Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 2 Issue 4

Effects of lubrication on the steady oblique stagnation–point flow of a couple stress fluids

EKhalid Mahmood, Muhammad Sajid, Muhammad Noveel Sadiq, Nasir Ali

Department of Mathematics and Statistics, International Islamic University, Pakistan

Correspondence: Muhammad Noveel Sadiq, Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan, Tel 9251 9019 756

Received: November 22, 2017 | Published: August 28, 2018

Citation: Mahmood K, Sajid M, Sadiq MN, et al. Effects of lubrication on the steady oblique stagnation–point flow of a couple stress fluids. Phys Astron Int J. 2018;2(4):389-397. DOI: 10.15406/paij.2018.02.00115

Download PDF

Abstract

Steady oblique stagnation–point flow of a couple stress fluids on a flat plate is investigated numerically by implementing a well reputed Keller–box method. The plate is lubricated with a slim coating of power–law fluid. Governing partial differential equations of couple stress fluid are converted into ordinary differential equations using similarity transformations. Analysis has been performed by imposing continuity of velocity and shear stress of both the fluids at the interface. Influence of slip and couple stress parameters on the horizontal and shear velocity components, wall shear stress and stagnation point are presented graphically and in the tabular form. The limiting cases for the viscous fluid and no–slip condition have been deduced from the present solutions. The results are compared with already recorded results in the existing research articles and are found in excellent agreement.

Keywords: couple stress fluid, oblique stagnation–point flow, power–law lubricant, continuity of shear stress and velocity, keller–box scheme.

Introduction

Flow of non–Newtonian fluids has attracted attention of many scientists and researchers because of their fundamental and practical importance in the industry as well as in the daily life. Shear stress of such fluids is non–linearly related with shear rate and it is very difficult to analyze their flow. Examples include food, rubber, gel, polymers, petrol, paper coating, plasma and grease etc. One such fluid is the power–law fluid (Ostwald–de Waele model) which has been used extensively in the industry especially as a lubricant.

Couple stress fluid is another important non–Newtonian fluid first examined by Stokes1 to describe the polar effects. The couple stress fluid can be described by a new type of tensor called couple stress tensor in addition to the Cauchy stress tensor. In such fluids, polar effects play a significant role which are present due to the couple stresses (moment per unit area) and body couples (moment per unit volume). Because of significant importance of couple stress fluids in the industrial and engineering applications, many researchers have analyzed these flows. Some applications are animal blood, liquid crystals, polymer thickened oil, fluid mechanics and polymeric suspensions. Devakar et al.,2 considered Stokes’ problems for the couple stress fluid. In another investigation, Devakar et al.,3 discussed properties of the couple stress fluid flowing between parallel plates. Heat transfer analysis for the flow of a couple stress fluids near a stagnation point has been carried out by Hayat et al.,4 Muthuraj et al.,5 studied viscous dissipation effects on MHD flow of a couple stress fluid in a vertical channel. Heat transfer analysis by Srinivasacharya et al.,6 has been carried out for couple stress flow due to expanding and contracting walls in a porous channel. Flow of couple stress fluid due to free convection through a porous channel was carried out by Hiremath and Patil7. Umavathi et al.,8 discussed heat transfer analysis for the channel flow of a couple stress fluid sandwiched between two viscous fluids. They showed that couple stress parameter is responsible for enhancing the fluid velocity.

A literature survey reveals that stagnation–point flow can be discussed in two ways either orthogonally or obliquely. Hiemenz9 provided an exact solution of stagnation–point flow for the first time. An oblique stagnation–point flow arises when a detached flow of fluid retouches the face of body. Non–orthogonal stagnation–point flow on a wall was examined by Stuart10 and Tamada11. Dorrepaal12 found an exact solution for the oblique stagnation–point flow of a viscous fluid. Effects of Weissenberg number on the flow and heat transfer due to stagnation–point was analyzed by Li et al.13 Labropulu et al.,14 discussed heat transfer analysis for the oblique flow impinging on a stretched sheet. Axisymmetric non–orthogonal stagnation–point flow over a circular cylinder has been considered by Weidman and Putkaradze15. Recently Ghaffari et al.,16–18 discussed different aspects for the flows towards oblique stagnation point.

