Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 6

Entropic corrections to Friedmann equations in the extra dimensional FRW universe

Dehghani M

Department of Physics, Ilam University, Iran

Correspondence: M Dehghani, Department of physics, Ilam university, Ilam, Iran, Tel 098-9183888637

Received: August 20, 2018 | Published: December 12, 2018

Citation: Dehghani M. Entropic corrections to Friedmann equations in the extra dimensional FRW universe. Phys Astron Int J. 2018;2(6):578-584. DOI: 10.15406/paij.2018.02.00145

Download PDF

Abstract

In this work, the quantum gravitational effects on the dynamical equations of universe have been investigated by utilizing the generalized uncertainty principle (GUP) and modified dispersion relation (MDR). At first, the corrected entropy-area relation has been obtained by considering the impacts of GUP and MDR, separately. Next, making use of the corrected entropy relations, arisen from GUP and MDR approaches, the entropic corrected Friedmann equations have been obtained in the extra dimensional FRW universe. The corrections are worked out up to the sixth order of the Planck length. Finally, it has been shown that these two alternative approaches lead to the same corrections if the expansion coefficients satisfy some simple conditions.

Keywords: generalized uncertainty principle, modified dispersion relation, Friedmann equations, Friedmann-Robertson-Walker universe

Introduction

There are several motivations for studying thermodynamical properties of spacetimes more than four dimensions. The first comes from string theory which contains gravity and requires more than four dimensions. In superstring theory a ten-dimensional spacetime is necessary to be consistent from the quantum point of view. The other originates from AdS/CFT correspondence. It relates properties of a d-dimensional spacetimes to those of a conformal field theory in (d-l)-dimensions. In addition, it is possible for the higher dimensional black holes to be produced in the future colliders based on the large extra dimensions and Tev-scale gravity scenarios.1,2 We believe that study of higher dimensional space times in the presence of quantum gravity effects (GUP and MDR) can essentially lead to a deeper insight into under- standing of the ultimate quantum gravity proposals as well as the physical properties of the higher dimensional space times.

Ted Jacobson was the first one who studied the connections between gravity and thermo-dynamics. He showed that the gravitational Einstein equation can be derived from the entropy relation as a function of the horizon area and together with the Clausius relation.3 The discovery of relation between quantum tunnelling radiation and black hole entropy, as a pure geometrical quantity, further supports this connection and the thermodynamic interpretation of geometrical quantities.46

The connection between gravity and thermodynamics has been investigated in various gravity theories.712 Now it is believed that one is able to derive Friedmann equations by use of the Clausius relation to the apparent horizon of FRW universe, in which entropy is assumed to be proportional to its horizon area.

Making use of the holographic principle together with the equipartition theorem and the Unruh temperature, Cai et al derived the Friedmann equations in FRW universe.13 The modified FRW Friedmann equations have been obtained by applying different entropy-area relations together with the first law of thermodynamics.14,15

Furthermore, it is commonly believed that one of the most important achievements in perturbative string theory and quantum gravity is the prediction of a fundamental measurable length which is of the order of Planck length. The essence of this fundamental length can be captured by generalizing usual uncertainty principle known as GUP or by modifying the usual energy momentum relation conventionally named as MDR.1622

ecently, the GUP and MDR has been the subject of many interesting works and a lot of papers have appeared in which the usual uncertainty principle is generalized at the framework of microphysics.2330 The GUP corrections to the entropy of black holes have been obtained by several authors based on the Cardy-Verlinde formula.3133 The influence of Gup on the Friedmann equations has been investigated in (n+1)-dimensional FRW universe by Zhu et al.34. Also the modification of energy-momentum relations and its applications have been investigated extensively.3538 Furthermore, the extra dimensional version of the MDR has been proposed by direct comparison with the extra dimensional form of GUP.39 The proposed extra dimensional MDR has been applied to obtain the first order corrections to the entropy of d-dimensional Schwarzschild black hole through the Cardy-Verlinde formula.33 To study the entropic correction to Friedmann equations in the higher dimensional FRW universe, it is interesting to relate the entropy of the universe with a minimal length quantum gravity scale.

Modification of Friedmann equations have been studied by several authors using different approaches. For example, Liu et al.40 have obtained correction terms to the first Friedmann equation in four dimensional FRW universe, starting from the holographic principle and Debye model by treating the gravity as an entropic force (according to the Verlinve"s proposal).40 Also Sheykhi et al.4143 have obtained the same corrections to the first Friedmann equation in four dimensional FRW universe, making use of the Verlinve proposal and applying the quantum gravity corrected entropy-area relation. Sheykhi et al.44 by treating the gravity as an entropic force, have obtained correction terms to the same Friedmann equation arising from power-law corrected entropy-area relation. Cai et al.45,46 have obtained correction terms to the first and second FRW Friedmann equations, making use of alternative entropy-area relations, in the Einstein, Gauss-Bonnet and Lovelock gravity theories.

In this work, motivated by characterizing the primordial inflation, we would like to obtain the quantum corrected Friedmann equations from a more fundamental starting point and by taking into account the higher order correction terms. For these purposes, we calculate the GUP and MDR corrections to the Friedmann equations for any spacial curvature in the extra dimensional FRW universe. The corrections are calculated separately in the framework of (1) the generalized uncertainty principle and (2) the modified dispersion relation. The results of these alternative approaches are compared and it is shown that the results are compatible if the constant coefficients are fixed properly. We believe that it can essentially lead to a deeper insight into the ultimate quantum gravity proposals.

The organization of this paper is based on the following order. In section-2, the (n+1)-dimensional FRW universe and Friedmann equations are reviewed briefly and the basic equations are introduced. Section-3 is devoted to obtain the entropic corrections to the Friedmann equations in the framework of GUP. In section-4 the corrections from modified entropy-area relation to the Friedmann equations are worked out making use of the MDR analysis. The corrections are obtained up to the sixth power of the Planck length. In section-5, we compare the results of these two alternative approaches and show that a suitable choice of the expansion coefficients leads to the same corrections to the Friedmann equations in the (n+1)-dimensional FRW universe. The results are summarized and discussed in section-6.2 Review of (n+1)-dimensional FRW universe and Friedmann equations.

Let"s begin with the d = ( n + 1 ) -dimensional FRW universe, whose line element is described by34

d s 2 = d t 2 + a 2 ( d r 2 1 k r 2 + r 2 d Ω n 1 ) = h a b d x a d x b + 2 d Ω n 1  (2.1)

 where Ω n 1  is the line element of an (n-l)-dimensional unit sphere, x 0 = t ,   x 1 = r , h ab = διαγ ( 1, a 2 / ( 1 kr 2 ) ) , r ¯ = a ( t ) r  and k  denotes the spatial curvature and k = 0,1, 1  correspond to open, flat, and closed universes respectively. The apparent horizon is located at

r ~ A = 1 H 2 + ka 2  (2.2)

where H = a ˙ / a is the Hubble parameter and over dot stands for the derivative with respect to cosmic time t . The apparent horizon has an associated entropy (S) and Hawking temperature (T) as

S=A4G,T=12πr~A, (2.3)

where A=nAn1 is the apparent horizon area and Ωn=πnΓn+  being the volume of an d-dimensional unit sphere.

The Friedmann equations describe the dynamical evolution of the homogeneous and isotropic universe within the context of general relativity. Such equations can be derived by using Clausius relation to the apparent horizon of FRW universe, in which entropy is assumed to be a function of its horizon area.

