Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 4

Finite periodic orbits around L4 in photogravitational restricted three–body problem

Hariprasad P, Prashant Kumar, Ram Krishnan Sharma

Department of Aerospace Engineering, Karunya Institute of Technology and Sciences, India

Correspondence: ARam Krishnan Sharma, Department of Aerospace Engineering, Karunya Institute of Technology and Sciences, Coimbatore?641114, Tamil Nadu, India, Tel 9194 8784 6632

Received: July 29, 2018 | Published: August 24, 2018

Citation: Hariprasad P, Kumar P, Ram KS. Finite periodic orbits around L4 in photogravitational restricted three–body problem. Phys Astron Int J. 2018;2(4):382-387. DOI: 10.15406/paij.2018.02.00114

Download PDF

Abstract

The motion of the infinitesimal mass in the restricted three–body problem is considered in the vicinity of the triangular point L4, when the more massive primary is considered as a source of radiation. General coordinates are taken as polar coordinates ( r, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaiaacYcacaqGGaGaeqiUdehaaa@3FB1@ ) centered at the triangular point L4. A time–independent nonlinear second–order ordinary differential equation for r as a function of θ is derived. Approximations to periodic solutions of finite size are obtained following the geometrical dynamics approach of Rand and Podgorski.1

Keywords: restricted three–body problem, triangular liberation point, polar coordinates, geometrical dynamics approach, solar radiation pressure, periodic solutions of finite size

Introduction

The simplicity and elusiveness of the three–body problem have attracted a number of mathematicians for centuries. There are names of many great mathematicians (Euler, Lagrange, Jacobi, Hill, Hamilton, Poincaré, Birkhoff etc.), who have worked on this problem and made important contributions. The book of Szebehely2 provides systematic coverage of the literature on the subject as well as derivations of some of the important results. Even today the problem of three–body is as enigmatic as ever. If two of the finite bodies move in circular coplanar orbits about their common center of mass and the third body is too small to affect the motion of the two bodies, then the problem is called circular restricted three body problem (RTBP). In the circular problem, two finite masses are fixed in a co–ordinate system rotating with the orbital angular velocity and origin is at the center of mass of the two bodies. It resembles an important dynamical system for the study of new investigations regarding motions not only in the solar system but also in other planetary systems. Motion of small space objects (asteroid, comet, ring, spacecraft, satellite etc.) in the solar system as well as Sun–planet systems (Sun–Earth system, Sun–Jupiter system etc.) are the best examples of RTBP. In 1772, the famous mathematician Lagrange discovered that in a rotating frame, there are five stationary or equilibrium points at which the restricted mass would remain fixed if placed there. Three of them lie on the line connecting the two finite masses, called collinear equilibrium points and remaining two are located at equidistant from the two finite masses, called triangular equilibrium points. That is, the two masses and the triangular points are thus located at the vertices of the equilateral triangle in the plane of the circular orbits. The problem becomes more interesting when it also includes the other type of space structures such as belt, disk, ring etc., which are present in the solar system.3 Different aspects of this problem such as conditions for existence of equilibrium points, stability property (linear and nonlinear), periodicity of the orbits etc., with perturbation factors in the form of radiation pressure, oblateness etc. have been studied by many authors, Some of the studies.4–9 Periodic orbits of finite size around the Lagrangian point L4 had been the subject of investigations.10,11 Geometrical dynamics is the study of the geometry of the orbits in configuration space of a dynamical system without reference to the system’s motion in time. It is an alternative approach to study the motion around the Lagrangian points. Rand & Podogorski1 were the first to introduce this approach to planar RTBP it terms of the polar coordinates ( r, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaiaacYcacaqGGaGaeqiUdehaaa@3FB1@ ) centered at L4 to study the motion around it in the RTBP. Sharma and Subba Rao12 employed their method to study the motion around L4 in the planar RTBP when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion. In this paper we have utilized the same approach in the planar RTBP when the more massive primary is a source of radiation. We have used the polar coordinates ( r, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaiaacYcacaqGGaGaeqiUdehaaa@3FB1@ ) centered at the triangular liberation point L4. A time–independent nonlinear second–order ordinary differential equation for r as a function of is derived. Approximations to periodic solutions are obtained by perturbations and Fourier series. These solutions represent periodic orbits around L4.

Equation of motion

The equations of motion for the circular photogravitational planar RTBP in the dimensionless barycentric synodic coordinates x, y are:2,13

x ¨ 2 y ˙ x= V x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmiEa8aagaWaa8qacqGHsislcaqGYaGa bmyEa8aagaGaa8qacqGHsislcaWG4bGaeyypa0JaeyOeI0IaamOvaK qba+aadaWgaaqcbasaaKqzadWdbiaadIhaaKqaG8aabeaaaaa@47B4@    (1)

y ¨ +2 x ˙ y= V y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmyEa8aagaWaa8qacqGHRaWkcaaIYaGa bmiEa8aagaGaa8qacqGHsislcaWG5bGaeyypa0JaeyOeI0IaamOvaK qba+aadaWgaaqcbasaaKqzadWdbiaadMhaaKqaG8aabeaaaaa@47B2@    (2)

where

V=q( 1µ )/ r 1 µ/ r 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaeOvaiabg2da9iabgkHiTiaabghakmaa bmaapaqaaKqzGeWdbiaaigdacqGHsislcaqG1caakiaawIcacaGLPa aajugibiaac+cacaqGYbqcfa4damaaBaaajeaibaqcLbmapeGaaGym aaqcbaYdaeqaaKqzGeWdbiabgkHiTiaabwlacaGGVaGaaeOCaKqba+ aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaaaaa@5175@

r 1 2 = ( xµ ) 2 + y 2 ;  r 2 2 = ( x+1µ ) 2 + y 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaKqba+aadaWgaaqcbasaaKqzadWd biaaigdaaKqaG8aabeaajuaGdaahaaqcbasabeaajugWa8qacaaIYa aaaKqzGeGaeyypa0JcdaqadaWdaeaajugib8qacaWG4bGaeyOeI0Ia amyTaaGccaGLOaGaayzkaaqcfa4damaaCaaajeaibeqaaKqzadWdbi aaikdaaaqcLbsacqGHRaWkcaWG5bqcfa4damaaCaaajeaibeqaaKqz adWdbiaaikdaaaqcLbsacaGG7aGaaiiOaiaadkhajuaGpaWaaSbaaK qaGeaajugWa8qacaaIYaaajeaipaqabaqcfa4aaWbaaKqaGeqabaqc LbmapeGaaGOmaaaajugibiabg2da9OWaaeWaa8aabaqcLbsapeGaam iEaiabgUcaRiaaigdacqGHsislcaWG1caakiaawIcacaGLPaaajuaG paWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiabgUcaRiaadM hajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiaac6ca aaa@6D3F@    (3)

q is the mass reduction factor for a given particle. In order to obtain the equations of motion in terms of polar coordinates ( r, θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaiaacYcacaqGGaGaeqiUdehaaa@3FB1@ );

x=a+r cos( θ+α ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiEaiabg2da9iaadggacqGHRaWkcaWG YbGaaeiiaiaadogacaWGVbGaam4CaOWdamaabmaabaqcLbsapeGaeq iUdeNaey4kaSIaeqySdegak8aacaGLOaGaayzkaaqcLbsapeGaaiil aaaa@4BCA@

y=b+r sin( θ+α ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyEaiabg2da9iaadkgacqGHRaWkcaWG YbGaaeiiaiaadohacaWGPbGaamOBaOWdamaabmaabaqcLbsapeGaeq iUdeNaey4kaSIaeqySdegak8aacaGLOaGaayzkaaqcLbsapeGaaiil aaaa@4BD1@    (4)

α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbiabeg7aHbaa@3CC1@ is the angle which the major axis of the ellipse makes with x–axis. (a,b) are the coordinates of L4. Differentiating, we get

x ˙ = r ˙ cos( θ+α )r θ ˙ sin( θ+α ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmiEa8aagaGaa8qacqGH9aqpceWGYbWd ayaacaWdbiaabogacaqGVbGaae4CaOWaaeWaa8aabaqcLbsapeGaeq iUdeNaey4kaSIaeqySdegakiaawIcacaGLPaaajugibiabgkHiTiaa dkhacuaH4oqCpaGbaiaapeGaam4CaiaadMgacaWGUbGcdaqadaWdae aajugib8qacqaH4oqCcqGHRaWkcqaHXoqyaOGaayjkaiaawMcaaKqz GeGaaiilaaaa@5737@

y ˙ = r ˙ sin( θ+α )+r θ ˙ cos( θ+α ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmyEa8aagaGaa8qacqGH9aqpceWGYbWd ayaacaWdbiaadohacaWGPbGaamOBaOWaaeWaa8aabaqcLbsapeGaeq iUdeNaey4kaSIaeqySdegakiaawIcacaGLPaaajugibiabgUcaRiaa dkhacuaH4oqCpaGbaiaapeGaam4yaiaad+gacaWGZbGcdaqadaWdae aajugib8qacqaH4oqCcqGHRaWkcqaHXoqyaOGaayjkaiaawMcaaKqz GeGaaiOlaaaa@5735@

Differentiating again, we get

x ¨ = r ¨ cos( θ+α )2 θ ˙ r ˙ sin( θ+α )r θ ˙ 2 cos( θ+α )r θ ¨ sin( θ+α ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmiEa8aagaWaa8qacqGH9aqpceWGYbWd ayaadaWdbiaadogacaWGVbGaam4CaOWaaeWaa8aabaqcLbsapeGaeq iUdeNaey4kaSIaeqySdegakiaawIcacaGLPaaajugibiabgkHiTiaa ikdacuaH4oqCpaGbaiaapeGabmOCa8aagaGaa8qacaWGZbGaamyAai aad6gakmaabmaapaqaaKqzGeWdbiabeI7aXjabgUcaRiabeg7aHbGc caGLOaGaayzkaaqcLbsacqGHsislcaWGYbGafqiUde3dayaacaqcfa 4aaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiaadogacaWGVbGa am4CaOWaaeWaa8aabaqcLbsapeGaeqiUdeNaey4kaSIaeqySdegaki aawIcacaGLPaaajugibiabgkHiTiaadkhacuaH4oqCpaGbamaapeGa am4CaiaadMgacaWGUbGcdaqadaWdaeaajugib8qacqaH4oqCcqGHRa WkcqaHXoqyaOGaayjkaiaawMcaaKqzGeGaaiilaaaa@76CA@

y ¨ = r ¨ sin( θ+α )+2 θ ˙ r ˙ sin( θ+α )r θ ˙ 2 sin( θ+α )+r θ ¨ cos( θ+α ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmyEa8aagaWaa8qacqGH9aqpceWGYbWd ayaadaWdbiaadohacaWGPbGaamOBaOWaaeWaa8aabaqcLbsapeGaeq iUdeNaey4kaSIaeqySdegakiaawIcacaGLPaaajugibiabgUcaRiaa ikdacuaH4oqCpaGbaiaapeGabmOCa8aagaGaa8qacaWGZbGaamyAai aad6gakmaabmaapaqaaKqzGeWdbiabeI7aXjabgUcaRiabeg7aHbGc caGLOaGaayzkaaqcLbsacqGHsislcaWGYbGafqiUde3dayaacaqcfa 4aaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiaadohacaWGPbGa amOBaOWaaeWaa8aabaqcLbsapeGaeqiUdeNaey4kaSIaeqySdegaki aawIcacaGLPaaajugibiabgUcaRiaadkhacuaH4oqCpaGbamaapeGa am4yaiaad+gacaWGZbGcdaqadaWdaeaajugib8qacqaH4oqCcqGHRa WkcqaHXoqyaOGaayjkaiaawMcaaKqzGeGaaiOlaaaa@76BC@

Substituting these expressions in the equations of motion (1 and 2) and simplifying, we get

r-r θ ˙ 2 -2r θ ˙ -V x cos(θ+α)-V y sin( θ+α )+acos( θ+α )+bsin( θ+α )+r, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaeOCaiaab2cacaqGYbGafqiUdeNbaiaa juaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaqGTaGaaeOmai aabkhacuaH4oqCgaGaaiaab2cacaqGwbqcfa4damaaBaaajeaibaqc LbmapeGaaeiEaaqcbaYdaeqaaKqzGeWdbiaabogacaqGVbGaae4Cai aabIcacaqG4oGaae4kaiaabg7acaqGPaGaaeylaiaabAfak8aadaWg aaqcbasaaKqzadWdbiaabMhaaSWdaeqaaKqzGeWdbiaabohacaqGPb GaaeOBaOWaaeWaa8aabaqcLbsapeGaaeiUdiaabUcacaqGXoaakiaa wIcacaGLPaaajugibiaabUcacaqGHbGaae4yaiaab+gacaqGZbGcda qadaWdaeaajugib8qacaqG4oGaae4kaiaabg7aaOGaayjkaiaawMca aKqzGeGaae4kaiaabkgacaqGZbGaaeyAaiaab6gakmaabmaapaqaaK qzGeWdbiaabI7acaqGRaGaaeySdaGccaGLOaGaayzkaaqcLbsacaqG RaGaaeOCaiaabYcaaaa@7902@   (5)

r 2 θ ¨ +2r r ˙ ( θ+1 ) =V x sin(θ+α)-V y cos(θ+α)-asin( θ+α )+bcos(θ+α), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaKqbaoaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiqbeI7aXzaadaGaey4kaSIaaGOmaiaadkhaceWGYb GbaiaakmaabmaapaqaaKqzGeWdbiaabI7acaqGRaGaaeymaaGccaGL OaGaayzkaaqcLbsacaqG9aGaaeOvaOWdamaaBaaajeaibaqcLbmape GaaeiEaaWcpaqabaqcLbsapeGaae4CaiaabMgacaqGUbGaaeikaiaa bI7acaqGRaGaaeySdiaabMcacaqGTaGaaeOvaOWdamaaBaaajeaiba qcLbmapeGaaeyEaaWcpaqabaqcLbsapeGaae4yaiaab+gacaqGZbGa aeikaiaabI7acaqGRaGaaeySdiaabMcacaqGTaGaaeyyaiaabohaca qGPbGaaeOBaOWaaeWaa8aabaqcLbsapeGaaeiUdiaabUcacaqGXoaa kiaawIcacaGLPaaajugibiaabUcacaqGIbGaae4yaiaab+gacaqGZb GaaeikaiaabI7acaqGRaGaaeySdiaabMcacaqGSaaaaa@771D@   (6)

where

V x =q( 1-μ )( x-μ )/ r 1 3 ( x+1-μ )/ r 2 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaeOvaKqba+aadaWgaaqcbasaaKqzadWd biaabIhaaKqaG8aabeaajugib8qacaqG9aGaaeyCaOWaaeWaa8aaba qcLbsapeGaaeymaiaab2cacaqG8oaakiaawIcacaGLPaaadaqadaWd aeaajugib8qacaqG4bGaaeylaiaabY7aaOGaayjkaiaawMcaaKqzGe Gaai4laiaabkhajuaGpaWaaSbaaKqaGeaajugWa8qacaqGXaaajeai paqabaqcfa4aaWbaaKqaGeqabaqcLbmapeGaae4maaaajugibiaabU cacaqG8oGcdaqadaWdaeaajugib8qacaqG4bGaae4kaiaabgdacaqG TaGaaeiVdaGccaGLOaGaayzkaaqcLbsacaGGVaGaaeOCaKqba+aada WgaaqcbasaaKqzadWdbiaabkdaaKqaG8aabeaajuaGdaahaaqcbasa beaajugWa8qacaqGZaaaaKqzGeWdaiaacYcaaaa@66EF@

V y =y[ (1-μ)/ r 1 3 / r 2 3 ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaeOvaKqba+aadaWgaaqcbasaaKqzadWd biaabMhaaKqaG8aabeaajugib8qacaqG9aGaaeyEaOWaamWaa8aaba qcLbsapeGaaeikaiaabgdacaqGTaGaaeiVdiaabMcacaGGVaGaaeOC aKqba+aadaWgaaqcbasaaKqzadWdbiaabgdaaKqaG8aabeaajuaGda ahaaqcbasabeaajugWa8qacaqGZaaaaKqzGeGaae4kaiaabY7acaGG VaGaaeOCaKqba+aadaWgaaqcbasaaKqzadWdbiaabkdaaKqaG8aabe aajuaGdaahaaqcbasabeaajugWa8qacaqGZaaaaaGccaGLBbGaayzx aaqcLbsacaGGSaaaaa@5BC3@

V r =q( 1-μ )/ r 1 3 [ ( x-μ )cos( θ+α )+ysin( θ+α ) ]/ r 2 3 [ ( x+1-μ )cos( θ+α )+ysin(θ+α) ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaeOvaKqba+aadaWgaaqcbasaaKqzadWd biaabkhaaKqaG8aabeaajugib8qacaqG9aGaaeyCaOWaaeWaa8aaba qcLbsapeGaaeymaiaab2cacaqG8oaakiaawIcacaGLPaaajugibiaa c+cacaqGYbqcfa4damaaBaaajeaibaqcLbmapeGaaeymaaqcbaYdae qaaKqbaoaaCaaajeaibeqaaKqzadWdbiaabodaaaGcdaWadaWdaeaa peWaaeWaa8aabaqcLbsapeGaaeiEaiaab2cacaqG8oaakiaawIcaca GLPaaajugibiaabogacaqGVbGaae4CaOWaaeWaa8aabaqcLbsapeGa aeiUdiaabUcacaqGXoaakiaawIcacaGLPaaajugibiaabUcacaqG5b Gaae4CaiaabMgacaqGUbGcdaqadaWdaeaajugib8qacaqG4oGaae4k aiaabg7aaOGaayjkaiaawMcaaaGaay5waiaaw2faaKqzGeGaae4kai aabY7acaGGVaGaaeOCaKqba+aadaWgaaqcbasaaKqzadWdbiaabkda aKqaG8aabeaajuaGdaahaaqcbasabeaajugWa8qacaqGZaaaaOWaam Waa8aabaWdbmaabmaapaqaaKqzGeWdbiaabIhacaqGRaGaaeymaiaa b2cacaqG8oaakiaawIcacaGLPaaajugibiaabogacaqGVbGaae4CaO WaaeWaa8aabaqcLbsapeGaaeiUdiaabUcacaqGXoaakiaawIcacaGL PaaajugibiaabUcacaqG5bGaae4CaiaabMgacaqGUbGaaeikaiaabI 7acaqGRaGaaeySdiaabMcaaOGaay5waiaaw2faaKqzGeGaaiilaaaa @9017@

V r =q( 1-μ )/ r 1 3 [ ( x-μ )cos( θ+α )+ysin( θ+α ) ]/ r 2 3 [ ( x+1-μ )cos( θ+α )+ysin(θ+α) ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaeOvaKqba+aadaWgaaqcbasaaKqzadWd biaabkhaaKqaG8aabeaajugib8qacaqG9aGaaeyCaOWaaeWaa8aaba qcLbsapeGaaeymaiaab2cacaqG8oaakiaawIcacaGLPaaajugibiaa c+cacaqGYbqcfa4damaaBaaajeaibaqcLbmapeGaaeymaaqcbaYdae qaaKqbaoaaCaaajeaibeqaaKqzadWdbiaabodaaaGcdaWadaWdaeaa peWaaeWaa8aabaqcLbsapeGaaeiEaiaab2cacaqG8oaakiaawIcaca GLPaaajugibiaabogacaqGVbGaae4CaOWaaeWaa8aabaqcLbsapeGa aeiUdiaabUcacaqGXoaakiaawIcacaGLPaaajugibiaabUcacaqG5b Gaae4CaiaabMgacaqGUbGcdaqadaWdaeaajugib8qacaqG4oGaae4k aiaabg7aaOGaayjkaiaawMcaaaGaay5waiaaw2faaKqzGeGaae4kai aabY7acaGGVaGaaeOCaKqba+aadaWgaaqcbasaaKqzadWdbiaabkda aKqaG8aabeaajuaGdaahaaqcbasabeaajugWa8qacaqGZaaaaOWaam Waa8aabaWdbmaabmaapaqaaKqzGeWdbiaabIhacaqGRaGaaeymaiaa b2cacaqG8oaakiaawIcacaGLPaaajugibiaabogacaqGVbGaae4CaO WaaeWaa8aabaqcLbsapeGaaeiUdiaabUcacaqGXoaakiaawIcacaGL PaaajugibiaabUcacaqG5bGaae4CaiaabMgacaqGUbGaaeikaiaabI 7acaqGRaGaaeySdiaabMcaaOGaay5waiaaw2faaKqzGeGaaiilaaaa @9017@