Wang19 discussed the effects of slip parameter on the stagnation point flow of a viscous fluid. Devakar et al.,20 found an exact solution for a couple stress fluid by implementing slip condition at fluid–solid interface. Labropulu et al.,21 examined slip flow due to second grade fluid impinging orthogonally or obliquely on a surface. Blyth & Pozrikidis22 studied stagnation point flow by introducing slip condition at the interface of two viscous fluids. Axisymmetric stagnation–point flow near a lubricated stationary disc has been carried out by Santra et al.23 They used power–law fluid as a lubricant. Sajid et al.24 reconsidered the problem of Santra et al.,23 by applying generalized slip condition at fluid–lubricant interface introduced by Thompson & Troian.25 Recently Mahmood et el.,26 investigated oblique stagnation–point flow of a second–grade fluid over a plate lubricated by a power–law fluid. Some more recent investigations27–32 will also be fruitful for the readers.

Our aim in the present communication is to investigate the oblique flow of a couple stress fluids near a stagnation point over a lubricated plate. A power–law fluid has been utilized for the lubrication purpose. The flow problem consists of the set of coupled nonlinear ordinary differential equations along with nonlinear coupled boundary conditions. The Keller–box method33–36 has been implemented to solve the considered flow problem numerically. Influence of pertinent parameters on the flow characteristics is discussed through graphs and tables. The validity of present study has been checked by comparing results in the limiting case with that exist in the literature.

Mathematical formulation

Consider the steady, two–dimensional, oblique flow of a couple stress fluids towards a stagnation point over a lubricated plate. A power–law fluid (Ostwald–de Waele model) is used as lubricant. The plate is fixed in xz–plane such that it is symmetric with respect to origin. The fluid impinges on the plate with an angle in the domain (Figure 1).

We assume that power–law lubricant spreads on the plate forming a thin coating with the flow rate given as

Q= 0 δ( x ) U( x,y )dy, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyuaiabg2da9OWaaybCaeqajeaipaqa aKqzadWdbiaaicdaaKqaG8aabaqcLbmapeGaeqiTdqwcfa4aaeWaaK qaG8aabaqcLbmapeGaamiEaaqcbaIaayjkaiaawMcaaaqdpaqaaKqz GeWdbiabgUIiYdaacaWGvbGcdaqadaWdaeaajugib8qacaWG4bGaai ilaiaadMhaaOGaayjkaiaawMcaaKqzGeGaamizaiaadMhacaGGSaaa aa@53A4@   (1)

where U( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyvaOWaaeWaa8aabaqcLbsapeGaamiE aiaacYcacaWG5baakiaawIcacaGLPaaaaaa@4182@ represents horizontal velocity component of the lubricant and δ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMcdaqadaWdaeaajugib8qacaWG 4baakiaawIcacaGLPaaaaaa@409F@ denotes the variable thickness of the lubrication layer.

The flow problem is governed by the following equations37

u x + v y =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaKqzGeWdbiabgkGi2kaadwhaaOWd aeaajugib8qacqGHciITcaWG4baaaiabgUcaROWaaSaaa8aabaqcLb sapeGaeyOaIyRaamODaaGcpaqaaKqzGeWdbiabgkGi2kaadMhaaaGa eyypa0JaaGimaiaacYcaaaa@4AF3@     (2)