Suppose the matter source in the FRW universe is a perfect fluid with stress-energy tensor

T ab = ( p + ρ ) u a u b + pg ab ,             (2.4)

where p and ρ are pressure and energy density respectively. Conservation law a T a b = 0 implies

ρ ˙ + n H ( ρ + p ) = 0 .             (2.5)

Accordingly, we define the work density as4548

W = 1 2 T a b h a b ,                   (2.6)

which results in

W = 1 2 ( ρ p ) .          (2.7)

The work density term is regarded as the work done by the change of the apparent horizon. The amount of energy crossing the apparent horizon during the time internal dt is13

dE=A(ρ+p)HrAdt .           (2.8)

Now, applying the Clausius relation to the apparent horizon and assuming the entropy as a function of horizon area we can write

A(ρ+p)Hr~Adt=S'(A)2πr~AdA .            (2.9)

Making use of the relation d r A / d t = H ( H ˙ k / a 2 ) r A 3 in Eq.(2.9) after some simplifications one obtains45,46

( H ˙ k a 2 ) S ( A ) = 2 π n 1 ( ρ + p ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcaceWGib GbaiaacqGHsisldaWcaaqaaiaadUgaaeaacaWGHbWaaWbaaSqabeaa caaIYaaaaaaakiaaiMcaceWGtbGbauaacaaIOaGaamyqaiaaiMcaca aI9aGaeyOeI0YaaSaaaeaacaaIYaGaeqiWdahabaGaamOBaiabgkHi TiaaigdaaaGaaGikaiabeg8aYjabgUcaRiaadchacaaIPaaaaa@4D03@ ,      (2.10)

and noting the continuity equation (2.5) after some simple calculations we have

2π n ρ= S (A)( n Ω n A ) 2/(n1) dA A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG Omaiabec8aWbqaaiaad6gaaaGaeqyWdiNaaGypaiabgkHiTmaapeaa beWcbeqab0Gaey4kIipakiqadofagaqbaiaaiIcacaWGbbGaaGykai aaiIcadaWcaaqaaiaad6gacqqHPoWvdaWgaaWcbaGaamOBaaqabaaa keaacaWGbbaaaiaaiMcadaahaaWcbeqaaiabgkdaYiabg+caViabgI caOiaad6gacqGHsislcqGHXaqmcqGHPaqkaaGcdaWcaaqaaiaadsga caWGbbaabaGaamyqaaaaaaa@5327@  (2.11)

where S is assumed to be a function of horizon area A and prime stands for derivative with respect to area.

As a simple example to show the application of Eqs.(2.10) and (2.11), making use of the entropy-area relation (2.3) in these equations, we have

H ˙ k a 2 = 8πG n1 (ρ+p) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaGaai abgkHiTmaalaaabaGaam4AaaqaaiaadggadaahaaWcbeqaaiaaikda aaaaaOGaaGypaiabgkHiTmaalaaabaGaaGioaiabec8aWjaadEeaae aacaWGUbGaeyOeI0IaaGymaaaacaaIOaGaeqyWdiNaey4kaSIaamiC aiaaiMcaaaa@4961@ ,        (2.12)

H 2 + k a 2 = 16πG n(n1) ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaahaa WcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaadUgaaeaacaWGHbWa aWbaaSqabeaacaaIYaaaaaaakiaai2dadaWcaaqaaiaaigdacaaI2a GaeqiWdaNaam4raaqaaiaad6gacqGHOaakcaWGUbGaeyOeI0Iaeyym aeJaeyykaKcaaiabeg8aYbaa@49B0@  (2.13)

Equations (2.12) and (2.13) are the Friedmann equations in (n+1)-dimensional FRW universe obtained from the usual entropy-area relation.

In the following sections, making use of the corrected functional form of the entropy stem from GUP and MDR analysis in Eqs.(2.10) and (2.11) we obtain the corrections to the Friedmann equations within both the GUP and the MDR respectively.

The GUP corrections to the Friedmann equations

To study the quantum gravity effects on the Friedmann equations, we employ the GUP. It is shown that usual uncertainty principle receives a modification at the microphysics regime.4953

  Δ x h Δ p + α L P 2 Δ p h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aejaadI hacqGHLjYSdaWcaaqaaiaadIgaaeaacqGHuoarcaWGWbaaaiabgUca Riabeg7aHjaadYeadaqhaaWcbaGaamiuaaqaaiaaikdaaaGcdaWcaa qaaiabgs5aejaadchaaeaadaajbaqaaiaadIgaaaaaaaaa@483E@ ,                (3.1)

 where L p =( G c 3 ) 1/(n1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaamiCaaqabaGccaaI9aGaaGikamaalaaabaGaeyOeI0Iaam4r aaqaaiaadogadaahaaWcbeqaaiaaiodaaaaaaOGaaGykamaaCaaale qabaGaeyymaeJaey4la8IaeyikaGIaamOBaiabgkHiTiabggdaXiab gMcaPaaaaaa@4679@ , is the (n+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaaOlGaeyikaG IaamOBaiabgUcaRiabggdaXiabgMcaPaaa@3D89@ -dimensional Planck length with the order of 10 35 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacaaIWa WaaWbaaSqabeaacqGHsislcaaIZaGaaGynaaaakiaad2gaaaa@3D26@ for n=3 . The term α L p 2 Δ p h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaadY eadaqhaaWcbaGaamiCaaqaaiaaikdaaaGcdaWcaaqaaiabfs5aejaa dchaaeaadaajbaqaaiaadIgaaaaaaaaa@3FF8@ in Eq.(3.1) shows the gravitational effects on the usual uncertainty principle. Inverting Eq.(3.1) we obtain

δx2αLP2(114αLP2δx2Δphδx2αLP2(1+14αLP2δx2 (3.2)

From Eq.(3.2), one can write

( Δp h ) min = 1 δx [ (δx) 2 2α L P 2 (1 1 4α L P 2 (δx) 2 )]= 1 δx F (GUP) ((δx ) 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcadaWcaa qaaiabgs5aejaadchaaeaacaWGObaaaiaaiMcadaWgaaWcbaGaciyB aiaacMgacaGGUbaabeaakiaai2dadaWcaaqaaiaaigdaaeaacqaH0o azcaWG4baaaiaaiUfadaWcaaqaaiaaiIcacqaH0oazcaWG4bGaaGyk amaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacqaHXoqycaWGmbWaa0 baaSqaaiaadcfaaeaacaaIYaaaaaaakiabgIcaOiaaigdacqGHsisl daGcaaqaaiaaigdacqGHsisldaWcaaqaaiaaisdacqaHXoqycaWGmb Waa0baaSqaaiaadcfaaeaacaaIYaaaaaGcbaGaaGikaiabes7aKjaa dIhacaaIPaWaaWbaaSqabeaacaaIYaaaaaaaaeqaaOGaeyykaKIaey yxa0Laeyypa0ZaaSaaaeaacaaIXaaabaGaeqiTdqMaamiEaaaacaWG gbWaaSbaaSqaaiaaiIcacaWGhbGaamyvaiaadcfacaaIPaaabeaaki aaiIcacaaIOaGaeqiTdqMaamiEaiaaiMcadaahaaWcbeqaaiaaikda aaGccaaIPaaaaa@6F0F@  (3.3)

where

F (GUP) ((δx ) 2 )= (δx) 2 2α L P 2 (1 1 4α L P 2 (δx) 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGikaiaadEeacaWGvbGaamiuaiaaiMcaaeqaaOGaaGikaiaa iIcacqaH0oazcaWG4bGaaGykamaaCaaaleqabaGaaGOmaaaakiaaiM cacaaI9aWaaSaaaeaacaaIOaGaeqiTdqMaamiEaiaaiMcadaahaaWc beqaaiaaikdaaaaakeaacaaIYaGaeqySdeMaamitamaaDaaaleaaca WGqbaabaGaaGOmaaaaaaGccqGHOaakcqGHXaqmcqGHsisldaGcaaqa aiaaigdacqGHsisldaWcaaqaaiaaisdacqaHXoqycaWGmbWaa0baaS qaaiaadcfaaeaacaaIYaaaaaGcbaGaaGikaiabes7aKjaadIhacaaI PaWaaWbaaSqabeaacaaIYaaaaaaaaeqaaOGaaGykaaaa@5D46@  (3.4)

characterizes the departure of GUP from the usual uncertainty principle.

