Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 2

Fixed point theorems for relation-theoretic F-interpolative in branciari distance with an application

Lucas Wangwe

Department of Mathematics, College of Natural and Applied Sciences, Mbeya University of Science and Technology, Tanzania

Correspondence: Lucas Wangwe, Department of Mathematics, College of Natural and Applied Sciences, Mbeya University of Science and Technology, Tanzania

Received: April 12, 2023 | Published: May 22, 2023

Citation: Wangwe L. Fixed point theorems for relation-theoretic F-interpolative in branciari distance with an application. Phys Astron Int J. 2023;7(2):122-129. DOI: 10.15406/paij.2023.07.00296

Download PDF

Abstract

This paper proves fixed point theorems for relation-theoretic F -interpolative mapping endowed with binary relation in Branciari Distance. Henceforth, the results obtained will be verified with the help of illustrative examples. Also, we demonstrate the results with an application in matrix equations.

Mathematics Subject Classification 2010: 47H10, 54H25.

Keywords: Fixed point, interpolative mapping, F -contraction, metric space, binary relation, matrix equation.

Introduction

Fixed point theory is a fascinating area of research for the researchers studying non-linear phenomena. It has many applications for non-linear functional analysis, Approximation theory, Optimization Theory (Saddle function), Variation inequalities, Game theory (Nash equilibrium) and Economics (Black Scholes theorem). Fixed point theory is quite and sequel to the existing theory of Differential, Integral, Partial, Fractional differential, functional equations and matrix equations. Fixed point theory as well as Banach contraction principle have been studied and generalized in different spaces and various fixed point theorems are developed. In 1968 Kannan1 introduced a discontinuity of contraction mappings that can possess a fixed point on a complete metric space by filling the gap created by Banach for more than thirty years. Reich proved the fixed point theorem using three metric points by combining the concept of Banach and Kanann on complete metric space. Dass-Gupta proved the results of the fixed point theorem of the rational type operator by using contraction mapping in metric space.

In 2000, Branciari2 introduced a class of generalized metric spaces by replacing triangular inequality with similar ones which involve four or more points instead of three and improved Banach contraction mapping principle. In 2008, Azam and Arshad3 using the concept of Branciari investigated the mappings given by Kannan by applying the rectangular properties in a generalized metric space. In 2011, Moradi and Alimohammadi4 generalized Kannan’s results, by using the sequentially convergent mappings and rectangular properties in metric space. Furthermore, Morandi and Alimohammadi investigated and extended Kannan’s mapping by using the ideal due to Branciari. Since then, several authors involved in investigations of Banach’s contraction mappings using rectangular properties in different spaces.

In 2004, Ran and Reurings5 proved an order-theoretic analogue of Banach contraction principle which marks the beginning of a vigorous research activity. This result was discovered while investigating the solutions to some special matrix equations.. In continuation of Ran and Reurings, Nieto and Rodríguez-López6 who proved two very useful results and used them to solve some differential equations.

In 2012, Wardowski7 initiated the study of fixed points of a new type of contractive mappings in complete metric spaces. In 2014, Wardowski and Dung,8 proved fixed points of F -weak contractions on complete metric spaces. Acar et al.9 and Altun et al.10 gave Generalized multivalued F -contractions on complete metric spaces. In 2014, Minak et al.,11 proved Ćirić type generalized F -contractions on complete metric spaces and fixed point results. Paesano and Vetro12 gave the proof on Multi-valued F contractions in 0-complete partial metric spaces with application to Volterra type integral equation. Piri and Kumam13 proved some fixed point theorems concerning F contraction in complete metric spaces. Sawangsup and Sintunavarat14 proved the fixed point theorems for F contractions with applications to the solution of non-linear matrix equations, Tomar and Sharma15 proved some coincidence and common fixed point theorems concerning F contraction and applications and Bashir16 proved the fixed point results of a generalized reversed F contraction mapping and its application.

On the other hand, Alam and Imdad17 gave a generalizatiFor more res on of the Banach contraction principle in a complete metric space equipped with binary relation. Their results show that the contraction condition holds only for those elements linked with the binary relation, not for every pair of elements. Recently, Kannan’s and Reich’s18 fixed point theorems have been studied and extended in several directions, Karapinar19 modified the classical Kannan contraction phenomena to an interpolative Kannan contraction one to maximize the rate of convergence of an operator to a unique fixed point. However, by giving a counter-example, Karapinar and Agarwal20 pointed out a gap in the paper about the assumption of the fixed point being unique and came up with a corrected version. They provided a counter-example to verify that the fixed point need not be unique and invalidate the assumption of a unique fixed point. Since then, several results for variants of interpolative mapping proved for single and multivalued in various abstract spaces.

Further, Karapinar and Agarwal21 proved interpolative Rus-Reich-Ćirić type contractions via simulation functions. Errai et al.22 gave some new results of interpolative Hardy-Rogers and Reich-Rus-Ćirić type contraction in-metric spaces to prove the existence of the coincidence point. Mishra et al.23 proved the common fixed point theorems for interpolative Hardy-Rogers and Reich-Rus-Ćirić type contraction on quasi partial -metric space. Aydi et al.24 proved -interpolative Reich-Rus-Ćirić type contractions on metric spaces. Aydi et al.25 proved an interpolative Ćirić-Reich-Rus type contractions via the Branciari distance. Gautam et al.26 proved the fixed point of interpolative Rus-Reich-Ćirić contraction mapping on rectangular quasi-partial -metric space.

This manuscripts prove a fixed points theorem for relation-theoretic -contraction mappings via an arbitrary binary relation concept in Branciari distance metric space. In particular, we improve and extend the works due to Alam and Imdad,27 Ahmadullah et al.,28 Ahmadullah et al.,29 Eke et al.,30 Sawangsup and Sintunavarat,14 Aydi et al.31 and Karapinar et al.20 In doing so, we will generalize several other works in the literature having the same setting.

Material and methods

This section introduces some definitions, theorems and preliminary results, which will help develop the main result.

The concept of a Branciari distance space has been introduced by Brianciari where the triangular inequality is replaced by a quadrilateral one, which states as follows:

Definition 12. Let  be a non-empty set. Suppose that the mapping d:×[0,) be a function for all and all distinct points z,w , each distinct from μ and ν .

(i) d(μ,ν)0 and d(μ,ν)=0 if and only if μ=ν ;

(ii) d(μ,ν)=d(μ,ν) ;

(iii) d(μ,ν)d(μ,w)+d(w,z)+d(z,ν).

Then is called a Branciari distance and the pair (,d)  is called a Branciari distance space.

Definition 22. Let (,d)  be a metric space. A mapping Γ: is said to be sequentially convergent if we have, for every sequence {νn} , if {Γνn} is convergence then {νn} also is convergence. is said to be subsequentially convergent if we have, for every sequence {νn} , if {Γνn}  is convergence then {νn}  has a convergent subsequence.

Definition 336. Let ( ,d) be a Branciari distance space and {μn}  be a sequence in .

(i)A sequence {μn} is converges to point μ if limnd(μn,μ)=0

(ii) A sequence {μn}  is said to be Cauchy if for every ϵ>0 , there exists a positive integer =(ϵ) such that d(μn,μm)<ϵ,  for all n,m> .

