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Finite periodic orbits around L, in photogravitational
restricted three—body problem

Abstract

The motion of the infinitesimal mass in the restricted three—body problem is considered in
the vicinity of the triangular point L,, when the more massive primary is considered as a
source of radiation. General coordinates are taken as polar coordinates (', € ) centered at
the triangular point L,. A time-independent nonlinear second-order ordinary differential
equation for r as a function of 0 is derived. Approximations to periodic solutions of finite
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size are obtained following the geometrical dynamics approach of Rand and Podgorski.!
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Introduction

The simplicity and elusiveness of the three—body problem have
attracted a number of mathematicians for centuries. There are
names of many great mathematicians (Euler, Lagrange, Jacobi,
Hill, Hamilton, Poincaré, Birkhoff etc.), who have worked on this
problem and made important contributions. The book of Szebehely?
provides systematic coverage of the literature on the subject as well as
derivations of some of the important results. Even today the problem
of three—body is as enigmatic as ever. If two of the finite bodies move
in circular coplanar orbits about their common center of mass and the
third body is too small to affect the motion of the two bodies, then
the problem is called circular restricted three body problem (RTBP).
In the circular problem, two finite masses are fixed in a co—ordinate
system rotating with the orbital angular velocity and origin is at the
center of mass of the two bodies. It resembles an important dynamical
system for the study of new investigations regarding motions not only
in the solar system but also in other planetary systems. Motion of
small space objects (asteroid, comet, ring, spacecraft, satellite etc.) in
the solar system as well as Sun—planet systems (Sun—Earth system,
Sun—Jupiter system etc.) are the best examples of RTBP. In 1772, the
famous mathematician Lagrange discovered that in a rotating frame,
there are five stationary or equilibrium points at which the restricted
mass would remain fixed if placed there. Three of them lie on the
line connecting the two finite masses, called collinear equilibrium
points and remaining two are located at equidistant from the two
finite masses, called triangular equilibrium points. That is, the two
masses and the triangular points are thus located at the vertices of the
equilateral triangle in the plane of the circular orbits. The problem
becomes more interesting when it also includes the other type of
space structures such as belt, disk, ring etc., which are present in the
solar system.’ Different aspects of this problem such as conditions
for existence of equilibrium points, stability property (linear and
nonlinear), periodicity of the orbits etc., with perturbation factors in the
form of radiation pressure, oblateness etc. have been studied by many
authors, Some of the studies.** Periodic orbits of finite size around
the Lagrangian point L, had been the subject of investigations.'*!"
Geometrical dynamics is the study of the geometry of the orbits in
configuration space of a dynamical system without reference to the
system’s motion in time. It is an alternative approach to study the
motion around the Lagrangian points. Rand & Podogorski' were the

first to introduce this approach to planar RTBP it terms of the polar
coordinates (r, 6 ) centered at L, to study the motion around it in the
RTBP. Sharma and Subba Rao'?> employed their method to study the
motion around L, in the planar RTBP when the more massive primary
is an oblate spheroid with its equatorial plane coincident with the
plane of motion. In this paper we have utilized the same approach
in the planar RTBP when the more massive primary is a source of
radiation. We have used the polar coordinates (r, 6 ) centered at the
triangular liberation point L. A time-independent nonlinear second—
order ordinary differential equation for r as a function of 4 is derived.
Approximations to periodic solutions are obtained by perturbations
and Fourier series. These solutions represent periodic orbits around
L,
Equation of motion

The equations of motion for the circular photogravitational planar
RTBP in the dimensionless barycentric synodic coordinates x, y are:>!3

X-2y-x=-V, e
V+2x-y=-V, )
where
V=—q(1-p)/r,-pn/r,
rlz:(x—,u)2+y2;rzz=(x+1—,u)2+y2. 3)

q is the mass reduction factor for a given particle. In order to obtain
the equations of motion in terms of polar coordinates (r, 8 );

x=a+r cos(0+a),
y=b+rsin(6+a), 4)

a is the angle which the major axis of the ellipse makes with x—
axis. (a,b) are the coordinates of L,. Differentiating, we get