V θ =q( 1-μ )/ r 1 3 [ -r( x-μ )sin( θ+α )+yrcos( θ+α ) ]+ μ/ r 2 3 [ -r( x+1-μ )sin( θ+α )+yrcos(θ+α) ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaeOvaKqba+aadaWgaaqcbasaaKqzadWd biaabI7aaKqaG8aabeaajugib8qacaqG9aGaaeyCaOWaaeWaa8aaba qcLbsapeGaaeymaiaab2cacaqG8oaakiaawIcacaGLPaaajugibiaa c+cacaqGYbqcfa4damaaBaaajeaibaqcLbmapeGaaeymaaqcbaYdae qaaKqbaoaaCaaajeaibeqaaKqzadWdbiaabodaaaGcdaWadaWdaeaa jugib8qacaqGTaGaaeOCaOWaaeWaa8aabaqcLbsapeGaaeiEaiaab2 cacaqG8oaakiaawIcacaGLPaaajugibiaabohacaqGPbGaaeOBaOWa aeWaa8aabaqcLbsapeGaaeiUdiaabUcacaqGXoaakiaawIcacaGLPa aajugibiaabUcacaqG5bGaaeOCaiaabogacaqGVbGaae4CaOWaaeWa a8aabaqcLbsapeGaaeiUdiaabUcacaqGXoaakiaawIcacaGLPaaaai aawUfacaGLDbaajugibiaabUcacaqG8oGaai4laiaabkhajuaGpaWa aSbaaKqaGeaajugWa8qacaqGYaaajeaipaqabaqcfa4aaWbaaKqaGe qabaqcLbmapeGaae4maaaakmaadmaapaqaaKqzGeWdbiaab2cacaqG YbGcdaqadaWdaeaajugib8qacaqG4bGaae4kaiaabgdacaqGTaGaae iVdaGccaGLOaGaayzkaaqcLbsacaqGZbGaaeyAaiaab6gakmaabmaa paqaaKqzGeWdbiaabI7acaqGRaGaaeySdaGccaGLOaGaayzkaaqcLb sacaqGRaGaaeyEaiaabkhacaqGJbGaae4BaiaabohacaqGOaGaaeiU diaabUcacaqGXoGaaeykaaGccaGLBbGaayzxaaqcLbsacaGGSaaaaa@96C6@ V x  cos(θ+α)+ V y sin( θ+α )= V r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaOWdamaaBaaaleaajugWa8qacaWG 4bqcLbsacaGGGcaal8aabeaajugib8qacaqGJbGaae4Baiaabohaca GGOaGaeqiUdeNaey4kaSIaeqySdeMaaiykaiabgUcaRiaadAfajuaG paWaaSbaaKqaGeaajugWa8qacaWG5baajeaipaqabaqcLbsapeGaci 4CaiaacMgacaGGUbGcdaqadaWdaeaajugib8qacqaH4oqCcqGHRaWk cqaHXoqyaOGaayjkaiaawMcaaKqzGeGaeyypa0JaamOvaKqba+aada WgaaqcbasaaKqzadWdbiaadkhaaKqaG8aabeaajugib8qacaGGSaaa aa@5FFF@

V x sin( θ+α ) V y cos(θ+α)= V θ /r. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaOWdamaaBaaajeaibaqcLbmapeGa amiEaaWcpaqabaqcLbsapeGaci4CaiaacMgacaGGUbGcdaqadaWdae aajugib8qacqaH4oqCcqGHRaWkcqaHXoqyaOGaayjkaiaawMcaaKqz GeGaeyOeI0IaamOvaKqba+aadaWgaaqcbasaaKqzadWdbiaadMhaaK qaG8aabeaajugib8qacaqGJbGaae4BaiaabohacaGGOaGaeqiUdeNa ey4kaSIaeqySdeMaaiykaiabg2da9iabgkHiTiaadAfajuaGpaWaaS baaKqaGeaajugWa8qacqaH4oqCaKqaG8aabeaajugib8qacaGGVaGa amOCaiaac6caaaa@61CE@

The equations of motion then become

r ¨ r θ ˙ 2 2r θ ˙ = V r +acos( θ+α )+bsin( θ+α )+r= U r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOCa8aagaWaa8qacqGHsislcaWGYbGa fqiUde3dayaacaqcfa4aaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaju gibiabgkHiTiaaikdacaWGYbGafqiUde3dayaacaWdbiabg2da9iab gkHiTiaadAfajuaGpaWaaSbaaKqaGeaajugWa8qacaWGYbaajeaipa qabaqcLbsapeGaey4kaSIaamyyaiGacogacaGGVbGaai4CaOWaaeWa a8aabaqcLbsapeGaeqiUdeNaey4kaSIaeqySdegakiaawIcacaGLPa aajugibiabgUcaRiaadkgaciGGZbGaaiyAaiaac6gakmaabmaapaqa aKqzGeWdbiabeI7aXjabgUcaRiabeg7aHbGccaGLOaGaayzkaaqcLb sacqGHRaWkcaWGYbGaeyypa0JaeyOeI0IaamyvaOWdamaaBaaajeai baqcLbmapeGaamOCaaWcpaqabaqcLbsacaGGSaaaaa@6F1E@   (7)

r 2 θ ¨ +2r r ˙ ( θ+1 )= V θ +[ bcos( θ+α )asin( θ+α ) ]r= U θ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOCaKqba+aadaahaaqcbasabeaajugW a8qacaaIYaaaaKqzGeGafqiUde3dayaadaWdbiabgUcaRiaaikdaca WGYbGabmOCa8aagaGaaOWdbmaabmaapaqaaKqzGeWdbiabeI7aXjab gUcaRiaaigdaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaeyOeI0Iaam OvaKqba+aadaWgaaqcbasaaKqzadWdbiabeI7aXbqcbaYdaeqaaKqz GeGaey4kaSIcpeWaamWaa8aabaqcLbsapeGaaeOyaiGacogacaGGVb Gaai4CaOWaaeWaa8aabaqcLbsapeGaeqiUdeNaey4kaSIaeqySdega kiaawIcacaGLPaaajugibiabgkHiTiaadggaciGGZbGaaiyAaiaac6 gakmaabmaapaqaaKqzGeWdbiabeI7aXjabgUcaRiabeg7aHbGccaGL OaGaayzkaaaacaGLBbGaayzxaaqcLbsacaWGYbGaeyypa0JaeyOeI0 IaamyvaOWdamaaBaaajeaibaqcLbmapeGaeqiUdehal8aabeaajugi biaacYcaaaa@75E3@   (8)

where

U=V r 2 /2r[ acos( θ+α )+b sin( θ+α ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyvaiabg2da9iaadAfacqGHsislcaWG Ybqcfa4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsacaGGVa GaaGOmaiabgkHiTiaadkhakmaadmaapaqaaKqzGeWdbiaabggaciGG JbGaai4BaiaacohakmaabmaapaqaaKqzGeWdbiabeI7aXjabgUcaRi abeg7aHbGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGIbGaaiiOaiGa cohacaGGPbGaaiOBaOWaaeWaa8aabaqcLbsapeGaeqiUdeNaey4kaS IaeqySdegakiaawIcacaGLPaaaaiaawUfacaGLDbaajugibiaac6ca aaa@6210@   (9)

The Jacobian Integral is

r ˙ 2 /2+ r ˙ 2 θ ˙ 2 /2+U=h=constant MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOCa8aagaGaaKqbaoaaCaaajeaibeqa aKqzadWdbiaaikdaaaqcLbsacaGGVaGaaGOmaiabgUcaRiqadkhapa GbaiaajuaGdaahaaqcbasabeaajugWa8qacaaIYaaaaKqzGeGafqiU de3dayaacaqcfa4aaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibi aac+cacaaIYaGaey4kaSIaamyvaiabg2da9iaadIgacqGH9aqpcaWG JbGaam4Baiaad6gacaWGZbGaamiDaiaadggacaWGUbGaamiDaaaa@59CE@    (10)

Taking r as a function of θ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiUdeNaaiikaGqadiqa=jhapaGbauaa peGaaiykaaaa@3FEA@

r ˙ = r θ ˙ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOCa8aagaGaa8qacqGH9aqpceWGYbWd ayaafaWdbiqbeI7aX9aagaGaa8qacaqGSaaaaa@4186@

r ¨ = r θ ˙ 2 + r θ ¨ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOCayaadaGaeyypa0JabmOCayaagaGa fqiUdeNbaiaajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacq GHRaWkceWGYbGbauaacuaH4oqCgaWaaiaac6caaaa@4825@ Also

r ¨ =r θ ˙ 2 +2r θ ˙ U r , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOCayaadaGaeyypa0JaamOCaiqbeI7a Xzaacaqcfa4aaWbaaKazba2=beqaaKqzadGaaGOmaaaajugibiabgU caRiaaikdacaWGYbGafqiUdeNbaiaacqGHsislcaWGvbqcfa4aaSba aKqaGeaajugWaiaadkhaaKqaGeqaaKqzGeGaaiilaaaa@4FE6@

θ ¨ = U θ / r 2 2 r ˙ (θ+1)/r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGafqiUdeNbamaacqGH9aqpcqGHsislcaWG vbGcdaWgaaqcbasaaKqzadGaeqiUdehaleqaaKqzGeGaai4laiaadk hajuaGdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHsislcaaI YaGabmOCayaacaGaaiikaiabeI7aXjabgUcaRiaaigdacaGGPaGaai 4laiaackhaaaa@520C@

θ ˙ 2 =2( hU ) /( r 2 + r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGafqiUde3dayaacaqcfa4aaWbaaKqaGeqa baqcLbmapeGaaGOmaaaajugibiabg2da9iaaikdakmaabmaapaqaaK qzGeWdbiaadIgacqGHsislcaWGvbaakiaawIcacaGLPaaajugibiaa cckacaGGVaGcdaqadaWdaeaajugib8qacaWGYbGcpaWaaWbaaSqabK qaGeaajugWa8qacaaIYaaaaKqzGeGaey4kaSIabmOCa8aagaqbaKqb aoaaCaaajeaibeqaaKqzadWdbiaaikdaaaaakiaawIcacaGLPaaaaa a@550D@

After substitution, we get

r θ ˙ 2 +2r θ ˙ U r = r θ ˙ 2 + r [ U θ / r 2 2 r ˙ (θ+1)/r ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGYbGafqiUde3dayaacaqcfa4d bmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRiaaikdaca WGYbGafqiUdeNbaiaacqGHsislcaWGvbqcfa4aaSbaaKqaGeaajugW aiaadkhaaKqaGeqaaKqzGeGaeyypa0JabmOCayaagaGafqiUdeNbai aakmaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIabmOC ayaafaGcdaWadaqaaKqzGeGaeyOeI0IaamyvaKqbaoaaBaaajeaiba qcLbmacqaH4oqCaKqaGeqaaKqzGeGaai4laiaadkhajuaGdaahaaqc basabeaajugWaiaaikdaaaqcLbsacqGHsislcaaIYaGabmOCayaaca GaaiikaiabeI7aXjabgUcaRiaaigdacaGGPaGaai4laiaackhaaOGa ay5waiaaw2faaaaa@6BC1@

Substituting to above equation, we get a time–independent second–order ordinary differential equation

( h-U )( r 2 r r +2 r 2 )2 [2(hu)] 1 2 [ r 2 + r 2 ] 3 2 +( r 2 + r 2 )( ( r /r) U e r U r )=0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaqGYaGaaeiOaOWaaeWaa8aabaqc LbsapeGaaeiAaiaab2cacaqGvbaakiaawIcacaGLPaaajugibiaacI cacaGGYbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOe I0IaaiOCaiqackhagaGbaiabgUcaRiaaikdaceGGYbGbauaajuaGda ahaaqcbasabeaajugWaiaaikdaaaqcLbsacaGGPaGaeyOeI0IaaGOm aiaacUfacaaIYaGaaiikaiaacIgacqGHsislcaWG1bGaaiykaiaac2 fakmaaCaaaleqajeaibaqcfa4aaSaaaKqaGeaajugWaiaaigdaaKqa GeaajugWaiaaikdaaaaaaKqzGeGaai4waiaackhakmaaCaaaleqaje aibaqcLbmacaaIYaaaaKqzGeGaey4kaSIabiOCayaafaGcdaahaaWc beqcbasaaKqzadGaaGOmaaaajugibiaac2fajuaGdaahaaqcbasabe aajuaGdaWcaaqcbasaaKqzadGaaG4maaqcbasaaKqzadGaaGOmaaaa aaqcLbsacqGHRaWkcaGGOaGaaiOCaKqbaoaaCaaajeaibeqaaKqzad GaaGOmaaaajugibiabgUcaRiqackhagaqbaKqbaoaaCaaajeaibeqa aKqzadGaaGOmaaaajugibiaacMcakmaabmaabaqcLbsacaGGOaGabi OCayaafaGaai4laiaackhacaGGPaGaaiyvaKqbaoaaBaaajeaibaqc LbmacaWGLbaajeaibeaajugibiabgkHiTiaackhacaGGvbGcdaWgaa qcbasaaKqzadGaamOCaaWcbeaaaOGaayjkaiaawMcaaKqzGeGaeyyp a0JaaGimaiaac6caaaa@8F46@

Here it has been assumed that θ ˙ <0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeGafqiUdeNbaiaacqGH8aapcaaIWaaaaa@3FCF@ for periodic orbits around L4.2

An approximate solution

Location of the triangular liberation point L4,

a= 1 2 + ϵ 3 +μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGHbGaeyypa0JaeyOeI0IcdaWc aaWdaeaajugib8qacaaIXaaak8aabaqcLbsapeGaaGOmaaaacqGHRa Wkkmaalaaapaqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KB LbacgiqcLbsapeGae8x9dipak8aabaqcLbsapeGaaG4maaaacqGHRa WkcqaH8oqBaaa@53F5@ (13)

b= 3 ( 1 2 ϵ 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGIbGaeyypa0JcdaGcaaWdaeaa jugib8qacaaIZaaaleqaaOWaaeWaa8aabaWdbmaalaaapaqaaKqzGe WdbiaaigdaaOWdaeaajugib8qacaaIYaaaaiabgkHiTOWaaSaaa8aa baWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiyGajugib8 qacqWF1pG8aOWdaeaajugib8qacaaI5aaaaaGccaGLOaGaayzkaaaa aa@53C4@ (14)

tan2α= 3 ( 1 8ϵ 9 2μ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG0bGaamyyaiaad6gacaaIYaGa eqySdeMaeyypa0JcdaGcaaWdaeaajugib8qacaaIZaaaleqaaOWaae Waa8aabaqcLbsapeGaaGymaiabgkHiTOWaaSaaa8aabaqcLbsapeGa aGioamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacgiGae8 x9dipak8aabaqcLbsapeGaaGyoaaaacqGHsislcaaIYaGaeqiVd0ga kiaawIcacaGLPaaaaaa@5A88@ (15)

q=1 ε, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGXbGaeyypa0JaaGymaiabgkHi TiaacckacqaH1oqzcaGGSaaaaa@4391@  (16)

where ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH1oqzaaa@3E19@ is a small quantity. Transforming of potential equation and substituting it in the equation below, we get

U=V r 2 /2r[ acos( θ+α )+b sin( θ+α ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGvbGaeyypa0JaamOvaiabgkHi TiaadkhajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibi aac+cacaaIYaGaeyOeI0IaamOCaOWaamWaa8aabaqcLbsapeGaaeyy aiGacogacaGGVbGaai4CaOWaaeWaa8aabaqcLbsapeGaeqiUdeNaey 4kaSIaeqySdegakiaawIcacaGLPaaajugibiabgUcaRiaadkgacaGG GcGaae4CaiaabMgacaqGUbGcdaqadaWdaeaajugib8qacqaH4oqCcq GHRaWkcqaHXoqyaOGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@618A@      (17)

U= U 0 + r 2 g( θ )+ r 3 f( θ )+0( r 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGvbGaeyypa0JaamyvaKqba+aa daWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugib8qacqGHRa WkcaWGYbqcfa4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsa caWGNbGcdaqadaWdaeaajugib8qacqaH4oqCaOGaayjkaiaawMcaaK qzGeGaey4kaSIaamOCaKqba+aadaahaaqcbasabeaajugWa8qacaaI ZaaaaKqzGeGaamOzaOWaaeWaa8aabaqcLbsapeGaeqiUdehakiaawI cacaGLPaaajugibiabgUcaRiaaicdakmaabmaapaqaaKqzGeWdbiaa dkhajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGinaaaaaOGaayjkai aawMcaaaaa@6035@  (18)

where

U 0 =1+ϵ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGvbqcfa4damaaBaaajeaibaqc LbmapeGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaig dacqGHRaWktuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGGb ciab=v=aYdaa@5090@

g( θ )= 3 4 (1+ϵ+( 5ϵ 3λ +λ )Cos[ 2θ ]) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGNbGcdaqadaWdaeaajugib8qa cqaH4oqCaOGaayjkaiaawMcaaKqzGeGaeyypa0JcdaWcaaWdaeaaju gib8qacaaIZaaak8aabaqcLbsapeGaaGinaaaacaGGOaGaeyOeI0Ia aGymaiabgUcaRmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb acgiGae8x9diVaey4kaSIcdaqadaWdaeaajugib8qacqGHsislkmaa laaapaqaaKqzGeWdbiaaiwdacqWF1pG8aOWdaeaajugib8qacaaIZa Gaeq4UdWgaaiabgUcaRiabeU7aSbGccaGLOaGaayzkaaqcLbsacaqG dbGaae4BaiaabohakmaadmaapaqaaKqzGeWdbiaaikdacqaH4oqCaO Gaay5waiaaw2faaKqzGeGaaiykaaaa@6C8F@

f( θ )=( 3 16 + 15ϵ 16 + 3μ 8 )Cos[ α+θ ]+( 5 8 5ϵ 4 5μ 4 )Cos[ 3α+3θ ]+( 3 3 16 41ϵ 16 3 )Sin[ α+θ ] 5ϵSin[ 3α+3θ ] 8 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGMbGcdaqadaWdaeaajugib8qa cqaH4oqCaOGaayjkaiaawMcaaKqzGeGaeyypa0JcdaqadaWdaeaaju gib8qacqGHsislkmaalaaapaqaaKqzGeWdbiaaiodaaOWdaeaajugi b8qacaaIXaGaaGOnaaaacqGHRaWkkmaalaaapaqaaKqzGeWdbiaaig dacaaI1aWefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiyGa cqWF1pG8aOWdaeaajugib8qacaaIXaGaaGOnaaaacqGHRaWkkmaala aapaqaaKqzGeWdbiaaiodacqaH8oqBaOWdaeaajugib8qacaaI4aaa aaGccaGLOaGaayzkaaqcLbsacaqGdbGaae4Baiaabohakmaadmaapa qaaKqzGeWdbiabeg7aHjabgUcaRiabeI7aXbGccaGLBbGaayzxaaqc LbsacqGHRaWkkmaabmaapaqaa8qadaWcaaWdaeaajugib8qacaaI1a aak8aabaqcLbsapeGaaGioaaaacqGHsislkmaalaaapaqaaKqzGeWd biaaiwdacqWF1pG8aOWdaeaajugib8qacaaI0aaaaiabgkHiTOWaaS aaa8aabaqcLbsapeGaaGynaiabeY7aTbGcpaqaaKqzGeWdbiaaisda aaaakiaawIcacaGLPaaajugibiaaboeacaqGVbGaae4CaOWaamWaa8 aabaqcLbsapeGaaG4maiabeg7aHjabgUcaRiaaiodacqaH4oqCaOGa ay5waiaaw2faaKqzGeGaey4kaSIcdaqadaWdaeaapeWaaSaaa8aaba qcLbsapeGaaG4maOWaaOaaa8aabaqcLbsapeGaaG4maaWcbeaaaOWd aeaajugib8qacaaIXaGaaGOnaaaacqGHsislkmaalaaapaqaaKqzGe WdbiaaisdacaaIXaGae8x9dipak8aabaqcLbsapeGaaGymaiaaiAda kmaakaaapaqaaKqzGeWdbiaaiodaaSqabaaaaaGccaGLOaGaayzkaa qcLbsacaqGtbGaaeyAaiaab6gakmaadmaapaqaaKqzGeWdbiabeg7a HjabgUcaRiabeI7aXbGccaGLBbGaayzxaaqcLbsacqGHsislkmaala aapaqaaKqzGeWdbiaaiwdacqWF1pG8caqGtbGaaeyAaiaab6gakmaa dmaapaqaaKqzGeWdbiaaiodacqaHXoqycqGHRaWkcaaIZaGaeqiUde hakiaawUfacaGLDbaaa8aabaqcLbsapeGaaGioaOWaaOaaa8aabaqc LbsapeGaaG4maaWcbeaaaaaaaa@B836@

Solution of the differential equation will be of the form

r 2 = M N+cos2θ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGYbqcfa4damaaCaaajeaibeqa aKqzadWdbiaaikdaaaqcLbsacqGH9aqpkmaalaaapaqaaKqzGeWdbi aad2eaaOWdaeaajugib8qacaWGobGaey4kaSIaae4yaiaab+gacaqG ZbGaaGOmaiaabI7aaaGaaiOlaaaa@4B62@

Substituting this equation into (12) and

at θ=0° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH4oqCcqGH9aqpcaaIWaGaeyiS aalaaa@41D3@

