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Introduction
The simplicity and elusiveness of the three–body problem have 

attracted a number of mathematicians for centuries. There are 
names of many great mathematicians (Euler, Lagrange, Jacobi, 
Hill, Hamilton, Poincaré, Birkhoff etc.), who have worked on this 
problem and made important contributions. The book of Szebehely2 
provides systematic coverage of the literature on the subject as well as 
derivations of some of the important results. Even today the problem 
of three–body is as enigmatic as ever. If two of the finite bodies move 
in circular coplanar orbits about their common center of mass and the 
third body is too small to affect the motion of the two bodies, then 
the problem is called circular restricted three body problem (RTBP). 
In the circular problem, two finite masses are fixed in a co–ordinate 
system rotating with the orbital angular velocity and origin is at the 
center of mass of the two bodies. It resembles an important dynamical 
system for the study of new investigations regarding motions not only 
in the solar system but also in other planetary systems. Motion of 
small space objects (asteroid, comet, ring, spacecraft, satellite etc.) in 
the solar system as well as Sun–planet systems (Sun–Earth system, 
Sun–Jupiter system etc.) are the best examples of RTBP. In 1772, the 
famous mathematician Lagrange discovered that in a rotating frame, 
there are five stationary or equilibrium points at which the restricted 
mass would remain fixed if placed there. Three of them lie on the 
line connecting the two finite masses, called collinear equilibrium 
points and remaining two are located at equidistant from the two 
finite masses, called triangular equilibrium points. That is, the two 
masses and the triangular points are thus located at the vertices of the 
equilateral triangle in the plane of the circular orbits. The problem 
becomes more interesting when it also includes the other type of 
space structures such as belt, disk, ring etc., which are present in the 
solar system.3 Different aspects of this problem such as conditions 
for existence of equilibrium points, stability property (linear and 
nonlinear), periodicity of the orbits etc., with perturbation factors in the 
form of radiation pressure, oblateness etc. have been studied by many 
authors, Some of the studies.4–9 Periodic orbits of finite size around 
the Lagrangian point L4 had been the subject of investigations.10,11 
Geometrical dynamics is the study of the geometry of the orbits in 
configuration space of a dynamical system without reference to the 
system’s motion in time. It is an alternative approach to study the 
motion around the Lagrangian points. Rand & Podogorski1 were the 

first to introduce this approach to planar RTBP it terms of the polar 
coordinates ( ,  r θ ) centered at L4 to study the motion around it in the 
RTBP. Sharma and Subba Rao12 employed their method to study the 
motion around L4 in the planar RTBP when the more massive primary 
is an oblate spheroid with its equatorial plane coincident with the 
plane of motion. In this paper we have utilized the same approach 
in the planar RTBP when the more massive primary is a source of 
radiation. We have used the polar coordinates ( ,  r θ ) centered at the 
triangular liberation point L4. A time–independent nonlinear second–
order ordinary differential equation for r as a function ofθ is derived. 
Approximations to periodic solutions are obtained by perturbations 
and Fourier series. These solutions represent periodic orbits around 
L4.

Equation of motion 
The equations of motion for the circular photogravitational planar 

RTBP in the dimensionless barycentric synodic coordinates x, y are:2,13

		           2 xx y x V− − = −   		         (1)

		           2 yy x y V+ − = −   		         (2)

where

		    ( ) 1 2V q 1 µ / r µ / r= − − −

	         ( ) ( )2 22 2 2 2
1 2; 1 .r x µ y r x µ y= − + = + − +  	        (3)

q is the mass reduction factor for a given particle. In order to obtain 
the equations of motion in terms of polar coordinates ( ,  r θ );

		          ( ) ,x a r cos θ α= + +

		          ( ) ,y b r sin θ α= + +  		         (4)

α is the angle which the major axis of the ellipse makes with x–
axis. (a,b) are the coordinates of L4. Differentiating, we get

