ n+1 ) ] 1αδ , = [ d( μ n1 , μ n ) ] α+δ . [ d( μ n , μ n+1 ) ] 1αδ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqadmaaae aatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaa aaaapeGae83mH00damaaBaaaleaapeGae83gHifapaqabaGcpeWaae Waa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gacqGHsislcaaI XaaapaqabaGcpeGaaiilaiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8 aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiabg2da9aWdaeaapeWa amWaa8aabaWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaBaaale aapeGaamOBaiabgkHiTiaaigdaa8aabeaak8qacaGGSaGaeqiVd02d amaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaay 5waiaaw2faa8aadaahaaWcbeqaa8qacqaH0oazaaGccaGGUaWaamWa a8aabaWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaBaaaleaape GaamOBaiabgkHiTiaaigdaa8aabeaak8qacaGGSaGaeu4KdCKaeqiV d02damaaBaaaleaapeGaamOBaiabgkHiTiaaigdaa8aabeaaaOWdbi aawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaeqyS degaaOGaaiOlamaadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabeY 7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGSaGaeu4KdCKa eqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaayjkaiaawM caaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacaaIXaGaeyOeI0Ia eqySdeMaeyOeI0IaeqiTdqgaaOGaaiilaaWdaeaaaeaapeGaeyizIm kapaqaa8qadaWadaWdaeaapeGaamizamaabmaapaqaa8qacqaH8oqB paWaaSbaaSqaa8qacaWGUbGaeyOeI0IaaGymaaWdaeqaaOWdbiaacY cacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGa ayzkaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiabes7aKbaaki aac6cadaWadaWdaeaapeGaamizamaabmaapaqaa8qacqaH8oqBpaWa aSbaaSqaa8qacaWGUbGaeyOeI0IaaGymaaWdaeqaaOWdbiaacYcacq aH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzk aaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiabeg7aHbaakiaac6 cadaWadaWdaeaapeGaamizamaabmaapaqaa8qacqaH8oqBpaWaaSba aSqaa8qacaWGUbaapaqabaGcpeGaaiilaiabeY7aT9aadaWgaaWcba Wdbiaad6gacqGHRaWkcaaIXaaapaqabaaak8qacaGLOaGaayzkaaaa caGLBbGaayzxaaWdamaaCaaaleqabaWdbiaaigdacqGHsislcqaHXo qycqGHsislcqaH0oazaaGccaGGSaaapaqaaaqaa8qacqGH9aqpa8aa baWdbmaadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabeY7aT9aada WgaaWcbaWdbiaad6gacqGHsislcaaIXaaapaqabaGcpeGaaiilaiab eY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaaaOWdbiaawIcacaGLPa aaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaeqySdeMaey4kaSIa eqiTdqgaaOGaaiOlamaadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbi abeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGGSaGaeqiV d02damaaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aabeaaaOWdbi aawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaaGym aiabgkHiTiabeg7aHjabgkHiTiabes7aKbaakiaac6caaaaaaa@E301@  

Taking $(\ref{Eqt 3.7})$ into $(\ref{Eqt 3.6})$, we obtain

η+F( d( Γ μ n1 ,Γ μ n ) ) F( [ d( μ n1 , μ n ) ] α+δ . [ d( μ n , μ n+1 ) ] 1αδ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacqqHtoWrcqaH8oqBpaWaaSbaaSqaa8qaca WGUbGaeyOeI0IaaGymaaWdaeqaaOWdbiaacYcacqqHtoWrcqaH8oqB paWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaaaca GLOaGaayzkaaaapaqaa8qacqGHKjYOa8aabaWdbiaadAeadaqadaWd aeaapeWaamWaa8aabaWdbiaadsgadaqadaWdaeaapeGaeqiVd02dam aaBaaaleaapeGaamOBaiabgkHiTiaaigdaa8aabeaak8qacaGGSaGa eqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaayjkaiaawM caaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacqaHXoqycqGHRaWk cqaH0oazaaGccaGGUaWaamWaa8aabaWdbiaadsgadaqadaWdaeaape GaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacYcacqaH 8oqBpaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpe GaayjkaiaawMcaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacaaI XaGaeyOeI0IaeqySdeMaeyOeI0IaeqiTdqgaaaGccaGLOaGaayzkaa GaaiOlaaaaaaa@7504@

By the continuity property of , and $(\ref{Eqt 3.8})$, we get

d( Γ μ n1 ,Γ μ n ) [ d( μ n1 , μ n ) ] α+δ . [ d( μ n , μ n+1 ) ] 1αδ , ( d( μ n , μ n+1 ) ) 1( 1αδ ) [ d( μ n1 , μ n ) ] α+δ , ( d( μ n , μ n+1 ) ) α+δ [ d( μ n1 , μ n ) ] α+δ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqadmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeu4KdCKaeqiVd02d amaaBaaaleaapeGaamOBaiabgkHiTiaaigdaa8aabeaak8qacaGGSa Gaeu4KdCKaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGa ayjkaiaawMcaaaWdaeaapeGaeyizImkapaqaa8qadaWadaWdaeaape Gaamizamaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbGa eyOeI0IaaGymaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8 qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaWd amaaCaaaleqabaWdbiabeg7aHjabgUcaRiabes7aKbaakiaac6cada WadaWdaeaapeGaamizamaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqa a8qacaWGUbaapaqabaGcpeGaaiilaiabeY7aT9aadaWgaaWcbaWdbi aad6gacqGHRaWkcaaIXaaapaqabaaak8qacaGLOaGaayzkaaaacaGL BbGaayzxaaWdamaaCaaaleqabaWdbiaaigdacqGHsislcqaHXoqycq GHsislcqaH0oazaaGccaGGSaaapaqaa8qadaqadaWdaeaapeGaamiz amaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqaba GcpeGaaiilaiabeY7aT9aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaI Xaaapaqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaWdamaaCa aaleqabaWdbiaaigdacqGHsisldaqadaWdaeaapeGaaGymaiabgkHi Tiabeg7aHjabgkHiTiabes7aKbGaayjkaiaawMcaaaaaaOWdaeaape GaeyizImkapaqaa8qadaWadaWdaeaapeGaamizamaabmaapaqaa8qa cqaH8oqBpaWaaSbaaSqaa8qacaWGUbGaeyOeI0IaaGymaaWdaeqaaO WdbiaacYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qa caGLOaGaayzkaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiabeg 7aHjabgUcaRiabes7aKbaakiaacYcaa8aabaWdbmaabmaapaqaa8qa caWGKbWaaeWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8 aabeaak8qacaGGSaGaeqiVd02damaaBaaaleaapeGaamOBaiabgUca Riaaigdaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaapa WaaWbaaSqabeaapeGaeqySdeMaey4kaSIaeqiTdqgaaaGcpaqaa8qa cqGHKjYOa8aabaWdbmaadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbi abeY7aT9aadaWgaaWcbaWdbiaad6gacqGHsislcaaIXaaapaqabaGc peGaaiilaiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaaaOWdbi aawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaeqyS deMaey4kaSIaeqiTdqgaaOGaaiOlaaaaaaa@BDF7@

So, we conclude that

d( μ n , μ n+1 ) d( μ n1 , μ n ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaBaaa leaapeGaamOBaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8 qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaaWd aeaapeGaeyizImkapaqaa8qacaWGKbWaaeWaa8aabaWdbiabeY7aT9 aadaWgaaWcbaWdbiaad6gacqGHsislcaaIXaaapaqabaGcpeGaaiil aiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaaaOWdbiaawIcaca GLPaaacaGGSaaaaaaa@501C@

for all n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgwMiZkaaigdaaaa@3AA2@ .

Consequently, we have

η+F( d( μ n , μ n+1 ) ) F( d( μ n1 , μ n ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapa qabaGcpeGaaiilaiabeY7aT9aadaWgaaWcbaWdbiaad6gacqGHRaWk caaIXaaapaqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaaapa qaa8qacqGHKjYOa8aabaWdbiaadAeadaqadaWdaeaapeGaamizamaa bmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbGaeyOeI0IaaG ymaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaa paqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiOlaaaaaa a@5792@

Equivalent to

F( d( μ n , μ n+1 ) ) F( d( μ n1 , μ n ) )η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaamizamaabmaapaqa a8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiilai abeY7aT9aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXaaapaqabaaa k8qacaGLOaGaayzkaaaacaGLOaGaayzkaaaapaqaa8qacqGHKjYOa8 aabaWdbiaadAeadaqadaWdaeaapeGaamizamaabmaapaqaa8qacqaH 8oqBpaWaaSbaaSqaa8qacaWGUbGaeyOeI0IaaGymaaWdaeqaaOWdbi aacYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGL OaGaayzkaaaacaGLOaGaayzkaaGaeyOeI0Iaeq4TdGMaaiOlaaaaaa a@579D@

Similar, let μ= μ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maeyypa0JaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqa aaaa@3CED@ , ν= μ n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4Maeyypa0JaeqiVd02damaaBaaaleaapeGaamOBaiabgUca Riaaigdaa8aabeaaaaa@3E8C@ , using $(\ref{eqt 3.1})$ and $(\ref{Eqt 3.9})$ for all n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xfH40damaaBaaaleaapeGaaGimaaWdaeqaaaaa@4565@ , we get

F( d( μ n+1 , μ n+2 ) ) F( d( μ n1 , μ n ) )2η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaamizamaabmaapaqa a8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdae qaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaaWdae aapeGaeyizImkapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadsgadaqa daWdaeaapeGaeqiVd02damaaBaaaleaapeGaamOBaiabgkHiTiaaig daa8aabeaak8qacaGGSaGaeqiVd02damaaBaaaleaapeGaamOBaaWd aeqaaaGcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgkHiTiaaik dacqaH3oaAcaGGUaaaaaaa@59F7@

Proceeding this way, by induction we deduce

F( d( μ n , μ n+1 ) ) F( d( μ n1 , μ n ) )nη,n1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaamizamaabmaapaqa a8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiilai abeY7aT9aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXaaapaqabaaa k8qacaGLOaGaayzkaaaacaGLOaGaayzkaaaapaqaa8qacqGHKjYOa8 aabaWdbiaadAeadaqadaWdaeaapeGaamizamaabmaapaqaa8qacqaH 8oqBpaWaaSbaaSqaa8qacaWGUbGaeyOeI0IaaGymaaWdaeqaaOWdbi aacYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGL OaGaayzkaaaacaGLOaGaayzkaaGaeyOeI0IaamOBaiabeE7aOjaacY cacqGHaiIicaWGUbGaeyyzImRaaGymaiaac6caaaaaaa@5D84@

That is d( μ n1 , μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbGa eyOeI0IaaGymaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8 qacaWGUbaapaqabaaak8qacaGLOaGaayzkaaaaaa@4251@ is non-increasing sequence with non-negative terms. We denote J n =d( μ n , μ n+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFjeVs paWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaeyypa0Jaamizamaabm aapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGa aiilaiabeY7aT9aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXaaapa qabaaak8qacaGLOaGaayzkaaaaaa@5006@ , for all n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xfH40damaaBaaaleaapeGaaGimaaWdaeqaaaaa@4565@ . Since Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is an F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@37F9@ - MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ -interpolative contraction mapping.

From $(\ref{Eqt 3.11})$, we obtain

F( J n ) F( J n1 )ηF( J n2 )2ηF( J 0 )nη, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqba8qacqWFjeVspaWaaSbaaSqaa8qaca WGUbaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qacqGHKjYOa8aa baWdbiaadAeadaqadaWdaeaapeGae8xcXR0damaaBaaaleaapeGaam OBaiabgkHiTiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacqGHsisl cqaH3oaAcqGHKjYOcaWGgbWaaeWaa8aabaWdbiab=Lq8k9aadaWgaa WcbaWdbiaad6gacqGHsislcaaIYaaapaqabaaak8qacaGLOaGaayzk aaGaeyOeI0IaaGOmaiabeE7aOjabgsMiJkabgAci8kabgsMiJkaadA eadaqadaWdaeaapeGae8xcXR0damaaBaaaleaapeGaaGimaaWdaeqa aaGcpeGaayjkaiaawMcaaiabgkHiTiaad6gacqaH3oaAcaGGSaaaaa aa@6D36@

for all n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xfH40damaaBaaaleaapeGaaGimaaWdaeqaaaaa@4565@ .

By ( F2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadAeacaaIYaaacaGLOaGaayzkaaaaaa@3A5D@ , we have

lim n J n = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aadaWfqaqaaabaaaaaaaaapeGaaeiBaiaabMgacaqGTbaal8aabaWd biaad6gacqGHsgIRcqaHEisPa8aabeaatuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGqbaOWdbiab=Lq8k9aadaWgaaWcbaWdbiaa d6gaa8aabeaaaOqaa8qacqGH9aqpa8aabaWdbiaaicdacaGGUaaaaa aa@4E24@

If and only if

lim n F( J n ) = . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aadaWfqaqaaabaaaaaaaaapeGaaeiBaiaabMgacaqGTbaal8aabaWd biaad6gacqGHsgIRcqaHEisPa8aabeaak8qacaWGgbWaaeWaa8aaba Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaapeGae8xc XR0damaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaayjkaiaawMcaaa WdaeaapeGaeyypa0dapaqaa8qacqGHsislcqaHEisPcaGGUaaaaaaa @5258@

From ( F3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadAeacaaIZaaacaGLOaGaayzkaaaaaa@3A5E@ and $(\ref{Eqt 3.12})$, there exists z( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabgIGiopaabmaapaqaa8qacaaIWaGaaiilaiaaigdaaiaa wIcacaGLPaaaaaa@3D7E@ such that