Now we consider the impact of GUP on the entropy and Friedmann equations in the higher dimensional FRW universe. By considering the space-time having radiation or absorbtion at the horizon, one can identify the energy of the absorbed or radiated particles as the uncertainty of momentum,54 that is

d E δ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGfb qeeuuDJXwAKbsr4rNCHbacfaGae83qISJaeqiTdqMaamiCaaaa@422D@ .       (3.5)

The increase or decrease in the area of the black hole horizon can be written as

d A = 4 G T d E 4 G T 1 δ x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGbb GaaGypamaalaaabaGaaGinaiaadEeaaeaacaWGubaaaiaadsgacaWG fbqeeuuDJXwAKbsr4rNCHbacfaGae83qISZaaSaaaeaacaaI0aGaam 4raaqaaiaadsfaaaWaaSaaaeaacaaIXaaabaGaeqiTdqMaamiEaaaa aaa@4A5C@ .   (3.6)

When the gravitation is turned on Eq.(3.6) generalizes to

d A ( G U P ) = 4 G T d E 4 G T 1 δ x F ( G U P ) ( ( δ x ) 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGbb WaaSbaaSqaaiaaiIcacaWGhbGaamyvaiaadcfacaaIPaaabeaakiaa i2dadaWcaaqaaiaaisdacaWGhbaabaGaamivaaaacaWGKbGaamyrae bbfv3ySLgzGueE0jxyaGqbaiab=nKi7maalaaabaGaaGinaiaadEea aeaacaWGubaaamaalaaabaGaaGymaaqaaiabes7aKjaadIhaaaGaam OramaaBaaaleaacaaIOaGaam4raiaadwfacaWGqbGaaGykaaqabaGc caaIOaGaaGikaiabes7aKjaadIhacaaIPaWaaWbaaSqabeaacaaIYa aaaOGaaGykaaaa@59B2@ .         (3.7)

Combining Eqs.(3.6) and (3.7) we have

d A ( G U P ) = F ( G U P ) ( ( δ x ) 2 ) d A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGbb WaaSbaaSqaaiaaiIcacaWGhbGaamyvaiaadcfacaaIPaaabeaakiaa i2dacaWGgbWaaSbaaSqaaiaaiIcacaWGhbGaamyvaiaadcfacaaIPa aabeaakiaaiIcacaaIOaGaeqiTdqMaamiEaiaaiMcadaahaaWcbeqa aiaaikdaaaGccaaIPaGaamizaiaadgeaaaa@4B9A@ .     (3.8)

By modelling the black hole as a cube of size 2 r A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaqGYb WaaSbaaSqaaiaadgeaaeqaaaaa@3AC2@ , the uncertainty in the position of a Hawking emitted particle is

δx=2 r ˜ A =2( A n Ω n ) 1 n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI hacqGH9aqpcqGHYaGmceWGYbGbaGaadaWgaaWcbaGaamyqaaqabaGc caaI9aGaaGOmaiaaiIcadaWcaaqaaiaadgeaaeaacaWGUbGaeuyQdC 1aaSbaaSqaaiaad6gaaeqaaaaakiaaiMcadaahaaWcbeqaamaalaaa baGaaGymaaqaaiaad6gacqGHsislcaaIXaaaaaaaaaa@49B4@  (3.9)

from which F ( G U P ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGikaiaadEeacaWGvbGaamiuaiaaiMcaaeqaaaaa@3CF6@ can be rewritten as the function of A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeaaaa@38E5@

F (GUP) (A)= 2 α L P 2 ( A n Ω n ) 2 n1 [1 1α L P 2 ( n Ω n A ) 2 n1 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGikaiaadEeacaWGvbGaamiuaiaaiMcaaeqaaOGaaGikaiaa dgeacaaIPaGaaGypamaalaaabaGaaGOmaaqaaiabeg7aHjaadYeada qhaaWcbaGaamiuaaqaaiaaikdaaaaaaOGaaGikamaalaaabaGaamyq aaqaaiaad6gacqqHPoWvdaWgaaWcbaGaamOBaaqabaaaaOGaaGykam aaCaaaleqabaWaaSaaaeaacaaIYaaabaGaamOBaiabgkHiTiaaigda aaaaaOGaey4waSLaeyymaeJaeyOeI0YaaOaaaeaacaaIXaGaeyOeI0 IaeqySdeMaamitamaaDaaaleaacaWGqbaabaGaaGOmaaaakiaaiIca daWcaaqaaiaad6gacqqHPoWvdaWgaaWcbaGaamOBaaqabaaakeaaca WGbbaaaiaaiMcadaahaaWcbeqaamaalaaabaGaaGOmaaqaaiaad6ga cqGHsislcaaIXaaaaaaaaeqaaOGaaGyxaaaa@61F0@  (3.10)

Expanding (3. 10) around L P =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaamiuaaqabaGccqGH9aqpcaaIWaaaaa@3BBB@ gives,

F (GUP) (A)=1+ α L P 2 4 ( n Ω n A ) 2 n1 + (α L P 2 ) 2 8 ( n Ω n A ) 4 n1 + 5 (α L P 2 ) 3 64 ( n Ω n A ) 6 n1 + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGikaiaadEeacaWGvbGaamiuaiaaiMcaaeqaaOGaaGikaiaa dgeacaaIPaGaaGypaiaaigdacqGHRaWkdaWcaaqaaiabeg7aHjaadY eadaqhaaWcbaGaamiuaaqaaiaaikdaaaaakeaacaaI0aaaaiaaiIca daWcaaqaaiaad6gacqqHPoWvdaWgaaWcbaGaamOBaaqabaaakeaaca WGbbaaaiaaiMcadaahaaWcbeqaamaalaaabaGaaGOmaaqaaiaad6ga cqGHsislcaaIXaaaaaaakiabgUcaRmaalaaabaGaaGikaiabeg7aHj aadYeadaqhaaWcbaGaamiuaaqaaiaaikdaaaGccaaIPaWaaWbaaSqa beaacaaIYaaaaaGcbaGaaGioaaaacaaIOaWaaSaaaeaacaWGUbGaeu yQdC1aaSbaaSqaaiaad6gaaeqaaaGcbaGaamyqaaaacaaIPaWaaWba aSqabeaadaWcaaqaaiaaisdaaeaacaWGUbGaeyOeI0IaaGymaaaaaa GccqGHRaWkdaWcaaqaaiabgwda1iabgIcaOiabeg7aHjaadYeadaqh aaWcbaGaamiuaaqaaiaaikdaaaGccqGHPaqkdaahaaWcbeqaaiabgo daZaaaaOqaaiaaiAdacaaI0aaaaiaaiIcadaWcaaqaaiaad6gacqqH PoWvdaWgaaWcbaGaamOBaaqabaaakeaacaWGbbaaaiaaiMcadaahaa WcbeqaamaalaaabaGaaGOnaaqaaiaad6gacqGHsislcaaIXaaaaaaa kiabgUcaRiabl+Uimbaa@78B9@  (3.11)

and Eq.(3.8) can be rewritten as d A ( G U P ) = F ( G U P ) ( A ) d A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGbb WaaSbaaSqaaiaaiIcacaWGhbGaamyvaiaadcfacaaIPaaabeaakiaa i2dacaWGgbWaaSbaaSqaaiaaiIcacaWGhbGaamyvaiaadcfacaaIPa aabeaakiaaiIcacaWGbbGaaGykaiaadsgacaWGbbaaaa@4766@ .                 (3.12)

It must be noted that since L P 10 35 m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaamiuaaqabaqeeuuDJXwAKbsr4rNCHbacfaGccqWFdjYocaaI XaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maiaaiwdaaaGccaWGTb aaaa@44C3@ the series expansion (3.11) will converge. This is why one can treat the GUP impacts perturbatively.55

Now by considering the impacts of GUP, Eqs.(2.9) and (2.10) can be written in the following form

( H ˙ k a 2 ) S ( G U P ) ( A ) = 2 π n 1 ( ρ + p ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcaceWGib GbaiaacqGHsisldaWcaaqaaiaadUgaaeaacaWGHbWaaWbaaSqabeaa caaIYaaaaaaakiaaiMcaceWGtbGbauaadaWgaaWcbaGaaGikaiaadE eacaWGvbGaamiuaiaaiMcaaeqaaOGaaGikaiaadgeacaaIPaGaaGyp aiabgkHiTmaalaaabaGaaGOmaiabec8aWbqaaiaad6gacqGHsislca aIXaaaaiaaiIcacqaHbpGCcqGHRaWkcaWGWbGaaGykaaaa@5119@ ,       (3.13)