		  ( ) ( )cos ,x r r sinθ α θ θ α= + − +



		  ( ) ( ) .y rsin r cosθ α θ θ α= + + +



Differentiating again, we get

( ) ( ) ( ) ( )22 ,x rcos rsin r cos r sinθ α θ θ α θ θ α θ θ α= + − + − + − +  

 
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( ) ( ) ( ) ( )22 .y rsin rsin r sin r cosθ α θ θ α θ θ α θ θ α= + + + − + + +  

 

Substituting these expressions in the equations of motion (1 and 2) 
and simplifying, we get

( ) ( ) ( )cos sin cos sinX yr r r V V rθ θ θ α θ α α θ α β θ α2− − 2 − ( + )− + + + + + + , 



						                 (5)

( ) ( )sin cos sin cosX yr rr V V a bθ θ θ α θ α θ α θ α2 + 2 +1 = ( + )− ( + )− + + ( + ),



						                (6)
where

	
( )( ) ( )XV q X r X rµ µ µ µ3 3

1 2= 1− − / + +1− / ,

	
yV y r rµ µ3 3

1 2
 = (1− ) / + / , 

( ) ( ) ( ) ( ) ( ) ( )cos sin cos sinrV q r x y r x yµ µ θ α θ α µ µ θ α θ α3 3
1 2   = 1− / − + + + + / +1− + + ( + ) ,   

( ) ( ) ( ) ( ) ( ) ( )cos sin cos sinrV q r x y r x yµ µ θ α θ α µ µ θ α θ α3 3
1 2   = 1− / − + + + + / +1− + + ( + ) ,   

( ) ( ) ( ) ( ) ( ) ( )sin cos sin cos ,V q r r x yr r r x yrθ µ µ θ α θ α µ µ θ α θ α3 3
1 2   = 1− / − − + + + + / − +1− + + ( + )   

	 ( )cos( ) sin , x y rV V Vθ α θ α+ + + =

	 ( )sin cos( ) / .x yV V V rθθ α θ α+ − + = −

The equations of motion then become

( ) ( ) ( )2 2 1 bcos si ,nr rr V a r Uθ θθ θ θ α θ α + + = − + − + =+ −




         
(7)

( ) ( ) ( )2 2 1 bcos si ,nr rr V a r Uθ θθ θ θ α θ α + + = − + − + =+ −


 (8)

where

( ) ( )2 /2 acos  sin .U V r r bθ α θ α = − − + + +  	              
(9)

The Jacobian Integral is
2 2 2/2 /2r r U h constantθ+ + = =

  		             (10)

Taking r as a function of ( )θ ′r

			   ,r r θ= ′ 

			   2 .r r rθ θ′′ ′= + 



Also

		               
2 2 ,rr r r Uθ θ= + − 



		         2/ 2 ( 1)/ rU r rθθ θ= − − +



		         ( ) ( )2 2 22  /h U r rθ = − + ′

After substitution, we get
2 2 22 / 2 ( 1)/ rrr r U r r U r rθθ θ θ θ ′′ ′+ − = + − − + 

 





Substituting to above equation, we get a time–independent 
second–order ordinary differential equation

( ) ( )
1 3

2 2 2 2 2 22 22 h-U (r rr 2r ) 2[2(h )] [r r ] (r r ) (r / r)U rU 0.e ru′′ ′ ′ ′ ′− + − − + + + − =

Here it has been assumed that 0θ < for periodic orbits around L4.
2

An approximate solution 
Location of the triangular liberation point L4,

		     

1
2 3

a µ= − + +
ò

			           
 (13)

		     13
2 9

b  = − 
 

ò  	  		           (14)

		  82 3 1 2
9

tan α µ = − − 
 

ò  		           (15)

		         1  ,q ε= −  			            (16)

where ε  is a small quantity. Transforming of potential equation 
and substituting it in the equation below, we get

	    ( ) ( )2 /2 acos  sinU V r r bθ α θ α = − − + + +   	          (17)