J n z F( J n ) J n z ( F( J n1 )η ) J n z ( F( J 0 )nη ), J n z F( J n ) J n z ( F( J 0 )nη )0, J n z F( J n ) J n z F( J 0 ) J n z nη)0, J n z F( J n ) J n z F( J 0 ) J n z nη0, J n z ( F( J n )F( J 0 ) ) J n z nη0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqafmaaaa qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaa aaaaa8qacqWFjeVspaWaa0baaSqaa8qacaWGUbaapaqaa8qacaWG6b aaaOGaamOramaabmaapaqaa8qacqWFjeVspaWaaSbaaSqaa8qacaWG Ubaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qacqGHKjYOa8aaba Wdbiab=Lq8k9aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadQhaaaGc daqadaWdaeaapeGaamOramaabmaapaqaa8qacqWFjeVspaWaaSbaaS qaa8qacaWGUbGaeyOeI0IaaGymaaWdaeqaaaGcpeGaayjkaiaawMca aiabgkHiTiabeE7aObGaayjkaiaawMcaaiabgsMiJkabgAci8kabgs MiJkab=Lq8k9aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadQhaaaGc daqadaWdaeaapeGaamOramaabmaapaqaa8qacqWFjeVspaWaaSbaaS qaa8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGaeyOeI0IaamOB aiabeE7aObGaayjkaiaawMcaaiaacYcaa8aabaWdbiab=Lq8k9aada qhaaWcbaWdbiaad6gaa8aabaWdbiaadQhaaaGccaWGgbWaaeWaa8aa baWdbiab=Lq8k9aadaWgaaWcbaWdbiaad6gaa8aabeaaaOWdbiaawI cacaGLPaaaa8aabaWdbiabgsMiJcWdaeaapeGae8xcXR0damaaDaaa leaapeGaamOBaaWdaeaapeGaamOEaaaakmaabmaapaqaa8qacaWGgb WaaeWaa8aabaWdbiab=Lq8k9aadaWgaaWcbaWdbiaaicdaa8aabeaa aOWdbiaawIcacaGLPaaacqGHsislcaWGUbGaeq4TdGgacaGLOaGaay zkaaGaeyizImQaaGimaiaacYcaa8aabaWdbiab=Lq8k9aadaqhaaWc baWdbiaad6gaa8aabaWdbiaadQhaaaGccaWGgbWaaeWaa8aabaWdbi ab=Lq8k9aadaWgaaWcbaWdbiaad6gaa8aabeaaaOWdbiaawIcacaGL Paaaa8aabaWdbiabgsMiJcWdaeaapeGae8xcXR0damaaDaaaleaape GaamOBaaWdaeaapeGaamOEaaaakiaadAeadaqadaWdaeaapeGae8xc XR0damaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaai abgkHiTiab=Lq8k9aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadQha aaGccaWGUbGaeq4TdGMaaiykaiabgsMiJkaaicdacaGGSaaapaqaa8 qacqWFjeVspaWaa0baaSqaa8qacaWGUbaapaqaa8qacaWG6baaaOGa amOramaabmaapaqaa8qacqWFjeVspaWaaSbaaSqaa8qacaWGUbaapa qabaaak8qacaGLOaGaayzkaaGaeyOeI0Iae8xcXR0damaaDaaaleaa peGaamOBaaWdaeaapeGaamOEaaaakiaadAeadaqadaWdaeaapeGae8 xcXR0damaaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMca aaWdaeaapeGaeyizImkapaqaa8qacqGHsislcqWFjeVspaWaa0baaS qaa8qacaWGUbaapaqaa8qacaWG6baaaOGaamOBaiabeE7aOjabgsMi JkaaicdacaGGSaaapaqaa8qacqWFjeVspaWaa0baaSqaa8qacaWGUb aapaqaa8qacaWG6baaaOWaaeWaa8aabaWdbiaadAeadaqadaWdaeaa peGae8xcXR0damaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaayjkai aawMcaaiabgkHiTiaadAeadaqadaWdaeaapeGae8xcXR0damaaBaaa leaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaayjkaiaawM caaaWdaeaapeGaeyizImkapaqaa8qacqGHsislcqWFjeVspaWaa0ba aSqaa8qacaWGUbaapaqaa8qacaWG6baaaOGaamOBaiabeE7aOjabgs MiJkaaicdacaGGUaaaaaaa@EFB1@

Letting n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgkziUkabe6HiLcaa@3B7D@ in $(\ref{Eqt 3.15})$, we obtain that

lim n J n z n = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aadaWfqaqaaabaaaaaaaaapeGaaeiBaiaabMgacaqGTbaal8aabaWd biaad6gacqGHsgIRcqaHEisPa8aabeaatuuDJXwAK1uy0HwmaeHbfv 3ySLgzG0uy0Hgip5wzaGqbaOWdbiab=Lq8k9aadaqhaaWcbaWdbiaa d6gaa8aabaWdbiaadQhaaaGccaWGUbaapaqaa8qacqGH9aqpa8aaba WdbiaaicdacaGGUaaaaaaa@5036@

Now, from $(\ref{Eqt 3.16})$ there exist n 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHiiIZtuuD JXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaiab=vrio9aada WgaaWcbaWdbiaaicdaa8aabeaaaaa@4694@ such that J n z n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFjeVs paWaa0baaSqaa8qacaWGUbaapaqaa8qacaWG6baaaOGaamOBaiabgs MiJkaaigdaaaa@484B@ for all n n 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgwMiZkaad6gapaWaaSbaaSqaa8qacaaIXaaapaqabaaa aa@3BEF@ .

Consequently, we have that

J n z n 1, J n z 1 n , J n 1 n 1 z , J n n 1 z . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqaemaaaa qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaa aaaaa8qacqWFjeVspaWaa0baaSqaa8qacaWGUbaapaqaa8qacaWG6b aaaOGaamOBaaWdaeaapeGaeyizImkapaqaa8qacaaIXaGaaiilaaWd aeaapeGae8xcXR0damaaDaaaleaapeGaamOBaaWdaeaapeGaamOEaa aaaOWdaeaapeGaeyizImkapaqaa8qadaWcaaWdaeaapeGaaGymaaWd aeaapeGaamOBaaaacaGGSaaapaqaa8qacqWFjeVspaWaaSbaaSqaa8 qacaWGUbaapaqabaaakeaapeGaeyizImkapaqaa8qadaWcaaWdaeaa peGaaGymaaWdaeaapeGaamOBa8aadaahaaWcbeqaa8qadaWcaaWdae aapeGaaGymaaWdaeaapeGaamOEaaaaaaaaaOGaaiilaaWdaeaapeGa e8xcXR0damaaBaaaleaapeGaamOBaaWdaeqaaaGcbaWdbiabgsMiJc WdaeaapeGaamOBa8aadaahaaWcbeqaa8qacqGHsisldaWcaaWdaeaa peGaaGymaaWdaeaapeGaamOEaaaaaaGccaGGUaaaaaaa@6683@

Therefore, n=0 d( μ n , μ n+1 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaad6gacqGH9aqpcaaIWaaapaqaa8qacqaH EisPa0WdaeaapeGaeyyeIuoaaOGaamizamaabmaapaqaa8qacqaH8o qBpaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaaiilaiabeY7aT9aa daWgaaWcbaWdbiaad6gacqGHRaWkcaaIXaaapaqabaaak8qacaGLOa GaayzkaaGaeyypa0JaaGimaaaa@4AD9@ converges.

Next, we claim that { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3C9B@ is Cauchy sequence, that is, lim n d( μ n , μ m )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamOBaiabgkziUkab e6HiLcWdaeqaaOWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaBa aaleaapeGaamOBaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqa a8qacaWGTbaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0JaaGimaa aa@49F6@ n,m 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiaIiIaamOBaiaacYcacaWGTbGaeyicI48efv3ySLgznfgDOjda ryqr1ngBPrginfgDObcv39gaiuaacqWFveItpaWaaSbaaSqaa8qaca aIWaaapaqabaaaaa@47D7@  such that mn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaiabgwMiZkaad6gaaaa@3AD9@ , by using the rectangular property we have

d( μ n , μ m ) d( μ n , μ n+1 )+d( μ n+1 , μ n+2 )++d( μ m1 , μ m ), J n + J n+1 + J n+2 ++ J m1 , = i=n m1 J i , i=n m1 n 1 z . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqaemaaaa qaaabaaaaaaaaapeGaamizamaabmaapaqaa8qacqaH8oqBpaWaaSba aSqaa8qacaWGUbaapaqabaGcpeGaaiilaiabeY7aT9aadaWgaaWcba Wdbiaad2gaa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbiabgsMi JcWdaeaapeGaamizamaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8 qacaWGUbaapaqabaGcpeGaaiilaiabeY7aT9aadaWgaaWcbaWdbiaa d6gacqGHRaWkcaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaey4kaS Iaamizamaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbGa ey4kaSIaaGymaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8 qacaWGUbGaey4kaSIaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiab gUcaRiabgAci8kabgUcaRiaadsgadaqadaWdaeaapeGaeqiVd02dam aaBaaaleaapeGaamyBaiabgkHiTiaaigdaa8aabeaak8qacaGGSaGa eqiVd02damaaBaaaleaapeGaamyBaaWdaeqaaaGcpeGaayjkaiaawM caaiaacYcaa8aabaaabaWdbiabgsMiJcWdaeaatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqWFjeVspaWaaSbaaSqaa8 qacaWGUbaapaqabaGcpeGaey4kaSIae8xcXR0damaaBaaaleaapeGa amOBaiabgUcaRiaaigdaa8aabeaak8qacqGHRaWkcqWFjeVspaWaaS baaSqaa8qacaWGUbGaey4kaSIaaGOmaaWdaeqaaOWdbiabgUcaRiab gAci8kabgUcaRiab=Lq8k9aadaWgaaWcbaWdbiaad2gacqGHsislca aIXaaapaqabaGcpeGaaiilaaWdaeaaaeaapeGaeyypa0dapaqaa8qa daGfWbqabSWdaeaapeGaamyAaiabg2da9iaad6gaa8aabaWdbiaad2 gacqGHsislcaaIXaaan8aabaWdbiabggHiLdaakiab=Lq8k9aadaWg aaWcbaWdbiaadMgaa8aabeaak8qacaGGSaaapaqaaaqaa8qacqGHKj YOa8aabaWdbmaawahabeWcpaqaa8qacaWGPbGaeyypa0JaamOBaaWd aeaapeGaamyBaiabgkHiTiaaigdaa0WdaeaapeGaeyyeIuoaaOGaam OBa8aadaahaaWcbeqaa8qacqGHsisldaWcaaWdaeaapeGaaGymaaWd aeaapeGaamOEaaaaaaGccaGGUaaaaaaa@A9D5@   

Since i=n m1 n 1 z < MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaWGUbaapaqaa8qacaWG TbGaeyOeI0IaaGymaaqdpaqaa8qacqGHris5aaGccaWGUbWdamaaCa aaleqabaWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG 6baaaaaakiabgYda8iabe6HiLcaa@4611@ , we get that { μ n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaa aOWdbiaawUhacaGL9baaaaa@3C9B@ is a Cauchy sequence in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DE@ . Since ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@451F@ is complete, there exists μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaOGaeyicI4Sae83mH0eaaa@47C0@ such that

d( μ n , μ ) = lim n d( μ n , μ )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaBaaa leaapeGaamOBaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaWbaaSqabe aatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqWF gls5aaaakiaawIcacaGLPaaaa8aabaWdbiabg2da9aWdaeaadaWfqa qaa8qacaqGSbGaaeyAaiaab2gaaSWdaeaapeGaamOBaiabgkziUkab e6HiLcWdaeqaaOWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaBa aaleaapeGaamOBaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaaWbaaSqa beaapeGae8NXIuoaaaGccaGLOaGaayzkaaGaeyypa0JaaGimaiaac6 caaaaaaa@6191@   

Now, by the continuity of Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ , we get Γ μ = μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiuaapeGae8NXIuoaaOGaeyypa0JaeqiVd0 2damaaCaaaleqabaWdbiab=zSiLdaaaaa@4BD8@ . We show that μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaaaa@450C@ is a fixed point of Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ . Assume that Γ μ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiuaapeGae8NXIuoaaOGaeyiyIKRaeqiVd0 2damaaCaaaleqabaWdbiab=zSiLdaaaaa@4C99@ such that Γ μ n μ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiab gcMi5kabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabeaaaaa@407D@ n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyiaIiIaamOBaiabgwMiZorr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8xfH40damaaBaaaleaapeGaaGimaaWdaeqaaa aa@4677@ . By letting μ= μ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maeyypa0JaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqa aaaa@3CED@ and ν= μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4Maeyypa0JaeqiVd02damaaCaaaleqabaWefv3ySLgznfgD Ofdaryqr1ngBPrginfgDObYtUvgaiuaapeGae8NXIuoaaaaa@47CA@ in $(\ref{eqt 3.1})$, we obtain

η+F( d( Γ μ n ,Γ μ ) ) F( ( μ n , μ ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacqqHtoWrcqaH8oqBpaWaaSbaaSqaa8qaca WGUbaapaqabaGcpeGaaiilaiabfo5ahjabeY7aT9aadaahaaWcbeqa amrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=z SiLdaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaWdaeaapeGaeyiz Imkapaqaa8qacaWGgbWaaeWaa8aabaWdbiab=ntin9aadaWgaaWcba Wdbiab=TrisbWdaeqaaOWdbmaabmaapaqaa8qacqaH8oqBpaWaaSba aSqaa8qacaWGUbaapaqabaGcpeGaaiilaiabeY7aT9aadaahaaWcbe qaa8qacqWFgls5aaaakiaawIcacaGLPaaaaiaawIcacaGLPaaacaGG Saaaaaaa@64EB@   

where

( μ n , μ ) = [ d( μ n , μ ) ] δ . [ d( μ n ,Γ μ n ) ] α . [ d( μ ,Γ μ ) ] 1αδ , [ d( μ , μ ) ] δ . [ d( μ , μ ) ] α . [ d( μ , μ ) ] 1αδ , = [ d( μ , μ ) ] ( α+δ )+( 1αδ ) , = d( μ , μ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqaemaaaa qaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaa aaaaa8qacqWFZestpaWaaSbaaSqaa8qacqWFBeIua8aabeaak8qada qadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamOBaaWdaeqaaOWd biaacYcacqaH8oqBpaWaaWbaaSqabeaapeGae8NXIuoaaaGccaGLOa Gaayzkaaaapaqaa8qacqGH9aqpa8aabaWdbmaadmaapaqaa8qacaWG KbWaaeWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gaa8aabe aak8qacaGGSaGaeqiVd02damaaCaaaleqabaWdbiab=zSiLdaaaOGa ayjkaiaawMcaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacqaH0o azaaGccaGGUaWaamWaa8aabaWdbiaadsgadaqadaWdaeaapeGaeqiV d02damaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaacYcacqqHtoWrcq aH8oqBpaWaaSbaaSqaa8qacaWGUbaapaqabaaak8qacaGLOaGaayzk aaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiabeg7aHbaakiaac6 cadaWadaWdaeaapeGaamizamaabmaapaqaa8qacqaH8oqBpaWaaWba aSqabeaapeGae8NXIuoaaOGaaiilaiabfo5ahjabeY7aT9aadaahaa Wcbeqaa8qacqWFgls5aaaakiaawIcacaGLPaaaaiaawUfacaGLDbaa paWaaWbaaSqabeaapeGaaGymaiabgkHiTiabeg7aHjabgkHiTiabes 7aKbaakiaacYcaa8aabaaabaWdbiabgsMiJcWdaeaapeWaamWaa8aa baWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaCaaaleqabaWdbi ab=zSiLdaakiaacYcacqaH8oqBpaWaaWbaaSqabeaapeGae8NXIuoa aaGccaGLOaGaayzkaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbi abes7aKbaakiaac6cadaWadaWdaeaapeGaamizamaabmaapaqaa8qa cqaH8oqBpaWaaWbaaSqabeaapeGae8NXIuoaaOGaaiilaiabeY7aT9 aadaahaaWcbeqaa8qacqWFgls5aaaakiaawIcacaGLPaaaaiaawUfa caGLDbaapaWaaWbaaSqabeaapeGaeqySdegaaOGaaiOlamaadmaapa qaa8qacaWGKbWaaeWaa8aabaWdbiabeY7aT9aadaahaaWcbeqaa8qa cqWFgls5aaGccaGGSaGaeqiVd02damaaCaaaleqabaWdbiab=zSiLd aaaOGaayjkaiaawMcaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qa caaIXaGaeyOeI0IaeqySdeMaeyOeI0IaeqiTdqgaaOGaaiilaaWdae aaaeaapeGaeyypa0dapaqaa8qadaWadaWdaeaapeGaamizamaabmaa paqaa8qacqaH8oqBpaWaaWbaaSqabeaapeGae8NXIuoaaOGaaiilai abeY7aT9aadaahaaWcbeqaa8qacqWFgls5aaaakiaawIcacaGLPaaa aiaawUfacaGLDbaapaWaaWbaaSqabeaapeWaaeWaa8aabaWdbiabeg 7aHjabgUcaRiabes7aKbGaayjkaiaawMcaaiabgUcaRmaabmaapaqa a8qacaaIXaGaeyOeI0IaeqySdeMaeyOeI0IaeqiTdqgacaGLOaGaay zkaaaaaOGaaiilaaWdaeaaaeaapeGaeyypa0dapaqaa8qacaWGKbWa aeWaa8aabaWdbiabeY7aT9aadaahaaWcbeqaa8qacqWFgls5aaGcca GGSaGaeqiVd02damaaCaaaleqabaWdbiab=zSiLdaaaOGaayjkaiaa wMcaaiaac6caaaaaaa@E8CE@   