2π n ρ= S (GUP) '(A) ( n Ω n A ) 2/(n1) dA A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG Omaiabec8aWbqaaiaad6gaaaGaeqyWdiNaaGypaiabgkHiTmaapeaa beWcbeqab0Gaey4kIipakiaadofadaWgaaWcbaGaaGikaiaadEeaca WGvbGaamiuaiaaiMcaaeqaaOGaai4jaiabgIcaOiaadgeacqGHPaqk cqGHOaakdaWcaaqaaiaad6gacqqHPoWvdaWgaaWcbaGaamOBaaqaba aakeaacaWGbbaaaiabgMcaPmaaCaaaleqabaGaeyOmaiJaey4la8Ia eyikaGIaamOBaiabgkHiTiabggdaXiabgMcaPaaakmaalaaabaGaam izaiaadgeaaeaacaWGbbaaaaaa@5886@  (3.14)

where S ( G U P ) ( A ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaaGikaiaadEeacaWGvbGaamiuaiaaiMcaaeqaaOGaaGikaiaa dgeacaaIPaaaaa@3F38@ is defined as

S ( G U P ) ( A ) = A ( G U P ) 4 G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaaGikaiaadEeacaWGvbGaamiuaiaaiMcaaeqaaOGaaGikaiaa dgeacaaIPaGaaGypamaalaaabaGaamyqamaaBaaaleaacaaIOaGaam 4raiaadwfacaWGqbGaaGykaaqabaaakeaacaaI0aGaam4raaaaaaa@4675@ ,   (3.15)

and considering Eq.(3.12), we can obtain

S ( G U P ) ' ( A ) = F ( G U P ) ( A ) 4 G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaaGikaiaadEeacaWGvbGaamiuaiaaiMcaaeqaaOGaaG4jaiaa iIcacaWGbbGaaGykaiaai2dadaWcaaqaaiaadAeadaWgaaWcbaGaaG ikaiaadEeacaWGvbGaamiuaiaaiMcaaeqaaOGaaGikaiaadgeacaaI PaaabaGaaGinaiaadEeaaaaaaa@4956@ .     (3.16)

Substituting Eqs.(3.11) and (3.16) in Eqs.(3.13) and (3.14), we can obtain the corrections to the Friedmann equations by considering the GUP, that is

( H ˙ k a 2 ) [ 1 + α L P 2 4 ( n Ω n A ) 2 n 1 + ( α L P 2 ) 2 8 ( n Ω n A ) 4 n 1 + 5 ( α L P 2 ) 3 64 ( n Ω n A ) 6 n 1 ] = 8 π G n 1 ( ρ + p ) , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcaceWGib GbaiaacqGHsisldaWcaaqaaiaadUgaaeaacaWGHbWaaWbaaSqabeaa caaIYaaaaaaakiaaiMcacaaIBbGaaGymaiabgUcaRmaalaaabaGaeq ySdeMaamitamaaDaaaleaacaWGqbaabaGaaGOmaaaaaOqaaiaaisda aaGaaGikamaalaaabaGaamOBaiabfM6axnaaBaaaleaacaWGUbaabe aaaOqaaiaadgeaaaGaaGykamaaCaaaleqabaWaaSaaaeaacaaIYaaa baGaamOBaiabgkHiTiaaigdaaaaaaOGaey4kaSYaaSaaaeaacaaIOa GaeqySdeMaamitamaaDaaaleaacaWGqbaabaGaaGOmaaaakiaaiMca daahaaWcbeqaaiaaikdaaaaakeaacaaI4aaaaiaaiIcadaWcaaqaai aad6gacqqHPoWvdaWgaaWcbaGaamOBaaqabaaakeaacaWGbbaaaiaa iMcadaahaaWcbeqaamaalaaabaGaaGinaaqaaiaad6gacqGHsislca aIXaaaaaaakiabgUcaRmaalaaabaGaaGynaiaaiIcacqaHXoqycaWG mbWaa0baaSqaaiaadcfaaeaacaaIYaaaaOGaaGykamaaCaaaleqaba GaaG4maaaaaOqaaiaaiAdacaaI0aaaaiaaiIcadaWcaaqaaiaad6ga cqqHPoWvdaWgaaWcbaGaamOBaaqabaaakeaacaWGbbaaaiaaiMcada ahaaWcbeqaamaalaaabaGaaGOnaaqaaiaad6gacqGHsislcaaIXaaa aaaakiaai2facaaI9aGaeyOeI0YaaSaaaeaacaaI4aGaeqiWdaNaam 4raaqaaiaad6gacqGHsislcaaIXaaaaiaaiIcacqaHbpGCcqGHRaWk caWGWbGaaGykaiaacYcaaaa@8278@ (3.17) ( H 2 + k a 2 ) [ 1 + α L P 2 8 ( n Ω n A ) 2 n 1 + ( α L P 2 ) 2 24 ( n Ω n A ) 4 n 1 + 5 ( α L P 2 ) 3 256 ( n Ω n A ) 6 n 1 ] = 16 π G n ( n 1 ) ρ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacaWGib WaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWGRbaabaGa amyyamaaCaaaleqabaGaaGOmaaaaaaGccaaIPaGaaG4waiaaigdacq GHRaWkdaWcaaqaaiabeg7aHjaadYeadaqhaaWcbaGaamiuaaqaaiaa ikdaaaaakeaacaaI4aaaaiaaiIcadaWcaaqaaiaad6gacqqHPoWvda WgaaWcbaGaamOBaaqabaaakeaacaWGbbaaaiaaiMcadaahaaWcbeqa amaalaaabaGaaGOmaaqaaiaad6gacqGHsislcaaIXaaaaaaakiabgU caRmaalaaabaGaaGikaiabeg7aHjaadYeadaqhaaWcbaGaamiuaaqa aiaaikdaaaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmai aaisdaaaGaaGikamaalaaabaGaamOBaiabfM6axnaaBaaaleaacaWG UbaabeaaaOqaaiaadgeaaaGaaGykamaaCaaaleqabaWaaSaaaeaaca aI0aaabaGaamOBaiabgkHiTiaaigdaaaaaaOGaey4kaSYaaSaaaeaa caaI1aGaaGikaiabeg7aHjaadYeadaqhaaWcbaGaamiuaaqaaiaaik daaaGccaaIPaWaaWbaaSqabeaacaaIZaaaaaGcbaGaaGOmaiaaiwda caaI2aaaaiaaiIcadaWcaaqaaiaad6gacqqHPoWvdaWgaaWcbaGaam OBaaqabaaakeaacaWGbbaaaiaaiMcadaahaaWcbeqaamaalaaabaGa aGOnaaqaaiaad6gacqGHsislcaaIXaaaaaaakiaai2facaaI9aWaaS aaaeaacaaIXaGaaGOnaiabec8aWjaadEeaaeaacaWGUbGaaGikaiaa d6gacqGHsislcaaIXaGaaGykaaaacqaHbpGCcaaISaaaaa@83BE@ (3.18)

up to the sixth power of the Planck length. The terms proportional to powers of α L P 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaadY eadaqhaaWcbaGaamiuaaqaaiaaikdaaaaaaa@3C4D@ are the corrections to the Friedmann equations in (n+1) -dimensional FRW universe. The correction terms are calculated based on the GUP.

It is well-known that corrected entropy-area relation depends on the dimension of the space- time.5658 But Eqs.(3.17) and (3.18), the so-called generalized Friedmann equations, are independent on the dimension of the space-time and valid when n is an odd or even number for n 3 . Also the generalized Friedmann equations are valid for any spacial curvature k .

By combining Eqs.(2.2) and (3.9) we arrived at the following relation

1 r ˜ A =( n Ω n A ) 1 n1 = H 2 + k a 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiqadkhagaacamaaBaaaleaacaWGbbaabeaaaaGccaaI9aGa aGikamaalaaabaGaamOBaiabfM6axnaaBaaaleaacaWGUbaabeaaaO qaaiaadgeaaaGaaGykamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGa amOBaiabgkHiTiaaigdaaaaaaOGaaGypamaakaaabaGaamisamaaCa aaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaam4Aaaqaaiaadgga daahaaWcbeqaaiaaikdaaaaaaaqabaaaaa@4B7D@ ,        (3.19)

in Eqs.(3.17) and (3.18), the generalized Friedmann equations can be rewritten as

(H˙ka2)[1+αLP24(H2+ka2)+(αLP2)28+5(αLP2)364]=8πGn1(ρ+p) (3.20)

(H2+ka2)[1+αLP28(H2+ka2)+αLP2224+5(αLP2)3256]=16πGn(n1)ρ (3.21)

Eqs.(3.20) and (3.21) are the quantum corrected Friedmann equations based on the GUP. They have the same form as those obtained in literatures which have been obtained from other alternative approaches.4143,45,46 Also, the results have the same structure as those obtained from purturbative quantum gravity.