(iii) We say that (,d)  is complete if each Cauchy sequence in is convergent.

Lemma 136. Let (,d)  be a Branciari distance space. A mapping Γ: is continuous at μ , if we have ΓμnΓμ or limnd(Γμn,Γμ)=0 , for any sequence {μn}  in  converges to μ , that is μnμ .

Proposition 137. Suppose μn is a Cauchy sequence in a Branciari distance space such that limnd(μn,μ)=d(μn,w)=0,  where μ,w . Then μ=w .

Another noted attempt to extend the Banach contraction principle is essentially due to Wardowski.

The following explanations for developing the -contraction definition was obtained from Wardowski,7 Wardowski and Van Dung,8 and Cosentino et al.32

Let F:+ be a mapping satisfying:

(F1) F  is strictly increasing, i.e. for all J,K+,J<K implies F(J)<F(K) ;

(F2) For each sequence {Jn}n of positive numbers,limnJn=0 if and only if limnF(Jn)= ;

(F3) There exists z(0,1) satisfying limJn0+JznF(Jn)=0

We denote the family of all functions F satisfying conditions (F1F3) by . Some examples of functions F are:

F1(c)=lncd(Γμ,Γν)d(μ,ν)eη;

F2(c)=c+lncd(Γμ,Γν)d(μ,ν)eη+d(μ,ν)d(Γμ,Γν) ;

F3(c)=1cd(Γμ,Γν)d(μ,ν)1(1+ηd(μ,ν))2 ;

F4(c)=ln(c2+c)d(Γμ,Γν)(1+d(Γμ,Γν))d(μ,ν)(1+d(μ,ν))eη .

Wardowski introduced a generalization of the Banach contraction principle in metric spaces as follows:

Definition 47.   Let (,d)  be a metric space. A self-mapping Γ on is called an F -contraction mapping if there exists F and η+ such that for all μ,ν ,d(Γμ,Γν)  >0η+F(d(Γμ,Γν))F(d(μ,ν)).

Wardowski7 proved the following fixed point theorem:

Theorem 17. Let (,d)  be a complete metric space and Γ: be a F -contraction mapping. If there exist η>0 such that for all μ,ν,d(Γμ,Γν)   >0 , implies η+F(d(Γμ,Γν))F(d(μ,ν)),  then Γ has a unique fixed point.

Kannan1 proved the following theorem:

Theorem 21. Let (,d) be a complete metric space and a self-mapping Γ: be a mapping such that d(Γμ,Γν)η{d(μ,Γμ)+d(ν,Γν)}, for all μ,ν and 0η12.  The Γ  has a unique fixed point δ and for any μ the sequence of iterate {Γnμ}  converges to δ .

The following results for interpolative Kannan contraction have been proved in as follows:

Definition 519. Let (,d) be a metric space, the mapping Γ: is said to be interpolative Kannan contraction mappings if d(Γμ,Γν)η[d(μ,Γμ)]δ.[d(ν,Γν)]1δ, for all μ,ν with μΓμ , where η[0,1) and δ(0,1) .

Theorem 319. Let (,d) be a complete metric space and Γ be an interpolative Kannan type contraction. Then Γ has a unique fixed point in .

In 2018, Karapinar et al.21 proved an interpolative Reich-Rus-Ćirić type contractions fixed point result on partial metric space as follows.

Theorem 421. Let (,d) be a complete metric space Γ: . be a mapping such that p(Γμ,Γν)η[p(μ,ν)]δ.[p(μ,Γμ)]α.[p(ν,Γν)]1αδ, for all μ,νFix(Γ) where Fix(Γ)={μ,Γμ=μ} . Then Γ  has a fixed point in .

Binary relation-theoretic in metric spaces

In this part, we will recall some definitions of relation theoretic notion related to binary relation with relevant relation-theoretical variants of some metrical concepts such as completeness and continuity which will be useful in developing our main results.

In the following discussion stands for a nonempty binary relation while 0 denotes the set of whole numbers, i.e., {0} .

Definition 638. A binary relation on a non-empty set is defined as a subset of × , which will be denoted by . We say that μ relates to ν under iff (μ,ν) .

Definition 717. Let be a binary relation defined on a non-empty set and μ,ν . We say that μ and ν are -comparative if either (μ,ν) or (ν,μ) . We denote it by [μ,ν] .

Definition 838. Let  be a binary relation defined on a non-empty set . Then the symmetric closure of is defined as the smallest symmetric relation containing (i.e.s:=1) , where 1={(μ,ν)2:(ν,μ)} .

Proposition 217. If is a binary relation defined on a non-empty set , then (μ,ν)s[μ,ν].

Definition 917. Let be a binary relation defined on a non-empty set . Then a sequence {μn} is called -preserving if (μn,μn+1),     n0 .

Definition 1017. Let be a non-empty set and Γ a self-mapping on . A binary relation on X is called Γ -closed if for any μ,ν , (μ,ν)(Γμ,Γν).

Definition 1127. Let (,d) be a metric space and a binary relation on . We say that (,d) is -complete if every -preserving Cauchy sequence in converges.

Definition 1217. Let (,d)  be a metric space. A binary relation defined on is called d-self closed if whenever {μn}  is an -preserving sequence and μndμ , then there is a sub sequence {μnk} of {μn}  with [μnk,μ] for all k0 .

Definition 1317. Let be a non-empty set and a binary relation on . A subset D of is called -directed if for each μ,νD , there exists z  in such that (μ,z) and (ν,z) .

Definition 1439. Let  be a non-empty set and be a binary relation defined on a non-empty set . Let k be a natural number, a path from μ to is a finite sequence {z0,z1,z2,...,zk} which satisfies the following conditions:

  1. z0=μ and z1=μ ;
  2. [zi,zi+1] for each i{0,1,2,3,...k1} for all μ,ν) ;
  3. (Γ,) : the collection of all points μ such that (μ,Γμ) ;

(vi) Let us denote γ(μ,ν,) : the collection of all paths {z0,z1,z2,...,zk}  joining μ to ν in such that [zi,Γzi] for each i{1,2,3,...k1} .

Further, we state some preliminary results which will be helpful to develop our main results.

Ahmadullah et al.33 proved the results in metric-like spaces as well as partial metric spaces equipped with a binary relation. Sawangsup and Sintunavarat14 by combining the concepts of Wardowski and proved the fixed point theorems for F -contractions in metric space with applications to the solution of non-linear matrix equations with binary relation as follows:

Theorem 534. Let (,d) be a complete metric space, a binary relation on and let Γ be a self-mapping on . Suppose that the following conditions hold:

(i) (Γ,) is non-empty,

(ii) is Γ -closed,

(iii) either Γ is continuous or is G -self-closed,

(iv)there exists F and η+ such that for all μ,ν with (μ,ν) ,d(Γμ,Γν)>0η+F(d(Γμ,Γν))F(d(μ,ν)).

Then Γ has a fixed point. Moreover, for each x0(Γ,) the Picard sequence {Γnx0} is convergent to the fixed point Γ .

Results and discussion

Now, we prove the main results using interpolative Reich-Rus-Ćirić- -contraction mapping concepts via binary relation in generalized metric spaces.