2 2 ( M 1+N ) 3/2 1+h 3M( 1+ 5ϵ 3λ +λ ) 4( 1+N ) + 2M( 1+N )( 1+hϵ 3M( 1+ 5 3λ +λ ) 4( 1+N ) ) ( 1+N ) 2 M 2 ( 3( 1+λ )λ+( 5+3λ ) ) 2 ( 1+N ) 2 λ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq GabeqaaWBabaqcLbsaqaaaaaaaaaWdbiabgkHiTiaaikdakmaakaaa paqaaKqzGeWdbiaaikdaaSqabaGcdaqadaWdaeaapeWaaSaaa8aaba qcLbsapeGaamytaaGcpaqaaKqzGeWdbiaaigdacqGHRaWkcaWGobaa aaGccaGLOaGaayzkaaqcfa4damaaCaaajeaibeqaaKqzadWdbiaaio dacaGGVaGaaGOmaaaakmaakaaapaqaaKqzGeWdbiaaigdacqGHRaWk caWGObGaeyOeI0IaeyicI4SaeyOeI0IcdaWcaaWdaeaajugib8qaca aIZaGaamytaOWaaeWaa8aabaqcLbsapeGaeyOeI0IaaGymaiabgUca RiabgIGiolabgkHiTOWaaSaaa8aabaqcLbsapeGaaGynamrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacgiGae8x9dipak8aabaqc LbsapeGaaG4maiabeU7aSbaacqGHRaWkcqaH7oaBaOGaayjkaiaawM caaaWdaeaajugib8qacaaI0aGcdaqadaWdaeaajugib8qacaaIXaGa ey4kaSIaamOtaaGccaGLOaGaayzkaaaaaaWcbeaajugibiabgUcaRO WaaSaaa8aabaqcLbsapeGaaGOmaiaad2eakmaabmaapaqaaKqzGeWd biabgkHiTiaaigdacqGHRaWkcaWGobaakiaawIcacaGLPaaadaqada Wdaeaajugib8qacaaIXaGaey4kaSIaamiAaiabgkHiTiab=v=aYlab gkHiTOWaaSaaa8aabaqcLbsapeGaaG4maiaad2eakmaabmaapaqaaK qzGeWdbiabgkHiTiaaigdacqGHRaWkcqGHiiIZcqGHsislkmaalaaa paqaaKqzGeWdbiaaiwdacqGHiiIZaOWdaeaajugib8qacaaIZaGaeq 4UdWgaaiabgUcaRiabeU7aSbGccaGLOaGaayzkaaaapaqaaKqzGeWd biaaisdakmaabmaapaqaaKqzGeWdbiaaigdacqGHRaWkcaWGobaaki aawIcacaGLPaaaaaaacaGLOaGaayzkaaaapaqaa8qadaqadaWdaeaa jugib8qacaaIXaGaey4kaSIaamOtaaGccaGLOaGaayzkaaqcfa4dam aaCaaajeaibeqaaKqzadWdbiaaikdaaaaaaKqzGeGaeyOeI0cakeaa daWcaaWdaeaajugib8qacaWGnbqcfa4damaaCaaajeaibeqaaKqzad WdbiaaikdaaaGcdaqadaWdaeaajugib8qacaaIZaGcdaqadaWdaeaa jugib8qacqGHsislcaaIXaGaey4kaSIaeq4UdWgakiaawIcacaGLPa aajugibiabeU7aSjabgUcaRiabgIGioRWaaeWaa8aabaqcLbsapeGa eyOeI0IaaGynaiabgUcaRiaaiodacqaH7oaBaOGaayjkaiaawMcaaa GaayjkaiaawMcaaaWdaeaajugib8qacaaIYaGcdaqadaWdaeaajugi b8qacaaIXaGaey4kaSIaamOtaaGccaGLOaGaayzkaaqcfa4damaaCa aajeaibeqaaKqzadWdbiaaikdaaaqcLbsacqaH7oaBaaGaeyypa0Ja aGimaaaaaa@CF71@   (19)

θ=90° MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH4oqCcqGH9aqpcaaI5aGaaGim aiabgclaWcaa@4297@

2 2 ( M 1+N ) 3/2 1+h 3M( 1++ 5 3λ λ ) 4( 1+N ) + 2M( 1+N )( 1+h 3M( 1++ 5 3λ λ ) 4( 1+N ) ) ( 1+N ) 2 + M 2 ( 3λ( 1+λ )( 5+3λ ) ) 2 ( 1+N ) 2 λ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq GabeqaaWBabaqcLbsaqaaaaaaaaaWdbiabgkHiTiaaikdakmaakaaa paqaaKqzGeWdbiaaikdaaSqabaGcdaqadaWdaeaapeWaaSaaa8aaba qcLbsapeGaamytaaGcpaqaaKqzGeWdbiabgkHiTiaaigdacqGHRaWk caWGobaaaaGccaGLOaGaayzkaaqcfa4damaaCaaajeaibeqaaKqzad WdbiaaiodacaGGVaGaaGOmaaaakmaakaaapaqaaKqzGeWdbiaaigda cqGHRaWkcaWGObGaeyOeI0ccciGae8hcI4SaeyOeI0IcdaWcaaWdae aajugib8qacaaIZaGaamytaOWaaeWaa8aabaqcLbsapeGaeyOeI0Ia aGymaiabgUcaRiab=HGiolabgUcaROWaaSaaa8aabaqcLbsapeGaaG ynaiab=HGiodGcpaqaaKqzGeWdbiaaiodacqaH7oaBaaGaeyOeI0cc caGae43UdWgakiaawIcacaGLPaaaa8aabaqcLbsapeGaaGinaOWaae Waa8aabaqcLbsapeGaeyOeI0IaaGymaiabgUcaRiaad6eaaOGaayjk aiaawMcaaaaaaSqabaqcLbsacqGHRaWkkmaalaaapaqaaKqzGeWdbi aaikdacaWGnbGcdaqadaWdaeaajugib8qacaaIXaGaey4kaSIaamOt aaGccaGLOaGaayzkaaWaaeWaa8aabaqcLbsapeGaaGymaiabgUcaRi aadIgacqGHsislcqWFiiIZcqGHsislkmaalaaapaqaaKqzGeWdbiaa iodacaWGnbGcdaqadaWdaeaajugib8qacqGHsislcaaIXaGaey4kaS Iae8hcI4Saey4kaSIcdaWcaaWdaeaajugib8qacaaI1aGae8hcI4ma k8aabaqcLbsapeGaaG4maiabeU7aSbaacqGHsislcqGF7oaBaOGaay jkaiaawMcaaaWdaeaajugib8qacaaI0aGcdaqadaWdaeaajugib8qa cqGHsislcaaIXaGaey4kaSIaamOtaaGccaGLOaGaayzkaaaaaaGaay jkaiaawMcaaaWdaeaapeWaaeWaa8aabaqcLbsapeGaeyOeI0IaaGym aiabgUcaRiaad6eaaOGaayjkaiaawMcaaKqba+aadaahaaqcbasabe aajugWa8qacaaIYaaaaaaajugibiabgUcaRaGcbaWaaSaaa8aabaqc LbsapeGaamytaKqba+aadaahaaqcbasabeaajugWa8qacaaIYaaaaO WaaeWaa8aabaqcLbsapeGaaG4maiab+T7aSPWaaeWaa8aabaqcLbsa peGaaGymaiabgUcaRiab+T7aSbGccaGLOaGaayzkaaqcLbsacqGHsi slcqWFiiIZkmaabmaapaqaaKqzGeWdbiaaiwdacqGHRaWkcaaIZaGa e43UdWgakiaawIcacaGLPaaaaiaawIcacaGLPaaaa8aabaqcLbsape GaaGOmaOWaaeWaa8aabaqcLbsapeGaeyOeI0IaaGymaiabgUcaRiaa d6eaaOGaayjkaiaawMcaa8aadaahaaWcbeqcbasaaKqzadWdbiaaik daaaqcLbsacqGF7oaBaaGaeyypa0JaaGimaaaaaa@C526@ (20)

After equating both the equations and simplifying, we get

M= ( 1+h+ϵ )( 4( 1+3 N 2 )+6N( 1+ N 2 )( 5ϵ 3λ +λ ) ) 6N( 1+ϵ )+ 5ϵ λ 3λ+ N 2 ( 10ϵ λ +6λ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGnbGaeyypa0JaeyOeI0IcdaWc aaWdaeaapeWaaeWaa8aabaqcLbsapeGaeyOeI0IaaGymaiabgUcaRi aadIgacqGHRaWktuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGGbciab=v=aYdGccaGLOaGaayzkaaWaaeWaa8aabaqcLbsapeGaaG inaOWaaeWaa8aabaqcLbsapeGaaGymaiabgUcaRiaaiodacaWGobqc fa4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaaakiaawIcacaGLPa aajugibiabgUcaRiaaiAdacaWGobGcdaqadaWdaeaajugib8qacqGH sislcaaIXaGaey4kaSIaamOtaKqba+aadaahaaqcbasabeaajugWa8 qacaaIYaaaaaGccaGLOaGaayzkaaWaaeWaa8aabaqcLbsapeGaeyOe I0IcdaWcaaWdaeaajugib8qacaaI1aGae8x9dipak8aabaqcLbsape GaaG4maiabeU7aSbaacqGHRaWkcqaH7oaBaOGaayjkaiaawMcaaaGa ayjkaiaawMcaaaWdaeaajugib8qacqGHsislcaaI2aGaamOtaOWaae Waa8aabaqcLbsapeGaeyOeI0IaaGymaiabgUcaRiab=v=aYdGccaGL OaGaayzkaaqcLbsacqGHRaWkkmaalaaapaqaaKqzGeWdbiaaiwdacq WF1pG8aOWdaeaajugib8qacqaH7oaBaaGaeyOeI0IaaG4maiabeU7a SjabgUcaRiaad6eajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaa aakmaabmaapaqaaKqzGeWdbiabgkHiTOWaaSaaa8aabaqcLbsapeGa aGymaiaaicdacqWF1pG8aOWdaeaajugib8qacqaH7oaBaaGaey4kaS IaaGOnaiabeU7aSbGccaGLOaGaayzkaaaaaaaa@9DA9@

Where

N= 4+ 8+9 λ 2  Sign[ 1+h+ϵ ] 3λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGobGaeyypa0JaeyOeI0IcdaWc aaWdaeaajugib8qacaaI0aGaey4kaSIcdaGcaaWdaeaajugib8qacq GHsislcaaI4aGaey4kaSIaaGyoaiabeU7aSPWdamaaCaaaleqajeai baqcLbmapeGaaGOmaaaaaSqabaqcLbsacaGGGcGaae4uaiaabMgaca qGNbGaaeOBaOWaamWaa8aabaqcLbsapeGaeyOeI0IaaGymaiabgUca RiaadIgacqGHRaWktuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5 wzaGGbciab=v=aYdGccaGLBbGaayzxaaaapaqaaKqzGeWdbiaaioda cqaH7oaBaaaaaa@655D@

Values of h>  U 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGObGaeyOpa4JaaiiOaiaadwfa juaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaaaaa@437D@ correspond to the short–period orbits and h<  U 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGObGaeyipaWJaaiiOaiaadwfa juaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaaaaa@4379@ corresponds to the long–period orbits.
For M and N to be real, it is necessary that

8+9 λ 2 >0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqGHsislcaaI4aGaey4kaSIaaGyo aiabeU7aSLqba+aadaahaaqcbasabeaajugWa8qacaaIYaaaaKqzGe Wdaiabg6da+iaaicdacaGGSaaaaa@476D@

which is equivalent to the usual stability criterion, µ( 1µ )< 1/27. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG1cGcpaWaaeWaaeaajugib8qa caaIXaGaeyOeI0IaamyTaaGcpaGaayjkaiaawMcaaKqzGeWdbiabgY da8iaabccacaaIXaGaai4laiaaikdacaaI3aGaaiOlaaaa@48CA@

To obtain the periodic solution when r3 term is considered for inclusion in U, we adopt the perturbation scheme:

r=  X 1 ϵ +  X 2 ϵ 2 + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGYbGaeyypa0JaaeiiaiaadIfa juaGpaWaaSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaWefv3ySL gznfgDOfdaryqr1ngBPrginfgDObYtUvgaiyaajugib8qacqWF1pG8 caqGGaGaey4kaSIaaeiiaiaadIfajuaGpaWaaSbaaKqaGeaajugWa8 qacaaIYaaajeaipaqabaqcLbsapeGae8x9diFcfa4damaaCaaajeai beqaaKqzadWdbiaaikdaaaqcLbsacqGHRaWkcqGHMacVaaa@5EB1@

where

X 1 =M/( N+cos2θ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGybGcpaWaaSbaaKqaGeaajugW a8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaWGnbGaai4laOWaae Waa8aabaqcLbsapeGaamOtaiabgUcaRiaabogacaqGVbGaae4Caiaa ikdacaqG4oaakiaawIcacaGLPaaajugibiaacYcaaaa@4CF6@

ϵ= | h+ U 0 | 1/2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacgaqc LbsaqaaaaaaaaaWdbiab=v=aYlabg2da9OWdamaaemaabaqcLbsape GaamiAaiabgUcaRiaadwfak8aadaWgaaqcbasaaKqzadWdbiaaicda aSWdaeqaaaGccaGLhWUaayjcSdqcfa4aaWbaaKqaGeqabaqcLbmape GaaGymaiaac+cacaaIYaaaaKqzGeGaaiOlaaaa@57F7@

Substituting it in (12) and (18) and equating to zero the coefficients of like powers of ϵ, we obtain a set of linearized differential equations X n (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGybqcfa4damaaBaaajeaibaqc LbmapeGaamOBaaqcbaYdaeqaaKqzGeGaaiikaiabeI7aXjaacMcaaa a@443E@ . After some algebra, the equation X 2 (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGybqcfa4damaaBaaajeaibaqc LbmapeGaaGOmaaqcbaYdaeqaaKqzGeGaaiikaiabeI7aXjaacMcaaa a@4407@ becomes

F 1 X 2 + F 2 X 2 + F 3 X 2 + F 4 =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGgbqcfa4damaaBaaajeaibaqc LbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiaadIfajuaGpaWaaSbaaK qaGeaajugWa8qacaaIYaaajeaipaqabaqcfa4aaWbaaKqaGeqabaqc LbmapeGaaiygGiaacMbiaaqcLbsacqGHRaWkcaWGgbqcfa4damaaBa aajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiaadIfajuaG paWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipaqabaqcfa4aaWbaaK qaGeqabaqcLbmapeGaaiygGaaajugibiabgUcaRiaadAeajuaGpaWa aSbaaKqaGeaajugWa8qacaaIZaaajeaipaqabaqcLbsapeGaamiwaK qba+aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaajugib8qa cqGHRaWkcaWGgbqcfa4damaaBaaajeaibaqcLbmapeGaaGinaaqcba YdaeqaaKqzGeWdbiabg2da9iaaicdacaGGSaaaaa@67A9@ (21)

where F 1 =4 k 1 2 k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGgbqcfa4damaaBaaajeaibaqc LbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiabg2da9iabgkHiTiaais dacaWGRbqcfa4damaaDaaajeaibaqcLbmapeGaaGymaaqcbaYdaeaa jugWa8qacaaIYaaaaKqzGeGaam4AaKqba+aadaWgaaqcbasaaKqzad WdbiaaikdaaKqaG8aabeaaaaa@4E46@

F 2 = 2 k 1 ( 3k+ k 2 ( 4 k 1 +2 k 3 + G k 2 X 1 X 1 ' ) ) X 1 ' X 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGgbqcfa4damaaBaaajeaibaqc LbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabg2da9OWaaSaaa8aaba qcLbsapeGaaGOmaiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qacaaI XaaajeaipaqabaGcpeWaaeWaa8aabaqcLbsapeGaeyOeI0IaaG4mai aadUgacqGHRaWkcaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaqcbaYdaeqaaOWdbmaabmaapaqaaKqzGeWdbiaaisdacaWGRbqcfa 4damaaBaaajeaibaqcLbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiab gUcaRiaaikdacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaG4maa qcbaYdaeqaaKqzGeWdbiabgUcaROWaaSaaa8aabaqcLbsapeGabm4r a8aagaqba8qacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOmaa qcbaYdaeqaaKqzGeWdbiaadIfajuaGpaWaaSbaaKqaGeaajugWa8qa caaIXaaajeaipaqabaaakeaajugib8qacaWGybGcpaWaaSbaaKqaGe aajugWa8qacaaIXaaal8aabeaakmaaCaaaleqabaqcLbsapeGaai4j aaaaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaajugibiaadIfaju aGpaWaaSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaGcdaahaaWc beqaaKqzGeWdbiaacEcaaaaak8aabaqcLbsapeGaamiwaKqba+aada WgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaaaaaaaa@7AE4@

F 3 =2Gk k 2 +2 k 1 ( 3k+ k 2 ( 2 k 3 + k 2 ( 4G+ G X 1 ' X 1 )+2 k 1 ( 2 X 1 '' X 1 )4G( k 2 + X 1 '2 X 1 X 1 '' ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGgbqcfa4damaaBaaajeaibaqc LbmapeGaaG4maaqcbaYdaeqaaKqzGeWdbiabg2da9iaaikdacaWGhb Gaam4AaiaadUgak8aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqa aKqzGeWdbiabgUcaRiaaikdacaWGRbqcfa4damaaBaaajeaibaqcLb mapeGaaGymaaqcbaYdaeqaaOWdbmaabmaapaqaaKqzGeWdbiabgkHi TiaaiodacaWGRbGaey4kaSIaam4AaKqba+aadaWgaaqcbasaaKqzad WdbiaaikdaaKqaG8aabeaak8qadaqadaWdaeaajugib8qacaaIYaGa am4AaKqba+aadaWgaaqcbasaaKqzadWdbiaaiodaaKqaG8aabeaaju gib8qacqGHRaWkcaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaqcbaYdaeqaaOWdbmaabmaapaqaaKqzGeWdbiabgkHiTiaaisdaca WGhbGaey4kaSIcdaWcaaWdaeaajugib8qaceWGhbWdayaafaWdbiaa dIfajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaqcfa 4aaWbaaKqaGeqabaqcLbmapeGaai4jaaaaaOWdaeaajugib8qacaWG ybqcfa4damaaBaaajeaibaqcLbmapeGaaGymaaqcbaYdaeqaaaaaaO WdbiaawIcacaGLPaaajugibiabgUcaRiaaikdacaWGRbqcfa4damaa BaaajeaibaqcLbmapeGaaGymaaqcbaYdaeqaaOWdbmaabmaapaqaaK qzGeWdbiaaikdacqGHsislkmaalaaapaqaaKqzGeWdbiaadIfajuaG paWaaSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaqcfa4aaWbaaK qaGeqabaqcLbmapeGaai4jaiaacEcaaaaak8aabaqcLbsapeGaamiw aKqba+aadaWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaaaaaak8 qacaGLOaGaayzkaaqcLbsacqGHsislcaaI0aGaam4raOWaaeWaa8aa baqcLbsapeGaam4AaOWdamaaBaaajeaibaqcLbmapeGaaGOmaaWcpa qabaqcLbsapeGaey4kaSIaamiwaKqba+aadaqhaaqcbasaaKqzadWd biaaigdaaKqaG8aabaqcLbmapeGaai4jaiaaikdaaaqcLbsacqGHsi slcaWGybqcfa4damaaBaaajeaibaqcLbmapeGaaGymaaqcbaYdaeqa aKqzGeWdbiaadIfajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaaaje aipaqabaqcfa4aaWbaaKqaGeqabaqcLbmapeGaai4jaiaacEcaaaaa kiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@AD03@