It must be noted that the correction terms in Eqs.(3.20) and (3.21), as the basic equations of the quantum cosmology, are considerable if the scale factor a is very small. It means that the corrections make sense only at the early stage of the universe where a 0 . As the universe becomes larger, the correction terms become negligible and generalized Friedmann equations are reduced to the standard Friedmann equations in FRW universe. In other words, they do not affect the late time cosmology. The generalized Friedmann equations are expected to be useful to characterize the history of universe inflation and to resolve the big bang singularities.59

The MDR corrections to the Friedmann equations

In the study on loop quantum gravity and of models based on noncommutative geometry, there has been a strong interest in some candidate modifications of the energy-momentum dispersion relation. In this section, we introduce the extra dimensional version of MDR and investigate its impacts on the Friedmann equations in the higher dimensional FRW universe. Although the GUP, as an equivalence face of the MDR has been used extensively in the past, the extra dimensional MDR is new.39

It is interesting that the usual relation between energy and momentum that characterizes the special theory of relativity, p 2 = E 2 m 2 , may be modified in the Planck scale regime.

Anomalies in ultra high cosmic ray photons, and possibly Tev photons, may be explained by modification of the dispersion relation as39,6063

p . p p 2 = f ( E , m ; L P ) = E 2 μ 2 + α 1 L P 2 E 4 + α 2 L P 4 E 6 + α 3 L P 6 E 8 + O ( L P 8 E 10 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadchagaWcai aai6caceWGWbGbaSaacqGHHjIUcaWGWbWaaWbaaSqabeaacaaIYaaa aOGaaGypaiaadAgacaaIOaGaamyraiaaiYcacaaMe8UaamyBaiaaiU dacaWGmbWaaSbaaSqaaiaadcfaaeqaaOGaaGykaiaai2dacaWGfbWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaeqiVd02aaWbaaSqabeaaca aIYaaaaOGaey4kaSIaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamit amaaDaaaleaacaWGqbaabaGaaGOmaaaakiaadweadaahaaWcbeqaai aaisdaaaGccqGHRaWkcqaHXoqydaWgaaWcbaGaaGOmaaqabaGccaWG mbWaa0baaSqaaiaadcfaaeaacaaI0aaaaOGaamyramaaCaaaleqaba GaaGOnaaaakiabgUcaRiabeg7aHnaaBaaaleaacaaIZaaabeaakiaa dYeadaqhaaWcbaGaamiuaaqaaiaaiAdaaaGccaWGfbWaaWbaaSqabe aacaaI4aaaaOGaey4kaSYefv3ySLgznfgDOfdaryqr1ngBPrginfgD ObYtUvgaiuaacqWFoe=tcaaIOaGaamitamaaDaaaleaacaWGqbaaba GaaGioaaaakiaadweadaahaaWcbeqaaiaaigdacaaIWaaaaOGaaGyk aaaa@788D@ ,     (4.1)

where f is the function that gives the exact dispersion relation, and on the right-hand side we have assumed a Taylor-series expansion for E 1 L P . The coefficients α i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWGPbaabeaaaaa@3AD8@ can take different values in different quantum-gravity proposals. Note that m is the rest energy of the particle and the mass parameter μ on the right-hand side is directly related to the rest energy, but μ m , if the α i do not all vanish. Now differentiation of Eq.(4.1) and taking the inverse of the result gives

dE=dp[1 3 α 1 2 L P 2 E 2 ( 5 α 2 2 23 α 1 2 8 ) L P 4 E 4 +( 37 4 α 1 α 2 91 16 α 1 3 7 2 α 3 ) L P 6 E 6 +] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamizai aadweacaaI9aGaamizaiaadchacqGHBbWwcqGHXaqmcqGHsisldaWc aaqaaiaaiodacqaHXoqydaWgaaWcbaGaaGymaaqabaaakeaacaaIYa aaaiaadYeadaqhaaWcbaGaamiuaaqaaiaaikdaaaGccaWGfbWaaWba aSqabeaacaaIYaaaaOGaeyOeI0IaaGikamaalaaabaGaaGynaiabeg 7aHnaaBaaaleaacaaIYaaabeaaaOqaaiaaikdaaaGaeyOeI0YaaSaa aeaacaaIYaGaaG4maiabeg7aHnaaDaaaleaacaaIXaaabaGaaGOmaa aaaOqaaiaaiIdaaaGaaGykaiaadYeadaqhaaWcbaGaamiuaaqaaiaa isdaaaGccaWGfbWaaWbaaSqabeaacaaI0aaaaaGcbaqbaeqabeGaaa qaaaqaaiabgUcaRiaaiIcadaWcaaqaaiaaiodacaaI3aaabaGaaGin aaaacqaHXoqydaWgaaWcbaGaaGymaaqabaGccqaHXoqydaWgaaWcba GaaGOmaaqabaGccqGHsisldaWcaaqaaiaaiMdacaaIXaaabaGaaGym aiaaiAdaaaGaeqySde2aa0baaSqaaiaaigdaaeaacaaIZaaaaOGaey OeI0YaaSaaaeaacaaI3aaabaGaaGOmaaaacqaHXoqydaWgaaWcbaGa aG4maaqabaGccaaIPaGaamitamaaDaaaleaacaWGqbaabaGaaGOnaa aakiaadweadaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcqWIVlctcaaI Dbaaaaaaaa@777D@  (4.2)

Within quantum field theory, the relation between particle localization and its energy is given by E 1 δx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGHLj YSdaWcaaqaaiaaigdaaeaacqaH0oazcaWG4baaaaaa@3E1C@ , where δx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI haaaa@3AC1@  is particle position uncertainty. Now, it is obvious that within MDR, this relation should be modified. To the first order, assuming dEδE MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGfb qeeuuDJXwAKbsr4rNCHbacfaGae83qISJaeqiTdqMaamyraaaa@4202@ , making use of the usual uncertainty principle δEδp 1 δx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadw earqqr1ngBPrgifHhDYfgaiuaacqWFdjYocqaH0oazcaWGWbGae83q ISZaaSaaaeaacaaIXaaabaGaeqiTdqMaamiEaaaaaaa@477B@  we have

d E (MDR) 1 δx [1 3 α 1 2 L P 2 (δx) 2 ( 5 α 2 2 23 α 1 2 8 ) L P 4 (δx) 4 +( 37 4 α 1 α 2 91 16 α 1 3 7 2 α 3 ) L P 6 (δx) 6 +] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamizai aadweadaWgaaWcbaGaaGikaiaad2eacaWGebGaamOuaiaaiMcaaeqa aebbfv3ySLgzGueE0jxyaGqbaOGae83qISZaaSaaaeaacaaIXaaaba GaeqiTdqMaamiEaaaacqGHBbWwcqGHXaqmcqGHsisldaWcaaqaaiaa iodacqaHXoqydaWgaaWcbaGaaGymaaqabaaakeaacaaIYaaaamaala aabaGaamitamaaDaaaleaacaWGqbaabaGaaGOmaaaaaOqaaiaaiIca cqaH0oazcaWG4bGaaGykamaaCaaaleqabaGaaGOmaaaaaaGccqGHsi slcaaIOaWaaSaaaeaacaaI1aGaeqySde2aaSbaaSqaaiaaikdaaeqa aaGcbaGaaGOmaaaacqGHsisldaWcaaqaaiaaikdacaaIZaGaeqySde 2aa0baaSqaaiaaigdaaeaacaaIYaaaaaGcbaGaaGioaaaacaaIPaWa aSaaaeaacaWGmbWaa0baaSqaaiaadcfaaeaacaaI0aaaaaGcbaGaaG ikaiabes7aKjaadIhacaaIPaWaaWbaaSqabeaacaaI0aaaaaaaaOqa auaabeqabiaaaeaaaeaacqGHRaWkcaaIOaWaaSaaaeaacaaIZaGaaG 4naaqaaiaaisdaaaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeqyS de2aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0YaaSaaaeaacaaI5aGaaG ymaaqaaiaaigdacaaI2aaaaiabeg7aHnaaDaaaleaacaaIXaaabaGa aG4maaaakiabgkHiTmaalaaabaGaaG4naaqaaiaaikdaaaGaeqySde 2aaSbaaSqaaiaaiodaaeqaaOGaaGykamaalaaabaGaamitamaaDaaa leaacaWGqbaabaGaaGOnaaaaaOqaaiaaiIcacqaH0oazcaWG4bGaaG ykamaaCaaaleqabaGaaGOnaaaaaaGccqGHRaWkcqWIVlctcaaIDbaa aaaaaa@8BFA@ (4.3)