Theorem 6. Let (,d)  be a complete metric space, a binary relation on and let Γ be an interpolative Reich-Rus-Ćirić type contractions mapping on . Suppose that the following conditions hold:

(i)(,d) is Γ complete,

(ii)(Γ,) is non-empty,

(iii) is Γ -closed,

(iv) the sequence {μn}  is -preserving,

(v) either Γ is continuous or is d-self closed,

(vi) there exists a constant η>0 such that μ,ν with (μ,ν) η+F(d(Γμ,Γν))F((μ,ν)), μ,νFix(Γ) where for all where Fix(Γ)={μ,Γμ=μ} . Then Γ has a fixed point. Also, if Γ is subsequentially convergent then for every μn1 the sequence of iterate {Γnμn1}  converges to this fixed point. Moreover, if

(vii)γ(μ,ν,s) is non-empty, for each μ,ν . Then Γ has a unique fixed point.

Proof. Assume x0 be an arbitrary point in (Γ,) . We construct a sequence {μn} of Picard iterates such that μn=Γnμ0=Γμn1 for all n . By condition (iii)  of Theorem 6, we have (μ0,Γμ0) and is Γ -closed, therefore

(Γμn1,Γn+1μn1),(Γn+1μn1,Γn+2μn1),,(Γnμn1,Γn+2μn1) .

Using $(???)$, we note that

(Γnμn1,Γn+1μn1),

n0.  Therefore the sequence {μn} is -preserving.

If there exists n such that μn=μn+1 , then μn is a fixed pint of Γ . The proof is completed. For that case, we assume that μnμn+1 for each n0 . Therefore

limnd(μn,μn+1)=0.

To show this, let μ=μn1 and ν=μn , using $(???)$ for all n0 , we deduce that

η+F(d(Γμn1,Γμn))F((μn1,μn)),

where

(μn1,μn)=[d(μn1,μn)]δ.[d(μn1,Γμn1)]α.[d(μn,Γμn)]1αδ,[d(μn1,μn)]δ.[d(μn1,μn)]α.[d(μn,μn+1)]1αδ,=[d(μn1,μn)]α+δ.[d(μn,μn+1)]1αδ.  

Taking $(???)$ into $(???)$, we obtain

η+F(d(Γμn1,Γμn))F([d(μn1,μn)]α+δ.[d(μn,μn+1)]1αδ).

By the continuity property of , and $(???)$, we get

d(Γμn1,Γμn)[d(μn1,μn)]α+δ.[d(μn,μn+1)]1αδ,(d(μn,μn+1))1(1αδ)[d(μn1,μn)]α+δ,(d(μn,μn+1))α+δ[d(μn1,μn)]α+δ.

So, we conclude that

d(μn,μn+1)d(μn1,μn),

for all n1 .

Consequently, we have

η+F(d(μn,μn+1))F(d(μn1,μn)).

Equivalent to

F(d(μn,μn+1))F(d(μn1,μn))η.

Similar, let μ=μn , ν=μn+1 , using $(???)$ and $(???)$ for all n0 , we get

F(d(μn+1,μn+2))F(d(μn1,μn))2η.

Proceeding this way, by induction we deduce

F(d(μn,μn+1))F(d(μn1,μn))nη,n1.

That is d(μn1,μn) is non-increasing sequence with non-negative terms. We denote Jn=d(μn,μn+1) , for all n0 . Since Γ is an F - -interpolative contraction mapping.

From $(???)$, we obtain

F(Jn)F(Jn1)ηF(Jn2)2ηF(J0)nη,

for all n0 .

By (F2) , we have

limnJn=0.

If and only if

limnF(Jn)=.

From (F3) and $(???)$, there exists z(0,1) such that

JznF(Jn)Jzn(F(Jn1)η)Jzn(F(J0)nη),JznF(Jn)Jzn(F(J0)nη)0,JznF(Jn)JznF(J0)Jznnη)0,JznF(Jn)JznF(J0)Jznnη0,Jzn(F(Jn)F(J0))Jznnη0.

Letting n in $(???)$, we obtain that

limnJznn=0.

Now, from $(???)$ there exist n10 such that Jznn1 for all nn1 .

Consequently, we have that

Jznn1,Jzn1n,Jn1n1z,Jnn1z.

Therefore, n=0d(μn,μn+1)=0 converges.

Next, we claim that {μn} is Cauchy sequence, that is, limnd(μn,μm)=0 n,m0  such that mn , by using the rectangular property we have

d(μn,μm)d(μn,μn+1)+d(μn+1,μn+2)++d(μm1,μm),Jn+Jn+1+Jn+2++Jm1,=m1i=nJi,m1i=nn1z.   

Since m1i=nn1z< , we get that {μn} is a Cauchy sequence in . Since (,d) is complete, there exists μ such that

d(μn,μ)=limnd(μn,μ)=0.   

Now, by the continuity of Γ , we get Γμ=μ . We show that μ is a fixed point of Γ . Assume that Γμμ such that Γμnμn n0 . By letting μ=μn and ν=μ in $(???)$, we obtain

η+F(d(Γμn,Γμ))F((μn,μ)),   

where

(μn,μ)=[d(μn,μ)]δ.[d(μn,Γμn)]α.[d(μ,Γμ)]1αδ,[d(μ,μ)]δ.[d(μ,μ)]α.[d(μ,μ)]1αδ,=[d(μ,μ)](α+δ)+(1αδ),=d(μ,μ).   

Taking $(???)$ into $(???)$, we get

η+F(d(Γμ,Γμ))F(d(μ,μ)),η+F(0)F(0),η0,  

which is a contradiction. Hence, d(μ,Γμ)=0 therefore μ=Γμ , which shows that μ is a fixed point of Γ . Also Γ is subsequentially convergent on . To observe this, let μ=μnk1 and ν=μnk , using $(???)$ we obtain

η+F(d(Γμnk1,Γμnk))F((μnk1,μnk)),

where

(μnk1,μnk)=[d(μnk1,μnk)]δ.[d(μnk1,Γμnk1)]α.[d(μnk,Γμnk)]1αδ,   

[d(μnk1,μnk)]δ.[d(μnk1,μnk)]α.[d(μnk,μnk+1)]1αδ,   

=                            [d(μnk1,μnk)]α+δ.[d(μnk,μnk+1)]1αδ.   

Using $(???)$ in $(???)$, we get

η+F(d(Γμnk1,Γμnk))F([d(μnk1,μnk)]α+δ.[d(μnk,μnk+1)]1αδ).   

By the property of F and F1 with $(???)$, we get

d(Γμnk1,Γμnk)[d(μnk1,μnk)]α+δ.[d(μnk,μnk+1)]1αδ,(d(μnk,μnk+1))1(1αδ)[d(μnk1,μnk)]α+δ,(d(μnk,μnk+1))α+δ[d(μnk1,μnk)]α+δ,

which is equivalent to

F(d(μnk,μnk+1))F(d(μnk1,μnk))η.   

Due to continuity of Γ , it implies that

limnΓμnk=Γμ=μ.   

This shows that Γ is subsequentially convergent.

Consider the hypothesis in Theorem 6, we prove assertion (vii)  as follows: we observe that (Γ,) is non-empty, so let us take a pair of elements say (μ,w) in (Γ,) such that

Γμ=μ,Γν=w.   