F 4 =2F k 1 k 2 2 X 1 X 1 ' F X 1 2 k 2 ( k 2 ( 6 k 3 6G X 1 2 )+2 k 1 ( k 2 + X 1 '2 X 1 X 1 '' )) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGgbGcpaWaaSbaaKqaGeaajugW a8qacaaI0aaal8aabeaajugib8qacqGH9aqpcaaIYaGaamOraiaadU gajuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaqcLbsa peGaam4AaKqba+aadaqhaaqcbasaaKqzadWdbiaaikdaaKqaG8aaba qcLbmapeGaaGOmaaaajugibiaadIfajuaGpaWaaSbaaKqaGeaajugW a8qacaaIXaaajeaipaqabaqcLbsapeGaamiwaKqba+aadaWgaaqcba saaKqzadWdbiaaigdaaKqaG8aabeaajuaGdaahaaqcbasabeaajugW a8qacaGGNaaaaKqzGeGaeyOeI0IaamOraiaadIfajuaGpaWaa0baaK qaGeaajugWa8qacaaIXaaajeaipaqaaKqzadWdbiaaikdaaaqcLbsa caWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaK qzGeWdbiaacIcacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaqcbaYdaeqaaOWdbmaabmaapaqaaKqzGeWdbiaaiAdacqGHsislca WGRbqcfa4damaaBaaajeaibaqcLbmapeGaaG4maaqcbaYdaeqaaKqz GeWdbiabgkHiTiaaiAdacaWGhbGaamiwaKqba+aadaqhaaqcbasaaK qzadWdbiaaigdaaKqaG8aabaqcLbmapeGaaGOmaaaaaOGaayjkaiaa wMcaaKqzGeGaey4kaSIaaGOmaiaadUgajuaGpaWaaSbaaKqaGeaaju gWa8qacaaIXaaajeaipaqabaGcpeWaaeWaa8aabaqcLbsapeGaam4A aKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaajugib8 qacqGHRaWkcaWGybqcfa4damaaDaaajeaibaqcLbmapeGaaGymaaqc baYdaeaajugWa8qacaGGNaGaaGOmaaaajugibiabgkHiTiaadIfaju aGpaWaaSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaqcLbsapeGa amiwaKqba+aadaWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaaju aGdaahaaqcbasabeaajugWa8qacaGGNaGaai4jaaaaaOGaayjkaiaa wMcaaKqzGeGaaiykaaaa@A026@

with

k 1 =1G X 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGRbGcpaWaaSbaaKqaGeaajugW a8qacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIXaGaeyOeI0Iaam 4raiaadIfajuaGpaWaa0baaKqaGeaajugWa8qacaaIXaaajeaipaqa aKqzadWdbiaaikdaaaaaaa@49E3@

k 2 = X 1 2 + X 1 '2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqc LbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabg2da9iaadIfajuaGpa Waa0baaKqaGeaajugWa8qacaaIXaaajeaipaqaaKqzadWdbiaaikda aaqcLbsacqGHRaWkcaWGybqcfa4damaaDaaajeaibaqcLbmapeGaaG ymaaqcbaYdaeaajugWa8qacaGGNaGaaGOmaaaaaaa@5022@

k 3 =2G X 1 2 + G X 1 X 1 ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGRbqcfa4damaaBaaajeaibaqc LbmapeGaaG4maaqcbaYdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaik dacaWGhbGaamiwaKqba+aadaqhaaqcbasaaKqzadWdbiaaigdaaKqa G8aabaqcLbmapeGaaGOmaaaajugibiabgUcaRiqadEeapaGbauaape GaamiwaKqba+aadaWgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaa jugib8qacaWGybqcfa4damaaBaaajeaibaqcLbmapeGaaGymaaqcba YdaeqaaKqbaoaaCaaajeaibeqaaKqzadWdbiaacEcaaaaaaa@5842@

k= k 2 k 3 +2 k 1 ( k 2 + X 1 '2 X 1 X 1 '' ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGRbGaeyypa0Jaam4AaKqba+aa daWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaajugib8qacaWGRb qcfa4damaaBaaajeaibaqcLbmapeGaaG4maaqcbaYdaeqaaKqzGeWd biabgUcaRiaaikdacaWGRbGcpaWaaSbaaKqaGeaajugWa8qacaaIXa aal8aabeaajugib8qacaGGOaGaam4AaKqba+aadaWgaaqcbasaaKqz adWdbiaaikdaaKqaG8aabeaajugib8qacqGHRaWkcaWGybqcfa4dam aaDaaajeaibaqcLbmapeGaaGymaaqcbaYdaeaajugWa8qacaGGNaGa aGOmaaaajugibiabgkHiTiaadIfajuaGpaWaaSbaaKqaGeaajugWa8 qacaaIXaaajeaipaqabaqcLbsapeGaamiwaKqba+aadaWgaaqcbasa aKqzadWdbiaaigdaaKqaG8aabeaajuaGdaahaaqcbasabeaajugWa8 qacaGGNaGaai4jaaaajugib8aacaGGPaaaaa@68F8@

We know that

F= β 1 Cosθ+ β 2 Sinθ+ β 3 Cos3θ+ β 4 Sin3θ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGgbGaeyypa0JaeqOSdiMcpaWa aSbaaKqaGeaajugWa8qacaaIXaaal8aabeaajugib8qacaqGdbGaae 4BaiaabohacqaH4oqCcqGHRaWkcqaHYoGyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIYaaajeaipaqabaqcLbsapeGaae4uaiaabMgacaqGUb GaeqiUdeNaey4kaSIaeqOSdiwcfa4damaaBaaajeaibaqcLbmapeGa aG4maaqcbaYdaeqaaKqzGeWdbiaaboeacaqGVbGaae4Caiaaiodacq aH4oqCcqGHRaWkcqaHYoGyjuaGpaWaaSbaaKqaGeaajugWa8qacaaI 0aaajeaipaqabaqcLbsapeGaae4uaiaabMgacaqGUbGaaG4maiabeI 7aXjaacYcaaaa@6978@

Where

β 1 = β 1 ( 1 ) Cosα+ β 1 ( 2 ) Sinα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHYoGyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaajeaipaqabaqcLbsapeGaeyypa0JaeqOSdiwcfa 4damaaBaaajeaibaqcLbmapeGaaGymaaqcbaYdaeqaaKqbaoaaCaaa jeaibeqaaKqba+qadaqadaqcbaYdaeaajugWa8qacaaIXaaajeaica GLOaGaayzkaaaaaKqzGeGaae4qaiaab+gacaqGZbGaeqySdeMaey4k aSIaeqOSdiwcfa4damaaBaaajeaibaqcLbmapeGaaGymaaqcbaYdae qaaKqbaoaaCaaajeaibeqaaKqba+qadaqadaqcbaYdaeaajugWa8qa caaIYaaajeaicaGLOaGaayzkaaaaaKqzGeGaae4uaiaabMgacaqGUb GaeqySdegaaa@61A2@

β 2 = β 1 ( 1 ) Sinα+ β 1 ( 2 ) Cosα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHYoGyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIYaaajeaipaqabaqcLbsapeGaeyypa0JaeyOeI0Iaeq OSdiwcfa4damaaBaaajeaibaqcLbmapeGaaGymaaqcbaYdaeqaaKqb aoaaCaaajeaibeqaaKqba+qadaqadaqcbaYdaeaajugWa8qacaaIXa aajeaicaGLOaGaayzkaaaaaKqzGeGaae4uaiaabMgacaqGUbGaeqyS deMaey4kaSIaeqOSdiwcfa4damaaBaaajeaibaqcLbmapeGaaGymaa qcbaYdaeqaaKqbaoaaCaaajeaibeqaaKqba+qadaqadaqcbaYdaeaa jugWa8qacaaIYaaajeaicaGLOaGaayzkaaaaaKqzGeGaae4qaiaab+ gacaqGZbGaeqySdegaaa@6290@

β 3 = β 3 ( 1 ) Cos3α+ β 3 ( 2 ) Sin3α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHYoGyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIZaaajeaipaqabaqcLbsapeGaeyypa0JaeqOSdiwcfa 4damaaBaaajeaibaqcLbmapeGaaG4maaqcbaYdaeqaaKqbaoaaCaaa jeaibeqaaKqba+qadaqadaqcbaYdaeaajugWa8qacaaIXaaajeaica GLOaGaayzkaaaaaKqzGeGaae4qaiaab+gacaqGZbGaaG4maiabeg7a HjabgUcaRiabek7aILqba+aadaWgaaqcbasaaKqzadWdbiaaiodaaK qaG8aabeaajuaGdaahaaqcbasabeaajuaGpeWaaeWaaKqaG8aabaqc LbmapeGaaGOmaaqcbaIaayjkaiaawMcaaaaajugibiaabofacaqGPb GaaeOBaiaaiodacqaHXoqyaaa@6321@

β 4 = β 3 ( 1 ) Sin3α+ β 3 ( 2 ) Cos3α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHYoGyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI0aaajeaipaqabaqcLbsapeGaeyypa0JaeyOeI0Iaeq OSdiwcfa4damaaBaaajeaibaqcLbmapeGaaG4maaqcbaYdaeqaaKqb aoaaCaaajeaibeqaaKqba+qadaqadaqcbaYdaeaajugWa8qacaaIXa aajeaicaGLOaGaayzkaaaaaKqzGeGaae4uaiaabMgacaqGUbGaaG4m aiabeg7aHjabgUcaRiabek7aILqba+aadaWgaaqcbasaaKqzadWdbi aaiodaaKqaG8aabeaajuaGdaahaaqcbasabeaajuaGpeWaaeWaaKqa G8aabaqcLbmapeGaaGOmaaqcbaIaayjkaiaawMcaaaaajugibiaabo eacaqGVbGaae4CaiaaiodacqaHXoqyaaa@6410@

with

β 1 ( 1 ) =( 3 16 + 15 16 + 3μ 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHYoGyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaajeaipaqabaqcfa4aaWbaaKqaGeqabaqcfa4dbm aabmaajeaipaqaaKqzadWdbiaaigdaaKqaGiaawIcacaGLPaaaaaqc LbsacqGH9aqpcaGGOaGaeyOeI0IcdaWcaaWdaeaajugib8qacaaIZa aak8aabaqcLbsapeGaaGymaiaaiAdaaaGaey4kaSIcdaWcaaWdaeaa jugib8qacaaIXaGaaGynaiabgIGiodGcpaqaaKqzGeWdbiaaigdaca aI2aaaaiabgUcaROWaaSaaa8aabaqcLbsapeGaaG4maiabeY7aTbGc paqaaKqzGeWdbiaaiIdaaaGaaiykaaaa@5A8F@

β 1 ( 2 ) =( 3 3 16 41 16 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHYoGyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaajeaipaqabaqcfa4aaWbaaKqaGeqabaqcfa4dbm aabmaajeaipaqaaKqzadWdbiaaikdaaKqaGiaawIcacaGLPaaaaaqc LbsacqGH9aqpcaGGOaGcdaWcaaWdaeaajugib8qacaaIZaGcdaGcaa Wdaeaajugib8qacaaIZaaaleqaaaGcpaqaaKqzGeWdbiaaigdacaaI 2aaaaiabgkHiTOWaaSaaa8aabaqcLbsapeGaaGinaiaaigdacqGHii IZaOWdaeaajugib8qacaaIXaGaaGOnaOWaaOaaa8aabaqcLbsapeGa aG4maaWcbeaaaaqcLbsacaGGPaaaaa@57C5@

β 3 ( 1 ) =( 5 8 5 4 5μ 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHYoGyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIZaaajeaipaqabaqcfa4aaWbaaKqaGeqabaqcfa4dbm aabmaajeaipaqaaKqzadWdbiaaigdaaKqaGiaawIcacaGLPaaaaaqc LbsacqGH9aqpcaGGOaGcdaWcaaWdaeaajugib8qacaaI1aaak8aaba qcLbsapeGaaGioaaaacqGHsislkmaalaaapaqaaKqzGeWdbiaaiwda cqGHiiIZaOWdaeaajugib8qacaaI0aaaaiabgkHiTOWaaSaaa8aaba qcLbsapeGaaGynaiabeY7aTbGcpaqaaKqzGeWdbiaaisdaaaGaaiyk aaaa@5789@

β 3 ( 2 ) = 5 8 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHYoGyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIZaaajeaipaqabaqcfa4aaWbaaKqaGeqabaqcfa4dbm aabmaajeaipaqaaKqzadWdbiaaikdaaKqaGiaawIcacaGLPaaaaaqc LbsacqGH9aqpkmaalaaapaqaaKqzGeWdbiabgkHiTiaaiwdacqGHii IZaOWdaeaajugib8qacaaI4aGcdaGcaaWdaeaajugib8qacaaIZaaa leqaaaaaaaa@4F24@

After some algebra, we obtain

F 1 (θ)= j=0 7 α 2j Cos[(2j)θ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGgbqcfa4aaSbaaKqaGeaajugW aiaaigdaaKqaGeqaaKqzGeGaeyikaGIaeqiUdeNaeyykaKIaeyypa0 JcdaGfWbqabKazba2=paqaaKqzadWdbiaadQgacqGH9aqpcqGHWaam aKazba2=paqaaKqzadWdbiabgEda3aqdpaqaaKqzGeWdbiabggHiLd aacqaHXoqyk8aadaWgaaqcKfay=haajugWa8qacqGHYaGmcaWGQbaa l8aabeaajugib8qacaWGdbGaam4BaiaadohacqGHBbWwcqGHOaakcq GHYaGmcaWGQbGaeyykaKIaeqiUdeNaeyyxa0faaa@643B@

F 2 (θ)= j=1 7 z 2j Sin [(2j)θ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaqGgbqcfa4damaaBaaajeaibaqc LbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiaabIcacqaH4oqCcaGGPa Gaeyypa0JcdaGfWbqabKqaG8aabaqcLbmapeGaamOAaiabg2da9iaa igdaaKqaG8aabaqcLbmapeGaaG4naaqdpaqaaKqzGeWdbiabggHiLd aacaWG6bGcpaWaaSbaaSqaaKqzadWdbiaaikdajugibiaadQgaaSWd aeqaaKqzGeWdbiaabofacaqGPbGaaeOBaiaabckacaqGBbGaaeikai aabkdacaqGQbGaaeykaiabeI7aXjaab2faaaa@5E16@

F 3 (θ)= j=0 7 τ 2j Cos [(2j) θ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaqGgbGcpaWaaSbaaKqaGeaajugW a8qacaaIZaaal8aabeaajugib8qacaqGOaGaeqiUdeNaaiykaiabg2 da9OWaaybCaeqajeaipaqaaKqzadWdbiaadQgacqGH9aqpcaaIWaaa jeaipaqaaKqzadWdbiaaiEdaa0Wdaeaajugib8qacqGHris5aaGaeq iXdqNcpaWaaSbaaKqaGeaajugWa8qacaaIYaGaamOAaaWcpaqabaqc LbsapeGaae4qaiaab+gacaqGZbGaaeiOaiaabUfacaqGOaGaaeOmai aabQgacaqGPaGaaeiOaiabeI7aXjaab2faaaa@5EE8@

F 4 (θ)= j=0 4 ο 2j+1 Cos [(2j+1) θ]+ j=0 4 ϕ 2j+1 Sin [(2j+1) θ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaqGgbqcfa4damaaBaaajeaibaqc LbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiaabIcacqaH4oqCcaGGPa Gaeyypa0JcdaGfWbqabKqaG8aabaqcLbmapeGaamOAaiabg2da9iaa icdaaKqaG8aabaqcLbmapeGaaGinaaqdpaqaaKqzGeWdbiabggHiLd aacqaH=oWBjuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaGaamOAaiab gUcaRiaaigdaaKqaG8aabeaajugib8qacaqGdbGaae4Baiaabohaca qGGcGaae4waiaabIcacaqGYaGaaeOAaiaabUcacaqGXaGaaeykaiaa bckacqaH4oqCcaqGDbGaae4kaOWaaybCaeqajeaipaqaaKqzadWdbi aadQgacqGH9aqpcaaIWaaajeaipaqaaKqzadWdbiaaisdaa0Wdaeaa jugib8qacqGHris5aaGaeqy1dyMcpaWaaSbaaKqaGeaajugWa8qaca aIYaGaamOAaiabgUcaRiaaigdaaSWdaeqaaKqzGeWdbiaabofacaqG PbGaaeOBaiaabckacaqGBbGaaeikaiaabkdacaqGQbGaae4kaiaabg dacaqGPaGaaeiOaiabeI7aXjaac2faaaa@8155@

where α's MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbGGaaKqzGeaeaaaaaaaaa8qacqWFXoqycaqGNaGaae4Caaaa @3FB6@ are known constants, which depend on λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH7oaBaaa@3E26@ and N only. The coefficients of α's MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbGGaaKqzGeaeaaaaaaaaa8qacqWFXoqycaqGNaGaae4Caaaa @3FB6@ occurring in the expressions for F i ( i=1, 2, 3, 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGgbGcpaWaaSbaaKqaGeaajugW a8qacaWGPbaal8aabeaakmaabmaabaqcLbsapeGaamyAaiabg2da9i aaigdacaGGSaGaaeiiaiaaikdacaGGSaGaaeiiaiaaiodacaGGSaGa aeiiaiaaisdaaOWdaiaawIcacaGLPaaaaaa@4B10@ are provided hereunder. Taking

σ=3m+4n,  ρ=43mλ,  γ=n+λ,  δ=1+nλ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHdpWCcqGH9aqpcaaIZaGaamyB aiabgUcaRiaaisdacaWGUbGaaiilaiaacckacaGGGcGaeqyWdiNaey ypa0JaaGinaiabgkHiTiaaiodacaWGTbGaeq4UdWMaaiilaiaaccka caGGGcGaeq4SdCMaeyypa0JaeyOeI0IaamOBaiabgUcaRiabeU7aSj aacYcacaGGGcGaaiiOaiabes7aKjabg2da9iabgkHiTiaaigdacqGH RaWkcaWGUbGaeq4UdWMaaiilaaaa@63E8@

the coefficients of F 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWHgbGcpaWaaSbaaKqaGeaajugW a8qacaWHXaaal8aabeaaaaa@3FB6@ are

α 0 =2 a 0 b 0 + a 2 b 2 + a 4 b 4 + a 6 b 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHXoqyk8aadaWgaaqcbasaaKqz adWdbiaaicdaaSWdaeqaaKqzGeWdbiabg2da9iaaikdacaWGHbqcfa 4damaaBaaajeaibaqcLbmapeGaaGimaaqcbaYdaeqaaKqzGeWdbiaa dkgajuaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLb sapeGaey4kaSIaamyyaKqba+aadaWgaaqcbasaaKqzadWdbiaaikda aKqaG8aabeaajugib8qacaWGIbGcpaWaaSbaaKqaGeaajugWa8qaca aIYaaal8aabeaajugib8qacqGHRaWkcaWGHbqcfa4damaaBaaajeai baqcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiaadkgak8aadaWgaa qcbasaaKqzadWdbiaaisdaaSWdaeqaaKqzGeWdbiabgUcaRiaadgga juaGpaWaaSbaaKqaGeaajugWa8qacaaI2aaajeaipaqabaqcLbsape GaamOyaKqba+aadaWgaaqcbasaaKqzadWdbiaaiAdaaKqaG8aabeaa aaa@68B5@  

α 2 = a 6 +2 a 2 b 0 +2 a 0 b 2 + a 4 b 2 + a 2 b 4 + a 6 b 4 + a 4 b 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHXoqyk8aadaWgaaqcbasaaKqz adWdbiaaikdaaSWdaeqaaKqzGeWdbiabg2da9iaadggajuaGpaWaaS baaKqaGeaajugWa8qacaaI2aaajeaipaqabaqcLbsapeGaey4kaSIa aGOmaiaadggajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipa qabaqcLbsapeGaamOyaOWdamaaBaaajeaibaqcLbmapeGaaGimaaWc paqabaqcLbsapeGaey4kaSIaaGOmaiaadggajuaGpaWaaSbaaKqaGe aajugWa8qacaaIWaaajeaipaqabaqcLbsapeGaamOyaOWdamaaBaaa jeaibaqcLbmapeGaaGOmaaWcpaqabaqcLbsapeGaey4kaSIaamyyaO WdamaaBaaajeaibaqcLbmapeGaaGinaaWcpaqabaqcLbsapeGaamOy aKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaajugib8 qacqGHRaWkcaWGHbqcfa4damaaBaaajeaibaqcLbmapeGaaGOmaaqc baYdaeqaaKqzGeWdbiaadkgak8aadaWgaaqcbasaaKqzadWdbiaais daaSWdaeqaaKqzGeWdbiabgUcaRiaadggak8aadaWgaaqcbasaaKqz adWdbiaaiAdaaSWdaeqaaKqzGeWdbiaadkgak8aadaWgaaqcbasaaK qzadWdbiaaisdaaSWdaeqaaKqzGeWdbiabgUcaRiaadggajuaGpaWa aSbaaKqaGeaajugWa8qacaaI0aaajeaipaqabaqcLbsapeGaamOyaO WdamaaBaaajeaibaqcLbmapeGaaGOnaaWcpaqabaaaaa@8014@  

α 4 = a 4 +2 a 4 b 0 + a 2 b 2 + a 6 b 2 +2 a 0 b 4 + a 2 b 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHXoqyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI0aaajeaipaqabaqcLbsapeGaeyypa0JaamyyaKqba+ aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaajugib8qacqGH RaWkcaaIYaGaamyyaKqba+aadaWgaaqcbasaaKqzadWdbiaaisdaaK qaG8aabeaajugib8qacaWGIbqcfa4damaaBaaajeaibaqcLbmapeGa aGimaaqcbaYdaeqaaKqzGeWdbiabgUcaRiaadggajuaGpaWaaSbaaK qaGeaajugWa8qacaaIYaaajeaipaqabaqcLbsapeGaamOyaKqba+aa daWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaajugib8qacqGHRa WkcaWGHbGcpaWaaSbaaKqaGeaajugWa8qacaaI2aaal8aabeaajugi b8qacaWGIbqcfa4damaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdae qaaKqzGeWdbiabgUcaRiaaikdacaWGHbGcpaWaaSbaaKqaGeaajugW a8qacaaIWaaal8aabeaajugib8qacaWGIbqcfa4damaaBaaajeaiba qcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabgUcaRiaadggajuaG paWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipaqabaqcLbsapeGaam OyaKqba+aadaWgaaqcKfay=haajugWa8qacaaI2aaajeaipaqabaaa aa@7B62@  

