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Introduction
There are several motivations for studying thermodynamical 

properties of spacetimes more than four dimensions. The first comes 
from string theory which contains gravity and requires more than 
four dimensions. In superstring theory a ten-dimensional spacetime is 
necessary to be consistent from the quantum point of view. The other 
originates from AdS/CFT correspondence. It relates properties of a 
d-dimensional spacetimes to those of a conformal field theory in (d-l)-
dimensions. In addition, it is possible for the higher dimensional black 
holes to be produced in the future colliders based on the large extra 
dimensions and Tev-scale gravity scenarios.1,2 We believe that study 
of higher dimensional space times in the presence of quantum gravity 
effects (GUP and MDR) can essentially lead to a deeper insight into 
under- standing of the ultimate quantum gravity proposals as well as 
the physical properties of the higher dimensional space times.

Ted Jacobson was the first one who studied the connections between 
gravity and thermo-dynamics. He showed that the gravitational 
Einstein equation can be derived from the entropy relation as a 
function of the horizon area and together with the Clausius relation.3 
The discovery of relation between quantum tunnelling radiation and 
black hole entropy, as a pure geometrical quantity, further supports 
this connection and the thermodynamic interpretation of geometrical 
quantities.4–6

The connection between gravity and thermodynamics has been 
investigated in various gravity theories.7−12 Now it is believed that one 
is able to derive Friedmann equations by use of the Clausius relation 
to the apparent horizon of FRW universe, in which entropy is assumed 
to be proportional to its horizon area.

Making use of the holographic principle together with the 
equipartition theorem and the Unruh temperature, Cai et al derived 
the Friedmann equations in FRW universe.13 The modified FRW 
Friedmann equations have been obtained by applying different entropy-
area relations together with the first law of thermodynamics.14,15

Furthermore, it is commonly believed that one of the most 
important achievements in perturbative string theory and quantum 

gravity is the prediction of a fundamental measurable length which 
is of the order of Planck length. The essence of this fundamental 
length can be captured by generalizing usual uncertainty principle 
known as GUP or by modifying the usual energy momentum relation 
conventionally named as MDR.16−22

Recently, the GUP and MDR has been the subject of many 
interesting works and a lot of papers have appeared in which the 
usual uncertainty principle is generalized at the framework of 
microphysics.23−30 The GUP corrections to the entropy of black holes 
have been obtained by several authors based on the Cardy-Verlinde 
formula.31−33 The influence of Gup on the Friedmann equations has 
been investigated in (n+1)-dimensional FRW universe by Zhu et 
al.34. Also the modification of energy-momentum relations and its 
applications have been investigated extensively.35−38 Furthermore, the 
extra dimensional version of the MDR has been proposed by direct 
comparison with the extra dimensional form of GUP.39 The proposed 
extra dimensional MDR has been applied to obtain the first order 
corrections to the entropy of d-dimensional Schwarzschild black hole 
through the Cardy-Verlinde formula.33 To study the entropic correction 
to Friedmann equations in the higher dimensional FRW universe, it is 
interesting to relate the entropy of the universe with a minimal length 
quantum gravity scale.

Modification of Friedmann equations have been studied by several 
authors using different approaches. For example, Liu et al.40 have 
obtained correction terms to the first Friedmann equation in four 
dimensional FRW universe, starting from the holographic principle 
and Debye model by treating the gravity as an entropic force (according 
to the Verlinve’s proposal).40 Also Sheykhi et al.41−43 have obtained the 
same corrections to the first Friedmann equation in four dimensional 
FRW universe, making use of the Verlinve proposal and applying the 
quantum gravity corrected entropy-area relation. Sheykhi et al.44 by 
treating the gravity as an entropic force, have obtained correction 
terms to the same Friedmann equation arising from power-law 
corrected entropy-area relation. Cai et al.45,46 have obtained correction 
terms to the first and second FRW Friedmann equations, making use 
of alternative entropy-area relations, in the Einstein, Gauss-Bonnet 
and Lovelock gravity theories.
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In this work, motivated by characterizing the primordial inflation, 
we would like to obtain the quantum corrected Friedmann equations 
from a more fundamental starting point and by taking into account the 
higher order correction terms. For these purposes, we calculate the 
GUP and MDR corrections to the Friedmann equations for any spacial 
curvature in the extra dimensional FRW universe. The corrections 
are calculated separately in the framework of (1) the generalized 
uncertainty principle and (2) the modified dispersion relation. The 
results of these alternative approaches are compared and it is shown 
that the results are compatible if the constant coefficients are fixed 
properly. We believe that it can essentially lead to a deeper insight into 
the ultimate quantum gravity proposals.