Noting (3.5), Eq.(4.3) can be rewritten as

d E ( M D R ) = 1 δ x F ( M D R ) ( ( δ x ) 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGfb WaaSbaaSqaaiaaiIcacaWGnbGaamiraiaadkfacaaIPaaabeaakiaa i2dadaWcaaqaaiaaigdaaeaacqaH0oazcaWG4baaaiaadAeadaWgaa WcbaGaaGikaiaad2eacaWGebGaamOuaiaaiMcaaeqaaOGaaGikaiaa iIcacqaH0oazcaWG4bGaaGykamaaCaaaleqabaGaaGOmaaaakiaaiM caaaa@4D4A@ ,                (4.4)

and Eq.(3.12) must be replaced by

d A (MDR) = F (MDR) (A)dA MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGbb WaaSbaaSqaaiaaiIcacaWGnbGaamiraiaadkfacaaIPaaabeaakiaa i2dacaWGgbWaaSbaaSqaaiaaiIcacaWGnbGaamiraiaadkfacaaIPa aabeaakiaaiIcacaWGbbGaaGykaiaadsgacaWGbbaaaa@4754@ ,              (4.5)

where

FMDR)(A)=13α18LP2(5α2223α128)LP416

+(374α1α29116α1372α3)(nΩnA)6n1LP664+ (4.6)

Noting the value of the Planck length, one can ensure that this series expansion converges and impacts of MDR can be considered perturbatively.55

Making use of Eqs.(2.9) and (2.10) in the framework of MDR, we have

( H ˙ k a 2 ) S (MDR) '(A)= 2π n1 (ρ+p) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcaceWGib GbaiaacqGHsisldaWcaaqaaiaadUgaaeaacaWGHbWaaWbaaSqabeaa caaIYaaaaaaakiaaiMcacaWGtbWaaSbaaSqaaiaaiIcacaWGnbGaam iraiaadkfacaaIPaaabeaakiaaiEcacaaIOaGaamyqaiaaiMcacaaI 9aGaeyOeI0YaaSaaaeaacaaIYaGaeqiWdahabaGaamOBaiabgkHiTi aaigdaaaGaaGikaiabeg8aYjabgUcaRiaadchacaaIPaaaaa@51B5@ ,              (4.7)

2π n ρ= S (MDR) '(A)( n Ω n A ) 2/(n1) dA A MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG Omaiabec8aWbqaaiaad6gaaaGaeqyWdiNaaGypaiabgkHiTmaapeaa beWcbeqab0Gaey4kIipakiaadofadaWgaaWcbaGaaGikaiaad2eaca WGebGaamOuaiaaiMcaaeqaaOGaaG4jaiaaiIcacaWGbbGaaGykaiaa iIcadaWcaaqaaiaad6gacqqHPoWvdaWgaaWcbaGaamOBaaqabaaake aacaWGbbaaaiaaiMcadaahaaWcbeqaaiabgkdaYiabg+caViabgIca Oiaad6gacqGHsislcqGHXaqmcqGHPaqkaaGcdaWcaaqaaiaadsgaca WGbbaabaGaamyqaaaaaaa@57D9@ (4.8)

where S ( M D R ) ( A ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaaGikaiaad2eacaWGebGaamOuaiaaiMcaaeqaaOGaaGikaiaa dgeacaaIPaaaaa@3F2F@ is defined as

S ( M D R ) ( A ) = A ( M D R ) 4 G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaaGikaiaad2eacaWGebGaamOuaiaaiMcaaeqaaOGaaGikaiaa dgeacaaIPaGaaGypamaalaaabaGaamyqamaaBaaaleaacaaIOaGaam ytaiaadseacaWGsbGaaGykaaqabaaakeaacaaI0aGaam4raaaaaaa@4663@ ,        (4.9)

and considering Eq.(3.12), we can obtain

S ( M D R ) ' ( A ) = F ( M D R ) ( A ) 4 G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaaGikaiaad2eacaWGebGaamOuaiaaiMcaaeqaaOGaaG4jaiaa iIcacaWGbbGaaGykaiaai2dadaWcaaqaaiaadAeadaWgaaWcbaGaaG ikaiaad2eacaWGebGaamOuaiaaiMcaaeqaaOGaaGikaiaadgeacaaI PaaabaGaaGinaiaadEeaaaaaaa@4944@ .                        (4.10)

Substituting Eqs.(4.6) and (4.10) in Eqs.(4.7) and (4.8), we can obtain the impacts of MDR to the Friedmann equations, that is

(H˙ka2)[13α1LP28(5α2223α128)LP416+(374α1α29116α1372α3)LP664]=8πG1(ρ+p) (4.11)

(H2+ka2)[13α1LP216(5α2223α128)LP448+(374α1α29116α1372α3)LP6256]=16πGn(n1)ρ (4.12)

up to the sixth power of the Planck length. The terms proportional to powers of L P 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqhaa WcbaGaamiuaaqaaiaaikdaaaaaaa@3AAE@ are the corrections to the Friedmann equations in (n+1) -dimensional FRW universe. The correction terms are calculated based on the MDR.

From the literature5658 the corrected entropy-area relation stem from MDR, depends on the dimension of the space-time. But Eqs.(4.11) and (4.12), the so-called modified Friedmann equations, are valid for all values of n 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGHLj YScaaIZaaaaa@3B95@ and all values of spacial curvature k . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacaaIUa aaaa@39C7@

Substituting Eq.(3.19) in Eqs.(4.11) and (4.12) leads to

( H ˙ k a 2 ) [ 1 3 α 1 L P 2 8 ( H 2 + k a 2 ) ( 5 α 2 2 23 α 1 2 8 ) ( H 2 + k a 2 ) 2 L P 4 16 + ( 37 4 α 1 α 2 91 16 α 1 3 7 2 α 3 ) ( H 2 + k a 2 ) 3 L P 6 64 ] = 8 π G n 1 ( ρ + p ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaGikai qadIeagaGaaiabgkHiTmaalaaabaGaam4AaaqaaiaadggadaahaaWc beqaaiaaikdaaaaaaOGaaGykaiaaiUfacaaIXaGaeyOeI0YaaSaaae aacaaIZaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaamitamaaDaaa leaacaWGqbaabaGaaGOmaaaaaOqaaiaaiIdaaaGaaGikaiaadIeada ahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaadUgaaeaacaWG HbWaaWbaaSqabeaacaaIYaaaaaaakiaaiMcacqGHsislcaaIOaWaaS aaaeaacaaI1aGaeqySde2aaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOm aaaacqGHsisldaWcaaqaaiaaikdacaaIZaGaeqySde2aa0baaSqaai aaigdaaeaacaaIYaaaaaGcbaGaaGioaaaacaaIPaGaaGikaiaadIea daahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaadUgaaeaaca WGHbWaaWbaaSqabeaacaaIYaaaaaaakiaaiMcadaahaaWcbeqaaiaa ikdaaaGcdaWcaaqaaiaadYeadaqhaaWcbaGaamiuaaqaaiaaisdaaa aakeaacaaIXaGaaGOnaaaaaeaacaWLjaGaey4kaSIaaGikamaalaaa baGaaG4maiaaiEdaaeaacaaI0aaaaiabeg7aHnaaBaaaleaacaaIXa aabeaakiabeg7aHnaaBaaaleaacaaIYaaabeaakiabgkHiTmaalaaa baGaaGyoaiaaigdaaeaacaaIXaGaaGOnaaaacqaHXoqydaqhaaWcba GaaGymaaqaaiaaiodaaaGccqGHsisldaWcaaqaaiaaiEdaaeaacaaI Yaaaaiabeg7aHnaaBaaaleaacaaIZaaabeaakiaaiMcacaaIOaGaam isamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaam4Aaaqa aiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaaGykamaaCaaaleqaba GaaG4maaaakmaalaaabaGaamitamaaDaaaleaacaWGqbaabaGaaGOn aaaaaOqaaiaaiAdacaaI0aaaaiaai2facaaI9aGaeyOeI0YaaSaaae aacaaI4aGaeqiWdaNaam4raaqaaiaad6gacqGHsislcaaIXaaaaiaa iIcacqaHbpGCcqGHRaWkcaWGWbGaaGykaaaaaa@976A@ ,           (4.13)