Next, we claim that μw . By the above equalities, there exists a S-path (say,z0,z1,z2,...,zl) of length in s from Γμ to Γν , with

Γz0=Γμ,Γzl=Γν,   

such that

[Γzi,Γzi+1]s,   

for all i0,1,2,3,...l1 .

Define two constant sequences such that

z0n=μ  and  zln=ν   

By using ([equation 4.20]), for all n , we have

Γz0n=Γμ=μ,Γzln=Γν=w.   

By usual substitution for zi0=zi for each i0,1,2,...l , that is

z10=z1,z20=z2,z30=z3,z40=z4,zl10=zl1.   

Thus we construct a sequence

{z1n},{z2n},{z3n},,{zin}.   

Corresponding to each zi , we have [Γzi0,Γzi1] from ([equation 4.20]), ([equation 4.21]) and is Γ -closed, we get

limnd(Γzin,Γzi+1n)=0,   

for each i1,2,3,...l1 and for all n .

Define din=d(Γzin,Γzi+1n)  for each i0,1,2,3,...l1 and for all n . We assert that, limndin>0 .

Since [Γzin,Γzi+1n] , either [Γzin,Γzi+1n] or [Γzi+1n,Γzin] .

If [Γzin,Γzi+1n] , for μ=zin and ν=zi+1n . Then applying the condition $(???)$, we have

η+F(d(Γzin,Γzi+1n))F((zin,zi+1n)),   

where

(zin,zi+1n)     =     [d(zin,zi+1n)]δ.[d(zin,Γzin)]α.[d(zi+1n,Γzi+1n)]1αδ,   

     [d(zin,zi+1n)]δ.[d(zin,zi+1n)]α.[d(zi+1n,zi+2n)]1αδ,   

=                 [d(zin,zi+1n)]α+δ.[d(zi+1n,zi+2n)]1αδ.   

Substituting $(???)$ in $(???)$, we get

η+F(d(zi+1n,zi+2n))F([d(zin,zi+1n)]α+δ.[d(zi+1n,zi+2n)]1αδ).   

By the property of F , we have

d(zi+1n,zi+2n)[d(zin,zi+1n)]α+δ.[d(zi+1n,zi+2n)]1αδ,d(zi+1n,zi+2n)1(1αδ)[d(zin,zi+1n)]α+δ,d(zi+1n,zi+2n)α+δ[d(zin,zi+1n)]α+δ,d(zi+1n,zi+2n)d(zin,zi+1n).   

Which is equivalent to

η+F(d(zi+1n,zi+2n))F(d(zin,zi+1n)),F(d(zi+1n,zi+2n))F(d(zin,zi+1n))η.   

Taking lim as i and using limidin=d , we get

d(Γzin,Γzi+1n)0.   

Implies that

η0,   

which is a contradiction and hence

limidin=d=0   

The same for rectangular property (iii), if (Γzin,Γzi+1n) , we have

limidin=limid(Γzin,Γzi+1n)=0,   

for i0,1,2,...l1 .

Using ([equation 4.21]),limidin=0 and (iii ), we have

d(μ,w)=d(zin,zjn)l1i=0d(zin,zi+1n),l1i=0din,0 as  n.   

So that

d(μ,w)=0μ=w.   

Therefore

Γμ=Γw,   

which is a contradiction. Thus μ is a unique fixed point of Γ . Thus the proof is completed. 

Due to the generalization of Theorem 6, we can deduce the corollary as follows:

Corollary 1. Let (,d) be a complete metric space and let Γ: be F -interpolative type mapping such that the following hypothesis hold:

(i)

is Γ is closed in (,d) ,

(ii)

there exists a constant η[0,1) such that

η+F(d(Γμ,Γν))F([d(μ,Γμ)]δ.[d(ν,Γν)]1δ),   

for all μ,ν with μΓμ , where η[0,1) and δ(0,1) .

Proof. The proof of the above corollary follows similar steps of Theorem 6. Therefore, the proof is completed.

Next, we give the following similar example from Moradi and Alimohammadi4 for illustration of the hypothesis of Theorem 6.

Example 1. Consider ={0}{0,1,12,13} and d be a Euclidean metric on . Then (,d)  is a complete metric space. The mapping Γ: be determined as Γ(0)=0   n=0,Γ(μ)=1μn+1,n1. Define a binary relation ={(μ,ν) 2},2  and ={(0,1),(0,12),(0,13),(1,13),(1,12),(12,13)}  on  . Then is -complete.

We claim that is not either -complete or Γ -closed. To verify this, we show that F3(c)=1cd(Γμ,Γν)(μ,ν)1(1+η(μ,ν))2  satisfy all the hypothesis of Theorem 6.

We complete the following metrics Using all of the above equalities, we obtain (μ,ν)=[|μν|]δ.[|μn+1+μ1μn+1|]α.[|νn+1+ν1νn+1|]1αδ,  By substituting $(???)$ in $(???)$, we obtain |μnνn(μn+1)(νn+1)|[|μν|]δ.[|μn+1+μ1μn+1|]α.[|νn+1+ν1νn+1|]1αδ1(1+η(μ,ν))2.  If we take δ=0.2,α=0.5,η=13 and n=1 in the above inequality, for all (μ,ν) , such that δ+α1 . We conclude that is either -complete or Γ -closed. Which is a contradiction to our claim. Hence, all the hypotheses of Theorem 6 are satisfied.

An application to non linear matrix equations

In this section, we prove the existence of the solution for the nonlinear matrix equation. We use one application to utilize the results obtained in Theorem 6, where a fixed point solution is applied to complete the Branciari distance. We refer to the study of the nonlinear matrix equation from Ran and Reurings5 who proved a fixed point theorem in partially ordered sets and some applications to matrix equations. The Hermitian solution of the equation X=Q+NX1N* is the matrix equation arising from the Gaussian process. The equation admits both definite positive solution and definite negative solution if and only if N is non-singular. If N is singular, no definite negative solution exists. Nonlinear matrix equations play an important role in several problems that arise in the analysis of control theory and system theory.


The main concern of this section is to apply Theorem 6 to study the following nonlinear matrix equations, which are motivated by Jain et al.,34 Lim et al.,35 Sawangsup and Sintunavara,14 Ran and Reurings5 and several others.

μ=Q+ni=1N*iΓ(μ)Ni,Q=μN*1Γ(μ)N1N*nΓ(μ)Nn,   

where (n) is a set of n×n Hermitian matrices, p(n) is a set of n×n positive definite matrices and p(n)(n) ,Q p(n) is a Hermitian positive definite matrix,Ni is n×n matrices and Γ;p(n)p(n) is a continuous order-preserving map such that Γ(0)=0 .

The set (n) equipped with the trace norm . tr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamXvP5wqSX2qVr wzqf2zLnharyqtHX2z15gih9gDOL2yaGqbaabaaaaaaaaapeGaa8Nf Giaac6cacaWFwaYdamaaBaaaleaapeGaamiDaiaadkhaa8aabeaaaa a@4663@ is a complete metric space and partially ordered MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaaeaaaaaaaaa8qacqWF8jcS aaa@42A4@ with partial ordering , where μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWF8jcScqaH9oGBaaa@4612@ equivalently νμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd42efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWF9jsScqaH8oqBaaa@4614@ .