The organization of this paper is based on the following order. 
In section-2, the (n+1)-dimensional FRW universe and Friedmann 
equations are reviewed briefly and the basic equations are introduced. 
Section-3 is devoted to obtain the entropic corrections to the Friedmann 
equations in the framework of GUP. In section-4 the corrections from 
modified entropy-area relation to the Friedmann equations are worked 
out making use of the MDR analysis. The corrections are obtained up 
to the sixth power of the Planck length. In section-5, we compare the 
results of these two alternative approaches and show that a suitable 
choice of the expansion coefficients leads to the same corrections to 
the Friedmann equations in the (n+1)-dimensional FRW universe. The 
results are summarized and discussed in section-6.2 Review of (n+1)-
dimensional FRW universe and Friedmann equations.

Review of (n+1)-dimensional FRW universe 
and Friedmann equations

Let’s begin with the d = (n 1)+ -dimensional FRW universe, 
whose line element is described by34

2
2 2 2 2 2

1 12= ( ) = r
1

a b
n ab n

drds dt a r d h dx dx d
kr − −− + + Ω + Ω

−
 , 		

						              (2.1)

 where 1n−Ω  is the line element of an (n-l)-dimensional unit 
sphere, 0 = ,x t  1 = ,x r 2 2= diag( 1, / (1 )),abh a kr− − r = ( )a t r  and k  
denotes the spatial curvature and = 0,1, 1k −  correspond to open, flat, 
and closed universes respectively. The apparent horizon is located at 
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	  					            (2.2)

where = /H a a  is the Hubble parameter and over dot stands for 
the derivative with respect to cosmic time t . The apparent horizon 
has an associated entropy (S) and Hawking temperature (T) as

		   1= , = ,
4 2 A

AS T
G rπ 

				  
						            (2.3)

where 1= rn
n AA n −Ω   is the apparent horizon area and 

/2
=

( / 2 1)

n

n n
π

Ω
Γ +

 being the volume of an d-dimensional unit 
sphere.

The Friedmann equations describe the dynamical evolution of the 
homogeneous and isotropic universe within the context of general 
relativity. Such equations can be derived by using Clausius relation to 

the apparent horizon of FRW universe, in which entropy is assumed 
to be a function of its horizon area.

Suppose the matter source in the FRW universe is a perfect fluid 
with stress-energy tensor 

		   = ( )ab a b abT p u u pgρ+ + , 				  
					      	         (2.4)

where p  and ρ  are pressure and energy density respectively. 
Conservation law 

		  = 0ab
aT∇  implies 

		   ( ) = 0nH pρ ρ+ + . 				  
						             (2.5)

Accordingly, we define the work density as45−48

		   1=
2

ab
abW T h− ,					   

						             (2.6)

which results in 

		   1= ( )
2

W pρ −  . 					   
						              (2.7)

The work density term is regarded as the work done by the change 
of the apparent horizon. The amount of energy crossing the apparent 
horizon during the time internal dt is13

		  = ( ) rAdE A p H dtρ + . 				  
	                                                                                         (2.8)

Now, applying the Clausius relation to the apparent horizon and 
assuming the entropy as a function of horizon area we can write 

		   ( )( ) =
2A

A

S AA p Hr dt dA
r

ρ
π
′

+ 



. 				 
						              (2.9)

Making use of the relation 2 3r / = ( / )rA Ad dt H H k a− −  in Eq.(2.9) 
after some simplifications one obtains45,46

		   2
2( ) ( ) = ( )

1
kH S A p

na
π ρ′− − +
−

 , 			 
	                                                                                               (2.10)

and noting the continuity equation (2.5) after some simple 
calculations we have

		   2/( 1)2 = ( )( ) nnn dAS A
n A A
π ρ −Ω′−∫ , 			 

						               (2.11)

where S is assumed to be a function of horizon area A and prime 
stands for derivative with respect to area.

As a simple example to show the application of Eqs.(2.10) and 
(2.11), making use of the entropy-area relation (2.3) in these equations, 
we have 

		   2
8= ( )

1
k GH p

na
π ρ− − +
−

 , 				  
	                                                                                          (2.12)

		

2
2

16=
( 1)

k GH
n na

π ρ+
−

.				  
	                                                                                         (2.13)

Equations (2.12) and (2.13) are the Friedmann equations in (n+1)-
dimensional FRW universe obtained from the usual entropy-area 
relation.
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In the following sections, making use of the corrected functional 
form of the entropy stem from GUP and MDR analysis in Eqs.(2.10) 
and (2.11) we obtain the corrections to the Friedmann equations 
within both the GUP and the MDR respectively.