( H 2 + k a 2 ) [ 1 3 α 1 L P 2 16 ( H 2 + k a 2 ) ( 5 α 2 2 23 α 1 2 8 ) ( H 2 + k a 2 ) 2 L P 4 48 + ( 37 4 α 1 α 2 91 16 α 1 3 7 2 α 3 ) ( H 2 + k a 2 ) 3 L P 6 256 ] = 16 π G n ( n 1 ) ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaGikai aadIeadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcaaqaaiaadUga aeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaaakiaaiMcacaaIBbGaaG ymaiabgkHiTmaalaaabaGaaG4maiabeg7aHnaaBaaaleaacaaIXaaa beaakiaadYeadaqhaaWcbaGaamiuaaqaaiaaikdaaaaakeaacaaIXa GaaGOnaaaacaaIOaGaamisamaaCaaaleqabaGaaGOmaaaakiabgUca RmaalaaabaGaam4AaaqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaO GaaGykaiabgkHiTiaaiIcadaWcaaqaaiaaiwdacqaHXoqydaWgaaWc baGaaGOmaaqabaaakeaacaaIYaaaaiabgkHiTmaalaaabaGaaGOmai aaiodacqaHXoqydaqhaaWcbaGaaGymaaqaaiaaikdaaaaakeaacaaI 4aaaaiaaiMcacaaIOaGaamisamaaCaaaleqabaGaaGOmaaaakiabgU caRmaalaaabaGaam4AaaqaaiaadggadaahaaWcbeqaaiaaikdaaaaa aOGaaGykamaaCaaaleqabaGaaGOmaaaakmaalaaabaGaamitamaaDa aaleaacaWGqbaabaGaaGinaaaaaOqaaiaaisdacaaI4aaaaaqaaiaa xMaacqGHRaWkcaaIOaWaaSaaaeaacaaIZaGaaG4naaqaaiaaisdaaa GaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeqySde2aaSbaaSqaaiaa ikdaaeqaaOGaeyOeI0YaaSaaaeaacaaI5aGaaGymaaqaaiaaigdaca aI2aaaaiabeg7aHnaaDaaaleaacaaIXaaabaGaaG4maaaakiabgkHi TmaalaaabaGaaG4naaqaaiaaikdaaaGaeqySde2aaSbaaSqaaiaaio daaeqaaOGaaGykaiaaiIcacaWGibWaaWbaaSqabeaacaaIYaaaaOGa ey4kaSYaaSaaaeaacaWGRbaabaGaamyyamaaCaaaleqabaGaaGOmaa aaaaGccaaIPaWaaWbaaSqabeaacaaIZaaaaOWaaSaaaeaacaWGmbWa a0baaSqaaiaadcfaaeaacaaI2aaaaaGcbaGaaGOmaiaaiwdacaaI2a aaaiaai2facaaI9aWaaSaaaeaacaaIXaGaaGOnaiabec8aWjaadEea aeaacaWGUbGaaGikaiaad6gacqGHsislcaaIXaGaaGykaaaacqaHbp GCaaaa@98AC@ .                     (4.14)

Eqs.(4.13) and (4.14) show the explicit form of the quantum corrected Friedmann equations arising from MDR. They are identical in form to those recorded by several other authors obtained from alternative approaches.4146

Just like the case of GUP corrections, the correction terms make sense only at the early stage of the universe where the physical scales as well as the universe scale factor are in the same order as Planck scale. They are expected to have some consequences on inflation and early time cosmology.59 As the universe becomes larger, the correction terms become negligible and the so-called modified Friedmann equations are reduced to the standard Friedmann equations in FRW universe. It means that the correction terms seem to have no influence on the late cosmology.

Comparison of the results

Since GUP and MDR are different manifestations of the same physical concept (existence of a minimal length scale of the same order of Planck length) we expect the results of applications of these two alternative approaches to the physical systems to be identical.

In the two previous sections we examined the GUP and MDR separately and obtained the corrections to the entropy as well as the Friedmann equations in ( n + 1 ) -dimensional FRW universe. Now it is evident to expect the results of these two alternative approaches to be consistent. The assumption behind this expectation is that GUP and MDR are two faces of an underlying quantum gravitational proposal.

Through direct comparison of the results obtained we found that by using the suitable choice of the coefficients, that is

α 1 = 2 3 α , and α 2 = 13 45 α 2 , and α 3 = 46 105 α 3 , (5.1)

in Eqs.(3.17), (3.18), (4.11) and (4.12), one can show that the generalized and modified Friedmann equations obtained from GUP and MDR analysis respectively are identical. The results are compatible with that of ref.5658 As a mathematical result it seems that GUP and MDR approaches lead to the same corrections to the Friedmann equations, if the coefficients are fixed properly.

Conclusion

Recent studies in perturbative string theory and loop quantum gravity predict the existence of a fundamental measurable length which is of the order of Planck length. The essence of this fundamental length can be captured by generalizing usual uncertainty principle known as GUP or by modifying the usual energy momentum relation known as MDR.

In this work, the corrections to the Friedmann equations in the higher dimensional FRW universe are investigated in the presence of 1) the generalized uncertainty principle and 2) the modified dispersion relation. We showed that the Friedmann equations receive some new corrections at the Planck scale as Eqs.(3.17) and (3.18) (or Eqs.(3.20) and (3.21)) within the framework of GUP and Eqs. 4.11-4.14 within the framework of MDR. The corrections are worked out up to the sixth power of the Planck length. The quantum corrected Friedmann equations we just obtained, (Eqs.(3.20) and (3.21)) or (Eqs.(4.13) and (4.14)) are consistent with numerous other studies that have delved into the subject of this paper. Also, they are identical in form to those arisen from perturbative quantum gravity. It must be emphasized that the quantum corrected terms are considerable only in the early time cosmology where the scale factor a is very small and the physical scales are in the order comparable with the Planck scale. As the universe becomes larger the quantum corrected terms can be neglected and the quantum gravity corrected Friedmann equations are reduced to the standard form in the FRW universe. It seems that the quantum gravity corrected Friedmann equations do not influence the late time cosmology. Therefore, it is expected that they have some new consequences on characterizing the primordial inflation and resolving the big bang singularities.

It is significant that one can obtain the GUP or MDR by starting from modified momentum operator. From this point of view, GUP and MDR are two faces of the same physical concept (existence of a minimal length scale of the same order of Planck length) and it is evident to expect the results of these two approaches to be consistent. Through the comparison of the corrected Friedmann equations, obtained from these two alternative approaches, we found that a suitable choice of the expansion coefficients in the MDR (Eq. 5.1) leads to the same results in both approaches.

Acknowledgments

None.

Conflict of interest

Authors declare there is no conflict of interest.