α 6 = a 2 +2 a 6 b 0 + a 4 b 2 + a 2 b 4 +2 a 0 b 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHXoqyk8aadaWgaaqcbasaaKqz adWdbiaaiAdaaSWdaeqaaKqzGeWdbiabg2da9iaadggajuaGpaWaaS baaKqaGeaajugWa8qacaaIYaaajeaipaqabaqcLbsapeGaey4kaSIa aGOmaiaadggak8aadaWgaaqcbasaaKqzadWdbiaaiAdaaSWdaeqaaK qzGeWdbiaadkgajuaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeai paqabaqcLbsapeGaey4kaSIaamyyaOWdamaaBaaajeaibaqcLbmape GaaGinaaWcpaqabaqcLbsapeGaamOyaKqba+aadaWgaaqcbasaaKqz adWdbiaaikdaaKqaG8aabeaajugib8qacqGHRaWkcaWGHbGcpaWaaS baaKqaGeaajugWa8qacaaIYaaal8aabeaajugib8qacaWGIbqcfa4d amaaBaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabgU caRiaaikdacaWGHbqcfa4damaaBaaajeaibaqcLbmapeGaaGimaaqc baYdaeqaaKqzGeWdbiaadkgajuaGpaWaaSbaaKqaGeaajugWa8qaca aI2aaajeaipaqabaaaaa@6E56@  

α 8 =2 a 0 + a 6 b 2 + a 4 b 4 + a 2 b 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHXoqyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI4aaajeaipaqabaqcLbsapeGaeyypa0JaaGOmaiaadg gajuaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLbsa peGaey4kaSIaamyyaKqba+aadaWgaaqcbasaaKqzadWdbiaaiAdaaK qaG8aabeaajugib8qacaWGIbGcpaWaaSbaaKqaGeaajugWa8qacaaI Yaaal8aabeaajugib8qacqGHRaWkcaWGHbGcpaWaaSbaaKqaGeaaju gWa8qacaaI0aaal8aabeaajugib8qacaWGIbGcpaWaaSbaaKqaGeaa jugWa8qacaaI0aaal8aabeaajugib8qacqGHRaWkcaWGHbGcpaWaaS baaKqaGeaajugWa8qacaaIYaaal8aabeaajugib8qacaWGIbqcfa4d amaaBaaajeaibaqcLbmapeGaaGOnaaqcbaYdaeqaaaaa@637B@  

α 10 = a 2 + a 6 b 4 + a 4 b 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHXoqyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iaadg gak8aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiab gUcaRiaadggak8aadaWgaaqcbasaaKqzadWdbiaaiAdaaSWdaeqaaK qzGeWdbiaadkgajuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeai paqabaqcLbsapeGaey4kaSIaamyyaOWdamaaBaaajeaibaqcLbmape GaaGinaaWcpaqabaqcLbsapeGaamOyaKqba+aadaWgaaqcbasaaKqz adWdbiaaiAdaaKqaG8aabeaaaaa@59F4@  

α 12 = a 4 + a 6 b 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHXoqyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaGaaGOmaaqcbaYdaeqaaKqzGeWdbiabg2da9iaadg gajuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeaipaqabaqcLbsa peGaey4kaSIaamyyaKqba+aadaWgaaqcbasaaKqzadWdbiaaiAdaaK qaG8aabeaajugib8qacaWGIbGcpaWaaSbaaKqaGeaajugWa8qacaaI 2aaal8aabeaaaaa@5117@  

α 14 = a 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHXoqyjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaGaaGinaaqcbaYdaeqaaKqzGeWdbiabg2da9iaadg gak8aadaWgaaqcbasaaKqzadWdbiaaiAdaaSWdaeqaaaaa@46F0@  

where

a 0 =4nρσ+( 1+ n 2 )( ρ 2 +2 σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGHbqcfa4damaaBaaajeaibaqc LbmapeGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaisdacaWGUb GaeqyWdiNaeq4WdmNaey4kaSIcdaqadaWdaeaajugib8qacaaIXaGa ey4kaSIaamOBaKqba+aadaahaaqcbasabeaajugWa8qacaaIYaaaaa GccaGLOaGaayzkaaqcLbsacaGGOaGaeqyWdixcfa4damaaCaaajeai beqaaKqzadWdbiaaikdaaaqcLbsacqGHRaWkcaaIYaGaeq4Wdmxcfa 4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsapaGaaiykaaaa @5DE6@  

a 2 =n ρ 2 +4( 1+ n 2 )ρσ+2n( ρ 2 +2 σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGHbGcpaWaaSbaaKqaGeaajugW a8qacaaIYaaal8aabeaajugib8qacqGH9aqpcaWGUbGaeqyWdixcfa 4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsacqGHRaWkcaaI 0aGcdaqadaWdaeaajugib8qacaaIXaGaey4kaSIaamOBaKqba+aada ahaaqcbasabeaajugWa8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsa cqaHbpGCcqaHdpWCcqGHRaWkcaaIYaGaamOBaiaacIcacqaHbpGCju aGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiabgUcaRiaa ikdacqaHdpWCjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaju gib8aacaGGPaaaaa@6508@  

a 2 =n ρ 2 +4( 1+ n 2 )ρσ+2n( ρ 2 +2 σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGHbGcpaWaaSbaaKqaGeaajugW a8qacaaIYaaal8aabeaajugib8qacqGH9aqpcaWGUbGaeqyWdixcfa 4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsacqGHRaWkcaaI 0aGcdaqadaWdaeaajugib8qacaaIXaGaey4kaSIaamOBaKqba+aada ahaaqcbasabeaajugWa8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsa cqaHbpGCcqaHdpWCcqGHRaWkcaaIYaGaamOBaiaacIcacqaHbpGCju aGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiabgUcaRiaa ikdacqaHdpWCjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaju gib8aacaGGPaaaaa@6508@  

a 6 =n ρ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGHbqcfa4damaaBaaajeaibaqc LbmapeGaaGOnaaqcbaYdaeqaaKqzGeWdbiabg2da9iaad6gacqaHbp GCjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaaaa@47B2@  

b 0 =3+24 n 2 +8 n 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGIbqcfa4damaaBaaajeaibaqc LbmapeGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaiodacqGHRa WkcaaIYaGaaGinaiaad6gajuaGpaWaaWbaaKqaGeqabaqcLbmapeGa aGOmaaaajugibiabgUcaRiaaiIdacaWGUbGcpaWaaWbaaSqabKqaGe aajugWa8qacaaI0aaaaaaa@4E98@  

b 2 =8n(3+4 n 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGIbqcfa4damaaBaaajeaibaqc LbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaiIdacaWGUb GaaiikaiaaiodacqGHRaWkcaaI0aGaamOBaKqba+aadaahaaqcbasa beaajugWa8qacaaIYaaaaKqzGeWdaiaacMcaaaa@4BF8@  

b 4 =4(1+6 n 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGIbqcfa4damaaBaaajeaibaqc LbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaisdacaGGOa GaaGymaiabgUcaRiaaiAdacaWGUbqcfa4damaaCaaajeaibeqaaKqz adWdbiaaikdaaaqcLbsapaGaaiykaaaa@4B03@  

b 6 =8n. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGIbqcfa4damaaBaaajeaibaqc LbmapeGaaGOnaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaiIdacaWGUb GaaiOlaaaa@4484@  

If

ζ 0 =4( n 2 ( 415mλ+12mn+8 n 2 )+6mn( 4+3mλ )) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH2oGEk8aadaWgaaqcbasaaKqz adWdbiaaicdaaSWdaeqaaKqzGeWdbiabg2da9iaaisdacaGGOaGaam OBaOWdamaaCaaaleqajeaibaqcLbmapeGaaGOmaaaakmaabmaapaqa aKqzGeWdbiabgkHiTiaaisdacqGHsislcaaIXaGaaGynaiaad2gacq aH7oaBcqGHRaWkcaaIXaGaaGOmaiaad2gacaWGUbGaey4kaSIaaGio aiaad6gajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaaOGaay jkaiaawMcaaKqzGeGaey4kaSIaaGOnaiaad2gacaWGUbGaeyOeI0Ic daqadaWdaeaajugib8qacaaI0aGaey4kaSIaaG4maiaad2gacqaH7o aBaOGaayjkaiaawMcaaKqzGeGaaiykaaaa@6759@  

ζ 2 =16n(3m n 2 λ3mλ+6mn+4 n 2 4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH2oGEjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIYaaajeaipaqabaqcLbsapeGaeyypa0JaaGymaiaaiA dacaWGUbGaaiikaiabgkHiTiaaiodacaWGTbGaamOBaKqba+aadaah aaqcbasabeaajugWa8qacaaIYaaaaKqzGeGaeq4UdWMaeyOeI0IaaG 4maiaad2gacqaH7oaBcqGHRaWkcaaI2aGaamyBaiaad6gacqGHRaWk caaI0aGaamOBaKqba+aadaahaaqcbasabeaajugWa8qacaaIYaaaaK qzGeGaeyOeI0IaaGinaiaacMcaaaa@5EF2@  

ζ 4 =n(36mnλ+24m+16n9 λ 2 m) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH2oGEk8aadaWgaaqcbasaaKqz adWdbiaaisdaaSWdaeqaaKqzGeWdbiabg2da9iaad6gacaGGOaGaey OeI0IaaG4maiaaiAdacaWGTbGaamOBaiabeU7aSjabgUcaRiaaikda caaI0aGaamyBaiabgUcaRiaaigdacaaI2aGaamOBaiabgkHiTiaaiM dacqaH7oaBjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugi biaad2gacaGGPaaaaa@5903@  

and

η 0 =48m( ( 1+ n 2 )γ+nδ )24m( 1+4 n 2 + n 4 )λ+16( 2n( nρ+σ )+( 1+ n 2 )( ρ+2nσ ) )3 ζ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH3oaAjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIWaaajeaipaqabaqcLbsapeGaeyypa0JaeyOeI0IaaG inaiaaiIdacaWGTbGcdaqadaWdaeaapeWaaeWaa8aabaqcLbsapeGa aGymaiabgUcaRiaad6gak8aadaahaaWcbeqcbasaaKqzadWdbiaaik daaaaakiaawIcacaGLPaaajugibiabeo7aNjabgUcaRiaad6gacqaH 0oazaOGaayjkaiaawMcaaKqzGeGaeyOeI0IaaGOmaiaaisdacaWGTb GcdaqadaWdaeaajugib8qacaaIXaGaey4kaSIaaGinaiaad6gajuaG paWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiabgUcaRiaad6 gajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGinaaaaaOGaayjkaiaa wMcaaKqzGeGaeq4UdWMaey4kaSIaaGymaiaaiAdakmaabmaapaqaaK qzGeWdbiaaikdacaWGUbGcdaqadaWdaeaajugib8qacaWGUbGaeqyW diNaey4kaSIaeq4WdmhakiaawIcacaGLPaaajugibiabgUcaROWaae Waa8aabaqcLbsapeGaaGymaiabgUcaRiaad6gajuaGpaWaaWbaaKqa GeqabaqcLbmapeGaaGOmaaaaaOGaayjkaiaawMcaamaabmaapaqaaK qzGeWdbiabeg8aYjabgUcaRiaaikdacaWGUbGaeq4WdmhakiaawIca caGLPaaaaiaawIcacaGLPaaajugibiabgkHiTiaaiodacqaH2oGEju aGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaaaaa@8F55@  

η 4 =48mnδ48m n 2 λ+16( ( 1+ n 2 )ρ+2n( nρ+σ ) )3 ζ 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH3oaAjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI0aaajeaipaqabaqcLbsapeGaeyypa0JaeyOeI0IaaG inaiaaiIdacaWGTbGaamOBaiabes7aKjabgkHiTiaaisdacaaI4aGa amyBaiaad6gajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaju gibiabeU7aSjabgUcaRiaaigdacaaI2aGcdaqadaWdaeaapeWaaeWa a8aabaqcLbsapeGaaGymaiabgUcaRiaad6gajuaGpaWaaWbaaKqaGe qabaqcLbmapeGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaeqyWdiNa ey4kaSIaaGOmaiaad6gakmaabmaapaqaaKqzGeWdbiaad6gacqaHbp GCcqGHRaWkcqaHdpWCaOGaayjkaiaawMcaaaGaayjkaiaawMcaaKqz GeGaeyOeI0IaaG4maiabeA7a6Lqba+aadaWgaaqcbasaaKqzadWdbi aaisdaaKqaG8aabeaaaaa@71A8@  

η 6 =16nρ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH3oaAjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI2aaajeaipaqabaqcLbsapeGaeyypa0JaaGymaiaaiA dacaWGUbGaeqyWdiNaaiOlaaaa@47C2@  

The coefficients of F 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWHgbqcfa4damaaBaaajeaibaqc LbmapeGaaCOmaaqcbaYdaeqaaaaa@405A@ are

z 2 =( 1+4 n 2 ) Ω 2 +4n Ω 4 + Ω 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeGaaeOEaOWaaSbaaKqaGeaajugWaabaaaaaaaaapeGa aGOmaaWcpaqabaqcLbsapeGaeyypa0JcdaqadaWdaeaajugib8qaca aIXaGaey4kaSIaaGinaiaad6gak8aadaahaaWcbeqcbasaaKqzadWd biaaikdaaaaakiaawIcacaGLPaaajugibiabfM6axLqba+aadaWgaa qcbasaaKqzadWdbiaaikdaaKqaG8aabeaajugib8qacqGHRaWkcaaI 0aGaamOBaiabfM6axLqba+aadaWgaaqcbasaaKqzadWdbiaaisdaaK qaG8aabeaajugib8qacqGHRaWkcqqHPoWvjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI2aaajeaipaqabaaaaa@5CB3@  

z 4 =4n Ω 2 +2( 1+2 n 2 ) Ω 4 +4n Ω 6 + Ω 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG6bqcfa4damaaBaaajeaibaqc LbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaisdacaWGUb GaeuyQdCvcfa4damaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqa aKqzGeWdbiabgUcaRiaaikdakmaabmaapaqaaKqzGeWdbiaaigdacq GHRaWkcaaIYaGaamOBaKqba+aadaahaaqcbasabeaajugWa8qacaaI YaaaaaGccaGLOaGaayzkaaqcLbsacqqHPoWvjuaGpaWaaSbaaKqaGe aajugWa8qacaaI0aaajeaipaqabaqcLbsapeGaey4kaSIaaGinaiaa d6gacqqHPoWvjuaGpaWaaSbaaKqaGeaajugWa8qacaaI2aaajeaipa qabaqcLbsapeGaey4kaSIaeuyQdCvcfa4damaaBaaajeaibaqcLbma peGaaGioaaqcbaYdaeqaaaaa@668D@  

z 6 = Ω 2 +4n Ω 4 +2( 1+2 n 2 ) Ω 6 +4n Ω 8 + Ω 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeGaamOEaKqbaoaaBaaajeaibaqcLbmaqaaaaaaaaaWd biaaiAdaaKqaG8aabeaajugib8qacqGH9aqpcqqHPoWvk8aadaWgaa qcbasaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiabgUcaRiaaisda caWGUbGaeuyQdCvcfa4damaaBaaajeaibaqcLbmapeGaaGinaaqcba YdaeqaaKqzGeWdbiabgUcaRiaaikdakmaabmaapaqaaKqzGeWdbiaa igdacqGHRaWkcaaIYaGaamOBaKqba+aadaahaaqcbasabeaajugWa8 qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacqqHPoWvk8aadaWgaaqc basaaKqzadWdbiaaiAdaaSWdaeqaaKqzGeWdbiabgUcaRiaaisdaca WGUbGaeuyQdCLcpaWaaSbaaKqaGeaajugWa8qacaaI4aaal8aabeaa jugib8qacqGHRaWkcqqHPoWvjuaGpaWaaSbaaKqaGeaajugWa8qaca aIXaGaaGimaaqcbaYdaeqaaaaa@6B69@  

z 8 = Ω 4 +4n Ω 6 +2( 1+2 n 2 ) Ω 8 +4n Ω 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG6bGcpaWaaSbaaKqaGeaajugW a8qacaaI4aaal8aabeaajugib8qacqGH9aqpcqqHPoWvjuaGpaWaaS baaKqaGeaajugWa8qacaaI0aaajeaipaqabaqcLbsapeGaey4kaSIa aGinaiaad6gacqqHPoWvjuaGpaWaaSbaaKqaGeaajugWa8qacaaI2a aajeaipaqabaqcLbsapeGaey4kaSIaaGOmaOWaaeWaa8aabaqcLbsa peGaaGymaiabgUcaRiaaikdacaWGUbqcfa4damaaCaaajeaibeqaaK qzadWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabfM6axLqba+aa daWgaaqcbasaaKqzadWdbiaaiIdaaKqaG8aabeaajugib8qacqGHRa WkcaaI0aGaamOBaiabfM6axLqba+aadaWgaaqcbasaaKqzadWdbiaa igdacaaIWaaajeaipaqabaaaaa@66A7@  

z 10 = Ω 6 +4n Ω 8 +2( 1+2 n 2 ) Ω 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG6bqcfa4damaaBaaajeaibaqc LbmapeGaaGymaiaaicdaaKqaG8aabeaajugib8qacqGH9aqpcqqHPo WvjuaGpaWaaSbaaKqaGeaajugWa8qacaaI2aaajeaipaqabaqcLbsa peGaey4kaSIaaGinaiaad6gacqqHPoWvjuaGpaWaaSbaaKqaGeaaju gWa8qacaaI4aaajeaipaqabaqcLbsapeGaey4kaSIaaGOmaOWaaeWa a8aabaqcLbsapeGaaGymaiabgUcaRiaaikdacaWGUbqcfa4damaaCa aajeaibeqaaKqzadWdbiaaikdaaaaakiaawIcacaGLPaaajugibiab fM6axLqba+aadaWgaaqcbasaaKqzadWdbiaaigdacaaIWaaajeaipa qabaaaaa@6020@  

z 12 = Ω 8 +4n Ω 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG6bqcfa4damaaBaaajeaibaqc LbmapeGaaGymaiaaikdaaKqaG8aabeaajugib8qacqGH9aqpcqqHPo WvjuaGpaWaaSbaaKqaGeaajugWa8qacaaI4aaajeaipaqabaqcLbsa peGaey4kaSIaaGinaiaad6gacqqHPoWvjuaGpaWaaSbaaKqaGeaaju gWa8qacaaIXaGaaGimaaqcbaYdaeqaaaaa@502F@  

z 14 = Ω 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG6bqcfa4damaaBaaajeaibaqc LbmapeGaaGymaiaaisdaaKqaG8aabeaajugib8qacqGH9aqpcqqHPo Wvk8aadaWgaaqcbasaaKqzadWdbiaaigdacaaIWaaal8aabeaaaaa@47AD@  

 

where

Ω 2 =4σ η 0 +ρ η 2 2σ η 4 ρ η 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqqHPoWvjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIYaaajeaipaqabaqcLbsapeGaeyypa0JaaGinaiabeo 8aZjabeE7aOLqba+aadaWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aa beaajugib8qacqGHRaWkcqaHbpGCcqaH3oaAjuaGpaWaaSbaaKqaGe aajugWa8qacaaIYaaajeaipaqabaqcLbsapeGaeyOeI0IaaGOmaiab eo8aZjabeE7aOLqba+aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8 aabeaajugib8qacqGHsislcqaHbpGCcqaH3oaAk8aadaWgaaqcbasa aKqzadWdbiaaiAdaaSWdaeqaaaaa@6256@  

Ω 4 =2ρ η 0 +2σ η 2 2σ η 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqqHPoWvjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI0aaajeaipaqabaqcLbsapeGaeyypa0JaaGOmaiabeg 8aYjabeE7aOLqba+aadaWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aa beaajugib8qacqGHRaWkcaaIYaGaeq4WdmNaeq4TdGwcfa4damaaBa aajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabgkHiTiaa ikdacqaHdpWCcqaH3oaAjuaGpaWaaSbaaKqaGeaajugWa8qacaaI2a aajeaipaqabaaaaa@5BA0@  

Ω 6 =ρ η 2 +2σ η 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqqHPoWvjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI2aaajeaipaqabaqcLbsapeGaeyypa0JaeqyWdiNaeq 4TdGMcpaWaaSbaaKqaGeaajugWa8qacaaIYaaal8aabeaajugib8qa cqGHRaWkcaaIYaGaeq4WdmNaeq4TdGwcfa4damaaBaaajeaibaqcLb mapeGaaGinaaqcbaYdaeqaaaaa@5171@  