We use the following lemmas from Ran and Reurings5 that will be useful for developing our results.

Lemma 25. If μ,ν0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUnrr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8xFIeRaaGimaaaa@477E@ are n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgEna0kaad6gaaaa@3B2B@ matrices, then 0tr( μ,ν )ν| tr( μ ) |. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadshacaWGYbWaaeWaa8aabaWdbiabeY7aTjaa cYcacqaH9oGBaiaawIcacaGLPaaacqGHKjYOtCvAUfeBSn0BKvguHD wzZbqeg0uySDwDUbYrVrhAPngaiuaacaWFwaIaeqyVd4Maa8NfGmaa emaapaqaa8qacaWG0bGaamOCamaabmaapaqaa8qacqaH8oqBaiaawI cacaGLPaaaaiaawEa7caGLiWoacaGGUaaaaa@5A3A@

Lemma 35. If μ,ν I n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUnrr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8hFIaRaamysa8aadaWgaaWcbaWdbiaad6gaa8 aabeaaaaa@48DD@ , then μ<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamXvP5wqSX2qVr wzqf2zLnharyqtHX2z15gih9gDOL2yaGqbaabaaaaaaaaapeGaa8Nf GiabeY7aTjaa=zbicqGH8aapcaaIXaaaaa@46DC@ .

Now, we prove a fixed point for self-mappings for the following nonlinear matrix equation in Branciari distance.

μ = Q+ i=1 n N i * Γ( μ ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeY7aTbWdaeaapeGaeyypa0dapaqaa8qacaWG rbGaey4kaSYaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapa qaa8qacaWGUbaan8aabaWdbiabggHiLdaatuuDJXwAK1uy0HwmaeHb fv3ySLgzG0uy0Hgip5wzaGqbaOGae8xdX70damaaDaaaleaapeGaam yAaaWdaeaapeGaaeOkaaaakiabfo5ahnaabmaapaqaa8qacqaH8oqB aiaawIcacaGLPaaacqWFneVtpaWaaSbaaSqaa8qacaWGPbaapaqaba GcpeGaaiilaaaaaaa@5857@   

where Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyicI4maaa@38B2@ p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaaaa@4698@ , N i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFneVt paWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@43D1@ is n×n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiabgEna0kaad6gaaaa@3B2B@ matrices, N i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFneVt paWaa0baaSqaa8qacaWGPbaapaqaa8qacaqGQaaaaaaa@448F@ stands for conjugate transpose of N i ( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFneVt paWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyicI4Sae83cHG0aae Waa8aabaWdbiaad6gaaiaawIcacaGLPaaaaaa@4903@ and Γ;p( n )p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaai4oamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaai abgkziUkab=Lc8Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaa aa@4F55@ is a continuous order-preserving map such that Γ( 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0aaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacqGH9aqp caaIWaaaaa@3CB8@ .

Theorem 7. Consider the class of nonlinear matrix Equation [equation 3.5] and suppose the following condition holds.

(i)

there exists Qp( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiabgIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaaa aa@48F2@ with Q = Q+ i=1 n N i * Γ( Q ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadgfaa8aabaWdbiabg2da9aWdaeaapeGaamyu aiabgUcaRmaawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdae aapeGaamOBaaqdpaqaa8qacqGHris5aaWefv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiuaakiab=1q8o9aadaqhaaWcbaWdbiaadM gaa8aabaWdbiaabQcaaaGccqqHtoWrdaqadaWdaeaapeGaamyuaaGa ayjkaiaawMcaaiab=1q8o9aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacaGGSaaaaaaa@5697@

(ii)

for all μ,νp( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrMrYf2A0vNCaeHb fv3ySLgzGyKCHTgD1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaa GaayjkaiaawMcaaaaa@4C3A@ , μν i=1 n N i * Γ( μ ) N i i=1 n N i * Γ( ν ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeY7aTjabgsMiJkabe27aUbWdaeaapeGaeyO0 H4napaqaa8qadaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8 aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaamrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfaGccqWFneVtpaWaa0baaSqaa8qaca WGPbaapaqaa8qacaqGQaaaaOGaeu4KdC0aaeWaa8aabaWdbiabeY7a TbGaayjkaiaawMcaaiab=1q8o9aadaWgaaWcbaWdbiaadMgaa8aabe aak8qacqGHKjYOdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigda a8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGae8xdX70damaaDa aaleaapeGaamyAaaWdaeaapeGaaeOkaaaakiabfo5ahnaabmaapaqa a8qacqaH9oGBaiaawIcacaGLPaaacqWFneVtpaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaaiilaaaaaaa@6F47@

(iii)

There exist δ,α( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaaiilaiabeg7aHjabgIGiopaabmaapaqaa8qacaaIWaGa aiilaiaaigdaaiaawIcacaGLPaaaaaa@4073@ for which i=1 n N i * N i <δ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWG Ubaan8aabaWdbiabggHiLdaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbaOGae8xdX70damaaDaaaleaapeGaamyAaaWdaeaa peGaaeOkaaaakiab=1q8o9aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacqGH8aapcqaH0oazcqWFqesspaWaaSbaaSqaa8qacaWGUbaapaqa baaaaa@5314@ and i=1 n N i * Γ( Q ) N i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWG Ubaan8aabaWdbiabggHiLdaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbaOGae8xdX70damaaDaaaleaapeGaamyAaaWdaeaa peGaaeOkaaaakiabfo5ahnaabmaapaqaa8qacaWGrbaacaGLOaGaay zkaaGae8xdX70damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg6da +iaaicdaaaa@53C7@ such that for all μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0MaeyizImQaeqyVd4gaaa@3C51@ we have μν i=1 n N i * Γ( μ ) N i i=1 n N i * Γ( ν ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabeY7aTjabgsMiJkabe27aUbWdaeaapeGaeyO0 H4napaqaa8qadaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8 aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaamrr1ngBPrwtHrhAXaqe guuDJXwAKbstHrhAG8KBLbacfaGccqWFneVtpaWaa0baaSqaa8qaca WGPbaapaqaa8qacaqGQaaaaOGaeu4KdC0aaeWaa8aabaWdbiabeY7a TbGaayjkaiaawMcaaiab=1q8o9aadaWgaaWcbaWdbiaadMgaa8aabe aak8qacqGHKjYOdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigda a8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGae8xdX70damaaDa aaleaapeGaamyAaaWdaeaapeGaaeOkaaaakiabfo5ahnaabmaapaqa a8qacqaH9oGBaiaawIcacaGLPaaacqWFneVtpaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaaiilaaaaaaa@6F47@  and i=1 n N i * Γ( μ ) N i i=1 n N i * Γ( ν ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGym aaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaWefv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiuaakiab=1q8o9aadaqhaaWcbaWd biaadMgaa8aabaWdbiaabQcaaaGccqqHtoWrdaqadaWdaeaapeGaeq iVd0gacaGLOaGaayzkaaGae8xdX70damaaBaaaleaapeGaamyAaaWd aeqaaaGcbaWdbiabgcMi5cWdaeaapeWaaybCaeqal8aabaWdbiaadM gacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaa kiab=1q8o9aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaabQcaaaGccq qHtoWrdaqadaWdaeaapeGaeqyVd4gacaGLOaGaayzkaaGae8xdX70d amaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaacYcaaaaaaa@67BA@