Taking $(\ref{Eqt 3.20})$ into $(\ref{Eqt 3.19})$, we get

η+F( d( Γ μ ,Γ μ ) ) F( d( μ , μ ) ), η+F( 0 ) F( 0 ), η 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqadmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacqqHtoWrcqaH8oqBpaWaaWbaaSqabeaatu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqWFgls5 aaGccaGGSaGaeu4KdCKaeqiVd02damaaCaaaleqabaWdbiab=zSiLd aaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaWdaeaapeGaeyizImka paqaa8qacaWGgbWaaeWaa8aabaWdbiaadsgadaqadaWdaeaapeGaeq iVd02damaaCaaaleqabaWdbiab=zSiLdaakiaacYcacqaH8oqBpaWa aWbaaSqabeaapeGae8NXIuoaaaGccaGLOaGaayzkaaaacaGLOaGaay zkaaGaaiilaaWdaeaapeGaeq4TdGMaey4kaSIaamOramaabmaapaqa a8qacaaIWaaacaGLOaGaayzkaaaapaqaa8qacqGHKjYOa8aabaWdbi aadAeadaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiaacYcaa8aa baWdbiabeE7aObWdaeaapeGaeyizImkapaqaa8qacaaIWaGaaiilaa aaaaa@7683@  

which is a contradiction. Hence, d( μ ,Γ μ )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacqaH8oqBpaWaaWbaaSqabeaatuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqba8qacqWFgls5aaGcca GGSaGaeu4KdCKaeqiVd02damaaCaaaleqabaWdbiab=zSiLdaaaOGa ayjkaiaawMcaaiabg2da9iaaicdaaaa@4FDD@ therefore μ =Γ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaOGaeyypa0Jaeu4KdCKaeqiVd0 2damaaCaaaleqabaWdbiab=zSiLdaaaaa@4BD8@ , which shows that μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaaaa@450C@ is a fixed point of Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ . Also Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is subsequentially convergent on MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DE@ . To observe this, let μ= μ n k1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maeyypa0JaeqiVd02damaaBaaaleaapeGaamOBa8aadaWg aaadbaWdbiaadUgacqGHsislcaaIXaaapaqabaaaleqaaaaa@3FDC@ and ν= μ n k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4Maeyypa0JaeqiVd02damaaBaaaleaapeGaamOBa8aadaWg aaadbaWdbiaadUgaa8aabeaaaSqabaaaaa@3E36@ , using $(\ref{eqt 3.1})$ we obtain

η+F( d( Γ μ n k1 ,Γ μ n k ) ) F( ( μ n k1 , μ n k ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacqqHtoWrcqaH8oqBpaWaaSbaaSqaa8qaca WGUbWdamaaBaaameaapeGaam4AaiabgkHiTiaaigdaa8aabeaaaSqa baGcpeGaaiilaiabfo5ahjabeY7aT9aadaWgaaWcbaWdbiaad6gapa WaaSbaaWqaa8qacaWGRbaapaqabaaaleqaaaGcpeGaayjkaiaawMca aaGaayjkaiaawMcaaaWdaeaapeGaeyizImkapaqaa8qacaWGgbWaae Waa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaa peGae83mH00damaaBaaaleaapeGae83gHifapaqabaGcpeWaaeWaa8 aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gapaWaaSbaaWqaa8qa caWGRbGaeyOeI0IaaGymaaWdaeqaaaWcbeaak8qacaGGSaGaeqiVd0 2damaaBaaaleaapeGaamOBa8aadaWgaaadbaWdbiaadUgaa8aabeaa aSqabaaak8qacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiilaaaaaa a@6AD5@

where

( μ n k1 , μ n k )= [ d( μ n k1 , μ n k ) ] δ . [ d( μ n k1 ,Γ μ n k1 ) ] α . [ d( μ n k ,Γ μ n k ) ] 1αδ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest paWaaSbaaSqaa8qacqWFBeIua8aabeaak8qadaqadaWdaeaapeGaeq iVd02damaaBaaaleaapeGaamOBa8aadaWgaaadbaWdbiaadUgacqGH sislcaaIXaaapaqabaaaleqaaOWdbiaacYcacqaH8oqBpaWaaSbaaS qaa8qacaWGUbWdamaaBaaameaapeGaam4AaaWdaeqaaaWcbeaaaOWd biaawIcacaGLPaaacqGH9aqpdaWadaWdaeaapeGaamizamaabmaapa qaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbWdamaaBaaameaapeGa am4AaiabgkHiTiaaigdaa8aabeaaaSqabaGcpeGaaiilaiabeY7aT9 aadaWgaaWcbaWdbiaad6gapaWaaSbaaWqaa8qacaWGRbaapaqabaaa leqaaaGcpeGaayjkaiaawMcaaaGaay5waiaaw2faa8aadaahaaWcbe qaa8qacqaH0oazaaGccaGGUaWaamWaa8aabaWdbiaadsgadaqadaWd aeaapeGaeqiVd02damaaBaaaleaapeGaamOBa8aadaWgaaadbaWdbi aadUgacqGHsislcaaIXaaapaqabaaaleqaaOWdbiaacYcacqqHtoWr cqaH8oqBpaWaaSbaaSqaa8qacaWGUbWdamaaBaaameaapeGaam4Aai abgkHiTiaaigdaa8aabeaaaSqabaaak8qacaGLOaGaayzkaaaacaGL BbGaayzxaaWdamaaCaaaleqabaWdbiabeg7aHbaakiaac6cadaWada WdaeaapeGaamizamaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qa caWGUbWdamaaBaaameaapeGaam4AaaWdaeqaaaWcbeaak8qacaGGSa Gaeu4KdCKaeqiVd02damaaBaaaleaapeGaamOBa8aadaWgaaadbaWd biaadUgaa8aabeaaaSqabaaak8qacaGLOaGaayzkaaaacaGLBbGaay zxaaWdamaaCaaaleqabaWdbiaaigdacqGHsislcqaHXoqycqGHsisl cqaH0oazaaGcpaGaaiilaaaa@8F8B@   

[ d( μ n k1 , μ n k ) ] δ . [ d( μ n k1 , μ n k ) ] α . [ d( μ n k , μ n k+1 ) ] 1αδ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyizIm6aamWaa8aabaWdbiaadsgadaqadaWdaeaapeGaeqiVd02d amaaBaaaleaapeGaamOBa8aadaWgaaadbaWdbiaadUgacqGHsislca aIXaaapaqabaaaleqaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8qa caWGUbWdamaaBaaameaapeGaam4AaaWdaeqaaaWcbeaaaOWdbiaawI cacaGLPaaaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaeqiTdqga aOGaaiOlamaadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabeY7aT9 aadaWgaaWcbaWdbiaad6gapaWaaSbaaWqaa8qacaWGRbGaeyOeI0Ia aGymaaWdaeqaaaWcbeaak8qacaGGSaGaeqiVd02damaaBaaaleaape GaamOBa8aadaWgaaadbaWdbiaadUgaa8aabeaaaSqabaaak8qacaGL OaGaayzkaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiabeg7aHb aakiaac6cadaWadaWdaeaapeGaamizamaabmaapaqaa8qacqaH8oqB paWaaSbaaSqaa8qacaWGUbWdamaaBaaameaapeGaam4AaaWdaeqaaa Wcbeaak8qacaGGSaGaeqiVd02damaaBaaaleaapeGaamOBa8aadaWg aaadbaWdbiaadUgacqGHRaWkcaaIXaaapaqabaaaleqaaaGcpeGaay jkaiaawMcaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacaaIXaGa eyOeI0IaeqySdeMaeyOeI0IaeqiTdqgaaOWdaiaacYcaaaa@7460@   

=                             [ d( μ n k1 , μ n k ) ] α+δ . [ d( μ n k , μ n k+1 ) ] 1αδ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOamaadmaapaqaa8qacaWGKb WaaeWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaad6gapaWaaSba aWqaa8qacaWGRbGaeyOeI0IaaGymaaWdaeqaaaWcbeaak8qacaGGSa GaeqiVd02damaaBaaaleaapeGaamOBa8aadaWgaaadbaWdbiaadUga a8aabeaaaSqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaWdam aaCaaaleqabaWdbiabeg7aHjabgUcaRiabes7aKbaakiaac6cadaWa daWdaeaapeGaamizamaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8 qacaWGUbWdamaaBaaameaapeGaam4AaaWdaeqaaaWcbeaak8qacaGG SaGaeqiVd02damaaBaaaleaapeGaamOBa8aadaWgaaadbaWdbiaadU gacqGHRaWkcaaIXaaapaqabaaaleqaaaGcpeGaayjkaiaawMcaaaGa ay5waiaaw2faa8aadaahaaWcbeqaa8qacaaIXaGaeyOeI0IaeqySde MaeyOeI0IaeqiTdqgaaOWdaiaac6caaaa@83BB@   

Using $(\ref{Eqt 3.22})$ in $(\ref{Eqt 3.21})$, we get

η+F( d( Γ μ n k1 ,Γ μ n k ) ) F( [ d( μ n k1 , μ n k ) ] α+δ . [ d( μ n k , μ n k+1 ) ] 1αδ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacqqHtoWrcqaH8oqBpaWaaSbaaSqaa8qaca WGUbWdamaaBaaameaapeGaam4AaiabgkHiTiaaigdaa8aabeaaaSqa baGcpeGaaiilaiabfo5ahjabeY7aT9aadaWgaaWcbaWdbiaad6gapa WaaSbaaWqaa8qacaWGRbaapaqabaaaleqaaaGcpeGaayjkaiaawMca aaGaayjkaiaawMcaaaWdaeaapeGaeyizImkapaqaa8qacaWGgbWaae Waa8aabaWdbmaadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabeY7a T9aadaWgaaWcbaWdbiaad6gapaWaaSbaaWqaa8qacaWGRbGaeyOeI0 IaaGymaaWdaeqaaaWcbeaak8qacaGGSaGaeqiVd02damaaBaaaleaa peGaamOBa8aadaWgaaadbaWdbiaadUgaa8aabeaaaSqabaaak8qaca GLOaGaayzkaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiabeg7a HjabgUcaRiabes7aKbaakiaac6cadaWadaWdaeaapeGaamizamaabm aapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbWdamaaBaaameaa peGaam4AaaWdaeqaaaWcbeaak8qacaGGSaGaeqiVd02damaaBaaale aapeGaamOBa8aadaWgaaadbaWdbiaadUgacqGHRaWkcaaIXaaapaqa baaaleqaaaGcpeGaayjkaiaawMcaaaGaay5waiaaw2faa8aadaahaa Wcbeqaa8qacaaIXaGaeyOeI0IaeqySdeMaeyOeI0IaeqiTdqgaaaGc caGLOaGaayzkaaGaaiOlaaaaaaa@7CAE@   

By the property of F and F1 with $(\ref{Eqt 3.23})$, we get

d( Γ μ n k1 ,Γ μ n k ) [ d( μ n k1 , μ n k ) ] α+δ . [ d( μ n k , μ n k+1 ) ] 1αδ , ( d( μ n k , μ n k+1 ) ) 1( 1αδ ) [ d( μ n k1 , μ n k ) ] α+δ , ( d( μ n k , μ n k+1 ) ) α+δ [ d( μ n k1 , μ n k ) ] α+δ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqadmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeu4KdCKaeqiVd02d amaaBaaaleaapeGaamOBa8aadaWgaaadbaWdbiaadUgacqGHsislca aIXaaapaqabaaaleqaaOWdbiaacYcacqqHtoWrcqaH8oqBpaWaaSba aSqaa8qacaWGUbWdamaaBaaameaapeGaam4AaaWdaeqaaaWcbeaaaO WdbiaawIcacaGLPaaaa8aabaWdbiabgsMiJcWdaeaapeWaamWaa8aa baWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaam OBa8aadaWgaaadbaWdbiaadUgacqGHsislcaaIXaaapaqabaaaleqa aOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbWdamaaBaaame aapeGaam4AaaWdaeqaaaWcbeaaaOWdbiaawIcacaGLPaaaaiaawUfa caGLDbaapaWaaWbaaSqabeaapeGaeqySdeMaey4kaSIaeqiTdqgaaO GaaiOlamaadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabeY7aT9aa daWgaaWcbaWdbiaad6gapaWaaSbaaWqaa8qacaWGRbaapaqabaaale qaaOWdbiaacYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbWdamaaBaaa meaapeGaam4AaiabgUcaRiaaigdaa8aabeaaaSqabaaak8qacaGLOa GaayzkaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiaaigdacqGH sislcqaHXoqycqGHsislcqaH0oazaaGccaGGSaaapaqaa8qadaqada WdaeaapeGaamizamaabmaapaqaa8qacqaH8oqBpaWaaSbaaSqaa8qa caWGUbWdamaaBaaameaapeGaam4AaaWdaeqaaaWcbeaak8qacaGGSa GaeqiVd02damaaBaaaleaapeGaamOBa8aadaWgaaadbaWdbiaadUga cqGHRaWkcaaIXaaapaqabaaaleqaaaGcpeGaayjkaiaawMcaaaGaay jkaiaawMcaa8aadaahaaWcbeqaa8qacaaIXaGaeyOeI0YaaeWaa8aa baWdbiaaigdacqGHsislcqaHXoqycqGHsislcqaH0oazaiaawIcaca GLPaaaaaaak8aabaWdbiabgsMiJcWdaeaapeWaamWaa8aabaWdbiaa dsgadaqadaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamOBa8aada WgaaadbaWdbiaadUgacqGHsislcaaIXaaapaqabaaaleqaaOWdbiaa cYcacqaH8oqBpaWaaSbaaSqaa8qacaWGUbWdamaaBaaameaapeGaam 4AaaWdaeqaaaWcbeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaa paWaaWbaaSqabeaapeGaeqySdeMaey4kaSIaeqiTdqgaaOGaaiilaa WdaeaapeWaaeWaa8aabaWdbiaadsgadaqadaWdaeaapeGaeqiVd02d amaaBaaaleaapeGaamOBa8aadaWgaaadbaWdbiaadUgaa8aabeaaaS qabaGcpeGaaiilaiabeY7aT9aadaWgaaWcbaWdbiaad6gapaWaaSba aWqaa8qacaWGRbGaey4kaSIaaGymaaWdaeqaaaWcbeaaaOWdbiaawI cacaGLPaaaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeqySdeMa ey4kaSIaeqiTdqgaaaGcpaqaa8qacqGHKjYOa8aabaWdbmaadmaapa qaa8qacaWGKbWaaeWaa8aabaWdbiabeY7aT9aadaWgaaWcbaWdbiaa d6gapaWaaSbaaWqaa8qacaWGRbGaeyOeI0IaaGymaaWdaeqaaaWcbe aak8qacaGGSaGaeqiVd02damaaBaaaleaapeGaamOBa8aadaWgaaad baWdbiaadUgaa8aabeaaaSqabaaak8qacaGLOaGaayzkaaaacaGLBb GaayzxaaWdamaaCaaaleqabaWdbiabeg7aHjabgUcaRiabes7aKbaa kiaacYcaaaaaaa@CFD7@

which is equivalent to

F( d( μ n k , μ n k+1 ) ) F( d( μ n k1 , μ n k ) )η. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadAeadaqadaWdaeaapeGaamizamaabmaapaqa a8qacqaH8oqBpaWaaSbaaSqaa8qacaWGUbWdamaaBaaameaapeGaam 4AaaWdaeqaaaWcbeaak8qacaGGSaGaeqiVd02damaaBaaaleaapeGa amOBa8aadaWgaaadbaWdbiaadUgacqGHRaWkcaaIXaaapaqabaaale qaaaGcpeGaayjkaiaawMcaaaGaayjkaiaawMcaaaWdaeaapeGaeyiz Imkapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadsgadaqadaWdaeaape GaeqiVd02damaaBaaaleaapeGaamOBa8aadaWgaaadbaWdbiaadUga cqGHsislcaaIXaaapaqabaaaleqaaOWdbiaacYcacqaH8oqBpaWaaS baaSqaa8qacaWGUbWdamaaBaaameaapeGaam4AaaWdaeqaaaWcbeaa aOWdbiaawIcacaGLPaaaaiaawIcacaGLPaaacqGHsislcqaH3oaAca GGUaaaaaaa@5CB9@   

Due to continuity of Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ , it implies that

lim n Γ μ n k = Γ μ = μ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aadaWfqaqaaabaaaaaaaaapeGaaeiBaiaabMgacaqGTbaal8aabaWd biaad6gacqGHsgIRcqaHEisPa8aabeaak8qacqqHtoWrcqaH8oqBpa WaaSbaaSqaa8qacaWGUbWdamaaBaaameaapeGaam4AaaWdaeqaaaWc beaaaOqaa8qacqGH9aqpa8aabaWdbiabfo5ahjabeY7aT9aadaahaa Wcbeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaWd biab=zSiLdaakiabg2da9iabeY7aT9aadaahaaWcbeqaa8qacqWFgl s5aaGccaGGUaaaaaaa@5B30@   

This shows that Γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3897@ is subsequentially convergent.