	         ( ) ( ) ( )2 3 4
0 0U U r g r f rθ θ= + + +  		          (18)

where

		           0 1U = − +ò

	   ( ) [ ]3 5( 1 Cos 2 )
4 3

g θ λ θ
λ

 = − + + − + 
 

òò

( ) [ ] [ ] [ ] [ ]5 Sin 3 33 15 3 5 5 5 3 3 41Cos Cos 3 3 Sin
16 16 8 8 4 4 16 16 3 8 3

f
α θµ µ

θ α θ α θ α θ
  +   = − + + + + − − + + − + −           

òò ò ò

Solution of the differential equation will be of the form

		     2 .
cos2è
Mr

N
=

+
Substituting this equation into (12) and

at 0θ = °

 

						               (19)

90θ = °

						                (20)

After equating both the equations and simplifying, we get

           

( ) ( ) ( )
( )

2 2

2

51 4 1 3 6 1
3

5 106 1 3 6

h N N N
M

N N

λ
λ

λ λ
λ λ

 ∈ − + +∈ + + − + − +  
  = −

∈ ∈ − − +∈ + − + − + 
 

Where

( )

( ) ( )

( )
( ) ( )( )

( )

 ∈ − +∈− +  
  − + + −∈−

 +∈ − +∈− +        − + −∈− + − + +  +

− + +∈ − +
=

+

3/2

2

2

2

53 1
32 1 1

4 153 1
32 2 1

1 4 1 1

3 1 5 3
0

2 1

M
M N h

N
M

M h
N N N

M

N

λ
λ

λ
λ

λ λ λ

λ

( )

( ) ( )

( )
( ) ( )( )
( )

 ∈ − +∈+ −  
  + + −∈−

 − +∈ − +∈+ −        − + −∈− + + − + − +  − +

+ −∈ +
=

− +

3/2

2

2

2

53 1
32 1 1

4 153 1
32 2 1

1 4 1 1

3 1 5 3
0

2 1

M
M N h

N
M

M h
N N N

M

N

λ
λ

λ
λ

λ λ λ

λ
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[ ]24 8 9  Sign 1
3

h
N

λ
λ

+ − + − + +∈
= −

Values of 0 h U> correspond to the short–period orbits and 0 h U<
corresponds to the long–period orbits.

For M and N to be real, it is necessary that

  		           28 ,9 0λ >− +

which is equivalent to the usual stability criterion,

		       ( )1  1/27.µ µ− <

To obtain the periodic solution when r3 term is considered for 
inclusion in U, we adopt the perturbation scheme: 

		  2
1 2   r X X= + +… 

where
		  ( )1 / cos2è ,X M N= +

		  1/2
0 .h U= +

Substituting it in (12) and (18) and equating to zero the coefficients 
of like powers of ϵ, we obtain a set of linearized differential equations

( )nX θ . After some algebra, the equation 2( )X θ becomes

	           ’’ ’
1 2 2 2 3 2 4 0,F X F X F X F+ + + =  		       (21)

where

		
2

1 1 24F k k= −

	

	

2 1
1 2 1 3 1

1
2

1

'2 3 4 2 '
G k Xk k k k k X

X
F

X

  
  − + + +

    =

′

( )
' ''

'2 ''1 1
3 2 1 2 3 2 1 2 1 1 1

1 1
2 2 3 2 4 2 2 4G X XF Gkk k k k k k G k G k X X X

X X

     
     = + − + + − + + − − + −

         

′



( ) ( )2 ' 2 2 '2 ''
4 1 2 1 1 1 2 2 3 1 1 2 1 1 12 ( 6 6 2 )F Fk k X X FX k k k GX k k X X X= − − − + + −

with

		  2
1 11k GX= −

		  2 '2
2 1 1k X X= +

		  2 '
3 1 1 12k GX G X X= − + ′

		  '2 ''
2 3 1 2 1 1 12 ( )k k k k k X X X= + + −

We know that

	 1 2 3 4Cos Sin Cos3 Sin3 ,F β θ β θ β θ β θ= + + +

Where

	 ( ) ( )1 2
1 1 1Cos Sinβ β α β α= +

	 ( ) ( )1 2
2 1 1Sin Cosβ β α β α= − +

	 ( ) ( )1 2
3 3 3Cos3 Sin3β β α β α= +

	 ( ) ( )1 2
4 3 3Sin3 Cos3β β α β α= − +

with

		
( ) ∈

= − + +1
1

3 15 3( )
16 16 8

µβ

	