X =r'c05(6+a)—r95in(6’+a),
y=rsin(0+a)+rbcos(0+a).
Differentiating again, we get

¥= i"cos(0+a)—29r'sin(0+a)—rézcos(9+a)—résin(0+a),
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y =Fsin(0+a)+20Fsin(0+a)-rb’sin(0+a)+rbcos(6+a). a=—1+9‘+,u (13)
Substituting these expressions in the equations of motion (1 and 2) 2 3 ]
and simplifying, we get b= ﬁ(l,gj (14)
i —ré? —2r9—VX cos(0+a)—Vy sin(9+a)+acos(9+a)+ﬁsin(9+a)+r, 29 .
(5) tanZa:x/g[l—%—Z,uj (15)
r*6+2r7(6+1) =V, sin(0+a)-V, cos(6+a)-asin(0+a)+bcos(6+a), g=1-c (16)
(6) where ¢ is a small quantity. Transforming of potential equation
where and substituting it in the equation below, we get
Vy=q(1=p)(X = p) /1’ + (X +1=p) 15, U:V—rz/2—r[acos(6’+a)+bsin(9+a)] (17)
v, =3[ (- uir) U=U,+rg(0)+r'f(0)+0(r") (18)
) 3 . where
V=q(1-p)/r {(x—y)cos(9+a)+y51n(ﬂ+a)}+ Ir [(x+ )cos(9+a)+ysm(t9+a)} S
A :q(l—y)/rf[(x—y)cos(t%a)+ysin(6+a)}+y/rz3[(x+1—y)cos(0+a)+ysin(€+a)}, 9(0) :%(_1 +c‘)+(—%+ ,1ja5[2(9])

V=gl (x-)si{B)+ roos(Bea) [+l -+ 1-plsn( B+ ) yreos(B+a) .
V,cos(0+a)+V,sin(0+a)=V,, f(9)=(-16+16+8]Cos[a+9]
V,sin(0+a)- V,cos(0+a)==V, /r.

3 83

Solution of the differential equation will be of the form
The equations of motion then become 2 _ M

N +éos2
Substituting this equation into (12) and

+:__4J sl [3[ 410] o] i+

r’+2rr(0+1)=-V,+[bcos(0+a)-asin(0+a) |r=-U,, 7

r29+2rf(0+1) =-V, +[bcos(6+a)—asin(t9+a)}r =-U,,(8) at0=0°

where M —1+e—5—e+ﬂ]
U:V—rz/z—r[acos(0+a)+b sin(¢9+a)] ) 5 3M(—1+575—E+1] 2M(-1+N) 1+h—e—4(17+1v3)}“
The Jacobian Integral is -2 [%]/ \/1+he T (1+N3)/1 + oy -
%/ 2+7*0% | 2+U = h= constant (10) W (3(-1+ 1)1+ (-5+32)) .
Taking r as a function of 9(r") 2(1+N)2
F=r'e, (19)
F=r"6*+ré. 6=90°
Also

5e
o o ] M| -1+e+—-1
r:r92+2rH—Ur, € 3 ]

2M(1+N)[1+h-e-

.. 4(-1+N
0=-U,/r*-2i1{0+1)/r y VP 3M{—1+e+§—;—ij (-1+0)
- ) 2 RN ( j 1+h-€ + +
6*=2(h-U) /(r +r ) 4(-1+N) (-1+NY
After substitution, we get M (34(1+2)-¢(5+34)) 0
ré* +2r0-U, =r"6* +r'[—Ug /r? —2r'(9+1)/r} 2-1+N)' 2 20)
Substituting to above equation, we get a time—independent . . .
second—order ordinary differential equation After equating both the equations and simplifying, we get
o S T (-1+h+e) 4(1+3N2)+6N(—1+N2) B
Z(h-U)(r —rr"+2r"°) - 2[2(h—u) |2 [r“+ 1“2 + (r"+T1 )((r/r)UefrU,):O. Mo 31
. N 5 10
Here it has been assumed that & <0 for periodic orbits around L,.2 —6N(—1+ e) + 76 —31+N? ( /16 + 6/1j
An approximate solution Where

Location of the triangular liberation point L,,
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4++-8+92% Sign[~1+ht €]
34

Values of h>U, correspond to the short—period orbits and h<U,
corresponds to the long—period orbits.

For M and N to be real, it is necessary that
-8+94%*>0,
which is equivalent to the usual stability criterion,
u(1-p)< 1/27.