Consider the hypothesis in Theorem 6, we prove assertion ( vii ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaamODaiaadMgacaWGPbaacaGLOaGaayzkaaaa aa@3A96@  as follows: we observe that ( Γ, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest daqadaWdaeaapeGaeu4KdCKaaiilaiab=TrisbGaayjkaiaawMcaaa aa@46B2@ is non-empty, so let us take a pair of elements say ( μ , w ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeY7aT9aadaahaaWcbeqaamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=zSiLdaakiaacYcaca WG3bWdamaaCaaaleqabaWdbiab=zSiLdaaaOGaayjkaiaawMcaaaaa @4B13@ in ( Γ, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest daqadaWdaeaapeGaeu4KdCKaaiilaiab=TrisbGaayjkaiaawMcaaa aa@46B2@ such that

Γμ= μ , Γν= w . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqaceaaae aaqaaaaaaaaaWdbiabfo5ahjabeY7aTjabg2da9iabeY7aT9aadaah aaWcbeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfa Wdbiab=zSiLdaakiaacYcaa8aabaWdbiabfo5ahjabe27aUjabg2da 9iaadEhapaWaaWbaaSqabeaapeGae8NXIuoaaOGaaiOlaaaaaaa@5294@   

Next, we claim that μ w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaOGaeyiyIKRaam4Da8aadaahaa Wcbeqaa8qacqWFgls5aaaaaa@4A78@ . By the above equalities, there exists a S-path (say, z 0 , z 1 , z 2 ,..., z l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaamOE a8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamOEa8aada WgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaaiOlaiaac6cacaGG UaGaaiilaiaadQhapaWaaSbaaSqaa8qacaWGSbaapaqabaGcpeGaai ykaaaa@45A0@ of length in s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu paWaaWbaaSqabeaapeGaam4Caaaaaaa@4310@ from Γμ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaeqiVd0gaaa@3A4D@ to Γν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaeqyVd4gaaa@3A4F@ , with

Γ z 0 =Γμ, Γ z l =Γν, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqaceaaae aaqaaaaaaaaaWdbiabfo5ahjaadQhapaWaaSbaaSqaa8qacaaIWaaa paqabaGcpeGaeyypa0Jaeu4KdCKaeqiVd0MaaiilaaWdaeaapeGaeu 4KdCKaamOEa8aadaWgaaWcbaWdbiaadYgaa8aabeaak8qacqGH9aqp cqqHtoWrcqaH9oGBcaGGSaaaaaaa@4867@   

such that

[ Γ z i ,Γ z i+1 ] s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiabfo5ahjaadQhapaWaaSbaaSqaa8qacaWGPbaa paqabaGcpeGaaiilaiabfo5ahjaadQhapaWaaSbaaSqaa8qacaWGPb Gaey4kaSIaaGymaaWdaeqaaaGcpeGaay5waiaaw2faaiabgIGioprr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae83gHi1dam aaCaaaleqabaWdbiaadohaaaGccqGHgksZcqWFBeIucaGGSaaaaa@5452@   

for all i0,1,2,3,...l1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgIGiolaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiil aiaaiodacaGGSaGaaiOlaiaac6cacaGGUaGaamiBaiabgkHiTiaaig daaaa@43FE@ .

Define two constant sequences such that

z n 0 =μ  and   z n l =ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaaicdaaaGccqGH 9aqpcqaH8oqBcaGGGcGaaiiOaiaadggacaWGUbGaamizaiaacckaca GGGcGaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadYgaaaGc cqGH9aqpcqaH9oGBaaa@4A74@   

By using ([equation 4.20]), for all n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xfH4eaaa@4452@ , we have

Γ z n 0 = Γμ= μ , Γ z n l = Γν= w . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqacmaaae aaqaaaaaaaaaWdbiabfo5ahjaadQhapaWaa0baaSqaa8qacaWGUbaa paqaa8qacaaIWaaaaaGcpaqaa8qacqGH9aqpa8aabaWdbiabfo5ahj abeY7aTjabg2da9iabeY7aT9aadaahaaWcbeqaamrr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=zSiLdaakiaacYcaa8 aabaWdbiabfo5ahjaadQhapaWaa0baaSqaa8qacaWGUbaapaqaa8qa caWGSbaaaaGcpaqaa8qacqGH9aqpa8aabaWdbiabfo5ahjabe27aUj abg2da9iaadEhapaWaaWbaaSqabeaapeGae8NXIuoaaOGaaiOlaaaa aaa@5E6B@   

By usual substitution for z 0 i = z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaadMgaaaGccqGH 9aqpcaWG6bWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa@3D98@ for each i0,1,2,...l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgIGiolaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiil aiaac6cacaGGUaGaaiOlaiaadYgaaaa@40E9@ , that is

z 0 1 = z 1 , z 0 2 = z 2 , z 0 3 = z 3 , z 0 4 = z 4 , z 0 l1 = z l1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqafmaaaa qaaabaaaaaaaaapeGaamOEa8aadaqhaaWcbaWdbiaaicdaa8aabaWd biaaigdaaaaak8aabaWdbiabg2da9aWdaeaapeGaamOEa8aadaWgaa WcbaWdbiaaigdaa8aabeaak8qacaGGSaaapaqaa8qacaWG6bWdamaa DaaaleaapeGaaGimaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaeyypa0 dapaqaa8qacaWG6bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaa cYcaa8aabaWdbiaadQhapaWaa0baaSqaa8qacaaIWaaapaqaa8qaca aIZaaaaaGcpaqaa8qacqGH9aqpa8aabaWdbiaadQhapaWaaSbaaSqa a8qacaaIZaaapaqabaGcpeGaaiilaaWdaeaapeGaamOEa8aadaqhaa WcbaWdbiaaicdaa8aabaWdbiaaisdaaaaak8aabaWdbiabg2da9aWd aeaapeGaamOEa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qacaGGSa aapaqaa8qacaWG6bWdamaaDaaaleaapeGaaGimaaWdaeaapeGaamiB aiabgkHiTiaaigdaaaaak8aabaWdbiabg2da9aWdaeaapeGaamOEa8 aadaWgaaWcbaWdbiaadYgacqGHsislcaaIXaaapaqabaGcpeGaaiOl aaaaaaa@5ECC@   

Thus we construct a sequence

{ z n 1 },{ z n 2 },{ z n 3 },,{ z n i }. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaiWaa8aabaWdbiaadQhapaWaa0baaSqaa8qacaWGUbaapaqaa8qa caaIXaaaaaGccaGL7bGaayzFaaGaaiilamaacmaapaqaa8qacaWG6b WdamaaDaaaleaapeGaamOBaaWdaeaapeGaaGOmaaaaaOGaay5Eaiaa w2haaiaacYcadaGadaWdaeaapeGaamOEa8aadaqhaaWcbaWdbiaad6 gaa8aabaWdbiaaiodaaaaakiaawUhacaGL9baacaGGSaGaeyOjGWRa aiilamaacmaapaqaa8qacaWG6bWdamaaDaaaleaapeGaamOBaaWdae aapeGaamyAaaaaaOGaay5Eaiaaw2haaiabgIGioprr1ngBPrwtHrhA XaqeguuDJXwAKbstHrhAG8KBLbacfaGae83mH0KaaiOlaaaa@5E61@   

Corresponding to each z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEa8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@3976@ , we have [ Γ z 0 i ,Γ z 1 i ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiabfo5ahjaadQhapaWaa0baaSqaa8qacaaIWaaa paqaa8qacaWGPbaaaOGaaiilaiabfo5ahjaadQhapaWaa0baaSqaa8 qacaaIXaaapaqaa8qacaWGPbaaaaGccaGLBbGaayzxaaGaeyicI48e fv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaacqWFBeIuaa a@4F1A@ from ([equation 4.20]), ([equation 4.21]) and MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CC@ is Γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3897@ -closed, we get

lim n d( Γ z n i ,Γ z n i+1 ) = 0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aadaWfqaqaaabaaaaaaaaapeGaaeiBaiaabMgacaqGTbaal8aabaWd biaad6gacqGHsgIRcqaHEisPa8aabeaak8qacaWGKbWaaeWaa8aaba Wdbiabfo5ahjaadQhapaWaa0baaSqaa8qacaWGUbaapaqaa8qacaWG PbaaaOGaaiilaiabfo5ahjaadQhapaWaa0baaSqaa8qacaWGUbaapa qaa8qacaWGPbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaaWdaeaa peGaeyypa0dapaqaa8qacaaIWaGaaiilaaaaaaa@4FE0@   

for each i1,2,3,...l1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgIGiolaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiil aiaac6cacaGGUaGaaiOlaiaadYgacqGHsislcaaIXaaaaa@4294@ and for all n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xfH4eaaa@4452@ .

Define d n i =d( Γ z n i ,Γ z n i+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgaaaGccqGH 9aqpcaWGKbWaaeWaa8aabaWdbiabfo5ahjaadQhapaWaa0baaSqaa8 qacaWGUbaapaqaa8qacaWGPbaaaOGaaiilaiabfo5ahjaadQhapaWa a0baaSqaa8qacaWGUbaapaqaa8qacaWGPbGaey4kaSIaaGymaaaaaO GaayjkaiaawMcaaaaa@49CC@  for each i0,1,2,3,...l1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgIGiolaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiil aiaaiodacaGGSaGaaiOlaiaac6cacaGGUaGaamiBaiabgkHiTiaaig daaaa@43FE@ and for all n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D VbacfaGae8xfH4eaaa@4452@ . We assert that, lim n d n i >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamOBaiabgkziUkab e6HiLcWdaeqaaOWdbiaadsgapaWaa0baaSqaa8qacaWGUbaapaqaa8 qacaWGPbaaaOGaeyOpa4JaaGimaaaa@43BE@ .

Since [ Γ z n i ,Γ z n i+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiabfo5ahjaadQhapaWaa0baaSqaa8qacaWGUbaa paqaa8qacaWGPbaaaOGaaiilaiabfo5ahjaadQhapaWaa0baaSqaa8 qacaWGUbaapaqaa8qacaWGPbGaey4kaSIaaGymaaaaaOGaay5waiaa w2faaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfaGae83gHifaaa@5128@ , either [ Γ z n i ,Γ z n i+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiabfo5ahjaadQhapaWaa0baaSqaa8qacaWGUbaa paqaa8qacaWGPbaaaOGaaiilaiabfo5ahjaadQhapaWaa0baaSqaa8 qacaWGUbaapaqaa8qacaWGPbGaey4kaSIaaGymaaaaaOGaay5waiaa w2faaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfaGae83gHifaaa@5128@ or [ Γ z n i+1 ,Γ z n i ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiabfo5ahjaadQhapaWaa0baaSqaa8qacaWGUbaa paqaa8qacaWGPbGaey4kaSIaaGymaaaakiaacYcacqqHtoWrcaWG6b WdamaaDaaaleaapeGaamOBaaWdaeaapeGaamyAaaaaaOGaay5waiaa w2faaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfaGae83gHifaaa@5128@ .

If [ Γ z n i ,Γ z n i+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiabfo5ahjaadQhapaWaa0baaSqaa8qacaWGUbaa paqaa8qacaWGPbaaaOGaaiilaiabfo5ahjaadQhapaWaa0baaSqaa8 qacaWGUbaapaqaa8qacaWGPbGaey4kaSIaaGymaaaaaOGaay5waiaa w2faaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfaGae83gHifaaa@5128@ , for μ= z n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maeyypa0JaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWd biaadMgaaaaaaa@3D36@ and ν= z n i+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4Maeyypa0JaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWd biaadMgacqGHRaWkcaaIXaaaaaaa@3ED5@ . Then applying the condition $(\ref{eqt 3.1})$, we have

η+F( d( Γ z n i ,Γ z n i+1 ) ) F( ( z n i , z n i+1 ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacqqHtoWrcaWG6bWdamaaDaaaleaapeGaam OBaaWdaeaapeGaamyAaaaakiaacYcacqqHtoWrcaWG6bWdamaaDaaa leaapeGaamOBaaWdaeaapeGaamyAaiabgUcaRiaaigdaaaaakiaawI cacaGLPaaaaiaawIcacaGLPaaaa8aabaWdbiabgsMiJcWdaeaapeGa amOramaabmaapaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbacfaWdbiab=ntin9aadaWgaaWcbaWdbiab=TrisbWdaeqaaOWd bmaabmaapaqaa8qacaWG6bWdamaaDaaaleaapeGaamOBaaWdaeaape GaamyAaaaakiaacYcacaWG6bWdamaaDaaaleaapeGaamOBaaWdaeaa peGaamyAaiabgUcaRiaaigdaaaaakiaawIcacaGLPaaaaiaawIcaca GLPaaacaGGSaaaaaaa@6684@   

where

( z n i , z n i+1 )     =      [ d( z n i , z n i+1 ) ] δ . [ d( z n i ,Γ z n i ) ] α . [ d( z n i+1 ,Γ z n i+1 ) ] 1αδ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest paWaaSbaaSqaa8qacqWFBeIua8aabeaak8qadaqadaWdaeaapeGaam OEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgaaaGccaGGSaGa amOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgacqGHRaWkca aIXaaaaaGccaGLOaGaayzkaaGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacqGH9aqpcaGGGcGaaiiOaiaacckacaGGGcGaaiiOamaadmaapa qaa8qacaWGKbWaaeWaa8aabaWdbiaadQhapaWaa0baaSqaa8qacaWG Ubaapaqaa8qacaWGPbaaaOGaaiilaiaadQhapaWaa0baaSqaa8qaca WGUbaapaqaa8qacaWGPbGaey4kaSIaaGymaaaaaOGaayjkaiaawMca aaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacqaH0oazaaGccaGGUa WaamWaa8aabaWdbiaadsgadaqadaWdaeaapeGaamOEa8aadaqhaaWc baWdbiaad6gaa8aabaWdbiaadMgaaaGccaGGSaGaeu4KdCKaamOEa8 aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgaaaaakiaawIcacaGL PaaaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaeqySdegaaOGaai Olamaadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiaadQhapaWaa0ba aSqaa8qacaWGUbaapaqaa8qacaWGPbGaey4kaSIaaGymaaaakiaacY cacqqHtoWrcaWG6bWdamaaDaaaleaapeGaamOBaaWdaeaapeGaamyA aiabgUcaRiaaigdaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaapa WaaWbaaSqabeaapeGaaGymaiabgkHiTiabeg7aHjabgkHiTiabes7a Kbaak8aacaGGSaaaaa@9250@   