The GUP corrections to the Friedmann 
equations

To study the quantum gravity effects on the Friedmann equations, 
we employ the GUP. It is shown that usual uncertainty principle 
receives a modification at the microphysics regime.49−53

		

	 	 2
P

h px L
p h

α ∆
∆ ≥ +

∆
 , 				  

						               (3.1)

 where = (p
hL 1/( 1)

3 ) nG
c

−  , is the (n 1)+ -dimensional Planck length 

with the order of 3510 m−  for = 3n . The term 2
p

pL
h

α ∆
 in Eq.(3.1) 

shows the gravitational effects on the usual uncertainty principle. Inverting 
Eq.(3.1) we obtain 

2
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From Eq.(3.2), one can write 
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 where 
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characterizes the departure of GUP from the usual uncertainty 
principle.

Now we consider the impact of GUP on the entropy and Friedmann 
equations in the higher dimensional FRW universe. By considering 
the space-time having radiation or absorbtion at the horizon, one 
can identify the energy of the absorbed or radiated particles as the 
uncertainty of momentum,54 that is

			    dE pδ . 				  
					        	         (3.5)

The increase or decrease in the area of the black hole horizon can 
be written as 

		   4 4 1= G GdA dE
T T xδ

 . 			 
	

						              (3.6)

When the gravitation is turned on Eq.(3.6) generalizes to

	  2
( ) ( )

4 4 1= (( ) )GUP GUP
G GdA dE F x
T T x

δ
δ

 . 		                    	
						               (3.7)

Combining Eqs.(3.6) and (3.7) we have

	  2
( ) ( )= (( ) )GUP GUPdA F x dAδ . 					  

						            (3.8) 

By modelling the black hole as a cube of size 2rA , the uncertainty 
in the position of a Hawking emitted particle is 

	

1
1= 2 = 2( ) n
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δ −
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 ,                                                (3.9) 

from which ( )GUPF  can be rewritten as the function of A
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Expanding (3. 10) around = 0PL  gives,

2 4 62 2 2 2 3
1 1 1
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4 8 64
n n nP P Pn n n

GUP
n n nL L LF A
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+ + + +
, 						    

						            (3.11)
and Eq.(3.8) can be rewritten as 

		   ( ) ( )= ( )GUP GUPdA F A dA . 				  
			 

						             (3.12)
It must be noted that since 3510PL m−

  the series expansion 
(3.11) will converge. This is why one can treat the GUP impacts 
perturbatively.55

Now by considering the impacts of GUP, Eqs.(2.9) and (2.10) can 
be written in the following form

               
( )2

2( ) ( ) = ( )
1GUP

kH S A p
na
π ρ′− − +
−

 ,                  (3.13)
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 where ( ) ( )GUPS A  is defined as

	

		   ( )
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4
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A

S A
G

, 				  
						           (3.15)

and considering Eq.(3.12), we can obtain 

		

		  ( )
( )

( )
( ) =

4
GUP

GUP
F A

S A
G

′  . 				  
						           (3.16)

Substituting Eqs.(3.11) and (3.16) in Eqs.(3.13) and (3.14), we can 
obtain the corrections to the Friedmann equations by considering the 
GUP, that is

2 4 62 2 2 2 3
1 1 1

2
( ) 5( ) 8( )[1 ( ) ( ) ( ) ] = ( ),

4 8 64 1
n n nP P Pn n nn n nk L L L GH p
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
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up to the sixth power of the Planck length. The terms proportional 
to powers of 2

PLα  are the corrections to the Friedmann equations 
in (n 1)+ -dimensional FRW universe. The correction terms are 
calculated based on the GUP.

It is well-known that corrected entropy-area relation depends 
on the dimension of the space- time.56−58 But Eqs.(3.17) and (3.18), 
the so-called generalized Friedmann equations, are independent on 
the dimension of the space-time and valid when n is an odd or even 
number for 3n ≥ . Also the generalized Friedmann equations are valid 
for any spacial curvature .k

By combining Eqs.(2.2) and (3.9) we arrived at the following 
relation

		   
1

21
2

1 = ( ) =n n

A

n kH
r A a

−Ω
+



, 			 
						              (3.19) 

in Eqs.(3.17) and (3.18), the generalized Friedmann equations can 
be rewritten as
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						              (3.20) 
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						              (3.21)

Eqs.(3.20) and (3.21) are the quantum corrected Friedmann 
equations based on the GUP. They have the same form as those 
obtained in literatures which have been obtained from other alternative 
approaches.41−43,45,46 Also, the results have the same structure as those 
obtained from purturbative quantum gravity.