(iv)

there exist μ,ν( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbacfaGae83dXd1aaeWaa8aabaWdbiaad6gaai aawIcacaGLPaaaaaa@4ACA@ and ϑ1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeqy0dOKaeyizImQaaGymaaaa@3B46@  such that ΓμΓν tr ϑ μν tr ( 1+η μν tr ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaaqaaa aaaaaaWdbiaa=zbicqqHtoWrcqaH8oqBcqGHsislcqqHtoWrcqaH9o GBcaWFwaYdamaaBaaaleaapeGaamiDaiaadkhaa8aabeaaaOqaa8qa cqGHKjYOa8aabaWdbiabeg9aknaalaaapaqaa8qacaWFwaIaeqiVd0 MaeyOeI0IaeqyVd4Maa8NfG8aadaWgaaWcbaWdbiaadshacaWGYbaa paqabaaakeaapeWaaeWaa8aabaWdbiaaigdacqGHRaWkcqaH3oaAda GcaaWdaeaapeGaa8NfGiabeY7aTjabgkHiTiabe27aUjaa=zbipaWa aSbaaSqaa8qacaWG0bGaamOCaaWdaeqaaaWdbeqaaaGccaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaaiilaaaaaaa@67ED@ where μν tr =d( μ,ν ) = ( μ,ν )= [ d( μ,ν ) ] δ . [ d( μ,Γμ ) ] α . [ d( ν,Γν ) ] 1αδ , and  ϑ= i=1 n N i * N i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqacmaaae aatCvAUfeBSn0BKvguHDwzZbqeg0uySDwDUbYrVrhAPngaiuaaqaaa aaaaaaWdbiaa=zbicqaH8oqBcqGHsislcqaH9oGBcaWFwaYdamaaBa aaleaapeGaamiDaiaadkhaa8aabeaak8qacqGH9aqpcaWGKbWaaeWa a8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawIcacaGLPaaaa8aaba Wdbiabg2da9aWdaeaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgi p5wzaGGba8qacqGFZestpaWaaSbaaSqaa8qacqGFBeIua8aabeaak8 qadaqadaWdaeaapeGaeqiVd0Maaiilaiabe27aUbGaayjkaiaawMca aiabg2da9maadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabeY7aTj aacYcacqaH9oGBaiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaWba aSqabeaapeGaeqiTdqgaaOGaaiOlamaadmaapaqaa8qacaWGKbWaae Waa8aabaWdbiabeY7aTjaacYcacqqHtoWrcqaH8oqBaiaawIcacaGL PaaaaiaawUfacaGLDbaapaWaaWbaaSqabeaapeGaeqySdegaaOGaai Olamaadmaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabe27aUjaacYca cqqHtoWrcqaH9oGBaiaawIcacaGLPaaaaiaawUfacaGLDbaapaWaaW baaSqabeaapeGaaGymaiabgkHiTiabeg7aHjabgkHiTiabes7aKbaa kiaacYcaa8aabaaabaaabaWdbiaadggacaWGUbGaamizaiaacckaca GGGcGaeqy0dOKaeyypa0ZaaybCaeqal8aabaWdbiaadMgacqGH9aqp caaIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaakiab+1q8o9 aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaabQcaaaGccqGFneVtpaWa aSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiOlaaaaaaa@A567@  Then, the non linear matrix equation $(\ref{equation 3.5})$ has a solution in p( n )( n ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaGaeyOHI08efv3ySL gznfgDOfdarCqr1ngBPrginfgDObYtUvgaiyaacqGFlecsdaqadaWd aeaapeGaamOBaaGaayjkaiaawMcaaiaac6caaaa@566A@

Proof. Define Γ:p( n )p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCKaaiOoamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaai abgkziUkab=Lc8Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaa aa@4F54@ by

Γ( x ) = Q+ i=1 n N i * Γ( x ) N i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiabfo5ahnaabmaapaqaa8qacaWG4baacaGLOaGa ayzkaaaapaqaa8qacqGH9aqpa8aabaWdbiaadgfacqGHRaWkdaGfWb qabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6gaa0Wd aeaapeGaeyyeIuoaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbacfaGccqWFneVtpaWaa0baaSqaa8qacaWGPbaapaqaa8qacaqG QaaaaOGaeu4KdC0aaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaacq WFneVtpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaiilaaaaaaa@59F5@   

for all xp( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabgIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD 1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaaa aa@4919@ . Then the fixed point of the mapping Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is a solution of the matrix equation $(\ref{equation 3.5})$.

The Branciari metric d:p( n )×p( n ) + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaacQdatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxD YbacfaGae8xkWd3aaeWaa8aabaWdbiaad6gaaiaawIcacaGLPaaacq GHxdaTcqWFPapCdaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaaiab gkziUorr1ngBPrwtHrhAYaqehuuDJXwAKbstHrhAGq1DVbacgaGae4 xhHi1damaaBaaaleaapeGaey4kaScapaqabaaaaa@5CE1@ is defined by

d( μ,ν ) = μν. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaauaabiqabmaaae aaqaaaaaaaaaWdbiaadsgadaqadaWdaeaapeGaeqiVd0Maaiilaiab e27aUbGaayjkaiaawMcaaaWdaeaapeGaeyypa0dapaqaamXvP5wqSX 2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqba8qacaWFwaIaeqiV d0MaeyOeI0IaeqyVd4Maa8NfGiaac6caaaaaaa@5077@   

Let Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ be well defined on p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaaaa@4698@ and Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ -closed. For μ,νp( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd0Maaiilaiabe27aUjabgIGioprr1ngBPrMrYf2A0vNCaeHb fv3ySLgzGyKCHTgD1jhaiuaacqWFPapCdaqadaWdaeaapeGaamOBaa GaayjkaiaawMcaaaaa@4C3A@ with μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWF8jcScqaH9oGBaaa@4612@ , then Γ( μ )Γ( ν ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdC0aaeWaa8aabaWdbiabeY7aTbGaayjkaiaawMcaamrr1ngB PrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hFIaRaeu4KdC 0aaeWaa8aabaWdbiabe27aUbGaayjkaiaawMcaaaaa@4C32@ . We claim that Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is not an F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@37F9@ - MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAXaqeguuDJXwAKbstHrhAG8KBLbacfaaeaaaaaaaaa8qacqWFBeIu aaa@41CB@ -contraction mapping with respect to η>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdGMaeyOpa4JaaGimaaaa@3A9C@ and d( μ,ν )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGa ayzkaaGaeyOpa4JaaGimaaaa@3F9F@ and by using ( i )( iv ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadMgaaiaawIcacaGLPaaacqGHsisldaqadaWd aeaapeGaamyAaiaadAhaaiaawIcacaGLPaaaaaa@3E42@ we get