      [ d( z n i , z n i+1 ) ] δ . [ d( z n i , z n i+1 ) ] α . [ d( z n i+1 , z n i+2 ) ] 1αδ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyizImQaaiiOaiaacckacaGGGcGaaiiOaiaacckadaWadaWdaeaa peGaamizamaabmaapaqaa8qacaWG6bWdamaaDaaaleaapeGaamOBaa WdaeaapeGaamyAaaaakiaacYcacaWG6bWdamaaDaaaleaapeGaamOB aaWdaeaapeGaamyAaiabgUcaRiaaigdaaaaakiaawIcacaGLPaaaai aawUfacaGLDbaapaWaaWbaaSqabeaapeGaeqiTdqgaaOGaaiOlamaa dmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiaadQhapaWaa0baaSqaa8 qacaWGUbaapaqaa8qacaWGPbaaaOGaaiilaiaadQhapaWaa0baaSqa a8qacaWGUbaapaqaa8qacaWGPbGaey4kaSIaaGymaaaaaOGaayjkai aawMcaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacqaHXoqyaaGc caGGUaWaamWaa8aabaWdbiaadsgadaqadaWdaeaapeGaamOEa8aada qhaaWcbaWdbiaad6gaa8aabaWdbiaadMgacqGHRaWkcaaIXaaaaOGa aiilaiaadQhapaWaa0baaSqaa8qacaWGUbaapaqaa8qacaWGPbGaey 4kaSIaaGOmaaaaaOGaayjkaiaawMcaaaGaay5waiaaw2faa8aadaah aaWcbeqaa8qacaaIXaGaeyOeI0IaeqySdeMaeyOeI0IaeqiTdqgaaO WdaiaacYcaaaa@7543@   

=                  [ d( z n i , z n i+1 ) ] α+δ . [ d( z n i+1 , z n i+2 ) ] 1αδ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckadaWadaWdaeaapeGaamizamaabmaapaqaa8qacaWG 6bWdamaaDaaaleaapeGaamOBaaWdaeaapeGaamyAaaaakiaacYcaca WG6bWdamaaDaaaleaapeGaamOBaaWdaeaapeGaamyAaiabgUcaRiaa igdaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWbaaSqabe aapeGaeqySdeMaey4kaSIaeqiTdqgaaOGaaiOlamaadmaapaqaa8qa caWGKbWaaeWaa8aabaWdbiaadQhapaWaa0baaSqaa8qacaWGUbaapa qaa8qacaWGPbGaey4kaSIaaGymaaaakiaacYcacaWG6bWdamaaDaaa leaapeGaamOBaaWdaeaapeGaamyAaiabgUcaRiaaikdaaaaakiaawI cacaGLPaaaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaaGymaiab gkHiTiabeg7aHjabgkHiTiabes7aKbaak8aacaGGUaaaaa@7487@   

Substituting $(\ref{Eqt 3.30})$ in $(\ref{Eqt 3.29})$, we get

η+F( d( z n i+1 , z n i+2 ) ) F( [ d( z n i , z n i+1 ) ] α+δ . [ d( z n i+1 , z n i+2 ) ] 1αδ ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacaWG6bWdamaaDaaaleaapeGaamOBaaWdae aapeGaamyAaiabgUcaRiaaigdaaaGccaGGSaGaamOEa8aadaqhaaWc baWdbiaad6gaa8aabaWdbiaadMgacqGHRaWkcaaIYaaaaaGccaGLOa GaayzkaaaacaGLOaGaayzkaaaapaqaa8qacqGHKjYOa8aabaWdbiaa dAeadaqadaWdaeaapeWaamWaa8aabaWdbiaadsgadaqadaWdaeaape GaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgaaaGccaGG SaGaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgacqGHRa WkcaaIXaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaWdamaaCaaa leqabaWdbiabeg7aHjabgUcaRiabes7aKbaakiaac6cadaWadaWdae aapeGaamizamaabmaapaqaa8qacaWG6bWdamaaDaaaleaapeGaamOB aaWdaeaapeGaamyAaiabgUcaRiaaigdaaaGccaGGSaGaamOEa8aada qhaaWcbaWdbiaad6gaa8aabaWdbiaadMgacqGHRaWkcaaIYaaaaaGc caGLOaGaayzkaaaacaGLBbGaayzxaaWdamaaCaaaleqabaWdbiaaig dacqGHsislcqaHXoqycqGHsislcqaH0oazaaaakiaawIcacaGLPaaa caGGUaaaaaaa@76AB@   

By the property of F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@37FA@ , we have

d( z n i+1 , z n i+2 ) [ d( z n i , z n i+1 ) ] α+δ . [ d( z n i+1 , z n i+2 ) ] 1αδ , d ( z n i+1 , z n i+2 ) 1( 1αδ ) [ d( z n i , z n i+1 ) ] α+δ , d ( z n i+1 , z n i+2 ) α+δ [ d( z n i , z n i+1 ) ] α+δ , d( z n i+1 , z n i+2 ) d( z n i , z n i+1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqaemaaaa qaaabaaaaaaaaapeGaamizamaabmaapaqaa8qacaWG6bWdamaaDaaa leaapeGaamOBaaWdaeaapeGaamyAaiabgUcaRiaaigdaaaGccaGGSa GaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgacqGHRaWk caaIYaaaaaGccaGLOaGaayzkaaaapaqaa8qacqGHKjYOa8aabaWdbm aadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiaadQhapaWaa0baaSqa a8qacaWGUbaapaqaa8qacaWGPbaaaOGaaiilaiaadQhapaWaa0baaS qaa8qacaWGUbaapaqaa8qacaWGPbGaey4kaSIaaGymaaaaaOGaayjk aiaawMcaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacqaHXoqycq GHRaWkcqaH0oazaaGccaGGUaWaamWaa8aabaWdbiaadsgadaqadaWd aeaapeGaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgacq GHRaWkcaaIXaaaaOGaaiilaiaadQhapaWaa0baaSqaa8qacaWGUbaa paqaa8qacaWGPbGaey4kaSIaaGOmaaaaaOGaayjkaiaawMcaaaGaay 5waiaaw2faa8aadaahaaWcbeqaa8qacaaIXaGaeyOeI0IaeqySdeMa eyOeI0IaeqiTdqgaaOGaaiilaaWdaeaapeGaamizamaabmaapaqaa8 qacaWG6bWdamaaDaaaleaapeGaamOBaaWdaeaapeGaamyAaiabgUca RiaaigdaaaGccaGGSaGaamOEa8aadaqhaaWcbaWdbiaad6gaa8aaba WdbiaadMgacqGHRaWkcaaIYaaaaaGccaGLOaGaayzkaaWdamaaCaaa leqabaWdbiaaigdacqGHsisldaqadaWdaeaapeGaaGymaiabgkHiTi abeg7aHjabgkHiTiabes7aKbGaayjkaiaawMcaaaaaaOWdaeaapeGa eyizImkapaqaa8qadaWadaWdaeaapeGaamizamaabmaapaqaa8qaca WG6bWdamaaDaaaleaapeGaamOBaaWdaeaapeGaamyAaaaakiaacYca caWG6bWdamaaDaaaleaapeGaamOBaaWdaeaapeGaamyAaiabgUcaRi aaigdaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWbaaSqa beaapeGaeqySdeMaey4kaSIaeqiTdqgaaOGaaiilaaWdaeaapeGaam izamaabmaapaqaa8qacaWG6bWdamaaDaaaleaapeGaamOBaaWdaeaa peGaamyAaiabgUcaRiaaigdaaaGccaGGSaGaamOEa8aadaqhaaWcba Wdbiaad6gaa8aabaWdbiaadMgacqGHRaWkcaaIYaaaaaGccaGLOaGa ayzkaaWdamaaCaaaleqabaWdbiabeg7aHjabgUcaRiabes7aKbaaaO WdaeaapeGaeyizImkapaqaa8qadaWadaWdaeaapeGaamizamaabmaa paqaa8qacaWG6bWdamaaDaaaleaapeGaamOBaaWdaeaapeGaamyAaa aakiaacYcacaWG6bWdamaaDaaaleaapeGaamOBaaWdaeaapeGaamyA aiabgUcaRiaaigdaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaapa WaaWbaaSqabeaapeGaeqySdeMaey4kaSIaeqiTdqgaaOGaaiilaaWd aeaapeGaamizamaabmaapaqaa8qacaWG6bWdamaaDaaaleaapeGaam OBaaWdaeaapeGaamyAaiabgUcaRiaaigdaaaGccaGGSaGaamOEa8aa daqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgacqGHRaWkcaaIYaaaaa GccaGLOaGaayzkaaaapaqaa8qacqGHKjYOa8aabaWdbiaadsgadaqa daWdaeaapeGaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadM gaaaGccaGGSaGaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaa dMgacqGHRaWkcaaIXaaaaaGccaGLOaGaayzkaaGaaiOlaaaaaaa@DCA8@   

Which is equivalent to

η+F( d( z n i+1 , z n i+2 ) ) F( d( z n i , z n i+1 ) ), F( d( z n i+1 , z n i+2 ) ) F( d( z n i , z n i+1 ) )η. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqacmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacaWG6bWdamaaDaaaleaapeGaamOBaaWdae aapeGaamyAaiabgUcaRiaaigdaaaGccaGGSaGaamOEa8aadaqhaaWc baWdbiaad6gaa8aabaWdbiaadMgacqGHRaWkcaaIYaaaaaGccaGLOa GaayzkaaaacaGLOaGaayzkaaaapaqaa8qacqGHKjYOa8aabaWdbiaa dAeadaqadaWdaeaapeGaamizamaabmaapaqaa8qacaWG6bWdamaaDa aaleaapeGaamOBaaWdaeaapeGaamyAaaaakiaacYcacaWG6bWdamaa DaaaleaapeGaamOBaaWdaeaapeGaamyAaiabgUcaRiaaigdaaaaaki aawIcacaGLPaaaaiaawIcacaGLPaaacaGGSaaapaqaa8qacaWGgbWa aeWaa8aabaWdbiaadsgadaqadaWdaeaapeGaamOEa8aadaqhaaWcba Wdbiaad6gaa8aabaWdbiaadMgacqGHRaWkcaaIXaaaaOGaaiilaiaa dQhapaWaa0baaSqaa8qacaWGUbaapaqaa8qacaWGPbGaey4kaSIaaG OmaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaWdaeaapeGaeyiz Imkapaqaa8qacaWGgbWaaeWaa8aabaWdbiaadsgadaqadaWdaeaape GaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgaaaGccaGG SaGaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgacqGHRa WkcaaIXaaaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyOeI0Ia eq4TdGMaaiOlaaaaaaa@7CF9@   

Taking lim as i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgkziUkabe6HiLcaa@3B79@ and using lim i d n i =d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamyAaiabgkziUkab e6HiLcWdaeqaaOWdbiaadsgapaWaa0baaSqaa8qacaWGUbaapaqaa8 qacaWGPbaaaOGaeyypa0Jaamizaaaa@43E6@ , we get

d( Γ z n i ,Γ z n i+1 ) 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeu4KdCKaamOEa8aa daqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgaaaGccaGGSaGaeu4KdC KaamOEa8aadaqhaaWcbaWdbiaad6gaa8aabaWdbiaadMgacqGHRaWk caaIXaaaaaGccaGLOaGaayzkaaaapaqaa8qacqGHKjYOa8aabaWdbi aaicdacaGGUaaaaaaa@48F6@   

Implies that

η 0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aObWdaeaapeGaeyizImkapaqaa8qacaaI WaGaaiilaaaaaaa@3C48@   

which is a contradiction and hence

lim i d n i =d=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaaeaa aaaaaaa8qacaqGSbGaaeyAaiaab2gaaSWdaeaapeGaamyAaiabgkzi Ukabe6HiLcWdaeqaaOWdbiaadsgapaWaa0baaSqaa8qacaWGUbaapa qaa8qacaWGPbaaaOGaeyypa0Jaamizaiabg2da9iaaicdaaaa@45B3@   

The same for rectangular property (iii), if ( Γ z n i ,Γ z n i+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabfo5ahjaadQhapaWaa0baaSqaa8qacaWGUbaa paqaa8qacaWGPbaaaOGaaiilaiabfo5ahjaadQhapaWaa0baaSqaa8 qacaWGUbaapaqaa8qacaWGPbGaey4kaSIaaGymaaaaaOGaayjkaiaa wMcaaiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acfaGae83gHifaaa@50BF@ , we have

lim i d n i = lim i d( Γ z n i ,Γ z n i+1 )=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaaeaa aaaaaaa8qacaqGSbGaaeyAaiaab2gaaSWdaeaapeGaamyAaiabgkzi Ukabe6HiLcWdaeqaaOWdbiaadsgapaWaa0baaSqaa8qacaWGUbaapa qaa8qacaWGPbaaaOGaeyypa0ZdamaaxababaWdbiaabYgacaqGPbGa aeyBaaWcpaqaa8qacaWGPbGaeyOKH4QaeqOhIukapaqabaGcpeGaam izamaabmaapaqaa8qacqqHtoWrcaWG6bWdamaaDaaaleaapeGaamOB aaWdaeaapeGaamyAaaaakiaacYcacqqHtoWrcaWG6bWdamaaDaaale aapeGaamOBaaWdaeaapeGaamyAaiabgUcaRiaaigdaaaaakiaawIca caGLPaaacqGH9aqpcaaIWaGaaiilaaaa@5B87@   

for i0,1,2,...l1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiabgIGiolaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiil aiaac6cacaGGUaGaaiOlaiaadYgacqGHsislcaaIXaaaaa@4291@ .