		

( ) ∈
= −2

1
3 3 41( )
16 16 3

β

		
( ) ∈

= − −1
3

5 5 5( )
8 4 4

µβ

		

( ) − ∈
=2

3
5

8 3
β

After some algebra, we obtain

		
7

2
=0

( ) = [(2 ) ]∑1 j
j

F Cos jθ α θ

		

7

2 2
1

F ( ) Sin [(2j) ]
j

z jθ θ
=

= ∑

		

7

3 2
0

F ( ) Cos [(2j) ]j
j

θ τ θ
=

= ∑

	

4 4

4 2 1 2 1
0 0

F ( ) Cos [(2j+1) ]+ Sin [(2j+1) ]j j
j j

θ ο θ φ θ+ +
= =

= ∑ ∑

where α's  are known constants, which depend on λ and N 
only. The coefficients of  α's occurring in the expressions for
( )1,  2,  3,  4iF i = are provided hereunder. Taking

3 4 ,  4 3 ,  ,  1 ,m n m n nσ ρ λ γ λ δ λ= + = − = − + = − +

the coefficients of 1F are

		  0 0 0 2 2 4 4 6 62a b a b a b a bα = + + +

	 2 6 2 0 0 2 4 2 2 4 6 4 4 62 2a a b a b a b a b a b a bα = + + + + + +

	 4 4 4 0 2 2 6 2 0 4 2 62 2a a b a b a b a b a bα = + + + + +

	 6 2 6 0 4 2 2 4 0 62 2a a b a b a b a bα = + + + +

	 8 0 6 2 4 4 2 62a a b a b a bα = + + +

        10 2 6 4 4 6a a b a bα = + +

	 12 4 6 6a a bα = +

        14 6aα =

where

	
( )2 2 2

0 4 ( )1 2a n nρσ ρ σ= + + +

	
( )2 2 2 2

2 4 1 )2 ( 2a n n nρ ρσ ρ σ= + + + +

	 ( )2 2
4 1 4a n nρ ρσ= + +

	 2
6a nρ=

	 2 4
0 3 24 8b n n= + +

	 2
2 8 (3 4 )b n n= +

	 6 8 .b n=

If 

( ) ( )2 2
0 4( 4 15 12 8 6 4 3 )n m mn n mn mζ λ λ= − − + + + − +
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2 2

2 16 ( 3 3 6 4 4)n mn m mn nζ λ λ= − − + + −

	        2
4 ( 36 24 16 9 )n mn m n mζ λ λ= − + + −

and

( )( ) ( ) ( ) ( )( )( )2 2 4 2
0 048 1 24 1 4 16 2 1 2 3m n n m n n n n n nη γ δ λ ρ σ ρ σ ζ= − + + − + + + + + + + −

( )( ) ( ) ( )( ) ( )( )2 2 2
2 248 2 1 96 1 16 2 1 2 2 3m n n mn n n n n n nη γ δ λ ρ ρ σ ρ σ ζ= − + + − + + + + + + + −