Ω 8 =ρ η 4 +2σ η 6 a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqqHPoWvk8aadaWgaaqcbasaaKqz adWdbiaaiIdaaSWdaeqaaKqzGeWdbiabg2da9iabeg8aYjabeE7aOL qba+aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaajugib8qa cqGHRaWkcaaIYaGaeq4WdmNaeq4TdGMcpaWaaSbaaKqaGeaajugWa8 qacaaI2aaal8aabeaakiaadggaaaa@51C4@  

Ω 10 =ρ η 6 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqqHPoWvjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iabeg 8aYjabeE7aOPWdamaaBaaajeaibaqcLbmapeGaaGOnaaWcpaqabaqc LbsacaGGUaaaaa@4AA2@  

 

The coefficients of F 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWHgbGcpaWaaSbaaKqaGeaajugW a8qacaWHZaaal8aabeaaaaa@3FB8@ are given by

τ 0 =2n ω 0 + ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHepaDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIWaaajeaipaqabaqcLbsapeGaeyypa0JaaGOmaiaad6 gacqaHjpWDk8aadaWgaaqcbasaaKqzadWdbiaaicdaaSWdaeqaaKqz GeWdbiabgUcaRiabeM8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaaik daaKqaG8aabeaaaaa@4F50@  

τ 2 =2 ω 0 +2n ω 2 + ω 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHepaDk8aadaWgaaqcbasaaKqz adWdbiaaikdaaSWdaeqaaKqzGeWdbiabg2da9iaaikdacqaHjpWDju aGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLbsapeGa ey4kaSIaaGOmaiaad6gacqaHjpWDjuaGpaWaaSbaaKqaGeaajugWa8 qacaaIYaaajeaipaqabaqcLbsapeGaey4kaSIaeqyYdCxcfa4damaa BaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqaaaaa@5679@  

τ 4 = ω 2 +2n ω 4 + ω 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHepaDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI0aaajeaipaqabaqcLbsapeGaeyypa0JaeqyYdCxcfa 4damaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiab gUcaRiaaikdacaWGUbGaeqyYdCNcpaWaaSbaaKqaGeaajugWa8qaca aI0aaal8aabeaajugib8qacqGHRaWkcqaHjpWDjuaGpaWaaSbaaKqa GeaajugWa8qacaaI2aaajeaipaqabaaaaa@55C5@  

τ 6 = ω 4 +2n ω 6 + ω 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHepaDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI2aaajeaipaqabaqcLbsapeGaeyypa0JaeqyYdCxcfa 4damaaBaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiab gUcaRiaaikdacaWGUbGaeqyYdCxcfa4damaaBaaajeaibaqcLbmape GaaGOnaaqcbaYdaeqaaKqzGeWdbiabgUcaRiabeM8a3Lqba+aadaWg aaqcbasaaKqzadWdbiaaiIdaaKqaG8aabeaaaaa@5670@  

τ 8 = ω 6 +2n ω 8 + ω 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHepaDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI4aaajeaipaqabaqcLbsapeGaeyypa0JaeqyYdCxcfa 4damaaBaaajeaibaqcLbmapeGaaGOnaaqcbaYdaeqaaKqzGeWdbiab gUcaRiaaikdacaWGUbGaeqyYdCxcfa4damaaBaaajeaibaqcLbmape GaaGioaaqcbaYdaeqaaKqzGeWdbiabgUcaRiabeM8a3Lqba+aadaWg aaqcbasaaKqzadWdbiaaigdacaaIWaaajeaipaqabaaaaa@5729@  

τ 10 = ω 8 +2n ω 10 + ω 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHepaDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iabeM 8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaaiIdaaKqaG8aabeaajugi b8qacqGHRaWkcaaIYaGaamOBaiabeM8a3Lqba+aadaWgaaqcbasaaK qzadWdbiaaigdacaaIWaaajeaipaqabaqcLbsapeGaey4kaSIaeqyY dCxcfa4damaaBaaajeaibaqcLbmapeGaaGymaiaaikdaaKqaG8aabe aaaaa@5893@  

τ 12 = ω 10 +2n ω 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHepaDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaGaaGOmaaqcbaYdaeqaaKqzGeWdbiabg2da9iabeM 8a3Lqba+aadaWgaaqcbasaaKqzadWdbiaaigdacaaIWaaajeaipaqa baqcLbsapeGaey4kaSIaaGOmaiaad6gacqaHjpWDjuaGpaWaaSbaaK qaGeaajugWa8qacaaIXaGaaGOmaaqcbaYdaeqaaaaa@5226@  

τ 14 = ω 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHepaDk8aadaWgaaqcbasaaKqz adWdbiaaigdacaaI0aaal8aabeaajugib8qacqGH9aqpcqaHjpWDk8 aadaWgaaqcbasaaKqzadWdbiaaigdacaaIYaaal8aabeaaaaa@4811@  

where

ω 0 =2 B 0 P 0 + B 2 P 2 + B 4 P 4 2 π 0 ζ 0 π 2 ζ 2 π 4 ζ 4 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHjpWDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIWaaajeaipaqabaqcLbsapeGaeyypa0JaaGOmaiaadk eak8aadaWgaaqcbasaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiaa dcfajuaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLb sapeGaey4kaSIaamOqaKqba+aadaWgaaqcbasaaKqzadWdbiaaikda aKqaG8aabeaajugib8qacaWGqbqcfa4damaaBaaajeaibaqcLbmape GaaGOmaaqcbaYdaeqaaKqzGeWdbiabgUcaRiaadkeajuaGpaWaaSba aKqaGeaajugWa8qacaaI0aaajeaipaqabaqcLbsapeGaamiuaKqba+ aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaajugib8qacqGH sislcaaIYaGaeqiWdaNcpaWaaSbaaKqaGeaajugWa8qacaaIWaaal8 aabeaajugib8qacqaH2oGEjuaGpaWaaSbaaKqaGeaajugWa8qacaaI WaaajeaipaqabaqcLbsapeGaeyOeI0IaeqiWdaNcpaWaaSbaaKqaGe aajugWa8qacaaIYaaal8aabeaajugib8qacqaH2oGEjuaGpaWaaSba aKqaGeaajugWa8qacaaIYaaajeaipaqabaqcLbsapeGaeyOeI0Iaeq iWdaNcpaWaaSbaaKqaGeaajugWa8qacaaI0aaal8aabeaajugib8qa cqaH2oGEjuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeaipaqaba qcLbsacaGGSaaaaa@830E@  

 

ω 2 =2 B 2 P 0 +( 2 B 0 + B 4 ) P 2 + B 2 P 4 + B 4 P 6 2 π 0 ζ 2 π 4 ζ 2 π 6 ζ 4 π 2 ( 2 ζ 0 + ζ 4 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHjpWDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIYaaajeaipaqabaqcLbsapeGaeyypa0JaaGOmaiaadk eajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipaqabaqcLbsa peGaamiuaOWdamaaBaaajeaibaqcLbmapeGaaGimaaWcpaqabaqcLb sapeGaey4kaSIcdaqadaWdaeaajugib8qacaaIYaGaamOqaKqba+aa daWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugib8qacqGHRa WkcaWGcbGcpaWaaSbaaKqaGeaajugWa8qacaaI0aaal8aabeaaaOWd biaawIcacaGLPaaajugibiaadcfak8aadaWgaaqcbasaaKqzadWdbi aaikdaaSWdaeqaaKqzGeWdbiabgUcaRiaadkeak8aadaWgaaqcbasa aKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiaadcfajuaGpaWaaSbaaK qaGeaajugWa8qacaaI0aaajeaipaqabaqcLbsapeGaey4kaSIaamOq aKqba+aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaajugib8 qacaWGqbqcfa4damaaBaaajeaibaqcLbmapeGaaGOnaaqcbaYdaeqa aKqzGeWdbiabgkHiTiaaikdacqaHapaCjuaGpaWaaSbaaKqaGeaaju gWa8qacaaIWaaajeaipaqabaqcLbsapeGaeqOTdOxcfa4damaaBaaa jeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabgkHiTiabec 8aWPWdamaaBaaajeaibaqcLbmapeGaaGinaaWcpaqabaqcLbsapeGa eqOTdOxcfa4damaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaK qzGeWdbiabgkHiTiabec8aWPWdamaaBaaajeaibaqcLbmapeGaaGOn aaWcpaqabaqcLbsapeGaeqOTdOxcfa4damaaBaaajeaibaqcLbmape GaaGinaaqcbaYdaeqaaKqzGeWdbiabgkHiTiabec8aWPWdamaaBaaa jeaibaqcLbmapeGaaGOmaaWcpaqabaGcpeWaaeWaa8aabaqcLbsape GaaGOmaiabeA7a6PWdamaaBaaajeaibaqcLbmapeGaaGimaaWcpaqa baqcLbsapeGaey4kaSIaeqOTdONcpaWaaSbaaKqaGeaajugWa8qaca aI0aaal8aabeaaaOWdbiaawIcacaGLPaaajugibiaacYcaaaa@A705@  

ω 4 =2 B 0 P 4 + B 2 ( P 2 + P 6 )+ B 4 ( 2 P 0 + P 8 )2 π 4 ζ 0 ( π 2 + π 6 ) ζ 2 2 π 0 ζ 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHjpWDk8aadaWgaaqcbasaaKqz adWdbiaaisdaaSWdaeqaaKqzGeWdbiabg2da9iaaikdacaWGcbGcpa WaaSbaaKqaGeaajugWa8qacaaIWaaal8aabeaajugib8qacaWGqbqc fa4damaaBaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbi abgUcaRiaadkeajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaaajeai paqabaGcpeWaaeWaa8aabaqcLbsapeGaamiuaKqba+aadaWgaaqcba saaKqzadWdbiaaikdaaKqaG8aabeaajugib8qacqGHRaWkcaWGqbGc paWaaSbaaKqaGeaajugWa8qacaaI2aaal8aabeaaaOWdbiaawIcaca GLPaaajugibiabgUcaRiaadkeajuaGpaWaaSbaaKqaGeaajugWa8qa caaI0aaajeaipaqabaGcpeWaaeWaa8aabaqcLbsapeGaaGOmaiaadc fajuaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLbsa peGaey4kaSIaamiuaKqba+aadaWgaaqcbasaaKqzadWdbiaaiIdaaK qaG8aabeaaaOWdbiaawIcacaGLPaaajugibiabgkHiTiaaikdacqaH apaCjuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeaipaqabaqcLb sapeGaeqOTdOxcfa4damaaBaaajeaibaqcLbmapeGaaGimaaqcbaYd aeqaaKqzGeWdbiabgkHiTOWaaeWaa8aabaqcLbsapeGaeqiWdaxcfa 4damaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiab gUcaRiabec8aWPWdamaaBaaajeaibaqcLbmapeGaaGOnaaWcpaqaba aak8qacaGLOaGaayzkaaqcLbsacqaH2oGEjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIYaaajeaipaqabaqcLbsapeGaeyOeI0IaaGOmaiabec 8aWLqba+aadaWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugi b8qacqaH2oGEjuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeaipa qabaaaaa@9A57@  

ω 6 = B 4 P 2 +2 B 0 P 6 + B 2 ( P 4 + P 8 )2 π 6 ζ 0 π 4 ζ 2 π 2 ζ 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHjpWDk8aadaWgaaqcbasaaKqz adWdbiaaiAdaaSWdaeqaaKqzGeWdbiabg2da9iaadkeajuaGpaWaaS baaKqaGeaajugWa8qacaaI0aaajeaipaqabaqcLbsapeGaamiuaKqb a+aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaajugib8qacq GHRaWkcaaIYaGaamOqaKqba+aadaWgaaqcbasaaKqzadWdbiaaicda aKqaG8aabeaajugib8qacaWGqbqcfa4damaaBaaajeaibaqcLbmape GaaGOnaaqcbaYdaeqaaKqzGeWdbiabgUcaRiaadkeak8aadaWgaaqc basaaKqzadWdbiaaikdaaSWdaeqaaOWdbmaabmaapaqaaKqzGeWdbi aadcfajuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeaipaqabaqc LbsapeGaey4kaSIaamiuaOWdamaaBaaajeaibaqcLbmapeGaaGioaa Wcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqGHsislcaaIYaGaeqiW daxcfa4damaaBaaajeaibaqcLbmapeGaaGOnaaqcbaYdaeqaaKqzGe WdbiabeA7a6Lqba+aadaWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aa beaajugib8qacqGHsislcqaHapaCjuaGpaWaaSbaaKqaGeaajugWa8 qacaaI0aaajeaipaqabaqcLbsapeGaeqOTdOxcfa4damaaBaaajeai baqcLbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabgkHiTiabec8aWL qba+aadaWgaaqcbasaaKqzadWdbiaaikdaaKqaG8aabeaajugib8qa cqaH2oGEjuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeaipaqaba aaaa@89B7@  

ω 8 = B 4 P 4 + B 2 P 6 +2 B 0 P 8 π 6 ζ 2 π 4 ζ 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHjpWDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI4aaajeaipaqabaqcLbsapeGaeyypa0JaamOqaKqba+ aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaajugib8qacaWG qbqcfa4damaaBaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqaaKqzGe WdbiabgUcaRiaadkeajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaaa jeaipaqabaqcLbsapeGaamiuaKqba+aadaWgaaqcbasaaKqzadWdbi aaiAdaaKqaG8aabeaajugib8qacqGHRaWkcaaIYaGaamOqaKqba+aa daWgaaqcbasaaKqzadWdbiaaicdaaKqaG8aabeaajugib8qacaWGqb qcfa4damaaBaaajeaibaqcLbmapeGaaGioaaqcbaYdaeqaaKqzGeWd biabgkHiTiabec8aWPWdamaaBaaajeaibaqcLbmapeGaaGOnaaWcpa qabaqcLbsapeGaeqOTdOxcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaqcbaYdaeqaaKqzGeWdbiabgkHiTiabec8aWLqba+aadaWgaaqcba saaKqzadWdbiaaisdaaKqaG8aabeaajugib8qacqaH2oGEjuaGpaWa aSbaaKqaGeaajugWa8qacaaI0aaajeaipaqabaaaaa@773D@  

ω 10 = B 4 P 6 + B 2 P 8 π 6 ζ 4 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHjpWDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iaadk eajuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeaipaqabaqcLbsa peGaamiuaKqba+aadaWgaaqcbasaaKqzadWdbiaaiAdaaKqaG8aabe aajugib8qacqGHRaWkcaWGcbGcpaWaaSbaaKqaGeaajugWa8qacaaI Yaaal8aabeaajugib8qacaWGqbqcfa4damaaBaaajeaibaqcLbmape GaaGioaaqcbaYdaeqaaKqzGeWdbiabgkHiTiabec8aWLqba+aadaWg aaqcbasaaKqzadWdbiaaiAdaaKqaG8aabeaajugib8qacqaH2oGEju aGpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeaipaqabaqcLbsacaGG Saaaaa@62A4@  

ω 12 = B 4 P 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHjpWDjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaGaaGOmaaqcbaYdaeqaaKqzGeWdbiabg2da9iaadk eajuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeaipaqabaqcLbsa peGaamiuaKqba+aadaWgaaqcbasaaKqzadWdbiaaiIdaaKqaG8aabe aaaaa@4C33@  

with

B 0 =nρ+(1+ n 2 )σ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGcbqcfa4damaaBaaajeaibaqc LbmapeGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iaad6gacqaHbp GCcqGHRaWkcaGGOaGaaGymaiabgUcaRiaad6gajuaGpaWaaWbaaKqa GeqabaqcLbmapeGaaGOmaaaajugib8aacaGGPaWdbiabeo8aZjaacY caaaa@4F79@  

B 2 =( 1+ n 2 )ρ+2nσ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGcbqcfa4damaaBaaajeaibaqc LbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabg2da9OWaaeWaa8aaba qcLbsapeGaaGymaiabgUcaRiaad6gajuaGpaWaaWbaaKqaGeqabaqc LbmapeGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaeqyWdiNaey4kaS IaaGOmaiaad6gacqaHdpWCcaGGSaaaaa@510A@  

B 4 =nρ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGcbqcfa4damaaBaaajeaibaqc LbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabg2da9iaad6gacqaHbp GCcaGGUaaaaa@4560@  

and

P 0 =24m( 1+ n 2 )( n+γ )12m( 2( 1+ n 2 )γ+4nδ )4m(12nδ+ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGqbqcfa4damaaBaaajeaibaqc LbmapeGaaGimaaqcbaYdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaik dacaaI0aGaamyBaOWaaeWaa8aabaqcLbsapeGaeyOeI0IaaGymaiab gUcaRiaad6gajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaaO GaayjkaiaawMcaamaabmaapaqaaKqzGeWdbiabgkHiTiaad6gacqGH RaWkcqaHZoWzaOGaayjkaiaawMcaaKqzGeGaeyOeI0IaaGymaiaaik dacaWGTbGcdaqadaWdaeaajugib8qacaaIYaGcdaqadaWdaeaajugi b8qacaaIXaGaey4kaSIaamOBaKqba+aadaahaaqcbasabeaajugWa8 qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacqaHZoWzcqGHRaWkcaaI 0aGaamOBaiabes7aKbGccaGLOaGaayzkaaqcLbsacqGHsislcaaI0a GaamyBaiaacIcacaaIXaGaaGOmaiaad6gacqaH0oazcqGHRaWkaaa@7294@  

( 1+ n 2 )( 12n+3λ ))+3ρ+8n( nρ+σ )+2( 3+4 n 2 )(ρ+2nσ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbabaaaaaaaaapeWaaeWaa8aabaqcLbsapeGaaGymaiabgUca Riaad6gajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaaOGaay jkaiaawMcaamaabmaapaqaaKqzGeWdbiabgkHiTiaaigdacaaIYaGa amOBaiabgUcaRiaaiodacqaH7oaBaOGaayjkaiaawMcaaKqzGeGaai ykaiabgUcaRiaaiodacqaHbpGCcqGHRaWkcaaI4aGaamOBaOWaaeWa a8aabaqcLbsapeGaamOBaiabeg8aYjabgUcaRiabeo8aZbGccaGLOa GaayzkaaqcLbsacqGHRaWkcaaIYaGcdaqadaWdaeaajugib8qacqGH sislcaaIZaGaey4kaSIaaGinaiaad6gajuaGpaWaaWbaaKqaGeqaba qcLbmapeGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaaiikaiabeg8a YjabgUcaRiaaikdacaWGUbGaeq4WdmNaaiykaiaacYcaaaa@6F9B@  

P 2 =48m( 1+ n 2 )δ12m( 8nγ+3δ+4 n 2 δ )4m(6n( 3n+γ )+ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGqbqcfa4damaaBaaajeaibaqc LbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabg2da9iabgkHiTiaais dacaaI4aGaamyBaOWaaeWaa8aabaqcLbsapeGaeyOeI0IaaGymaiab gUcaRiaad6gajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaaO GaayjkaiaawMcaaKqzGeGaeqiTdqMaeyOeI0IaaGymaiaaikdacaWG TbGcdaqadaWdaeaajugib8qacaaI4aGaamOBaiabeo7aNjabgUcaRi aaiodacqaH0oazcqGHRaWkcaaI0aGaamOBaKqba+aadaahaaqcbasa beaajugWa8qacaaIYaaaaKqzGeGaeqiTdqgakiaawIcacaGLPaaaju gibiabgkHiTiaaisdacaWGTbGaaiikaiaaiAdacaWGUbGcdaqadaWd aeaajugib8qacqGHsislcaaIZaGaamOBaiabgUcaRiabeo7aNbGcca GLOaGaayzkaaqcLbsacqGHRaWkaaa@729D@  

12( 1+ n 2 )δ+9nλ)+10nρ+6σ+4( 3+4 n 2 )( nρ+σ )+8n( ρ+2nσ ),a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaaIXaGaaGOmaOWaaeWaa8aabaqc LbsapeGaaGymaiabgUcaRiaad6gajuaGpaWaaWbaaKqaGeqabaqcLb mapeGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaeqiTdqMaey4kaSIa aGyoaiaad6gacqaH7oaBcaGGPaGaey4kaSIaaGymaiaaicdacaWGUb GaeqyWdiNaey4kaSIaaGOnaiabeo8aZjabgUcaRiaaisdakmaabmaa paqaaKqzGeWdbiabgkHiTiaaiodacqGHRaWkcaaI0aGaamOBaOWdam aaCaaaleqajeaibaqcLbmapeGaaGOmaaaaaOGaayjkaiaawMcaamaa bmaapaqaaKqzGeWdbiaad6gacqaHbpGCcqGHRaWkcqaHdpWCaOGaay jkaiaawMcaaKqzGeGaey4kaSIaaGioaiaad6gakmaabmaapaqaaKqz GeWdbiabeg8aYjabgUcaRiaaikdacaWGUbGaeq4WdmhakiaawIcaca GLPaaajugibiaacYcacaWGHbaaaa@7518@  