u u x +v u  y =  1 ρ p x +ν( 2 u x 2 + 2 u y 2 ) ν 1 ( 4 u x 4 +2 4 u x 2 y 2 + 4 u y 4 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyDaOWaaSaaa8aabaqcLbsapeGaeyOa IyRaamyDaaGcpaqaaKqzGeWdbiabgkGi2kaadIhaaaGaey4kaSIaam ODaOWaaSaaa8aabaqcLbsapeGaeyOaIyRaamyDaiaacckaaOWdaeaa jugib8qacqGHciITcaWG5baaaiabg2da9iaacckacqGHsislkmaala aapaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacqaHbpGCaaGcdaWc aaWdaeaajugib8qacqGHciITcaWGWbaak8aabaqcLbsapeGaeyOaIy RaamiEaaaacqGHRaWkcqaH9oGBkmaabmaapaqaa8qadaWcaaWdaeaa jugib8qacqGHciITjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaa aajugibiaadwhaaOWdaeaajugib8qacqGHciITcaWG4bGcpaWaaWba aSqabKqaGeaajugWa8qacaaIYaaaaaaajugibiabgUcaROWaaSaaa8 aabaqcLbsapeGaeyOaIyBcfa4damaaCaaajeaibeqaaKqzadWdbiaa ikdaaaqcLbsacaWG1baak8aabaqcLbsapeGaeyOaIyRaamyEaKqba+ aadaahaaqcbasabeaajugWa8qacaaIYaaaaaaaaOGaayjkaiaawMca aKqzGeGaeyOeI0IaeqyVd4wcfa4damaaBaaajeaibaqcLbmapeGaaG ymaaqcbaYdaeqaaOWdbmaabmaapaqaa8qadaWcaaWdaeaajugib8qa cqGHciITk8aadaahaaWcbeqcbasaaKqzadWdbiaaisdaaaqcLbsaca WG1baak8aabaqcLbsapeGaeyOaIyRaamiEaOWdamaaCaaaleqajeai baqcLbmapeGaaGinaaaaaaqcLbsacqGHRaWkcaaIYaGcdaWcaaWdae aajugib8qacqGHciITjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGin aaaajugibiaadwhaaOWdaeaajugib8qacqGHciITcaWG4bGcpaWaaW baaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaeyOaIyRaamyEaKqb a+aadaahaaqcbasabeaajugWa8qacaaIYaaaaaaajugibiabgUcaRO WaaSaaa8aabaqcLbsapeGaeyOaIyRcpaWaaWbaaSqabKqaGeaajugW a8qacaaI0aaaaKqzGeGaamyDaaGcpaqaaKqzGeWdbiabgkGi2kaadM hak8aadaahaaWcbeqcbasaaKqzadWdbiaaisdaaaaaaaGccaGLOaGa ayzkaaqcLbsacaGGSaaaaa@AE32@    (3)