( ) ( )( )2 2
4 448 48 16 1 2 3mn mn n n nη δ λ ρ ρ σ ζ= − − + + + + −

			   6 16 .nη ρ=

The coefficients of 2F are

		  ( )2
2 2 4 64z 1 4n n= + Ω + Ω +Ω

		  ( )2
4 2 4 6 84 2 1 2 4z n n n= Ω + + Ω + Ω +Ω

		  ( )2
6 2 4 6 8 104 2 1 2 4nz n n=Ω + Ω + + Ω + Ω +Ω

		  ( )2
8 4 6 8 104 2 1 2 4z n n n=Ω + Ω + + Ω + Ω

		
( )2

10 6 8 104 2 1 2z n n=Ω + Ω + + Ω

		  12 8 104z n=Ω + Ω

		  14 10z =Ω

where

		  2 0 2 4 64 2ση ρη ση ρηΩ = + − −

		  4 0 2 62 2 2ρη ση σηΩ = + −

		  6 2 42ρη σηΩ = +

		  8 4 62ρη σηΩ = +

		  10 6.ρηΩ =

The coefficients of 3F are given by

		  0 0 22nτ ω ω= +

		  2 0 2 42 2nτ ω ω ω= + +

		  4 2 4 62nτ ω ω ω= + +

		  6 4 6 82nτ ω ω ω= + +

		  8 6 8 102nτ ω ω ω= + +

		  10 8 10 122nτ ω ω ω= + +

		  12 10 122nτ ω ω= +

		  14 12τ ω=

where
	  0 0 0 2 2 4 4 0 0 2 2 4 42 2 ,B P B P B Pω π ζ π ζ π ζ= + + − − −

( ) ( )2 2 0 0 4 2 2 4 4 6 0 2 4 2 6 4 2 0 42 2 2 2 ,B P B B P B P B Pω π ζ π ζ π ζ π ζ ζ= + + + + − − − − +

( ) ( ) ( )4 0 4 2 2 6 4 0 8 4 0 2 6 2 0 42 2 2 2B P B P P B P Pω π ζ π π ζ π ζ= + + + + − − + −

( )6 4 2 0 6 2 4 8 6 0 4 2 2 42 2B P B P B P Pω π ζ π ζ π ζ= + + + − − −

8 4 4 2 6 0 8 6 2 4 42B P B P B Pω π ζ π ζ= + + − −

		  10 4 6 2 8 6 4 ,B P B Pω π ζ= + −

		             12 4 8B Pω =

with

		  2
0 (1 ) ,B n nρ σ= + +

		
( )2

2 1 2 ,B n nρ σ= + +

		            4 .B nρ=

and

( )( ) ( )( )2 2
0 24 1 12 2 1 4 4 (12P m n n m n n m nγ γ δ δ= − − + − + − + + − +

( )( ) ( ) ( )2 21 12 3 ) 3 8 2 3 4 ( 2 ),n n n n n nλ ρ ρ σ ρ σ+ − + + + + + − + +

( ) ( ) ( )2 2
2 48 1 12 8 3 4 4 (6 3P m n m n n m n nδ γ δ δ γ= − − + − + + − − + +

( ) ( )( ) ( )2 212 1 9 ) 10 6 4 3 4 8 2 ,n n n n n n nδ λ ρ σ ρ σ ρ σ+ + + + + − + + + +

( ) ( ) ( )
( ) ( ) ( )

2 2
4

2

24 2 24 1 4 12 9 21

2 3 4 8 6 2 ,

P m n m n m n n

n n n n

γ δ λ λ λ

ρ ρ σ ρ σ

= − + − − + − − + +

+ − + + + + +

		  6 12 36 10 6 ,P m mn nδ λ ρ σ= − − + +

			      8 3 .P ρ=

      ( )( ) ( )( )2 2
0 6(2 1 1 2 ),m n mn n nπ λ ρ ρ σ= + − + + + +

	        ( ) ( )( )2
2 3 4 1 8 ,m n n mπ λ ρ σ= − + + + +

		  4 12 12 6 ,mn nπ λ ρ σ= − + +

			   6 3 .π ρ=

Introducing

		  ( )2
2 4 8 1 ,q n nρ σ= + +

		
( )2

4 4 1 8 ,q n nρ σ= + +

		              6 4 .q nρ=

( )( ) ( )( )2 2
1 04 1 5 6 8 3 1 5 ,s n n n n nρ σ ρ σ ζ= − + + − + + +

( )( ) ( )( )2 2
2 212 8 1 5 6 8 3 1 ,5s n n n n n nρ ρ σ ρ σ ζ= − − + + − + + +

( )( )2 2
4 424 4 1 5 6 ,s n n nρ ρ σ ζ= − − + + +

6 12 .s nρ= −

The coefficients of 4F are

( )2
1 1 1 31 )(n m n m mο −= + + +

( ) ( )2 2
3 3 1 3 3 1 51 ( 1 ( )n m n m n m n m mο ο= + + + = + + +

	
        