 d( Γμ,Γν )     =                    Γμ,Γν tr Γx,Γy 1,                        =   i=1 n N i * Γ( μ ) N i i=1 n N i * Γ( ν ) N i ,                        =              i=1 n N i * N i [ Γ( μ )Γ( μ ) ],                       =                    i=1 n N i * N i ΓμΓν,                       =      i=1 n N i * N i μν tr ( 1+η μν tr ) 2 ,                       =                       ϑ μν tr ( 1+η μν tr ) 2 ,                       =                      ϑ ( μ,ν ) ( 1+η ( μ,ν ) ) 2 , d( Γμ,Γν ) ( μ,ν )                               1 ( 1+η ( μ,ν ) ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaGGGcGaamizamaabmaapaqaa8qacqqHtoWrcqaH8oqBcaGG SaGaeu4KdCKaeqyVd4gacaGLOaGaayzkaaGaaiiOaiaacckacaGGGc GaaiiOaiaacckacqGH9aqpcaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOamXvP5wq SX2qVrwzqf2zLnharyqtHX2z15gih9gDOL2yaGqbaiaa=zbicqqHto WrcqaH8oqBcaGGSaGaeu4KdCKaeqyVd4Maa8NfG8aadaWgaaWcbaWd biaadshacaWGYbaapaqabaGcpeGaeyO0H4Taa8NfGiabfo5ahjaadI hacaGGSaGaeu4KdCKaamyEaiaa=zbipaWaaSbaaSqaa8qacaaIXaGa aiilaaWdaeqaaaGcbaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaeyypa0JaaiiOaiaacckacaWFwaYaaybCaeqal8aa baWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbi abggHiLdaatuuDJXwAK1uy0HwmaeXbfv3ySLgzG0uy0Hgip5wzaGGb aOGae4xdX70damaaDaaaleaapeGaamyAaaWdaeaapeGaaeOkaaaaki abfo5ahnaabmaapaqaa8qacqaH8oqBaiaawIcacaGLPaaacqGFneVt paWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyOeI0YaaybCaeqal8 aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWd biabggHiLdaakiab+1q8o9aadaqhaaWcbaWdbiaadMgaa8aabaWdbi aabQcaaaGccqqHtoWrdaqadaWdaeaapeGaeqyVd4gacaGLOaGaayzk aaGae4xdX70damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaa=zbica GGSaaabaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka cqGH9aqpcaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaa8NfGmaawaha beWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpa qaa8qacqGHris5aaGccqGFneVtpaWaa0baaSqaa8qacaWGPbaapaqa a8qacaqGQaaaaOGae4xdX70damaaBaaaleaapeGaamyAaaWdaeqaaO Wdbmaadmaapaqaa8qacqqHtoWrdaqadaWdaeaapeGaeqiVd0gacaGL OaGaayzkaaGaeyOeI0Iaeu4KdC0aaeWaa8aabaWdbiabeY7aTbGaay jkaiaawMcaaaGaay5waiaaw2faaiaa=zbicaGGSaaabaGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiabg2da9iaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaWFwaYaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqa a8qacaWGUbaan8aabaWdbiabggHiLdaakiab+1q8o9aadaqhaaWcba WdbiaadMgaa8aabaWdbiaabQcaaaGccqGFneVtpaWaaSbaaSqaa8qa caWGPbaapaqabaGcpeGaa8NfGiaa=zbicqqHtoWrcqaH8oqBcqGHsi slcqqHtoWrcqaH9oGBcaWFwaIaaiilaaqaaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacqGH9aqpcaGGGcGaaiiOaiaacckacaGGGc GaaiiOaiaa=zbidaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigda a8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGae4xdX70damaaDa aaleaapeGaamyAaaWdaeaapeGaaeOkaaaakiab+1q8o9aadaWgaaWc baWdbiaadMgaa8aabeaak8qacaWFwaYaaSaaa8aabaWdbiaa=zbicq aH8oqBcqGHsislcqaH9oGBcaWFwaYdamaaBaaaleaapeGaamiDaiaa dkhaa8aabeaaaOqaa8qadaqadaWdaeaapeGaaGymaiabgUcaRiabeE 7aOnaakaaapaqaa8qacaWFwaIaeqiVd0MaeyOeI0IaeqyVd4Maa8Nf G8aadaWgaaWcbaWdbiaadshacaWGYbaapaqabaaapeqabaaakiaawI cacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccaGGSaaabaGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiabg2da9iaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaeqy0dO0aaSaaa8aa baWdbiaa=zbicqaH8oqBcqGHsislcqaH9oGBcaWFwaYdamaaBaaale aapeGaamiDaiaadkhaa8aabeaaaOqaa8qadaqadaWdaeaapeGaaGym aiabgUcaRiabeE7aOnaakaaapaqaa8qacaWFwaIaeqiVd0MaeyOeI0 IaeqyVd4Maa8NfG8aadaWgaaWcbaWdbiaadshacaWGYbaapaqabaaa peqabaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaaaa GccaGGSaaabaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiab g2da9iaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacqaHrpGsda WcaaWdaeaapeGae43mH00damaaBaaaleaapeGae43gHifapaqabaGc peWaaeWaa8aabaWdbiabeY7aTjaacYcacqaH9oGBaiaawIcacaGLPa aaa8aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeq4TdG2aaOaa a8aabaWdbiab+ntin9aadaWgaaWcbaWdbiab+TrisbWdaeqaaOWdbm aabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaaa leqaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaO Gaaiilaaqaamaalaaapaqaa8qacaWGKbWaaeWaa8aabaWdbiabfo5a hjabeY7aTjaacYcacqqHtoWrcqaH9oGBaiaawIcacaGLPaaaa8aaba Wdbiab+ntin9aadaWgaaWcbaWdbiab+TrisbWdaeqaaOWdbmaabmaa paqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaaaaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiabgsMiJkaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaacckacaGGGcWaaSaaa8aabaWdbiaaig daa8aabaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaeq4TdG2aaOaa a8aabaWdbiab+ntin9aadaWgaaWcbaWdbiab+TrisbWdaeqaaOWdbm aabmaapaqaa8qacqaH8oqBcaGGSaGaeqyVd4gacaGLOaGaayzkaaaa leqaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaO Gaaiilaaaaaa@8294@   

which is a contradiction. Hence Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ is a contraction. Therefore, from i=1 n N i * Γ( Q ) N i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWG Ubaan8aabaWdbiabggHiLdaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGqbaOGae8xdX70damaaDaaaleaapeGaamyAaaWdaeaa peGaaeOkaaaakiabfo5ahnaabmaapaqaa8qacaWGrbaacaGLOaGaay zkaaGae8xdX70damaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg6da +iaaicdaaaa@53C7@ , we have QΓ( Q ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiabgsMiJkabfo5ahnaabmaapaqaa8qacaWGrbaacaGLOaGa ayzkaaaaaa@3D9F@ . Thus, by using Theorem 6 we conclude that Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeu4KdCeaaa@3896@ has a unique fixed point in p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaaaaa@4698@ and p( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=Lc8 Wnaabmaapaqaa8qacaWGUbaacaGLOaGaayzkaaGaeyicI48efv3ySL gznfgDOfdarCqr1ngBPrginfgDObYtUvgaiyaacqGFZestaaa@52CD@

Conclusion

The new concept of relation-theoretic F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraaaa@37F9@ -interpolative mapping endowed with binary relation in Branciari Distance in metric spaces has been introduced. In particular, we improved and extended the works due to Alam and Imdad17, Ahmadullah et al.28 , Ahmadullah et al29. , Eke et al.30 , Sawangsup and Sintunavarat14 ,Aydi et al.24  and Karapinar et al20. . In doing so, we generalized several other works in the literature having the same setting. Henceforth, the results obtained will be verified with the help of illustrative examples. Also, we demonstrate the results with an application in matrix equations

Compliance with ethical standards

Conflict of interest: Authors declare that they have no conflicts of interest.