Using ([equation 4.21]), lim i d n i =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiBaiaabMgacaqGTbWdamaaBaaaleaapeGaamyAaiabgkziUkab e6HiLcWdaeqaaOWdbiaadsgapaWaa0baaSqaa8qacaWGUbaapaqaa8 qacaWGPbaaaOGaeyypa0JaaGimaaaa@43B7@ and (iii ), we have

d( μ , w )=d( z n i , z n j ) i=0 l1 d( z n i , z n i+1 ), i=0 l1 d n i , 0 as  n. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqadmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaCaaa leqabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaape Gae8NXIuoaaOGaaiilaiaadEhapaWaaWbaaSqabeaapeGae8NXIuoa aaGccaGLOaGaayzkaaGaeyypa0Jaamizamaabmaapaqaa8qacaWG6b WdamaaDaaaleaapeGaamOBaaWdaeaapeGaamyAaaaakiaacYcacaWG 6bWdamaaDaaaleaapeGaamOBaaWdaeaapeGaamOAaaaaaOGaayjkai aawMcaaaWdaeaapeGaeyizImkapaqaa8qadaGfWbqabSWdaeaapeGa amyAaiabg2da9iaaicdaa8aabaWdbiaadYgacqGHsislcaaIXaaan8 aabaWdbiabggHiLdaakiaadsgadaqadaWdaeaapeGaamOEa8aadaqh aaWcbaWdbiaad6gaa8aabaWdbiaadMgaaaGccaGGSaGaamOEa8aada qhaaWcbaWdbiaad6gaa8aabaWdbiaadMgacqGHRaWkcaaIXaaaaaGc caGLOaGaayzkaaGaaiilaaWdaeaaaeaapeGaeyizImkapaqaa8qada GfWbqabSWdaeaapeGaamyAaiabg2da9iaaicdaa8aabaWdbiaadYga cqGHsislcaaIXaaan8aabaWdbiabggHiLdaakiaadsgapaWaa0baaS qaa8qacaWGUbaapaqaa8qacaWGPbaaaOGaaiilaaWdaeaaaeaapeGa eyOKH4kapaqaa8qacaaIWaGaaiiOaiaadggacaWGZbGaaiiOaiaacc kacaWGUbGaeyOKH4QaeqOhIuQaaiOlaaaaaaa@8833@   

So that

d( μ , w ) = 0 μ = w . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqacmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeqiVd02damaaCaaa leqabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuaape Gae8NXIuoaaOGaaiilaiaadEhapaWaaWbaaSqabeaapeGae8NXIuoa aaGccaGLOaGaayzkaaaapaqaa8qacqGH9aqpa8aabaWdbiaaicdacq GHshI3a8aabaWdbiabeY7aT9aadaahaaWcbeqaa8qacqWFgls5aaaa k8aabaWdbiabg2da9aWdaeaapeGaam4Da8aadaahaaWcbeqaa8qacq WFgls5aaGccaGGUaaaaaaa@5A82@   

Therefore

Γ μ = Γ w , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabfo5ahjabeY7aT9aadaahaaWcbeqaamrr1ngB PrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaWdbiab=zSiLdaaaO WdaeaapeGaeyypa0dapaqaa8qacqqHtoWrcaWG3bWdamaaCaaaleqa baWdbiab=zSiLdaakiaacYcaaaaaaa@4D8F@   

which is a contradiction. Thus μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaCaaaleqabaWefv3ySLgznfgDOfdaryqr1ngBPrgi nfgDObYtUvgaiuaapeGae8NXIuoaaaaa@450D@ is a unique fixed point of Γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3897@ . Thus the proof is completed. 

Due to the generalization of Theorem 6, we can deduce the corollary as follows:

Corollary 1. Let ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@4520@ be a complete metric space and let Γ: MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaaiOoamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae83mH0KaeyOKH4Qae83mH0eaaa@4718@ be F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@37FA@ -interpolative type mapping such that the following hypothesis hold:

(i)

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DF@ is Γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3897@ is closed in ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@4520@ ,

(ii)

there exists a constant η[ 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyicI48aaKGea8aabaWdbiaaicdacaGGSaGaaGymaaGa ay5waiaawMcaaaaa@3E76@ such that

η+F( d( Γμ,Γν ) ) F( [ d( μ,Γμ ) ] δ . [ d( ν,Γν ) ] 1δ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeE7aOjabgUcaRiaadAeadaqadaWdaeaapeGa amizamaabmaapaqaa8qacqqHtoWrcqaH8oqBcaGGSaGaeu4KdCKaeq yVd4gacaGLOaGaayzkaaaacaGLOaGaayzkaaaapaqaa8qacqGHKjYO a8aabaWdbiaadAeadaqadaWdaeaapeWaamWaa8aabaWdbiaadsgada qadaWdaeaapeGaeqiVd0Maaiilaiabfo5ahjabeY7aTbGaayjkaiaa wMcaaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacqaH0oazaaGcca GGUaWaamWaa8aabaWdbiaadsgadaqadaWdaeaapeGaeqyVd4Maaiil aiabfo5ahjabe27aUbGaayjkaiaawMcaaaGaay5waiaaw2faa8aada ahaaWcbeqaa8qacaaIXaGaeyOeI0IaeqiTdqgaaaGccaGLOaGaayzk aaGaaiilaaaaaaa@6575@   

for all μ,ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83mH0eaaa@4781@ with μΓμ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0MaeyiyIKRaeu4KdCKaeqiVd0gaaa@3DCA@ , where η[ 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyicI48aaKGea8aabaWdbiaaicdacaGGSaGaaGymaaGa ay5waiaawMcaaaaa@3E76@ and δ( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyicI48aaeWaa8aabaWdbiaaicdacaGGSaGaaGymaaGa ayjkaiaawMcaaaaa@3E25@ .

Proof. The proof of the above corollary follows similar steps of Theorem 6. Therefore, the proof is completed.

Next, we give the following similar example from Moradi and Alimohammadi4 for illustration of the hypothesis of Theorem 6.

Example 1. Consider ={ 0 }{ 0,1, 1 2 , 1 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest cqGH9aqpdaGadaWdaeaapeGaaGimaaGaay5Eaiaaw2haaiabgQIiip aacmaapaqaa8qacaaIWaGaaiilaiaaigdacaGGSaWaaSaaa8aabaWd biaaigdaa8aabaWdbiaaikdaaaGaaiilamaalaaapaqaa8qacaaIXa aapaqaa8qacaaIZaaaaaGaay5Eaiaaw2haaaaa@50EF@ and d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaaaa@3818@ be a Euclidean metric on MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DF@ . Then ( ,d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvga iuaapeGae83mH0KaaiilaiaadsgaaiaawIcacaGLPaaaaaa@4520@  is a complete metric space. The mapping Γ: MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaaiOoamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaGae83mH0KaeyOKH4Qae83mH0eaaa@4717@ be determined as Γ( 0 ) = 0   n=0, Γ( μ ) = 1 μ n +1 ,n1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqacmaaae aaqaaaaaaaaaWdbiabfo5ahnaabmaapaqaa8qacaaIWaaacaGLOaGa ayzkaaaapaqaa8qacqGH9aqpa8aabaWdbiaaicdacaGGGcGaaiiOai aacckacqGHaiIicaWGUbGaeyypa0JaaGimaiaacYcaa8aabaWdbiab fo5ahnaabmaapaqaa8qacqaH8oqBaiaawIcacaGLPaaaa8aabaWdbi abg2da9aWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiabeY7a T9aadaahaaWcbeqaa8qacaWGUbaaaOGaey4kaSIaaGymaaaacaGGSa GaeyiaIiIaamOBaiabgwMiZkaaigdacaGGUaaaaaaa@561D@ Define a binary relation ={( μ,ν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu cqGH9aqpcaGG7bWaaeWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBai aawIcacaGLPaaacqGHiiIZaaa@4B1A@ 2 }, 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWFDeIu paWaaWbaaSqabeaapeGaaGOmaaaakiaac2hacaGGSaWefv3ySLgznf gDOfdarCqr1ngBPrginfgDObYtUvgaiyaacqGFBeIucqGHiiIZcqWF DeIupaWaaWbaaSqabeaapeGaaGOmaaaaaaa@52E8@  and ={ ( 0,1 ),( 0, 1 2 ),( 0, 1 3 ),( 1, 1 3 ),( 1, 1 2 ),( 1 2 , 1 3 ) }  on  . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu cqGH9aqpdaGadaWdaeaapeWaaeWaa8aabaWdbiaaicdacaGGSaGaaG ymaaGaayjkaiaawMcaaiaacYcadaqadaWdaeaapeGaaGimaiaacYca daWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaaaiaawIcacaGLPa aacaGGSaWaaeWaa8aabaWdbiaaicdacaGGSaWaaSaaa8aabaWdbiaa igdaa8aabaWdbiaaiodaaaaacaGLOaGaayzkaaGaaiilamaabmaapa qaa8qacaaIXaGaaiilamaalaaapaqaa8qacaaIXaaapaqaa8qacaaI ZaaaaaGaayjkaiaawMcaaiaacYcadaqadaWdaeaapeGaaGymaiaacY cadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaaaiaawIcacaGL PaaacaGGSaWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8 qacaaIYaaaaiaacYcadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaG4m aaaaaiaawIcacaGLPaaaaiaawUhacaGL9baacaGGGcGaaiiOaiaad+ gacaWGUbGaaiiOaiaacckacqWFZestcaGGUaaaaa@6DF0@ Then MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DE@ is MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ -complete.

We claim that MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DE@ is not either MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ -complete or Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ -closed. To verify this, we show that F 3 ( c ) = 1 c d( Γμ,Γν ) ( μ,ν ) 1 ( 1+η ( μ,ν ) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qacaaIZaaapaqabaGc peWaaeWaa8aabaWdbiaadogaaiaawIcacaGLPaaaa8aabaWdbiabg2 da9aWdaeaapeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbmaa kaaapaqaa8qacaWGJbaaleqaaaaakiabgkDiEpaalaaapaqaa8qaca WGKbWaaeWaa8aabaWdbiabfo5ahjabeY7aTjaacYcacqqHtoWrcqaH 9oGBaiaawIcacaGLPaaaa8aabaWefv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuaapeGae83mH00damaaBaaaleaapeGae83gHifa paqabaGcpeWaaeWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawI cacaGLPaaaaaGaeyizIm6aaSaaa8aabaWdbiaaigdaa8aabaWdbmaa bmaapaqaa8qacaaIXaGaey4kaSIaeq4TdG2aaOaaa8aabaWdbiab=n tin9aadaWgaaWcbaWdbiab=TrisbWdaeqaaOWdbmaabmaapaqaa8qa cqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaaaleqaaaGccaGLOa GaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaaaaaaa@6FC5@  satisfy all the hypothesis of Theorem 6.

We complete the following metrics Using all of the above equalities, we obtain ( μ,ν ) = [ | μν | ] δ . [ | μ n+1 +μ1 μ n +1 | ] α . [ | ν n+1 +ν1 ν n +1 | ] 1αδ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaabaaaaa aaaapeGae83mH00damaaBaaaleaapeGae83gHifapaqabaGcpeWaae Waa8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawIcacaGLPaaaa8aa baWdbiabg2da9aWdaeaapeWaamWaa8aabaWdbmaaemaapaqaa8qacq aH8oqBcqGHsislcqaH9oGBaiaawEa7caGLiWoaaiaawUfacaGLDbaa paWaaWbaaSqabeaapeGaeqiTdqgaaOGaaiOlamaajicapaqaa8qada abdaWdaeaapeWaaSaaa8aabaWdbiabeY7aT9aadaahaaWcbeqaa8qa caWGUbGaey4kaSIaaGymaaaakiabgUcaRiabeY7aTjabgkHiTiaaig daa8aabaWdbiabeY7aT9aadaahaaWcbeqaa8qacaWGUbaaaOGaey4k aSIaaGymaaaaaiaawEa7caGLiWoacaGGDbWdamaaCaaaleqabaWdbi abeg7aHbaakiaac6caaiaawUfacaGLBbaadaabdaWdaeaapeWaaSaa a8aabaWdbiabe27aU9aadaahaaWcbeqaa8qacaWGUbGaey4kaSIaaG ymaaaakiabgUcaRiabe27aUjabgkHiTiaaigdaa8aabaWdbiabe27a U9aadaahaaWcbeqaa8qacaWGUbaaaOGaey4kaSIaaGymaaaaaiaawE a7caGLiWoacaGGDbWdamaaCaaaleqabaWdbiaaigdacqGHsislcqaH XoqycqGHsislcqaH0oazaaGccaGGSaaaaaaa@8669@  By substituting $(\ref{Eqt 3.41})$ in $(\ref{Eqt 3.36})$, we obtain | μ n ν n ( μ n +1 )( ν n +1 ) | [ | μν | ] δ . [ | μ n+1 +μ1 μ n +1 | ] α . [ | ν n+1 +ν1 ν n +1 | ] 1αδ 1 (1+η ( μ,ν ) ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbmaalaaapaqaa8qadaabdaWdaeaapeWaaSaaa8aa baWdbiabeY7aT9aadaahaaWcbeqaa8qacaWGUbaaaOGaeyOeI0Iaeq yVd42damaaCaaaleqabaWdbiaad6gaaaaak8aabaWdbmaabmaapaqa a8qacqaH8oqBpaWaaWbaaSqabeaapeGaamOBaaaakiabgUcaRiaaig daaiaawIcacaGLPaaadaqadaWdaeaapeGaeqyVd42damaaCaaaleqa baWdbiaad6gaaaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaaGaay 5bSlaawIa7aaWdaeaapeWaamWaa8aabaWdbmaaemaapaqaa8qacqaH 8oqBcqGHsislcqaH9oGBaiaawEa7caGLiWoaaiaawUfacaGLDbaapa WaaWbaaSqabeaapeGaeqiTdqgaaOGaaiOlamaajicapaqaa8qadaab daWdaeaapeWaaSaaa8aabaWdbiabeY7aT9aadaahaaWcbeqaa8qaca WGUbGaey4kaSIaaGymaaaakiabgUcaRiabeY7aTjabgkHiTiaaigda a8aabaWdbiabeY7aT9aadaahaaWcbeqaa8qacaWGUbaaaOGaey4kaS IaaGymaaaaaiaawEa7caGLiWoacaGGDbWdamaaCaaaleqabaWdbiab eg7aHbaakiaac6caaiaawUfacaGLBbaadaabdaWdaeaapeWaaSaaa8 aabaWdbiabe27aU9aadaahaaWcbeqaa8qacaWGUbGaey4kaSIaaGym aaaakiabgUcaRiabe27aUjabgkHiTiaaigdaa8aabaWdbiabe27aU9 aadaahaaWcbeqaa8qacaWGUbaaaOGaey4kaSIaaGymaaaaaiaawEa7 caGLiWoacaGGDbWdamaaCaaaleqabaWdbiaaigdacqGHsislcqaHXo qycqGHsislcqaH0oazaaaaaaGcpaqaa8qacqGHKjYOa8aabaWdbmaa laaapaqaa8qacaaIXaaapaqaa8qacaGGOaGaaGymaiabgUcaRiabeE 7aOnaakaaapaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacfaWdbiab=ntin9aadaWgaaWcbaWdbiab=TrisbWdaeqaaOWdbm aabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaaa leqaaOGaaiyka8aadaahaaWcbeqaa8qacaaIYaaaaaaakiaac6caaa aaaa@A56F@  If we take δ=0.2,α=0.5,η= 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaeyypa0JaaGimaiaac6cacaaIYaGaaiilaiabeg7aHjab g2da9iaaicdacaGGUaGaaGynaiaacYcacqaH3oaAcqGH9aqpdaWcaa WdaeaapeGaaGymaaWdaeaapeGaaG4maaaaaaa@46A9@ and n=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabg2da9iaaigdaaaa@39E2@ in the above inequality, for all ( μ,ν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawIcacaGLPaaa cqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbai ab=Trisbaa@4915@ , such that δ+α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaey4kaSIaeqySdeMaeyizImQaaGymaaaa@3DC4@ . We conclude that MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFZest aaa@41DE@ is either MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ -complete or Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ -closed. Which is a contradiction to our claim. Hence, all the hypotheses of Theorem 6 are satisfied.