To obtain the periodic solution when #° term is considered for
inclusion in U, we adopt the perturbation scheme:

_ 2
r= X+ X +...

where
X, =M§(N+cos2 )
A
Substituting it in (12) and (18) and equating to zero the coefficients
of like powers of €, we obtain a set of linearized differential equations
X,(6) . After some algebra, the equation X, (&) becomes

FX, +FX, +FX,+F, =0, @1
where
F, =—4k’k,
2| 3k +k,| 4k, +2k, + F2Xu | |y
Xl
F=

F, = 26Kk, + 2k, | -3k +k, 2k3+k[ 4G+]+2 [ Xl] 6k, +X?-X.X, )

F, = 2Fk,k2X X, — FX2k,(k, (6 k, —6GX? )+ (k +X2-XX, ))

with

k, =1-Gx?

k,=X?+ X

ky =—2GX{ +G'X, X,

k =Kok, +2k, (ky + X7 — X, X, )
We know that

F = p,Cos@+ B,Sin0 + B;Cos36 + 3,Sin30,

Where

B, =B, Vcosa + g, Psina

B, =—pB,Vsina + g, PCosa
By = BVCos3a + B, Psin3a
B, =—Bsin3a + B, PCos3a

with
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W _ iﬁj3ﬂ
B = (o=

(z):ﬁ, 4le
By (16 16\/5)

(1) _(>_5€ 5
Bs (8 7 4)
(2)_—56
Bs PN

After some algebra, we obtain
7

F,(0)= y a, Cos[(2))6]
j=0
7
F,(0)=y 2,jSin [(2])0]
j=1
7
F5(0)= 5. 73,Cos [(2)) 0]
j=0
4 4
Fy(0)= ¥.0,;.,Cos [(2j+1) O]+ ¥.¢,,Sin [(2+1) 6]
j=0 j=0

where a's are known constants, which depend onAand N

only. The coefficients of a's occurring in the expressions for

Fi(i=

1, 2, 3, 4) are provided hereunder. Taking
o=3m+4n, p=4-3mA, y=—n+1,6=-1+ni,
the coefficients of F, are
a, =2ayb, +a,b, +a,b, +asb,

a, =a, +2a,b, +2ayb, +a,b, +a,b, +agb, +a,b

a, =a, +2a,by+a,b, +agh, +2a,b, +a,b,

ag =a, +2agb, +a,b, +a,b, +2a,b,

og =2a, +agb, +a,b, +a,b,

o,y =a, +agh, +a,bg

oy, =a, +agbg

U4 =g
where

a, = 4npo-+(1+nz)(p2 +20%)

a, =np? +4-(1+n2)p0'+2n(p2 +20%)

a, :(1+nz)p2 +4npo

a, =np*

b, =3+24n” +8n*

b, =8n(3+4n°)

b, =8n.
If
o =4(n (—4-—15m/1+ 12mn+8n2)+6mn—(4+3m,1))
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&, =16n(-3mn°A—3mA +6mn+4n* —4)
¢, =n(-36mnl+24m+16n-94°m)
and

1, =—48m

(1+n2)y+n§)—24m(1+4n2+n4)/1+16(2n(np+o)+(1+n2)(p+2no)

-3,
I :-48m(2ny+(1+nz)5)-96mn(1+nz)/1+16(np+2(1+nz)(np+a)+2n(p+2na))-3’g2
7, =—48mné — 48mnA +16((1+n2)p+2n(np+a))—3§4

17, =16np.

The coefficients of F, are
= (1 +4n2)Q2 +4nQ, +Q
2, =4nQ, +2(1+2nZ)Q4 +4n0, + O
2, =0, +4nQ, +2(1+2n2)06 +4nQ, +Qy,

25 =, +4n0, +2(1+2n2)98 +4nQ,,
1o =0 +4n0Y, +2(1+2r12)Q10
Zy, =Qg +4nQ),

21, =0

where
Q, =401, + pn, — 2011, — p1g
Q, =2p1y+201, - 207,

Qg = pn, +201,
Qg = p1, + 20774
Qy9 = piis
The coefficients of F; are given by
Ty =2nw, + @,
7, =20, +2nw, + @,
T, =, +2nw, + w,
To =, +2nag + wy
Ty = W + 2Nwg + @y
T9 = Wy +2N0, ) + @,
Typ = Wy + 2Ny,
T14 =@
where
@y =2ByFy +ByPy + ByP) = 27108 = 1,05 — 4G4
@, =2B,Py+(2By + B, )P, + B,P, + B,P, —21,{, ~ 1,5 — el — 7, (284 + &),
@, =2BP, + B, (P, + Py )+ B, (2P + Py )~ 27,y — (7, + 716 ) & —27m4C 4
@ = ByP, + 2ByPy + By (P, + By ) = 270680 — 485~ 75,4