P 4 =24m( γ+2nδ )24m( 1+ n 2 )λ4m( 12n+9λ+21 n 2 λ ) +2( 3+4 n 2 )ρ+8n( nρ+σ )+6( ρ+2nσ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq GabeqaaWBabaqcLbsaqaaaaaaaaaWdbiaadcfajuaGpaWaaSbaaKqa GeaajugWa8qacaaI0aaajeaipaqabaqcLbsapeGaeyypa0JaeyOeI0 IaaGOmaiaaisdacaWGTbGcdaqadaWdaeaajugib8qacqaHZoWzcqGH RaWkcaaIYaGaamOBaiabes7aKbGccaGLOaGaayzkaaqcLbsacqGHsi slcaaIYaGaaGinaiaad2gakmaabmaapaqaaKqzGeWdbiabgkHiTiaa igdacqGHRaWkcaWGUbqcfa4damaaCaaajeaibeqaaKqzadWdbiaaik daaaaakiaawIcacaGLPaaajugibiabeU7aSjabgkHiTiaaisdacaWG TbGcdaqadaWdaeaajugib8qacqGHsislcaaIXaGaaGOmaiaad6gacq GHRaWkcaaI5aGaeq4UdWMaey4kaSIaaGOmaiaaigdacaWGUbqcfa4d amaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsacqaH7oaBaOGaay jkaiaawMcaaaqaaKqzGeGaey4kaSIaaGOmaOWaaeWaa8aabaqcLbsa peGaeyOeI0IaaG4maiabgUcaRiaaisdacaWGUbqcfa4damaaCaaaje aibeqaaKqzadWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabeg8a YjabgUcaRiaaiIdacaWGUbGcdaqadaWdaeaajugib8qacaWGUbGaeq yWdiNaey4kaSIaeq4WdmhakiaawIcacaGLPaaajugibiabgUcaRiaa iAdakmaabmaapaqaaKqzGeWdbiabeg8aYjabgUcaRiaaikdacaWGUb Gaeq4WdmhakiaawIcacaGLPaaajugibiaacYcaaaaa@9461@  

P 6 =12mδ36mnλ+10nρ+6σ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGqbqcfa4damaaBaaajeaibaqc LbmapeGaaGOnaaqcbaYdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaig dacaaIYaGaamyBaiabes7aKjabgkHiTiaaiodacaaI2aGaamyBaiaa d6gacqaH7oaBcqGHRaWkcaaIXaGaaGimaiaad6gacqaHbpGCcqGHRa WkcaaI2aGaeq4WdmNaaiilaaaa@5628@  

P 8 =3ρ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGqbqcfa4damaaBaaajeaibaqc LbmapeGaaGioaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaiodacqaHbp GCcaGGUaaaaa@453C@  

π 0 =6(2( m( 1+ n 2 )mnλ+nρ )+( 1+2 n 2 )( ρ+σ )), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHapaCjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIWaaajeaipaqabaqcLbsapeGaeyypa0JaaGOnaiaacI cacaaIYaGcdaqadaWdaeaajugib8qacaWGTbGcdaqadaWdaeaajugi b8qacaaIXaGaey4kaSIaamOBaKqba+aadaahaaqcbasabeaajugWa8 qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacqGHsislcaWGTbGaamOB aiabeU7aSjabgUcaRiaad6gacqaHbpGCaOGaayjkaiaawMcaaKqzGe Gaey4kaSIcdaqadaWdaeaajugib8qacaaIXaGaey4kaSIaaGOmaiaa d6gajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaaaOGaayjkai aawMcaamaabmaapaqaaKqzGeWdbiabeg8aYjabgUcaRiabeo8aZbGc caGLOaGaayzkaaqcLbsacaGGPaGaaiilaaaa@6B37@  

π 2 =3( 4m( 1+ n 2 )λ+ρ+8n( m+σ ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHapaCjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIYaaajeaipaqabaqcLbsapeGaeyypa0JaaG4maOWaae Waa8aabaqcLbsapeGaeyOeI0IaaGinaiaad2gakmaabmaapaqaaKqz GeWdbiaaigdacqGHRaWkcaWGUbqcfa4damaaCaaajeaibeqaaKqzad WdbiaaikdaaaaakiaawIcacaGLPaaajugibiabeU7aSjabgUcaRiab eg8aYjabgUcaRiaaiIdacaWGUbGcdaqadaWdaeaajugib8qacaWGTb Gaey4kaSIaeq4WdmhakiaawIcacaGLPaaaaiaawIcacaGLPaaajugi biaacYcaaaa@5EE5@  

π 4 =12mnλ+12nρ+6σ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHapaCk8aadaWgaaqcbasaaKqz adWdbiaaisdaaSWdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaigdaca aIYaGaamyBaiaad6gacqaH7oaBcqGHRaWkcaaIXaGaaGOmaiaad6ga cqaHbpGCcqGHRaWkcaaI2aGaeq4WdmNaaiilaaaa@516C@  

π 6 =3ρ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHapaCjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI2aaajeaipaqabaqcLbsapeGaeyypa0JaaG4maiabeg 8aYjaac6caaaa@4622@  

Introducing

q 2 =4nρ+8( 1+ n 2 )σ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGXbGcpaWaaSbaaKqaGeaajugW a8qacaaIYaaal8aabeaajugib8qacqGH9aqpcaaI0aGaamOBaiabeg 8aYjabgUcaRiaaiIdakmaabmaapaqaaKqzGeWdbiaaigdacqGHRaWk caWGUbqcfa4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaaakiaawI cacaGLPaaajugibiabeo8aZjaacYcaaaa@515A@  

q 4 =4( 1+ n 2 )ρ+8nσ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGXbqcfa4damaaBaaajeaibaqc LbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaisdakmaabm aapaqaaKqzGeWdbiaaigdacqGHRaWkcaWGUbqcfa4damaaCaaajeai beqaaKqzadWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabeg8aYj abgUcaRiaaiIdacaWGUbGaeq4WdmNaaiilaaaa@51FF@  

q 6 =4nρ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGXbqcfa4damaaBaaajeaibaqc LbmapeGaaGOnaaqcbaYdaeqaaKqzGeWdbiabg2da9iaaisdacaWGUb GaeqyWdiNaaiOlaaaa@464F@  

s 1 =4( ( 1+5 n 2 )ρ+6nσ )8n( 3nρ+( 1+5 n 2 )σ )+ ζ 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGZbqcfa4damaaBaaajeaibaqc LbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiabg2da9iabgkHiTiaais dakmaabmaapaqaa8qadaqadaWdaeaajugib8qacaaIXaGaey4kaSIa aGynaiaad6gak8aadaahaaWcbeqcbasaaKqzadWdbiaaikdaaaaaki aawIcacaGLPaaajugibiabeg8aYjabgUcaRiaaiAdacaWGUbGaeq4W dmhakiaawIcacaGLPaaajugibiabgkHiTiaaiIdacaWGUbGcdaqada Wdaeaajugib8qacaaIZaGaamOBaiabeg8aYjabgUcaROWaaeWaa8aa baqcLbsapeGaaGymaiabgUcaRiaaiwdacaWGUbqcfa4damaaCaaaje aibeqaaKqzadWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabeo8a ZbGccaGLOaGaayzkaaqcLbsacqGHRaWkcqaH2oGEjuaGpaWaaSbaaK qaGeaajugWa8qacaaIWaaajeaipaqabaqcLbsacaGGSaaaaa@7054@  

s 2 =12nρ8n( ( 1+5 n 2 )ρ+6nσ )8( 3nρ+( 1+5 n 2 )σ )+ ζ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGZbqcfa4damaaBaaajeaibaqc LbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaig dacaaIYaGaamOBaiabeg8aYjabgkHiTiaaiIdacaWGUbGcdaqadaWd aeaapeWaaeWaa8aabaqcLbsapeGaaGymaiabgUcaRiaaiwdacaWGUb qcfa4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaaakiaawIcacaGL Paaajugibiabeg8aYjabgUcaRiaaiAdacaWGUbGaeq4WdmhakiaawI cacaGLPaaajugibiabgkHiTiaaiIdakmaabmaapaqaaKqzGeWdbiaa iodacaWGUbGaeqyWdiNaey4kaSIcdaqadaWdaeaajugib8qacaaIXa Gaey4kaSIaaGynaiaad6gajuaGpaWaaWbaaKqaGeqabaqcLbmapeGa aGOmaaaaaOGaayjkaiaawMcaaKqzGeGaeq4WdmhakiaawIcacaGLPa aajugibiabgUcaRiabeA7a6Lqba+aadaWgaaqcbasaaKqzadWdbiaa ikdaaKqaG8aabeaajugibiaacYcaaaa@75EB@  

s 4 =24 n 2 ρ4( ( 1+5 n 2 )ρ+6nσ )+ ζ 4 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGZbqcfa4damaaBaaajeaibaqc LbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaik dacaaI0aGaamOBaKqba+aadaahaaqcbasabeaajugWa8qacaaIYaaa aKqzGeGaeqyWdiNaeyOeI0IaaGinaOWaaeWaa8aabaWdbmaabmaapa qaaKqzGeWdbiaaigdacqGHRaWkcaaI1aGaamOBaKqba+aadaahaaqc basabeaajugWa8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacqaHbp GCcqGHRaWkcaaI2aGaamOBaiabeo8aZbGccaGLOaGaayzkaaqcLbsa cqGHRaWkcqaH2oGEjuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaaje aipaqabaqcLbsacaGGSaaaaa@64C3@  

s 6 =12nρ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGZbqcfa4damaaBaaajeaibaqc LbmapeGaaGOnaaqcbaYdaeqaaKqzGeWdbiabg2da9iabgkHiTiaaig dacaaIYaGaamOBaiabeg8aYjaac6caaaa@47F7@  

The coefficients of F 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWHgbqcfa4damaaBaaajeaibaqc LbmapeGaaCinaaqcbaYdaeqaaaaa@405C@ are

ο 1 =( 1+ n 2 ) m 1 +n( m 1 + m 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH=oWBjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaajeaipaqabaqcLbsapeGaeyypa0JcdaqadaWdae aajugib8qacaaIXaGaey4kaSIaamOBaOWdamaaCaaaleqajeaibaqc LbmapeGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaamyBaKqba+aada WgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaajugib8qacqGHRaWk caWGUbGaaiikaiaad2gajuaGpaWaaSbaaKqaGeaajugWa8qacqGHsi slcaaIXaaajeaipaqabaqcLbsapeGaey4kaSIaamyBaKqba+aadaWg aaqcbasaaKqzadWdbiaaiodaaKqaG8aabeaajugibiaacMcaaaa@5DB0@  

ο 3 =( 1+ n 2 ) m 3 +n( m 1 + ο 3 =( 1+ n 2 ) m 3 +n( m 1 + m 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH=oWBjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIZaaajeaipaqabaqcLbsapeGaeyypa0JcdaqadaWdae aajugib8qacaaIXaGaey4kaSIaamOBaKqba+aadaahaaqcbasabeaa jugWa8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWGTbqcfa4dam aaBaaajeaibaqcLbmapeGaaG4maaqcbaYdaeqaaKqzGeWdbiabgUca Riaad6gacaGGOaGaamyBaKqba+aadaWgaaqcbasaaKqzadWdbiaaig daaKqaG8aabeaajugib8qacqGHRaWkcqaH=oWBjuaGpaWaaSbaaKqa GeaajugWa8qacaaIZaaajeaipaqabaqcLbsapeGaeyypa0Jcdaqada Wdaeaajugib8qacaaIXaGaey4kaSIaamOBaKqba+aadaahaaqcbasa beaajugWa8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWGTbqcfa 4damaaBaaajeaibaqcLbmapeGaaG4maaqcbaYdaeqaaKqzGeWdbiab gUcaRiaad6gacaGGOaGaamyBaKqba+aadaWgaaqcbasaaKqzadWdbi aaigdaaKqaG8aabeaajugib8qacqGHRaWkcaWGTbqcfa4damaaBaaa jeaibaqcLbmapeGaaGynaaqcbaYdaeqaaKqzGeWdbiaacMcaaaa@78D6@  

ο 5 =( 1+ n 2 ) m 5 +n( m 3 + m 7 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH=oWBjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI1aaajeaipaqabaqcLbsapeGaeyypa0JcdaqadaWdae aajugib8qacaaIXaGaey4kaSIaamOBaKqba+aadaahaaqcbasabeaa jugWa8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWGTbqcfa4dam aaBaaajeaibaqcLbmapeGaaGynaaqcbaYdaeqaaKqzGeWdbiabgUca Riaad6gacaGGOaGaamyBaKqba+aadaWgaaqcbasaaKqzadWdbiaaio daaKqaG8aabeaajugib8qacqGHRaWkcaWGTbqcfa4damaaBaaajeai baqcLbmapeGaaG4naaqcbaYdaeqaaKqzGeGaaiykaaaa@5D4A@  

ο 7 =( 1+ n 2 ) m 7 +n( m 5 + m 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH=oWBjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI3aaajeaipaqabaqcLbsapeGaeyypa0JcdaqadaWdae aajugib8qacaaIXaGaey4kaSIaamOBaKqba+aadaahaaqcbasabeaa jugWa8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWGTbqcfa4dam aaBaaajeaibaqcLbmapeGaaG4naaqcbaYdaeqaaKqzGeWdbiabgUca Riaad6gacaGGOaGaamyBaKqba+aadaWgaaqcbasaaKqzadWdbiaaiw daaKqaG8aabeaajugib8qacqGHRaWkcaWGTbqcfa4damaaBaaajeai baqcLbmapeGaaGyoaaqcbaYdaeqaaKqzGeWdbiaacMcaaaa@5D62@  

ο 9 =( 1+ n 2 ) m 9 +n( m 7 + m 11 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH=oWBjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI5aaajeaipaqabaqcLbsapeGaeyypa0JcdaqadaWdae aajugib8qacaaIXaGaey4kaSIaamOBaKqba+aadaahaaqcbasabeaa jugWa8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWGTbqcfa4dam aaBaaajeaibaqcLbmapeGaaGyoaaqcbaYdaeqaaKqzGeWdbiabgUca Riaad6gacaGGOaGaamyBaKqba+aadaWgaaqcbasaaKqzadWdbiaaiE daaKqaG8aabeaajugib8qacqGHRaWkcaWGTbqcfa4damaaBaaajeai baqcLbmapeGaaGymaiaaigdaaKqaG8aabeaajugibiaacMcaaaa@5E0B@  

ϕ 1 =( 1+ n 2 ) n 1 +n( n 1 + n 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHvpGzjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaajeaipaqabaqcLbsapeGaeyypa0JcdaqadaWdae aajugib8qacaaIXaGaey4kaSIaamOBaKqba+aadaahaaqcbasabeaa jugWa8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacaWGUbqcfa4dam aaBaaajeaibaqcLbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiabgUca Riaad6gacaGGOaGaamOBaKqba+aadaWgaaqcbasaaKqzadWdbiabgk HiTiaaigdaaKqaG8aabeaajugib8qacqGHRaWkcaWGUbqcfa4damaa BaaajeaibaqcLbmapeGaaG4maaqcbaYdaeqaaKqzGeGaaiykaaaa@5E39@  

ϕ 3 =( 1+ n 2 ) n 3 +n( n 1 + n 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHvpGzjuaGpaWaaSbaaKqaGeaa jugWa8qacaaIZaaajeaipaqabaqcLbsapeGaeyypa0JcdaqadaWdae aajugib8qacaaIXaGaey4kaSIaamOBaOWdamaaCaaaleqajeaibaqc LbmapeGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaamOBaKqba+aada WgaaqcbasaaKqzadWdbiaaiodaaKqaG8aabeaajugib8qacqGHRaWk caWGUbGaaiikaiaad6gak8aadaWgaaqcbasaaKqzadWdbiaaigdaaS WdaeqaaKqzGeWdbiabgUcaRiaad6gak8aadaWgaaqcbasaaKqzadWd biaaiwdaaSWdaeqaaKqzGeGaaiykaaaa@5B93@  

ϕ 5 =( 1+ n 2 ) n 5 +n( n 3 + n 7 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHvpGzjuaGpaWaaSbaaKqaGeaa jugWa8qacaaI1aaajeaipaqabaqcLbsapeGaeyypa0JcdaqadaWdae aajugib8qacaaIXaGaey4kaSIaamOBaOWdamaaCaaaleqajeaibaqc LbmapeGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaamOBaKqba+aada WgaaqcbasaaKqzadWdbiaaiwdaaKqaG8aabeaajugib8qacqGHRaWk caWGUbGaaiikaiaad6gajuaGpaWaaSbaaKqaGeaajugWa8qacaaIZa aajeaipaqabaqcLbsapeGaey4kaSIaamOBaKqba+aadaWgaaqcbasa aKqzadWdbiaaiEdaaKqaG8aabeaajugibiaacMcaaaa@5CE1@  

ϕ 7 =( 1+ n 2 ) n 7 +n( n 5 + n 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHvpGzk8aadaWgaaqcbasaaKqz adWdbiaaiEdaaSWdaeqaaKqzGeWdbiabg2da9OWaaeWaa8aabaqcLb sapeGaaGymaiabgUcaRiaad6gajuaGpaWaaWbaaKqaGeqabaqcLbma peGaaGOmaaaaaOGaayjkaiaawMcaaKqzGeGaamOBaKqba+aadaWgaa qcbasaaKqzadWdbiaaiEdaaKqaG8aabeaajugib8qacqGHRaWkcaWG UbGaaiikaiaad6gajuaGpaWaaSbaaKqaGeaajugWa8qacaaI1aaaje aipaqabaqcLbsapeGaey4kaSIaamOBaOWdamaaBaaajeaibaqcLbma peGaaGyoaaWcpaqabaqcLbsacaGGPaaaaa@5C1C@  

ϕ 9 =( 1+ n 2 ) n 9 +n( n 7 + n 11 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaHvpGzk8aadaWgaaqcbasaaKqz adWdbiaaiMdaaSWdaeqaaKqzGeWdbiabg2da9OWaaeWaa8aabaqcLb sapeGaaGymaiabgUcaRiaad6gak8aadaahaaWcbeqcbasaaKqzadWd biaaikdaaaaakiaawIcacaGLPaaajugibiaad6gak8aadaWgaaqcba saaKqzadWdbiaaiMdaaSWdaeqaaKqzGeWdbiabgUcaRiaad6gacaGG OaGaamOBaOWdamaaBaaajeaibaqcLbmapeGaaG4naaWcpaqabaqcLb sapeGaey4kaSIaamOBaKqba+aadaWgaaqcbasaaKqzadWdbiaaigda caaIXaaajeaipaqabaqcLbsacaGGPaaaaa@5BB9@  

where

m 1 = m 1 =( q 2 +2 s 1 + s 2 ) β 1 +( 3 q 2 3 q 4 + s 2 + s 4 ) β 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGTbqcfa4damaaBaaajeaibaqc LbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiabg2da9iaad2gajuaGpa WaaSbaaKqaGeaajugWa8qacqGHsislcaaIXaaajeaipaqabaqcLbsa peGaeyypa0JcdaqadaWdaeaajugib8qacqGHsislcaWGXbqcfa4dam aaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabgUca RiaaikdacaWGZbGcpaWaaSbaaKqaGeaajugWa8qacaaIXaaal8aabe aajugib8qacqGHRaWkcaWGZbGcpaWaaSbaaKqaGeaajugWa8qacaaI Yaaal8aabeaaaOWdbiaawIcacaGLPaaajugibiabek7aILqba+aada WgaaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaajugib8qacqGHRaWk kmaabmaapaqaaKqzGeWdbiabgkHiTiaaiodacaWGXbGcpaWaaSbaaK qaGeaajugWa8qacaaIYaaal8aabeaajugib8qacqGHsislcaaIZaGa amyCaKqba+aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaaju gib8qacqGHRaWkcaWGZbqcfa4damaaBaaajeaibaqcLbmapeGaaGOm aaqcbaYdaeqaaKqzGeWdbiabgUcaRiaadohak8aadaWgaaqcbasaaK qzadWdbiaaisdaaSWdaeqaaaGcpeGaayjkaiaawMcaaKqzGeGaeqOS diwcfa4damaaBaaajeaibaqcLbmapeGaaG4maaqcbaYdaeqaaaaa@7F24@  

n 1 =( q 2 +2 s 1 s 2 ) β 2 +(3 q 2 +3 q 4 + s 2 s 4 ) β 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGUbqcfa4damaaBaaajeaibaqc LbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiabg2da9OWaaeWaa8aaba qcLbsapeGaamyCaKqba+aadaWgaaqcbasaaKqzadWdbiaaikdaaKqa G8aabeaajugib8qacqGHRaWkcaaIYaGaam4CaKqba+aadaWgaaqcba saaKqzadWdbiaaigdaaKqaG8aabeaajugib8qacqGHsislcaWGZbGc paWaaSbaaKqaGeaajugWa8qacaaIYaaal8aabeaaaOWdbiaawIcaca GLPaaajugibiabek7aILqba+aadaWgaaqcbasaaKqzadWdbiaaikda aKqaG8aabeaajugib8qacqGHRaWkcaGGOaGaeyOeI0IaaG4maiaadg hak8aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiab gUcaRiaaiodacaWGXbqcfa4damaaBaaajeaibaqcLbmapeGaaGinaa qcbaYdaeqaaKqzGeWdbiabgUcaRiaadohak8aadaWgaaqcbasaaKqz adWdbiaaikdaaSWdaeqaaKqzGeWdbiabgkHiTiaadohajuaGpaWaaS baaKqaGeaajugWa8qacaaI0aaajeaipaqabaqcLbsacaGGPaWdbiab ek7aIPWdamaaBaaajeaibaqcLbmapeGaaGinaaWcpaqabaaaaa@76B5@  