An application to non linear matrix equations

In this section, we prove the existence of the solution for the nonlinear matrix equation. We use one application to utilize the results obtained in Theorem 6, where a fixed point solution is applied to complete the Branciari distance. We refer to the study of the nonlinear matrix equation from Ran and Reurings5 who proved a fixed point theorem in partially ordered sets and some applications to matrix equations. The Hermitian solution of the equation X=Q+N X 1 N * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaiabg2da9iaadgfacqGHRaWktuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGqbaiab=1q8ojaadIfapaWaaWbaaSqabeaape GaeyOeI0IaaGymaaaakiab=1q8o9aadaahaaWcbeqaa8qacaqGQaaa aaaa@4BC9@ is the matrix equation arising from the Gaussian process. The equation admits both definite positive solution and definite negative solution if and only if N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFneVt aaa@4289@ is non-singular. If N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFneVt aaa@4289@ is singular, no definite negative solution exists. Nonlinear matrix equations play an important role in several problems that arise in the analysis of control theory and system theory.


The main concern of this section is to apply Theorem 6 to study the following nonlinear matrix equations, which are motivated by Jain et al.,34 Lim et al.,35 Sawangsup and Sintunavara,14 Ran and Reurings5 and several others.

μ = Q+ i=1 n N i * Γ( μ ) N i , Q = μ N 1 * Γ( μ ) N 1 N n * Γ( μ ) N n , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqacmaaae aaqaaaaaaaaaWdbiabeY7aTbWdaeaapeGaeyypa0dapaqaa8qacaWG rbGaey4kaSYaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapa qaa8qacaWGUbaan8aabaWdbiabggHiLdaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqbaOGae8xdX70damaaDaaaleaapeGaam yAaaWdaeaapeGaaeOkaaaakiabfo5ahnaabmaapaqaa8qacqaH8oqB aiaawIcacaGLPaaacqWFneVtpaWaaSbaaSqaa8qacaWGPbaapaqaba GcpeGaaiilaaWdaeaapeGaamyuaaWdaeaapeGaeyypa0dapaqaa8qa cqaH8oqBcqGHsislcqWFneVtpaWaa0baaSqaa8qacaaIXaaapaqaa8 qacaqGQaaaaOGaeu4KdC0aaeWaa8aabaWdbiabeY7aTbGaayjkaiaa wMcaaiab=1q8o9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsi slcqGHMacVcqGHsislcqWFneVtpaWaa0baaSqaa8qacaWGUbaapaqa a8qacaqGQaaaaOGaeu4KdC0aaeWaa8aabaWdbiabeY7aTbGaayjkai aawMcaaiab=1q8o9aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacaGG Saaaaaaa@78A7@   

where ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFlecs daqadaWdaeaapeGaamOBaaGaayjkaiaawMcaaaaa@444C@ is a set of n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgEna0kaad6gaaaa@3B2B@ Hermitian matrices, p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaaaa@4698@ is a set of n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgEna0kaad6gaaaa@3B2B@ positive definite matrices and p( n )( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaGaeyOHI08efv3ySL gznfgDOfdarCqr1ngBPrginfgDObYtUvgaiyaacqGFlecsdaqadaWd aeaapeGaamOBaaGaayjkaiaawMcaaaaa@55B8@ , Q p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiaacckacqGHiiIZtuuDJXwAKzKCHTgD1jharyqr1ngBPrgi gjxyRrxDYbacfaGae8xkWd3aaeWaa8aabaWdbiaad6gaaiaawIcaca GLPaaaaaa@4A16@ is a Hermitian positive definite matrix, N i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFneVt paWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@43D1@ is n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgEna0kaad6gaaaa@3B2B@ matrices and Γ;p( n )p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaai4oamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaai abgkziUkab=Lc8Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaa aa@4F55@ is a continuous order-preserving map such that Γ( 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0aaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacqGH9aqp caaIWaaaaa@3CB8@ .

The set ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFlecs daqadaWdaeaapeGaamOBaaGaayjkaiaawMcaaaaa@444C@ equipped with the trace norm . tr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamXvP5wqSX2qVr wzqf2zLnharyqtHX2z15gih9gDOL2yaGqbaabaaaaaaaaapeGaa8Nf Giaac6cacaWFwaYdamaaBaaaleaapeGaamiDaiaadkhaa8aabeaaaa a@4663@ is a complete metric space and partially ordered MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWF8jcS aaa@42A4@ with partial ordering , where μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWF8jcScqaH9oGBaaa@4612@ equivalently νμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd42efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWF9jsScqaH8oqBaaa@4614@ .

We use the following lemmas from Ran and Reurings5 that will be useful for developing our results.

Lemma 25. If μ,ν0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUnrr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8xFIeRaaGimaaaa@477E@ are n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgEna0kaad6gaaaa@3B2B@ matrices, then 0tr( μ,ν )ν| tr( μ ) |. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadshacaWGYbWaaeWaa8aabaWdbiabeY7aTjaa cYcacqaH9oGBaiaawIcacaGLPaaacqGHKjYOtCvAUfeBSn0BKvguHD wzZbqeg0uySDwDUbYrVrhAPngaiuaacaWFwaIaeqyVd4Maa8NfGmaa emaapaqaa8qacaWG0bGaamOCamaabmaapaqaa8qacqaH8oqBaiaawI cacaGLPaaaaiaawEa7caGLiWoacaGGUaaaaa@5A3A@

Lemma 35. If μ,ν I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUnrr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8hFIaRaamysa8aadaWgaaWcbaWdbiaad6gaa8 aabeaaaaa@48DD@ , then μ<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamXvP5wqSX2qVr wzqf2zLnharyqtHX2z15gih9gDOL2yaGqbaabaaaaaaaaapeGaa8Nf GiabeY7aTjaa=zbicqGH8aapcaaIXaaaaa@46DC@ .

Now, we prove a fixed point for self-mappings for the following nonlinear matrix equation in Branciari distance.

μ = Q+ i=1 n N i * Γ( μ ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeY7aTbWdaeaapeGaeyypa0dapaqaa8qacaWG rbGaey4kaSYaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapa qaa8qacaWGUbaan8aabaWdbiabggHiLdaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqbaOGae8xdX70damaaDaaaleaapeGaam yAaaWdaeaapeGaaeOkaaaakiabfo5ahnaabmaapaqaa8qacqaH8oqB aiaawIcacaGLPaaacqWFneVtpaWaaSbaaSqaa8qacaWGPbaapaqaba GcpeGaaiilaaaaaaa@5857@   

where Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyicI4maaa@38B2@ p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaaaa@4698@ , N i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFneVt paWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@43D1@ is n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgEna0kaad6gaaaa@3B2B@ matrices, N i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFneVt paWaa0baaSqaa8qacaWGPbaapaqaa8qacaqGQaaaaaaa@448F@ stands for conjugate transpose of N i ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFneVt paWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyicI4Sae83cHG0aae Waa8aabaWdbiaad6gaaiaawIcacaGLPaaaaaa@4903@ and Γ;p( n )p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaai4oamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaai abgkziUkab=Lc8Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaa aa@4F55@ is a continuous order-preserving map such that Γ( 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0aaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacqGH9aqp caaIWaaaaa@3CB8@ .

Theorem 7. Consider the class of nonlinear matrix Equation [equation 3.5] and suppose the following condition holds.

(i)

there exists Qp( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiabgIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaaa aa@48F2@ with Q = Q+ i=1 n N i * Γ( Q ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadgfaa8aabaWdbiabg2da9aWdaeaapeGaamyu aiabgUcaRmaawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdae aapeGaamOBaaqdpaqaa8qacqGHris5aaWefv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiuaakiab=1q8o9aadaqhaaWcbaWdbiaadM gaa8aabaWdbiaabQcaaaGccqqHtoWrdaqadaWdaeaapeGaamyuaaGa ayjkaiaawMcaaiab=1q8o9aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacaGGSaaaaaaa@5697@

(ii)

for all μ,νp( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrMrYf2A0vNCaeHb fv3ySLgzGyKCHTgD1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaa GaayjkaiaawMcaaaaa@4C3A@ , μν i=1 n N i * Γ( μ ) N i i=1 n N i * Γ( ν ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeY7aTjabgsMiJkabe27aUbWdaeaapeGaeyO0 H4napaqaa8qadaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8 aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaamrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfaGccqWFneVtpaWaa0baaSqaa8qaca WGPbaapaqaa8qacaqGQaaaaOGaeu4KdC0aaeWaa8aabaWdbiabeY7a TbGaayjkaiaawMcaaiab=1q8o9aadaWgaaWcbaWdbiaadMgaa8aabe aak8qacqGHKjYOdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigda a8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGae8xdX70damaaDa aaleaapeGaamyAaaWdaeaapeGaaeOkaaaakiabfo5ahnaabmaapaqa a8qacqaH9oGBaiaawIcacaGLPaaacqWFneVtpaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaaiilaaaaaaa@6F47@

(iii)

There exist δ,α( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaaiilaiabeg7aHjabgIGiopaabmaapaqaa8qacaaIWaGa aiilaiaaigdaaiaawIcacaGLPaaaaaa@4073@ for which i=1 n N i * N i <δ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWG Ubaan8aabaWdbiabggHiLdaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbaOGae8xdX70damaaDaaaleaapeGaamyAaaWdaeaa peGaaeOkaaaakiab=1q8o9aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacqGH8aapcqaH0oazcqWFqesspaWaaSbaaSqaa8qacaWGUbaapaqa baaaaa@5314@ and i=1 n N i * Γ( Q ) N i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWG Ubaan8aabaWdbiabggHiLdaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbaOGae8xdX70damaaDaaaleaapeGaamyAaaWdaeaa peGaaeOkaaaakiabfo5ahnaabmaapaqaa8qacaWGrbaacaGLOaGaay zkaaGae8xdX70damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg6da +iaaicdaaaa@53C7@ such that for all μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0MaeyizImQaeqyVd4gaaa@3C51@ we have μν i=1 n N i * Γ( μ ) N i i=1 n N i * Γ( ν ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeY7aTjabgsMiJkabe27aUbWdaeaapeGaeyO0 H4napaqaa8qadaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8 aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaamrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfaGccqWFneVtpaWaa0baaSqaa8qaca WGPbaapaqaa8qacaqGQaaaaOGaeu4KdC0aaeWaa8aabaWdbiabeY7a TbGaayjkaiaawMcaaiab=1q8o9aadaWgaaWcbaWdbiaadMgaa8aabe aak8qacqGHKjYOdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigda a8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGae8xdX70damaaDa aaleaapeGaamyAaaWdaeaapeGaaeOkaaaakiabfo5ahnaabmaapaqa a8qacqaH9oGBaiaawIcacaGLPaaacqWFneVtpaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaaiilaaaaaaa@6F47@  and i=1 n N i * Γ( μ ) N i i=1 n N i * Γ( ν ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGym aaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuaakiab=1q8o9aadaqhaaWcbaWd biaadMgaa8aabaWdbiaabQcaaaGccqqHtoWrdaqadaWdaeaapeGaeq iVd0gacaGLOaGaayzkaaGae8xdX70damaaBaaaleaapeGaamyAaaWd aeqaaaGcbaWdbiabgcMi5cWdaeaapeWaaybCaeqal8aabaWdbiaadM gacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaa kiab=1q8o9aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaabQcaaaGccq qHtoWrdaqadaWdaeaapeGaeqyVd4gacaGLOaGaayzkaaGae8xdX70d amaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacYcaaaaaaa@67BA@

(iv)

there exist μ,ν( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83dXd1aaeWaa8aabaWdbiaad6gaai aawIcacaGLPaaaaaa@4ACA@ and ϑ1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeqy0dOKaeyizImQaaGymaaaa@3B46@  such that ΓμΓν tr ϑ μν tr ( 1+η μν tr ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaaqaaa aaaaaaWdbiaa=zbicqqHtoWrcqaH8oqBcqGHsislcqqHtoWrcqaH9o GBcaWFwaYdamaaBaaaleaapeGaamiDaiaadkhaa8aabeaaaOqaa8qa cqGHKjYOa8aabaWdbiabeg9aknaalaaapaqaa8qacaWFwaIaeqiVd0 MaeyOeI0IaeqyVd4Maa8NfG8aadaWgaaWcbaWdbiaadshacaWGYbaa paqabaaakeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWkcqaH3oaAda GcaaWdaeaapeGaa8NfGiabeY7aTjabgkHiTiabe27aUjaa=zbipaWa aSbaaSqaa8qacaWG0bGaamOCaaWdaeqaaaWdbeqaaaGccaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaaiilaaaaaaa@67ED@ where μν tr =d( μ,ν ) = ( μ,ν )= [ d( μ,ν ) ] δ . [ d( μ,Γμ ) ] α . [ d( ν,Γν ) ] 1αδ , and  ϑ= i=1 n N i * N i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqacmaaae aatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaaqaaa aaaaaaWdbiaa=zbicqaH8oqBcqGHsislcqaH9oGBcaWFwaYdamaaBa aaleaapeGaamiDaiaadkhaa8aabeaak8qacqGH9aqpcaWGKbWaaeWa a8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawIcacaGLPaaaa8aaba Wdbiabg2da9aWdaeaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgi p5wzaGGba8qacqGFZestpaWaaSbaaSqaa8qacqGFBeIua8aabeaak8 qadaqadaWdaeaapeGaeqiVd0Maaiilaiabe27aUbGaayjkaiaawMca aiabg2da9maadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabeY7aTj aacYcacqaH9oGBaiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaeqiTdqgaaOGaaiOlamaadmaapaqaa8qacaWGKbWaae Waa8aabaWdbiabeY7aTjaacYcacqqHtoWrcqaH8oqBaiaawIcacaGL PaaaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaeqySdegaaOGaai Olamaadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabe27aUjaacYca cqqHtoWrcqaH9oGBaiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaW baaSqabeaapeGaaGymaiabgkHiTiabeg7aHjabgkHiTiabes7aKbaa kiaacYcaa8aabaaabaaabaWdbiaadggacaWGUbGaamizaiaacckaca GGGcGaeqy0dOKaeyypa0ZaaybCaeqal8aabaWdbiaadMgacqGH9aqp caaIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaakiab+1q8o9 aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaabQcaaaGccqGFneVtpaWa aSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiOlaaaaaaa@A567@  Then, the non linear matrix equation $(\ref{equation 3.5})$ has a solution in p( n )( n ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaGaeyOHI08efv3ySL gznfgDOfdarCqr1ngBPrginfgDObYtUvgaiyaacqGFlecsdaqadaWd aeaapeGaamOBaaGaayjkaiaawMcaaiaac6caaaa@566A@

Proof. Define Γ:p( n )p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaaiOoamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaai abgkziUkab=Lc8Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaa aa@4F54@ by

Γ( x ) = Q+ i=1 n N i * Γ( x ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabfo5ahnaabmaapaqaa8qacaWG4baacaGLOaGa ayzkaaaapaqaa8qacqGH9aqpa8aabaWdbiaadgfacqGHRaWkdaGfWb qabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6gaa0Wd aeaapeGaeyyeIuoaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbacfaGccqWFneVtpaWaa0baaSqaa8qacaWGPbaapaqaa8qacaqG QaaaaOGaeu4KdC0aaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacq WFneVtpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiilaaaaaaa@59F5@   

for all xp( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaaa aa@4919@ . Then the fixed point of the mapping Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is a solution of the matrix equation $(\ref{equation 3.5})$.