Wy =B4Py + ByFg + 2B\Py — s, — 4G4
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1o =B P+ ByPy —7sC,,

w;; =B, Py
with
B, =np+(1+n?)o,
B, =(1+n2)p+2n0',
B, =np.
and

P, :_24m(—1+n2)(—n+y)—12m(2(1+n2)y+4n5)—4m(12n5+
(1+n2)(—12n+3l))+3p+8n(np+0')+2(—3+4n2)(p+2n0),
P, =—48m(—1 +n2)5—12m(8ny+35+4n25)—4m(6n(—3n+7)+
12(1+n”}6+9n2) +10np+60 +4(~3+4n* ) (np+0)+8n(p+2n0),
P, =~24m(y +2n6)~24m(~1+n" |2~ 4m(~12n+92+21n"2)
+2(—3+4n2)p+8n(np+o-)+6(p+2no-),
P, =-12mé -36mnA+10np +60,
Py =3p.
Z :6[2(m(1+n2)—mn/1+np)+(1+2n2)(p+a)),
7, =3(—4m(1+n2)ﬂ+p+8n(m+a)),
7y, =—-12mnA+12np +60,
e =3p.
Introducing
q, :4np+8(1+n2)0'
q, :4(1+n2)p+8na,
qe =4np.
s, =—4((1+5n2)p+6no-)—8n(3np+(1+5n2)o-)+{0,

s, =-12np - 8n((1+5n )p+6no-) (3np+(1+5n2)o-)+§z,

S :—24n2p—4((1+5n )p+6na)+§4,
S¢ =—12np.

The coefficients of F, are

o, =(1+nz)m1 +n(m_, +my)

2

1+n m3+n(m1+o3:(1+n2)m3+n(m1+m5)
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where

my=m_; =(—q,+2s;+5;) By +(-30, =34, +5,+5,) By
ny =(q,+25,=5,) By + (=30, +34, +5,—5,) 3,
n_y =—(q,+28,-5;) B, — (=30, +3q, +5, —5,) B4
My =(qy—qy +5,+5,) By +(—3ds +25, +55) By

5 =(qy+qy+5,—5,) By + (345 + 25, — 55 ) B,

My =(q, —qs+5,+56) By + (30, +5,) By

N5 =(q,+qs+5,—5¢) By + (30, +5;) By

m, =(qg +5¢) By +(3a5 +54) By

n, =(qg+5¢) By +(344+54) By

my=my; =ng=n;; =0

For a periodic solution to (21), it is sufficient to set.'?

x,(0)= ¥ (a,Cosn&+b,Sinno)
n=1
nodd
Substituting this Fourier series in (21) and equating to zero
coefficients of cosn f#and sinn &, we obtain a set of linear
algebraic equations on a, and b, , respectively. Periodic expression for
X5(6) and higher order terms can be obtained in a similar fashion.

There will be only one periodic orbit for given values of h, € and u
. The value h>—1 corresponds to the equilibrium solution at L,. Value
of h>—1 corresponds to short—periodic orbits while h < —1 correspond
to long—periodic orbits.

Numerical results

Geometrical illustration of the foregoing analysis is provided in
Figures 1-5 for some typical values of yu, e and h. The curves with
dotted lines therein correspond to the linear analysis with X term
for r while the others correspond to the non-linear analysis with the
inclusion of X, terms. Fourier series solution for X, has been attempted
retaining terms up to 296 . Figure 1 & 2 illustrate the impact of the
higher order terms in the analysis for the perturbed and unperturbed
problems. However, it may be noted that the relative location of the
origin with reference to the primaries in the two cases is not the same.
Figure 3 refers to the short—period eigen frequency and is meant to
illustrate the effects of radiation pressure. The curves corresponding
to the long—period eigen frequency are indistinguishable and hence
are omitted. It may thus be highlighted that the effect of higher order
terms becomes significant for higher values of y and surpasses the
considerations of assumed radiation pressure effect.
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Long-Period

/' Short-Period

Figure | 11=0.0369,£%=.0009ande=0.01.

Short-Period

Long-Period

pammmammmmea,,

Figure 2 11=0.0369, &% =.0005 &e=0.01.

| — =099

Figure 3 11=0.0369, &% =.0005.
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Long Periodic (~1.0005)
— Short Periodic (+1,0005)
— Long Periodic (-1.0009)
~ Short Periodic (+1.0009)

Long Period (0.012)
— Short Period (0.012)
— Short Period (0.0369)
— Long Period (0.0369)

Figure 5 1 =0.012 & 0.0369, £2 =.0005 & e =0.001 .

Conclusion

Finite periodic orbits have been generated at the triangular
point L, in the photogravitational restricted three-body problem by
considering the more massive primary as a source of radiation. The
geometrical illustration of the periodic orbit shows the effects of u, €
and h . The effect of higher order terms becomes significant for higher
values of i .
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