n 1 =( q 2 +2 s 1 s 2 ) β 2 (3 q 2 +3 q 4 + s 2 s 4 ) β 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGUbGcpaWaaSbaaKqaGeaajugW a8qacqGHsislcaaIXaaal8aabeaajugib8qacqGH9aqpcqGHsislkm aabmaapaqaaKqzGeWdbiaadghak8aadaWgaaqcbasaaKqzadWdbiaa ikdaaSWdaeqaaKqzGeWdbiabgUcaRiaaikdacaWGZbGcpaWaaSbaaK qaGeaajugWa8qacaaIXaaal8aabeaajugib8qacqGHsislcaWGZbqc fa4damaaBaaajeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaaGcpeGaay jkaiaawMcaaKqzGeGaeqOSdiwcfa4damaaBaaajeaibaqcLbmapeGa aGOmaaqcbaYdaeqaaKqzGeWdbiabgkHiTiaacIcacqGHsislcaaIZa GaamyCaOWdamaaBaaajeaibaqcLbmapeGaaGOmaaWcpaqabaqcLbsa peGaey4kaSIaaG4maiaadghak8aadaWgaaqcbasaaKqzadWdbiaais daaSWdaeqaaKqzGeWdbiabgUcaRiaadohajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIYaaajeaipaqabaqcLbsapeGaeyOeI0Iaam4CaKqba+ aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaajugib8qacaGG PaGaeqOSdiwcfa4damaaBaaajeaibaqcLbmapeGaaGinaaqcbaYdae qaaaaa@77F7@  

m 3 =( q 2 q 4 + s 2 + s 4 ) β 1 +( 3 q 6 +2 s 1 + s 6 ) β 3 a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGTbGcpaWaaSbaaKqaGeaajugW a8qacaaIZaaal8aabeaajugib8qacqGH9aqpkmaabmaapaqaaKqzGe Wdbiaadghak8aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqz GeWdbiabgkHiTiaadghak8aadaWgaaqcbasaaKqzadWdbiaaisdaaS WdaeqaaKqzGeWdbiabgUcaRiaadohajuaGpaWaaSbaaKqaGeaajugW a8qacaaIYaaajeaipaqabaqcLbsapeGaey4kaSIaam4CaKqba+aada WgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaaaOWdbiaawIcacaGL Paaajugibiabek7aILqba+aadaWgaaqcbasaaKqzadWdbiaaigdaaK qaG8aabeaajugib8qacqGHRaWkkmaabmaapaqaaKqzGeWdbiabgkHi TiaaiodacaWGXbqcfa4damaaBaaajeaibaqcLbmapeGaaGOnaaqcba YdaeqaaKqzGeWdbiabgUcaRiaaikdacaWGZbqcfa4damaaBaaajeai baqcLbmapeGaaGymaaqcbaYdaeqaaKqzGeWdbiabgUcaRiaadohak8 aadaWgaaqcbasaaKqzadWdbiaaiAdaaSWdaeqaaaGcpeGaayjkaiaa wMcaaKqzGeGaeqOSdiwcfa4damaaBaaajeaibaqcLbmapeGaaG4maa qcbaYdaeqaaKqbakaadggadaWcaaqaaaqaaaaaaaa@786A@  

n 3 =( q 2 + q 4 + s 2 s 4 ) β 2 +( 3 q 6 +2 s 1 s 6 ) β 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGUbqcfa4damaaBaaajeaibaqc LbmapeGaaG4maaqcbaYdaeqaaKqzGeWdbiabg2da9OWaaeWaa8aaba qcLbsapeGaamyCaOWdamaaBaaajeaibaqcLbmapeGaaGOmaaWcpaqa baqcLbsapeGaey4kaSIaamyCaKqba+aadaWgaaqcbasaaKqzadWdbi aaisdaaKqaG8aabeaajugib8qacqGHRaWkcaWGZbqcfa4damaaBaaa jeaibaqcLbmapeGaaGOmaaqcbaYdaeqaaKqzGeWdbiabgkHiTiaado hak8aadaWgaaqcbasaaKqzadWdbiaaisdaaSWdaeqaaaGcpeGaayjk aiaawMcaaKqzGeGaeqOSdiwcfa4damaaBaaajeaibaqcLbmapeGaaG OmaaqcbaYdaeqaaKqzGeWdbiabgUcaROWaaeWaa8aabaqcLbsapeGa aG4maiaadghajuaGpaWaaSbaaKqaGeaajugWa8qacaaI2aaajeaipa qabaqcLbsapeGaey4kaSIaaGOmaiaadohajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIXaaajeaipaqabaqcLbsapeGaeyOeI0Iaam4CaOWdam aaBaaajeaibaqcLbmapeGaaGOnaaWcpaqabaaak8qacaGLOaGaayzk aaqcLbsacqaHYoGyjuaGpaWaaSbaaKqaGeaajugWa8qacaaI0aaaje aipaqabaaaaa@76AA@  

m 5 =( q 4 q 6 + s 4 + s 6 ) β 1 +( 3 q 2 + s 2 ) β 3 a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGTbqcfa4damaaBaaajeaibaqc LbmapeGaaGynaaqcbaYdaeqaaKqzGeWdbiabg2da9OWaaeWaa8aaba qcLbsapeGaamyCaOWdamaaBaaajeaibaqcLbmapeGaaGinaaWcpaqa baqcLbsapeGaeyOeI0IaamyCaKqba+aadaWgaaqcbasaaKqzadWdbi aaiAdaaKqaG8aabeaajugib8qacqGHRaWkcaWGZbqcfa4damaaBaaa jeaibaqcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabgUcaRiaado hak8aadaWgaaqcbasaaKqzadWdbiaaiAdaaSWdaeqaaaGcpeGaayjk aiaawMcaaKqzGeGaeqOSdiwcfa4damaaBaaajeaibaqcLbmapeGaaG ymaaqcbaYdaeqaaKqzGeWdbiabgUcaROWaaeWaa8aabaqcLbsapeGa aG4maiaadghajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipa qabaqcLbsapeGaey4kaSIaam4CaOWdamaaBaaajeaibaqcLbmapeGa aGOmaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqaHYoGyjuaGpa WaaSbaaKqaGeaajugWa8qacaaIZaaajeaipaqabaqcfaOaamyyaaaa @71C3@  

n 5 =( q 4 + q 6 + s 4 s 6 ) β 2 +( 3 q 2 + s 2 ) β 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGUbqcfa4damaaBaaajeaibaqc LbmapeGaaGynaaqcbaYdaeqaaKqzGeWdbiabg2da9OWaaeWaa8aaba qcLbsapeGaamyCaKqba+aadaWgaaqcbasaaKqzadWdbiaaisdaaKqa G8aabeaajugib8qacqGHRaWkcaWGXbGcpaWaaSbaaKqaGeaajugWa8 qacaaI2aaal8aabeaajugib8qacqGHRaWkcaWGZbqcfa4damaaBaaa jeaibaqcLbmapeGaaGinaaqcbaYdaeqaaKqzGeWdbiabgkHiTiaado hajuaGpaWaaSbaaKqaGeaajugWa8qacaaI2aaajeaipaqabaaak8qa caGLOaGaayzkaaqcLbsacqaHYoGyk8aadaWgaaqcbasaaKqzadWdbi aaikdaaSWdaeqaaKqzGeWdbiabgUcaROWaaeWaa8aabaqcLbsapeGa aG4maiaadghajuaGpaWaaSbaaKqaGeaajugWa8qacaaIYaaajeaipa qabaqcLbsapeGaey4kaSIaam4CaKqba+aadaWgaaqcbasaaKqzadWd biaaikdaaKqaG8aabeaaaOWdbiaawIcacaGLPaaajugibiabek7aIL qba+aadaWgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaaaaa@70F5@  

m 7 =( q 6 + s 6 ) β 1 +( 3 q 4 + s 4 ) β 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGTbqcfa4damaaBaaajeaibaqc LbmapeGaaG4naaqcbaYdaeqaaKqzGeWdbiabg2da9OWaaeWaa8aaba qcLbsapeGaamyCaOWdamaaBaaajeaibaqcLbmapeGaaGOnaaWcpaqa baqcLbsapeGaey4kaSIaam4CaOWdamaaBaaajeaibaqcLbmapeGaaG OnaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqaHYoGyjuaGpaWa aSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaqcLbsapeGaey4kaS IcdaqadaWdaeaajugib8qacaaIZaGaamyCaKqba+aadaWgaaqcbasa aKqzadWdbiaaisdaaKqaG8aabeaajugib8qacqGHRaWkcaWGZbqcfa 4damaaBaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqaaaGcpeGaayjk aiaawMcaaKqzGeGaeqOSdiMcpaWaaSbaaKqaGeaajugWa8qacaaIZa aal8aabeaaaaa@6520@  

n 7 =( q 6 + s 6 ) β 2 +( 3 q 4 + s 4 ) β 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGUbqcfa4damaaBaaajeaibaqc LbmapeGaaG4naaqcbaYdaeqaaKqzGeWdbiabg2da9OWaaeWaa8aaba qcLbsapeGaamyCaOWdamaaBaaajeaibaqcLbmapeGaaGOnaaWcpaqa baqcLbsapeGaey4kaSIaam4CaOWdamaaBaaajeaibaqcLbmapeGaaG OnaaWcpaqabaaak8qacaGLOaGaayzkaaqcLbsacqaHYoGyk8aadaWg aaqcbasaaKqzadWdbiaaikdaaSWdaeqaaKqzGeWdbiabgUcaROWaae Waa8aabaqcLbsapeGaaG4maiaadghajuaGpaWaaSbaaKqaGeaajugW a8qacaaI0aaajeaipaqabaqcLbsapeGaey4kaSIaam4CaKqba+aada WgaaqcbasaaKqzadWdbiaaisdaaKqaG8aabeaaaOWdbiaawIcacaGL Paaajugibiabek7aILqba+aadaWgaaqcbasaaKqzadWdbiaaisdaaK qaG8aabeaaaaa@6523@  

m 9 = m 11 = n 9 = n 11 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGTbqcfa4damaaBaaajeaibaqc LbmapeGaaGyoaaqcbaYdaeqaaKqzGeWdbiabg2da9iaad2gak8aada WgaaqcbasaaKqzadWdbiaaigdacaaIXaaal8aabeaajugib8qacqGH 9aqpcaWGUbqcfa4damaaBaaajeaibaqcLbmapeGaaGyoaaqcbaYdae qaaKqzGeWdbiabg2da9iaad6gak8aadaWgaaqcbasaaKqzadWdbiaa igdacaaIXaaal8aabeaajugib8qacqGH9aqpcaaIWaaaaa@5432@  

 

For a periodic solution to (21), it is sufficient to set.12

x 2 (θ)= n=1 n odd    ( a n Cos nθ+ b n Sin nθ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG4bGcpaWaaSbaaKqaGeaajugW a8qacaaIYaaal8aabeaajugibiaacIcapeGaeqiUdeNaaiykaiabg2 da9OWaaybCaeqajeaipaqaaKqzadqbaeqabiqaaaqcbasaaKqzadWd biaad6gacqGH9aqpcaaIXaaajeaipaqaaKqzadWdbiaad6gacaGGGc Gaam4BaiaadsgacaWGKbaaaaWcpaqaaKqzGeWdbiaacckacaGGGcqc LbmacqGHEisPa0Wdaeaajugib8qacqGHris5aaGaaiikaiaadggak8 aadaWgaaqcbasaaKqzadWdbiaad6gaaSWdaeqaaKqzGeWdbiaaboea caqGVbGaae4CaiaabckacaqGUbGaeqiUdeNaey4kaSIaamOyaKqba+ aadaWgaaqcbasaaKqzadWdbiaad6gaaKqaG8aabeaajugib8qacaqG tbGaaeyAaiaab6gacaqGGcGaaeOBaiabeI7aXjaacMcaaaa@7152@  

Substituting this Fourier series in (21) and equating to zero coefficients of cos n θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaqGJbGaae4BaiaabohacaqGGcGa aeOBaiaabckacqaH4oqCaaa@442D@ and sin n θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaqGZbGaaeyAaiaab6gacaqGGcGa aeOBaiaabckacqaH4oqCaaa@4432@ , we obtain a set of linear algebraic equations on a n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGHbqcfa4damaaBaaajeaibaqc LbmapeGaamOBaaqcbaYdaeqaaaaa@40A9@ and b n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGIbGcpaWaaSbaaKqaGeaajugW a8qacaWGUbaal8aabeaaaaa@4007@ , respectively x 3 (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG4bqcfa4damaaBaaajeaibaqc LbmapeGaaG4maaqcbaYdaeqaaKqzGeGaaiikaiabeI7aXjaacMcaaa a@4428@ . Periodic expression for and higher order terms can be obtained in a similar fashion.

There will be only one periodic orbit for given values of h, ϵ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGObGaaiilaiaabccatuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGGbaiab=v=aYdaa@4AAB@ and µ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG1caaaa@3DAB@ . The value h=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGObGaeyypa0JaeyOeI0IaaGym aaaa@400C@ corresponds to the equilibrium solution at L4. Value of h>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGObGaeyOpa4JaeyOeI0IaaGym aaaa@400E@ corresponds to short–periodic orbits while h<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGObGaeyipaWJaeyOeI0IaaGym aaaa@400A@ correspond to long–periodic orbits.

Numerical results

Geometrical illustration of the foregoing analysis is provided in Figures 1–5 for some typical values of µ, ϵ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG1cGaaiilaiaabccatuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGGbaiab=v=aYdaa@4AF8@ and h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGObaaaa@3D5E@ . The curves with dotted lines therein correspond to the linear analysis with X1 term for r while the others correspond to the non–linear analysis with the inclusion of X2 terms. Fourier series solution for X2 has been attempted retaining terms up to 29θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaaIYaGaaGyoaiabeI7aXbaa@3FA6@ . Figure 1 & 2 illustrate the impact of the higher order terms in the analysis for the perturbed and unperturbed problems. However, it may be noted that the relative location of the origin with reference to the primaries in the two cases is not the same. Figure 3 refers to the short–period eigen frequency and is meant to illustrate the effects of radiation pressure. The curves corresponding to the long–period eigen frequency are indistinguishable and hence are omitted. It may thus be highlighted that the effect of higher order terms becomes significant for higher values of µ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG1caaaa@3DAB@ and surpasses the considerations of assumed radiation pressure effect.

Figure 1 μ=0.0369 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH8oqBcqGH9aqpcaaIWaGaaiOl aiaaicdacaaIZaGaaGOnaiaaiMdaaaa@4394@ , ξ 2 =.0009 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH+oaEjuaGpaWaaWbaaKqaGeqa baqcLbmapeGaaGOmaaaajugibiabg2da9iaac6cacaaIWaGaaGimai aaicdacaaI5aaaaa@464F@ and ϵ=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacgaqc LbsaqaaaaaaaaaWdbiab=v=aYlabg2da9iaaicdacaGGUaGaaGimai aaigdaaaa@4C52@ .

Figure 2 μ=0.0369 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH8oqBcqGH9aqpcaaIWaGaaiOl aiaaicdacaaIZaGaaGOnaiaaiMdaaaa@4394@ , ξ 2 =.0005 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH+oaEjuaGpaWaaWbaaKqaGeqa baqcLbmapeGaaGOmaaaajugibiabg2da9iaac6cacaaIWaGaaGimai aaicdacaaI1aaaaa@464B@ & ϵ=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacgaqc LbsaqaaaaaaaaaWdbiab=v=aYlabg2da9iaaicdacaGGUaGaaGimai aaigdaaaa@4C52@ .

Figure 3 μ=0.0369 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH8oqBcqGH9aqpcaaIWaGaaiOl aiaaicdacaaIZaGaaGOnaiaaiMdaaaa@4393@ , ξ 2 =.0005 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH+oaEjuaGpaWaaWbaaKqaGeqa baqcLbmapeGaaGOmaaaajugibiabg2da9iaac6cacaaIWaGaaGimai aaicdacaaI1aaaaa@464B@ .

Figure 4 μ=0.0369 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH8oqBcqGH9aqpcaaIWaGaaiOl aiaaicdacaaIZaGaaGOnaiaaiMdaaaa@4393@ , ξ 2 =.0005 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH+oaEjuaGpaWaaWbaaKqaGeqa baqcLbmapeGaaGOmaaaajugibiabg2da9iaac6cacaaIWaGaaGimai aaicdacaaI1aaaaa@464B@ & 0.0009 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaaIWaGaaiOlaiaaicdacaaIWaGa aGimaiaaiMdaaaa@40CE@ & ϵ=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacgaqc LbsaqaaaaaaaaaWdbiab=v=aYlabg2da9iaaicdacaGGUaGaaGimai aaigdaaaa@4C52@ .

Figure 5 μ=0.012 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH8oqBcqGH9aqpcaaIWaGaaiOl aiaaicdacaaIXaGaaGOmaaaa@42CA@ & 0.0369, ξ 2 =.0005 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacqaH+oaEjuaGpaWaaWbaaKqaGeqa baqcLbmapeGaaGOmaaaajugibiabg2da9iaac6cacaaIWaGaaGimai aaicdacaaI1aaaaa@464B@ & ϵ=0.001 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbmrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacgaqc LbsaqaaaaaaaaaWdbiab=v=aYlabg2da9iaaicdacaGGUaGaaGimai aaicdacaaIXaaaaa@4D0C@ .

Conclusion

Finite periodic orbits have been generated at the triangular point L4 in the photogravitational restricted three–body problem by considering the more massive primary as a source of radiation. The geometrical illustration of the periodic orbit shows the effects of µ, ϵ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG1cGaaiilaiaabccatuuDJXwA K1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGGbaiab=v=aYdaa@4AF8@ and h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWGObaaaa@3D5E@ . The effect of higher order terms becomes significant for higher values of µ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaVbKqzGeaeaaaaaaaaa8qacaWG1caaaa@3DAB@ .

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

  1. Rand R, Podgorski W. Geometrical Dynamics: A new approach to periodic orbits around L4. Celestial mechanics. 1972l;6(4):416–420.
  2. Szebehely V. Theory of Orbits. USA: Academic Press; 1967.
  3. Jiang IG, Yeh LC. On the chaotic orbits of disk–star–planet systems. Astronomical Journal. 2004;128(2):923–932.
  4. Radzievskii VV. The restricted problem of three bodies taking account of light pressure. Astronomicheskii Zhurnal. 1950;27:250.
  5. Sharma RK, Subba Rao PV. Stationary solutions and their characteristic exponents in the restricted three–body problem when the more massive primary is an oblate spheroid. Celestial Mechanics. 1976;13(2):137–149.
  6. Bhatnagar KB, Chawla JM. A study of the lagrangian points in the photogravitational restricted three body problem. Indian Journal of Pure and Applied Mathematics. 1979;10(11):1443–1451.
  7. Sharma RK. On linear stability of triangular libration points of the photogravitational three–body problem when the more massive primary is an oblate spheroid, Sun and Planetary System. In: Fricke W, Teleki G, Editors. Netherlands: D. Reidel Publishing Company; 1982. p. 435–436.
  8. Subba Rao PV, Sharma RK. Effect of oblateness on the non–linearity of L4 in the restricted three–body problem. Celestial Mechanics and dynamical Astronomy. 1997;65(3):291–312.
  9. Elipe A, Lara M. Periodic orbits in the restricted three body problem with radiation pressure. Celestial Mechanics and Dynamical Astronomy. 1997;68(1):1–11.
  10. Pedersen P. On the periodic orbits in the neighborhood of the triangular equilibrium points in the restricted problem of three bodies. Monthly Notices of the Royal Astronomical Society. 1933;94:167–185.
  11. Deprit A, Delie A. Trojan orbits: I. d'Alembert Series at L4. Icarus. 1965;4(3):242–262.
  12. Sharma RK, Subba Rao PV. On finite periodic orbits around the equilateral solutions of the planar restricted three–body problem. International workshop on Space Dynamics and Celestial mechanics. 1986. p. 71–85.
  13. Sharma RK. The linear stability of libration points of the photogravitational restricted three–body problem when the smaller primary is an oblate spheroid. Astrophysics and Space Science. 1987;135(2):271–281.
Creative Commons Attribution License

©2018 Hariprasad, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.