( )2
5 5 3 7( )1 n m n m mο = + + +

( )2
7 7 5 91 ( )n m n m mο = + + +

( )2
9 9 7 11( )1 n m n m mο = + + +

( )2
1 1 1 31 )(n n n n nφ −= + + +
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		  ( )2
3 3 1 5( )1 n n n n nφ = + + +

		  ( )2
5 5 3 7( )1 n n n n nφ = + + +

		  ( )2
7 7 5 9( )1 n n n n nφ = + + +

		  ( )2
9 9 7 11( )1 n n n n nφ = + + +

where

( ) ( )1 1 2 1 2 1 2 4 2 4 32 3 3m m q s s q q s sβ β−= = − + + + − − + +

( )1 2 1 2 2 2 4 2 4 4( 3 3 )2n q s s q q s sβ β= + − + − + + −

( )1 2 1 2 2 2 4 2 4 42 ( 3 3 )n q s s q q s sβ β− = − + − − − + + −

( ) ( )3 2 4 2 4 1 6 1 6 33 2m q q s s q s sβ β= − + + + − + +

( ) ( )3 2 4 2 4 2 6 1 6 43 2n q q s s q s sβ β= + + − + + −

( ) ( )5 4 6 4 6 1 2 2 33m q q s s q sβ β= − + + + +

( ) ( )5 4 6 4 6 2 2 2 43n q q s s q sβ β= + + − + +

( ) ( )7 6 6 1 4 4 33m q s q sβ β= + + +

( ) ( )7 6 6 2 4 4 43n q s q sβ β= + + +

9 11 9 11 0m m n n= = = =

For a periodic solution to (21), it is sufficient to set.12

	

2
1

 

  
) ( Cos n Sin(  n )n n

n
n odd

x a bθ θ θ
∞

=

= +∑

Substituting this Fourier series in (21) and equating to zero 
coefficients of cos n θ and sin n θ , we obtain a set of linear 
algebraic equations on na and nb , respectively. Periodic expression for

3( )x θ and higher order terms can be obtained in a similar fashion.

There will be only one periodic orbit for given values of ,  h  and µ
. The value 1h> − corresponds to the equilibrium solution at L4. Value 
of 1h> − corresponds to short–periodic orbits while 1h< − correspond 
to long–periodic orbits.

Numerical results
Geometrical illustration of the foregoing analysis is provided in 

Figures 1–5 for some typical values of ,  µ   and h . The curves with 
dotted lines therein correspond to the linear analysis with X1 term 
for r while the others correspond to the non–linear analysis with the 
inclusion of X2 terms. Fourier series solution for X2 has been attempted 
retaining terms up to 29θ . Figure 1 & 2 illustrate the impact of the 
higher order terms in the analysis for the perturbed and unperturbed 
problems. However, it may be noted that the relative location of the 
origin with reference to the primaries in the two cases is not the same. 
Figure 3 refers to the short–period eigen frequency and is meant to 
illustrate the effects of radiation pressure. The curves corresponding 
to the long–period eigen frequency are indistinguishable and hence 
are omitted. It may thus be highlighted that the effect of higher order 
terms becomes significant for higher values of µ and surpasses the 
considerations of assumed radiation pressure effect.

Figure 1 0.0369µ = , 2 .0009ξ = and 0.01= .

Figure 2 0.0369µ = , 2 .0005ξ =  & 0.01= .

Figure 3 0.0369µ = , 2 .0005ξ = .
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Figure 4 0.0369µ =  , 2 .0005ξ = & 0.0009 & 0.01= .

Figure 5 0.012µ = & 0.0369, 2 .0005ξ = & 0.001= .

Conclusion
Finite periodic orbits have been generated at the triangular 

point L4 in the photogravitational restricted three–body problem by 
considering the more massive primary as a source of radiation. The 
geometrical illustration of the periodic orbit shows the effects of ,  µ   
and h . The effect of higher order terms becomes significant for higher 
values of µ .
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