It must be noted that the correction terms in Eqs.(3.20) and (3.21), 
as the basic equations of the quantum cosmology, are considerable 
if the scale factor a is very small. It means that the corrections make 
sense only at the early stage of the universe where 0a → . As the 
universe becomes larger, the correction terms become negligible 
and generalized Friedmann equations are reduced to the standard 
Friedmann equations in FRW universe. In other words, they do not 
affect the late time cosmology. The generalized Friedmann equations 
are expected to be useful to characterize the history of universe 
inflation and to resolve the big bang singularities.59

The MDR corrections to the Friedmann 
equations

In the study on loop quantum gravity and of models based on 
noncommutative geometry, there has been a strong interest in some 
candidate modifications of the energy-momentum dispersion relation. 
In this section, we introduce the extra dimensional version of MDR 
and investigate its impacts on the Friedmann equations in the higher 
dimensional FRW universe. Although the GUP, as an equivalence 
face of the MDR has been used extensively in the past, the extra 
dimensional MDR is new.39

It is interesting that the usual relation between energy and 
momentum that characterizes the special theory of relativity, 

2 2 2=p E m− , may be modified in the Planck scale regime.

Anomalies in ultra high cosmic ray photons, and possibly Tev 
photons, may be explained by modification of the dispersion relation 
as39,60−63

2 2 2 2 4 4 6 6 8 8 10
1 2 3. = ( , ; ) = ( )P P P P Pp p p f E m L E L E L E L E L Eµ α α α≡ − + + + +

 

 , 	
						    

						               (4.1)

where f is the function that gives the exact dispersion relation, and 
on the right-hand side we have assumed a Taylor-series expansion for 

1

P
E

L
 . The coefficients iα  can take different values in different 

quantum-gravity proposals. Note that m  is the rest energy of the 
particle and the mass parameter µ  on the right-hand side is directly 
related to the rest energy, but mµ ≠ , if the iα  do not all vanish. Now 
differentiation of Eq.(4.1) and taking the inverse of the result gives 

	

	

2
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3 6 6
1 2 1 3
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4 16 2
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α α α
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+ − − +
. 		

						                (4.2)

Within quantum field theory, the relation between particle 
localization and its energy is given by

 1E
xδ

≥ , where xδ  is particle position uncertainty. Now, it is 

obvious that within MDR, this relation should be modified. To the 
first order, assuming dE Eδ , making use of the usual uncertainty p

rinciple 1E p
x

δ δ
δ

   we have 

	

2 2 4
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P P
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x x x

L
x

α α α
δ δ δ

α α α α
δ
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

		           . 				                  (4.3)
Noting (3.5), Eq.(4.3) can be rewritten as 

		   2
( ) ( )

1= (( ) )MDR MDRdE F x
x

δ
δ

, 			 
						                 (4.4)

and Eq.(3.12) must be replaced by 

		   ( ) ( )= ( )MDR MDRdA F A dA , 	

						                (4.5)

where 
2 42 4

21 2 11 1
( )

6 6
3 1

1 2 1 3

3 5 23( ) = 1 ( ) ( )( )
8 2 8 16

37 91 7( )( )
4 16 2 64

n n Pn n
MDR P

n Pn

n n LF A L
A A

n L
A

α α α

α α α α

− −

−

Ω Ω
− − −

Ω
+ − − +

. 		
								      
								      
						               (4.6)

Noting the value of the Planck length, one can ensure that this 
series expansion converges and impacts of MDR can be considered 
perturbatively.55
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Making use of Eqs.(2.9) and (2.10) in the framework of MDR, 
we have

		
( )2

2( ) ( ) = ( )
1MDR

kH S A p
na
π ρ′− − +
−

 , 			 
			 

						              (4.7)

		
2/( 1)
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π ρ −Ω′−∫ , 			 

						              (4.8)

 where ( ) ( )MDRS A  is defined as

		   ( )
( ) ( ) =

4
MDR
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A

S A
G

, 				  
						             (4.9)

and considering Eq.(3.12), we can obtain
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F A
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G

′  . 				  
			 

						            (4.10)

Substituting Eqs.(4.6) and (4.10) in Eqs.(4.7) and (4.8), we can 
obtain the impacts of MDR to the Friedmann equations, that is

	  	

			                            				  
					           	        (4.11)
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						              (4.12)

up to the sixth power of the Planck length. The terms proportional 
to powers of 2

PL  are the corrections to the Friedmann equations 
in (n 1)+ -dimensional FRW universe. The correction terms are 
calculated based on the MDR.