References

  1. MH Dehghani, SH Hendi. Wormhole solutions in Gauss-Bonnet-Born-Infeld gravity. Gen Rel Grav. 2009;41(8):1853−1863.
  2. R Emparan, HS Reall. Black Holes in Higher Dimensions. Living Rev Relativity. 2008;11:6.
  3. T Jacobson. Thermodynamics of Spacetime: The Einstein Equation of State. Phys Rev Lett. 1995;75(7):1260.
  4. SW Hawking. Black hole explosions? Nature. 1974;248:30−31.
  5. SW Hawking. Particle creation by black holes. Commun Math Phys. 1975;43:199−220.
  6. JD Bekenstein. Black Holes and Entropy. Phys Rev D. 1973;7(8):2333.
  7. C Eling, R Guedens, T Jacobson. Nonequilibrium Thermodynamics of Spacetime. Phys Rev Lett. 2006;96:121301.
  8. M Akbar, RG Cai. Friedmann Equations of FRW Universe in Scalar-tensor Gravity, f(R) Gravity and First Law of Thermodynamics. Phys Lett B. 2006;635(1):7−10.
  9. M Akbar, RG Cai. Thermodynamic behavior of field equations for f(R) gravity. Phys Lett B. 2007;648(2−3):243.
  10. T Padmanabhan. Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes. Class Quantum Grav. 2002;19(21):5387.
  11. T Padmanabhan. Gravity and the Thermodynamics of Horizons. Phys Rept. 2005;406(2):49−125.
  12. A Paranjape, S Sarkar, T Padmanabhan. Thermodynamic route to field equations in Lanczos-Lovelock gravity. Phys Rev D. 2006;74:104015.
  13. RG Cai, LM Cao, N Ohta. Friedmann equations from entropic force. Phys Rev D. 2010;81:061501.
  14. A Sheykhi. Thermodynamics of apparent horizon and modified Friedmann equations. Eur Phys J C. 2010;69(1−2):265−269.
  15. A Sheykhi, SH Hendi. Power-law entropic corrections to Newton’s law and Friedmann equations. Phys Rev D. 2011;84:044023.
  16. R Gambini, J Pullin. Nonstandard optics from quantum space−time. Phys Rev D. 1999;59:124021.
  17. J Alfaro, HA. Morales Tecotl, LF Urrutia. Quantum Gravity Corrections to Neutrino Propagation. Phys Rev Lett I. 2000;84:2318.
  18. J Lukierski, H Ruegg, WJ Zakrzewski. Classical and Quantum Mechanics of Free κ-Relativistic Systems. Ann Phys. 1995;243:90−116.
  19. G Veneziano. A Stringy Nature Needs Just Two Constants. Euro Phys Lett. 1986;2(3):199.
  20. DJ Gross, PF Mende. String theory beyond the Planck scale. Nucl Phys B. 1988;303(3):407−454.
  21. D Amati, M Ciafaloni, G Veneziano. Can spacetime be probed below the string size. Phys Lett B. 1989;216(1−2):41.
  22. K Konishi, G Paffuti, P Provero. Minimum physical length and the generalized uncertainty principle in string theory. Phys Lett B. 1990;234(3):276−284.
  23. K Nouicer. Quantum-corrected black hole thermodynamics to all orders in the Planck length. Phys Lett B. 2007;646(2−3):63−71.
  24. L Xiang. Dispersion relation, black hole thermodynamics and generalization of uncertainty principle. Phys Lett B. 2006;638(5−6):519−522.
  25. R Adler, P Chen, D Santiago. The Generalized Uncertainty Principle and Black Hole Remnants. Gen Rel Grav. 2001;33(12):2101−2108.
  26. X Han, H Li, Y Ling. Modified dispersion relations and (A)dS Schwarzschild black holes. Phys Lett B. 2008;666(2):121−124.
  27. YW Kim, YJ Park. Entropy of the Schwarzschild black hole to all orders in the Planck length. Phys Lett B. 2007;655(3−4):172−177.
  28. D Amati, M Ciafaloni, G Veneziano. Superstring collisions at planckian energies. Phys Lett. 1987;81−88.
  29. Z Ren, Z Sheng Li. Generalized uncertainty principle and black hole entropy. Phys Lett B. 2006;641(2):208−211.
  30. M Maggior. Quantum groups, gravity, and the generalized uncertainty principle. Phys Rev D. 1994;49:5182.
  31. MR Setare. Corrections to the Cardy-Verlinde formula from the generalized uncertainty principle. Phys Rev D. 2004;70:087501.
  32. MR Setare. The Generalized Uncertainty Principle and Corrections to the Cardy-Verlinde Formula in SAdS5 Black Holes. Int J Mod Phys A. 2006;21(6):1325.
  33. AS Sephiedgar, HR Sepangi. Corrections to the Cardy-Verlinde formula from the modified dispersion relation in extra dimensions. Phys Lett B. 2012;706(4−5):431−435.
  34. T Zhu, JR MF Li. Influence of generalized and extended uncertainty principle on thermodynamics of FRW universe. Phys Lett B. 2009;674(3):204.
  35. WG Unruh. Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. Phys Rev D. 1955;51:2827.
  36. D Colladay, VA Kostelecky. Lorentz-violating extension of the standard model. Phys Rev D. 1998;58:116002.
  37. SR Coleman, SL Glashow. High-energy tests of Lorentz invariance. Phys Rev D. 1999;59:116008.
  38. RC Myers, M Pospelov. Ultraviolet Modifications of Dispersion Relations in Effective Field Theory. Phys Rev Lett. 2003;90:211601.
  39. AS Sephiedgar, K Nozari, HR Sepangi. Modified dispersion relations in extra dimensions. Phys Lett B. 2010;696(1−2):119−123.
  40. Liu B, Dai YH, Hu XR, et al. The Friedmann equation in modified entropy−area relation from entropy force. Mod Phys Lett. 2011;26(7):489−500.
  41. A Sheykhi. Thermodynamics of apparent horizon and modified Friedmann equations. Eur Phys J C. 2010;69(1−2):265−269.
  42. A Sheykhi. Entropic corrections to Friedmann equations. Phys Rev. 2010;81:104011.
  43. A Sheykhi, Z Teimoori. Modified Friedmann equations from Debye entropic gravity. Gen Rel Grav. 2012;44:1129−1149.
  44. A Sheykhi, SH Hendi. Power−law entropic corrections to Newton’s law and Friedmann equations. Phys Rev D. 2011;84:044023.
  45. RG Cai, LM Cao, YP Hu. Corrected entropy-area relation and modified Friedmann equations. J High Energy Phys. 2008;08:090.
  46. RG Cai, SP Kim. First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. J High Energy phys. 2005;02:050.
  47. SA Hayward, S Mukohyana, MC Ashworth. Dynamic black-hole entropy. Phys Lett A. 1999;256:347.
  48. SA Hayward. Unified first law of black-hole dynamics and relativistic thermodynamics. Class Quant Grav. 1998;15:3147.
  49. S Hossenfelder, M Bleicher, H Stöcker et al. Probing the minimal length scale by precision tests of the muon g-2. Phys Lett B. 2004;584(1−2):109−113.
  50. S Hossenfelder. Interpretation of quantum field theories with a minimal length scale. Phys Rev D. 2006;73:105013.
  51. A Kempf, G Managano. Minimal length uncertainty relation and ultraviolet regularization. Phys Rev D. 1997;55:7909.
  52. M Dehghani, A Farmany. Higher dimensional black hole radiation and a generalized uncertainty principle. Phys Lett B. 2009;675(5):460−462.
  53. M Dehghani, A Farmany. GUP and higher dimensional Reissner-Nordström black hole radiation. Braz J Phys. 2009;39(3):570−573.
  54. MI Park. The generalized uncertainty principle in (A)dS space and the modification of Hawking temperature from the minimal length. Phys Lett B. 2008;659(3):698−702.
  55. K Nozari, AS Sefiedgar. Comparison of approaches to quantum correction of black hole thermodynamics. Phys Lett B. 2006;635(2−3):156−160.
  56. M Dehghani. Corrections to the Hawking tunneling radiation in extra dimensions. Phys Lett B. 2015;749:125−129.
  57. M Dehghani. The Cardy-Verlinde formula in the presence of GUP and MDR. Astrophys Space Sci. 2016;361:148.
  58. M Dehghani. Corrections to the Cardy-Verlinde formula at the Planck scale. New Astronomy. 2017;51:37−42.
  59. Sergio del Campo. Approach to exact inflation in modified Friedmann equation. J Cosmol Astropart Phys. 2012:005.
  60. G Amelino Camelia, J Ellis, NE Mavromatos, et al. Tests of quantum gravity from observations of γ-ray bursts. Nature. 1998;393:763−765.
  61. R Aloisio, P Blasi, PL Ghia, et al. Probing the structure of space-time with cosmic rays. Phys Rev D. 2000;62:053010.
  62. G Amelino Camelia, T Piran. Planck−scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes. Phys Rev D. 2001;64:036005.
  63. T Jacobson, S Liberati, D Mattingly. TeV astrophysics constraints on Planck scale Lorentz violation. Phys Rev D. 2002;66:081302.
Creative Commons Attribution License

©2018 Dehghani. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.