 Research involving human participants and/or animals: The author declares that there are no human participants and/or animals involved in this research.

Funding

Authors declare that there is no funding available for this research.

References

  1. Kannan R. Some results on fixed points. Bull Calcutta Math Soc. 1968;60:71–76.
  2. Branciari. A fixed point theorem of Banach–Caccippoli type on a class of generalized metric spaces. Publ Math Debrecen.  2000;57;31–37.
  3. Azam, M Arshad. Kannan fixed point theorem on generalized metric spaces. The Journal of Nonlinear Sciences and Its Applications. 2008;1:45–48.
  4. Moradi S, Alimohammadi D. New extensions of Kannan fixed-Point theorem on complete metric and generalized Metric spaces. Int Journal of Math Analysis. 2011;5(47):2313–2320.
  5. CM Ran, B Reurings. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc Amer Math Soc. 2004;132:1435–1443.
  6. Nieto J, Rodríguez-López R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order. 2005;22(3):223–239.
  7. Wardowski. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012;1:94.
  8. Wardowski, NV Dung. Fixed points of F–weak contractions on complete metric spaces. Demonstr Math. 2014;1:146–155.
  9. Acar O, Durmaz G, Minak G. Generalized multivalued F–contractions on complete metric spaces. Bull Iran Math Soc. 2014;40(6):1469–1478.
  10. Altun G Minak, H Dag. Multivalued F–contractions on complete metric space. Journal of Non–linear Convex Analysis. 2015;4:659–666.
  11. Minak G, Helvaci A, Altun I. Ćirić type generalized F-contractions on complete metric spaces and fixed point results. Filomat. 2014; 28(6):1143–1151.
  12. Paesano D, Vetro C. Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation. Revista de la Real Academia de Ciencias Exactas Fisicas Naturales. 2014;108(2):1005–1020.
  13. H Piri, P Kumam. Some fixed point theorems concerning F–contraction in complete metric spaces. Fixed Point Theory Appl. 2014:1–11.
  14. Sawangsup W, A.F.R.L. de Hierro. Fixed point theorems for F_R–contractions with applications to the solution of nonlinear matrix equations. Journal of Fixed Point Theory and Applications. 2017;3:711–1725.
  15. A Tomar, R Sharma. Some coincidence and common fixed point theorems concerning –contraction and applications. Journal of Inter Math Virt Inst. 2018;2:181–198.
  16. S Bashir, N Saleem, SM Husnine. Fixed point results of a generalized reversed F–contraction mapping and its application. AIMS Mathematics. 2021:8;8728–8741.
  17. Alam, Imdad M. Relation–theoretic contraction principle. J Fixed Point Theor Appl. 2015;17(4):693–702.
  18. Kannan R. Some results on fixed point II. The American Mathematical Monthly. 1969;76(4):405–408.
  19. Karapinar E. Revisiting the Kannan type contractions via interpolation. Adv Theory Nonlinear Anal Appl. 2018;2(2):85–87.
  20. Karapinar E, Agarwal R. Interpolative Rus-Reich-Ćirić type contractions via simulation functions. An St Univ Ovidius Constanta Ser Mat. 2019;27(3):137–152.
  21. Karapinar E, Agarwal R, Aydi H. Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces. Mathematics. 2018;6(11):256.
  22. Y Errai, EM Marhrani, M Aamri. Some New Results of Interpolative Hardy–Rogers and Ćirić–Reich–Rus Type contraction. Journal of Mathematics. 2021;1–12.
  23. Mishra VN, Sánchez Ruiz LM, Gautam P, et al. Interpolative Reich-Rus-Ćirić and Hardy-Rogers Contraction on quasi-partial b-metric space and related fixed point results. Mathematics. 2020;8(9):1598.
  24. H Aydi, CM Chen, E Karapınar. Interpolative Ćirić–Reich–Rus type contractions via the Branciari distance. Mathematics. 2018;1:84.
  25. H Aydi, E Karapinar, AF Roldán López de Hierro. ω–interpolative Ćirić–Reich–Rus–type contractions. An Universitatii” Ovidius. Constanta–Seria Matematica. 2019;1:57.
  26. Gautam P, Kaur C. Fixed points of interpolative Matkowski type contraction and its application in solving non-linear matrix equations. Rendiconti del Circolo Matematico di Palermo. 2022;72(2):1–18.
  27. Alam, Imdad M. Relation–theoretic metrical coincidence theorems. Filomat.  2017,31(14):4421–4439.
  28. Ahmadullah M, Ali J, Imdad M. Unified relation–theoretic metrical fixed point theorems under an implicit contractive condition with an application. Fixed Point Theory and Applications. 2016;42(1):1–15.
  29. Ahmadullah M, Imdad M, Gubran R. Relation–theoretic metrical fixed point theorems under nonlinear contractions. Fixed Point Theory. 2016.
  30. S Eke, B Davvaz, JG Oghonyon. Relation–theoretic common fixed point theorems for a pair of implicit contractive maps in metric spaces. Communications in Mathematics and Applications. 2019;1:159–168.
  31. Mlaiki N, Abodayeh K, Aydi H, et al. Rectangular metric-like type spaces related fixed points. J Math. 2018;2018:3581768.
  32. M Cosentino, P Vetro. Fixed point result for F–contractive mappings of Hardy–Rogers–type. Filomat. 2014;4:715–722.
  33. Ahmadullah M, Khan AR, Imdad M. Relation–theoretic contraction principle in metric–like as well as partial metric spaces. Bull Math Analysis Appl. 2017;9(3):31–41.
  34. Jain R, Nashine HK, Kadelburg Z. Some fixed point results on relational quasi partial metric spaces and application to non-Linear matrix equations. Symmetry. 2021;13(6):993.
  35. Lim Y. Solving the non-linear matrix equation X=Q+∑_(i=1)^n▒‍ MiX^δi Mi^* via a contraction principle. Linear algebra and its applications. 2009;430(4):1380–1383.
  36. ADD THE FOLLOWING REFERENCES

  37. Definition 3-T Suzuki. Generalized metric space does not have the compatible topology. Abstr Appl Anal. 2014;2014:458098.
  38.   Proposition  1-Kirk WA, Shahzad N. Generalized metrics and Caristi’s theorem. Fixed Point Theory Appl. 2013;2013:129.
  39. Defition 6- S. Lipschutz,  Schaum’s Outlines of Theory and Problems of Set Theory and Related Topics, \emph{McGraw-Hill,} New York (1964).
  40. Definition 14- Kolman B, Busby RC, Ross S. Discrete mathematical structures, 3rd edn. PHI Pvt. Ltd, New Delhi. 2000.
Creative Commons Attribution License

©2023 Wangwe. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.