The Branciari metric d:p( n )×p( n ) + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaacQdatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxD YbacfaGae8xkWd3aaeWaa8aabaWdbiaad6gaaiaawIcacaGLPaaacq GHxdaTcqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaaiab gkziUorr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4 xhHi1damaaBaaaleaapeGaey4kaScapaqabaaaaa@5CE1@ is defined by

d( μ,ν ) = μν. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeqiVd0Maaiilaiab e27aUbGaayjkaiaawMcaaaWdaeaapeGaeyypa0dapaqaamXvP5wqSX 2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqba8qacaWFwaIaeqiV d0MaeyOeI0IaeqyVd4Maa8NfGiaac6caaaaaaa@5077@   

Let Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ be well defined on p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaaaa@4698@ and Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ -closed. For μ,νp( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrMrYf2A0vNCaeHb fv3ySLgzGyKCHTgD1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaa GaayjkaiaawMcaaaaa@4C3A@ with μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWF8jcScqaH9oGBaaa@4612@ , then Γ( μ )Γ( ν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0aaeWaa8aabaWdbiabeY7aTbGaayjkaiaawMcaamrr1ngB PrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hFIaRaeu4KdC 0aaeWaa8aabaWdbiabe27aUbGaayjkaiaawMcaaaaa@4C32@ . We claim that Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is not an F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@37F9@ - MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ -contraction mapping with respect to η>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyOpa4JaaGimaaaa@3A9C@ and d( μ,ν )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGa ayzkaaGaeyOpa4JaaGimaaaa@3F9F@ and by using ( i )( iv ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadMgaaiaawIcacaGLPaaacqGHsisldaqadaWd aeaapeGaamyAaiaadAhaaiaawIcacaGLPaaaaaa@3E42@ we get

 d( Γμ,Γν )     =                    Γμ,Γν tr Γx,Γy 1,                        =   i=1 n N i * Γ( μ ) N i i=1 n N i * Γ( ν ) N i ,                        =              i=1 n N i * N i [ Γ( μ )Γ( μ ) ],                       =                    i=1 n N i * N i ΓμΓν,                       =      i=1 n N i * N i μν tr ( 1+η μν tr ) 2 ,                       =                       ϑ μν tr ( 1+η μν tr ) 2 ,                       =                      ϑ ( μ,ν ) ( 1+η ( μ,ν ) ) 2 , d( Γμ,Γν ) ( μ,ν )                               1 ( 1+η ( μ,ν ) ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaGGGcGaamizamaabmaapaqaa8qacqqHtoWrcqaH8oqBcaGG SaGaeu4KdCKaeqyVd4gacaGLOaGaayzkaaGaaiiOaiaacckacaGGGc GaaiiOaiaacckacqGH9aqpcaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamXvP5wq SX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbaiaa=zbicqqHto WrcqaH8oqBcaGGSaGaeu4KdCKaeqyVd4Maa8NfG8aadaWgaaWcbaWd biaadshacaWGYbaapaqabaGcpeGaeyO0H4Taa8NfGiabfo5ahjaadI hacaGGSaGaeu4KdCKaamyEaiaa=zbipaWaaSbaaSqaa8qacaaIXaGa aiilaaWdaeqaaaGcbaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaeyypa0JaaiiOaiaacckacaWFwaYaaybCaeqal8aa baWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbi abggHiLdaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGb aOGae4xdX70damaaDaaaleaapeGaamyAaaWdaeaapeGaaeOkaaaaki abfo5ahnaabmaapaqaa8qacqaH8oqBaiaawIcacaGLPaaacqGFneVt paWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyOeI0YaaybCaeqal8 aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWd biabggHiLdaakiab+1q8o9aadaqhaaWcbaWdbiaadMgaa8aabaWdbi aabQcaaaGccqqHtoWrdaqadaWdaeaapeGaeqyVd4gacaGLOaGaayzk aaGae4xdX70damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaa=zbica GGSaaabaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka cqGH9aqpcaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaa8NfGmaawaha beWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpa qaa8qacqGHris5aaGccqGFneVtpaWaa0baaSqaa8qacaWGPbaapaqa a8qacaqGQaaaaOGae4xdX70damaaBaaaleaapeGaamyAaaWdaeqaaO Wdbmaadmaapaqaa8qacqqHtoWrdaqadaWdaeaapeGaeqiVd0gacaGL OaGaayzkaaGaeyOeI0Iaeu4KdC0aaeWaa8aabaWdbiabeY7aTbGaay jkaiaawMcaaaGaay5waiaaw2faaiaa=zbicaGGSaaabaGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiabg2da9iaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaWFwaYaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqa a8qacaWGUbaan8aabaWdbiabggHiLdaakiab+1q8o9aadaqhaaWcba WdbiaadMgaa8aabaWdbiaabQcaaaGccqGFneVtpaWaaSbaaSqaa8qa caWGPbaapaqabaGcpeGaa8NfGiaa=zbicqqHtoWrcqaH8oqBcqGHsi slcqqHtoWrcqaH9oGBcaWFwaIaaiilaaqaaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacqGH9aqpcaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaa=zbidaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigda a8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGae4xdX70damaaDa aaleaapeGaamyAaaWdaeaapeGaaeOkaaaakiab+1q8o9aadaWgaaWc baWdbiaadMgaa8aabeaak8qacaWFwaYaaSaaa8aabaWdbiaa=zbicq aH8oqBcqGHsislcqaH9oGBcaWFwaYdamaaBaaaleaapeGaamiDaiaa dkhaa8aabeaaaOqaa8qadaqadaWdaeaapeGaaGymaiabgUcaRiabeE 7aOnaakaaapaqaa8qacaWFwaIaeqiVd0MaeyOeI0IaeqyVd4Maa8Nf G8aadaWgaaWcbaWdbiaadshacaWGYbaapaqabaaapeqabaaakiaawI cacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaGGSaaabaGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiabg2da9iaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaeqy0dO0aaSaaa8aa baWdbiaa=zbicqaH8oqBcqGHsislcqaH9oGBcaWFwaYdamaaBaaale aapeGaamiDaiaadkhaa8aabeaaaOqaa8qadaqadaWdaeaapeGaaGym aiabgUcaRiabeE7aOnaakaaapaqaa8qacaWFwaIaeqiVd0MaeyOeI0 IaeqyVd4Maa8NfG8aadaWgaaWcbaWdbiaadshacaWGYbaapaqabaaa peqabaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaa GccaGGSaaabaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiab g2da9iaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacqaHrpGsda WcaaWdaeaapeGae43mH00damaaBaaaleaapeGae43gHifapaqabaGc peWaaeWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawIcacaGLPa aaa8aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeq4TdG2aaOaa a8aabaWdbiab+ntin9aadaWgaaWcbaWdbiab+TrisbWdaeqaaOWdbm aabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaaa leqaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaO Gaaiilaaqaamaalaaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabfo5a hjabeY7aTjaacYcacqqHtoWrcqaH9oGBaiaawIcacaGLPaaaa8aaba Wdbiab+ntin9aadaWgaaWcbaWdbiab+TrisbWdaeqaaOWdbmaabmaa paqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaaaaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiabgsMiJkaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaSaaa8aabaWdbiaaig daa8aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeq4TdG2aaOaa a8aabaWdbiab+ntin9aadaWgaaWcbaWdbiab+TrisbWdaeqaaOWdbm aabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaaa leqaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaO Gaaiilaaaaaa@8294@   

which is a contradiction. Hence Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is a contraction. Therefore, from i=1 n N i * Γ( Q ) N i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWG Ubaan8aabaWdbiabggHiLdaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbaOGae8xdX70damaaDaaaleaapeGaamyAaaWdaeaa peGaaeOkaaaakiabfo5ahnaabmaapaqaa8qacaWGrbaacaGLOaGaay zkaaGae8xdX70damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg6da +iaaicdaaaa@53C7@ , we have QΓ( Q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiabgsMiJkabfo5ahnaabmaapaqaa8qacaWGrbaacaGLOaGa ayzkaaaaaa@3D9F@ . Thus, by using Theorem 6 we conclude that Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ has a unique fixed point in p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaaaa@4698@ and p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaGaeyicI48efv3ySL gznfgDOfdarCqr1ngBPrginfgDObYtUvgaiyaacqGFZestaaa@52CD@

Conclusion

The new concept of relation-theoretic F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@37F9@ -interpolative mapping endowed with binary relation in Branciari Distance in metric spaces has been introduced. In particular, we improved and extended the works due to Alam and Imdad17, Ahmadullah et al.28 , Ahmadullah et al29. , Eke et al.30 , Sawangsup and Sintunavarat14 ,Aydi et al.24  and Karapinar et al20. . In doing so, we generalized several other works in the literature having the same setting. Henceforth, the results obtained will be verified with the help of illustrative examples. Also, we demonstrate the results with an application in matrix equations

Compliance with ethical standards

Conflict of interest: Authors declare that they have no conflicts of interest.

 Research involving human participants and/or animals: The author declares that there are no human participants and/or animals involved in this research.

Funding

Authors declare that there is no funding available for this research.

References

  1. Kannan R. Some results on fixed points. Bull Calcutta Math Soc. 1968;60:71–76.
  2. Branciari. A fixed point theorem of Banach–Caccippoli type on a class of generalized metric spaces. Publ Math Debrecen.  2000;57;31–37.
  3. Azam, M Arshad. Kannan fixed point theorem on generalized metric spaces. The Journal of Nonlinear Sciences and Its Applications. 2008;1:45–48.
  4. Moradi S, Alimohammadi D. New extensions of Kannan fixed-Point theorem on complete metric and generalized Metric spaces. Int Journal of Math Analysis. 2011;5(47):2313–2320.
  5. CM Ran, B Reurings. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc Amer Math Soc. 2004;132:1435–1443.
  6. Nieto J, Rodríguez-López R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order. 2005;22(3):223–239.
  7. Wardowski. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012;1:94.
  8. Wardowski, NV Dung. Fixed points of F–weak contractions on complete metric spaces. Demonstr Math. 2014;1:146–155.
  9. Acar O, Durmaz G, Minak G. Generalized multivalued F–contractions on complete metric spaces. Bull Iran Math Soc. 2014;40(6):1469–1478.
  10. Altun G Minak, H Dag. Multivalued F–contractions on complete metric space. Journal of Non–linear Convex Analysis. 2015;4:659–666.
  11. Minak G, Helvaci A, Altun I. Ćirić type generalized F-contractions on complete metric spaces and fixed point results. Filomat. 2014; 28(6):1143–1151.
  12. Paesano D, Vetro C. Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation. Revista de la Real Academia de Ciencias Exactas Fisicas Naturales. 2014;108(2):1005–1020.
  13. H Piri, P Kumam. Some fixed point theorems concerning F–contraction in complete metric spaces. Fixed Point Theory Appl. 2014:1–11.
  14. Sawangsup W, A.F.R.L. de Hierro. Fixed point theorems for F_R–contractions with applications to the solution of nonlinear matrix equations. Journal of Fixed Point Theory and Applications. 2017;3:711–1725.
  15. A Tomar, R Sharma. Some coincidence and common fixed point theorems concerning –contraction and applications. Journal of Inter Math Virt Inst. 2018;2:181–198.
  16. S Bashir, N Saleem, SM Husnine. Fixed point results of a generalized reversed F–contraction mapping and its application. AIMS Mathematics. 2021:8;8728–8741.
  17. Alam, Imdad M. Relation–theoretic contraction principle. J Fixed Point Theor Appl. 2015;17(4):693–702.
  18. Kannan R. Some results on fixed point II. The American Mathematical Monthly. 1969;76(4):405–408.
  19. Karapinar E. Revisiting the Kannan type contractions via interpolation. Adv Theory Nonlinear Anal Appl. 2018;2(2):85–87.
  20. Karapinar E, Agarwal R. Interpolative Rus-Reich-Ćirić type contractions via simulation functions. An St Univ Ovidius Constanta Ser Mat. 2019;27(3):137–152.
  21. Karapinar E, Agarwal R, Aydi H. Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces. Mathematics. 2018;6(11):256.
  22. Y Errai, EM Marhrani, M Aamri. Some New Results of Interpolative Hardy–Rogers and Ćirić–Reich–Rus Type contraction. Journal of Mathematics. 2021;1–12.
  23. Mishra VN, Sánchez Ruiz LM, Gautam P, et al. Interpolative Reich-Rus-Ćirić and Hardy-Rogers Contraction on quasi-partial b-metric space and related fixed point results. Mathematics. 2020;8(9):1598.
  24. H Aydi, CM Chen, E Karapınar. Interpolative Ćirić–Reich–Rus type contractions via the Branciari distance. Mathematics. 2018;1:84.
  25. H Aydi, E Karapinar, AF Roldán López de Hierro. ω–interpolative Ćirić–Reich–Rus–type contractions. An Universitatii” Ovidius. Constanta–Seria Matematica. 2019;1:57.
  26. Gautam P, Kaur C. Fixed points of interpolative Matkowski type contraction and its application in solving non-linear matrix equations. Rendiconti del Circolo Matematico di Palermo. 2022;72(2):1–18.
  27. Alam, Imdad M. Relation–theoretic metrical coincidence theorems. Filomat.  2017,31(14):4421–4439.
  28. Ahmadullah M, Ali J, Imdad M. Unified relation–theoretic metrical fixed point theorems under an implicit contractive condition with an application. Fixed Point Theory and Applications. 2016;42(1):1–15.
  29. Ahmadullah M, Imdad M, Gubran R. Relation–theoretic metrical fixed point theorems under nonlinear contractions. Fixed Point Theory. 2016.
  30. S Eke, B Davvaz, JG Oghonyon. Relation–theoretic common fixed point theorems for a pair of implicit contractive maps in metric spaces. Communications in Mathematics and Applications. 2019;1:159–168.
  31. Mlaiki N, Abodayeh K, Aydi H, et al. Rectangular metric-like type spaces related fixed points. J Math. 2018;2018:3581768.
  32. M Cosentino, P Vetro. Fixed point result for F–contractive mappings of Hardy–Rogers–type. Filomat. 2014;4:715–722.
  33. Ahmadullah M, Khan AR, Imdad M. Relation–theoretic contraction principle in metric–like as well as partial metric spaces. Bull Math Analysis Appl. 2017;9(3):31–41.
  34. Jain R, Nashine HK, Kadelburg Z. Some fixed point results on relational quasi partial metric spaces and application to non-Linear matrix equations. Symmetry. 2021;13(6):993.
  35. Lim Y. Solving the non-linear matrix equation X=Q+∑_(i=1)^n▒‍ MiX^δi Mi^* via a contraction principle. Linear algebra and its applications. 2009;430(4):1380–1383.
  36. ADD THE FOLLOWING REFERENCES

  37. Definition 3-T Suzuki. Generalized metric space does not have the compatible topology. Abstr Appl Anal. 2014;2014:458098.
  38.   Proposition  1-Kirk WA, Shahzad N. Generalized metrics and Caristi’s theorem. Fixed Point Theory Appl. 2013;2013:129.
  39. Defition 6- S. Lipschutz,  Schaum’s Outlines of Theory and Problems of Set Theory and Related Topics, \emph{McGraw-Hill,} New York (1964).
  40. Definition 14- Kolman B, Busby RC, Ross S. Discrete mathematical structures, 3rd edn. PHI Pvt. Ltd, New Delhi. 2000.
Creative Commons Attribution License

©2023 Wangwe. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.