From the literature56−58 the corrected entropy-area relation stem 
from MDR, depends on the dimension of the space-time. But Eqs.
(4.11) and (4.12), the so-called modified Friedmann equations, are 
valid for all values of 3n ≥  and all values of spacial curvature .k

Substituting Eq.(3.19) in Eqs.(4.11) and (4.12) leads to
2 2 4

2 2 21 2 1
2 2 2
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						              (4.14)

Eqs.(4.13) and (4.14) show the explicit form of the quantum 
corrected Friedmann equations arising from MDR. They are identical 
in form to those recorded by several other authors obtained from 
alternative approaches.41−46

Just like the case of GUP corrections, the correction terms make 
sense only at the early stage of the universe where the physical scales 
as well as the universe scale factor are in the same order as Planck 
scale. They are expected to have some consequences on inflation and 
early time cosmology.59 As the universe becomes larger, the correction 
terms become negligible and the so-called modified Friedmann 
equations are reduced to the standard Friedmann equations in FRW 
universe. It means that the correction terms seem to have no influence 
on the late cosmology.

Comparison of the results
Since GUP and MDR are different manifestations of the same 

physical concept (existence of a minimal length scale of the same 
order of Planck length) we expect the results of applications of these 
two alternative approaches to the physical systems to be identical.

In the two previous sections we examined the GUP and MDR 
separately and obtained the corrections to the entropy as well as the 
Friedmann equations in (n 1)+ -dimensional FRW universe. Now it 
is evident to expect the results of these two alternative approaches to 
be consistent. The assumption behind this expectation is that GUP and 
MDR are two faces of an underlying quantum gravitational proposal.

Through direct comparison of the results obtained we found that 
by using the suitable choice of the coefficients, that is

 1
2=
3

α α− , and 2
2

13=
45

α α− , and 3
3

46=
105

α α− ,              (5.1)

in Eqs.(3.17), (3.18), (4.11) and (4.12), one can show that the 
generalized and modified Friedmann equations obtained from 
GUP and MDR analysis respectively are identical. The results are 
compatible with that of ref.56–58 As a mathematical result it seems 
that GUP and MDR approaches lead to the same corrections to the 
Friedmann equations, if the coefficients are fixed properly.

Conclusion
Recent studies in perturbative string theory and loop quantum 

gravity predict the existence of a fundamental measurable length 
which is of the order of Planck length. The essence of this fundamental 
length can be captured by generalizing usual uncertainty principle 
known as GUP or by modifying the usual energy momentum relation 
known as MDR.

In this work, the corrections to the Friedmann equations in the 
higher dimensional FRW universe are investigated in the presence 
of 1) the generalized uncertainty principle and 2) the modified 
dispersion relation. We showed that the Friedmann equations receive 
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some new corrections at the Planck scale as Eqs.(3.17) and (3.18) (or 
Eqs.(3.20) and (3.21)) within the framework of GUP and Eqs. 4.11-
4.14 within the framework of MDR. The corrections are worked out 
up to the sixth power of the Planck length. The quantum corrected 
Friedmann equations we just obtained, (Eqs.(3.20) and (3.21)) or 
(Eqs.(4.13) and (4.14)) are consistent with numerous other studies 
that have delved into the subject of this paper. Also, they are identical 
in form to those arisen from perturbative quantum gravity. It must be 
emphasized that the quantum corrected terms are considerable only in 
the early time cosmology where the scale factor a is very small and 
the physical scales are in the order comparable with the Planck scale. 
As the universe becomes larger the quantum corrected terms can be 
neglected and the quantum gravity corrected Friedmann equations are 
reduced to the standard form in the FRW universe. It seems that the 
quantum gravity corrected Friedmann equations do not influence the 
late time cosmology. Therefore, it is expected that they have some 
new consequences on characterizing the primordial inflation and 
resolving the big bang singularities.

It is significant that one can obtain the GUP or MDR by starting 
from modified momentum operator. From this point of view, GUP 
and MDR are two faces of the same physical concept (existence of 
a minimal length scale of the same order of Planck length) and it is 
evident to expect the results of these two approaches to be consistent. 
Through the comparison of the corrected Friedmann equations, 
obtained from these two alternative approaches, we found that a 
suitable choice of the expansion coefficients in the MDR (Eq. 5.1) 
leads to the same results in both approaches.
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