u v x +v v  y =  1 ρ p y +ν( 2 v x 2 + 2 v y 2 ) ν 1 ( 4 v x 4 +2 4 v x 2 y 2 + 4 v y 4 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyDaOWaaSaaa8aabaqcLbsapeGaeyOa IyRaamODaaGcpaqaaKqzGeWdbiabgkGi2kaadIhaaaGaey4kaSIaam ODaOWaaSaaa8aabaqcLbsapeGaeyOaIyRaamODaiaacckaaOWdaeaa jugib8qacqGHciITcaWG5baaaiabg2da9iaacckacqGHsislkmaala aapaqaaKqzGeWdbiaaigdaaOWdaeaajugib8qacqaHbpGCaaGcdaWc aaWdaeaajugib8qacqGHciITcaWGWbaak8aabaqcLbsapeGaeyOaIy RaamyEaaaacqGHRaWkcqaH9oGBkmaabmaapaqaa8qadaWcaaWdaeaa jugib8qacqGHciITjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaa aajugibiaadAhaaOWdaeaajugib8qacqGHciITcaWG4bGcpaWaaWba aSqabKqaGeaajugWa8qacaaIYaaaaaaajugibiabgUcaROWaaSaaa8 aabaqcLbsapeGaeyOaIyRcpaWaaWbaaSqabKqaGeaajugWa8qacaaI YaaaaKqzGeGaamODaaGcpaqaaKqzGeWdbiabgkGi2kaadMhak8aada ahaaWcbeqcbasaaKqzadWdbiaaikdaaaaaaaGccaGLOaGaayzkaaqc LbsacqGHsislcqaH9oGBjuaGpaWaaSbaaKqaGeaajugWa8qacaaIXa aajeaipaqabaGcpeWaaeWaa8aabaWdbmaalaaapaqaaKqzGeWdbiab gkGi2Mqba+aadaahaaqcbasabeaajugWa8qacaaI0aaaaKqzGeGaam ODaaGcpaqaaKqzGeWdbiabgkGi2kaadIhak8aadaahaaWcbeqcbasa aKqzadWdbiaaisdaaaaaaKqzGeGaey4kaSIaaGOmaOWaaSaaa8aaba qcLbsapeGaeyOaIyBcfa4damaaCaaajeaibeqaaKqzadWdbiaaisda aaqcLbsacaWG2baak8aabaqcLbsapeGaeyOaIyRaamiEaKqba+aada ahaaqcbasabeaajugWa8qacaaIYaaaaKqzGeGaeyOaIyRaamyEaKqb a+aadaahaaqcbasabeaajugWa8qacaaIYaaaaaaajugibiabgUcaRO WaaSaaa8aabaqcLbsapeGaeyOaIyRcpaWaaWbaaSqabKqaGeaajugW a8qacaaI0aaaaKqzGeGaamODaaGcpaqaaKqzGeWdbiabgkGi2kaadM hajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGinaaaaaaaakiaawIca caGLPaaajugibiaacYcaaaa@AEB3@    (4)

where u and vrepresent, respectively horizontal and vertical velocity components of the couple stress fluid. Parameters ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyWdihaaa@3D72@ , p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiCaaaa@3CA6@ , ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyVd4gaaa@3D6A@ and ν 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyVd4wcfa4damaaBaaajeaibaqcLbma peGaaGymaaqcbaYdaeqaaaaa@4084@ respectively are density, pressure, kinematic viscosity and ratio of couple stress viscosity to the density.

Following Tooke & Blythe38 the free stream velocity components can be written as

u e = ax+b( y β ¯ ),   v e =a( y α ¯ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyDaOWdamaaBaaajeaibaqcLbmapeGa amyzaaWcpaqabaqcLbsapeGaeyypa0JaaiiOaiaadggacaWG4bGaey 4kaSIaamOyaOWaaeWaa8aabaqcLbsapeGaamyEaiabgkHiTiqbek7a IzaaraaakiaawIcacaGLPaaajugibiaacYcacaGGGcGaaiiOaiaadA hajuaGpaWaaSbaaKqaGeaajugWa8qacaWGLbaajeaipaqabaqcLbsa peGaeyypa0JaeyOeI0IaamyyaOWaaeWaa8aabaqcLbsapeGaamyEai abgkHiTiqbeg7aHzaaraaakiaawIcacaGLPaaajugibiaacYcaaaa@5E25@    (5)

where a and b are constants. Furthermore β ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGafqOSdiMbaebaaaa@3D6B@ is the parameter that supervises the pressure gradient along x–axis which generates the shear flow incident to the orthogonal stagnation–point and the parameter α ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGafqySdeMbaebaaaa@3D69@ represents the boundary layer displacement produced on the lubricated surface. It is worth to mention that the flow field (5) displays the combined effects of both the horizontal shear flow and the orthogonal stagnation–point flow.

Eliminating the pressure between Eqs. (2) and (3) one obtains

u 2 u yx +v 2 u y 2 u 2 v x 2 v 2 v xy ν( 3 u y x 2 + 3 u y 3 3 v x 3 3 v x y 2 )+ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyDaOWaaSaaa8aabaqcLbsapeGaeyOa IyBcfa4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsacaWG1b aak8aabaqcLbsapeGaeyOaIyRaamyEaiabgkGi2kaadIhaaaGaey4k aSIaamODaOWaaSaaa8aabaqcLbsapeGaeyOaIyBcfa4damaaCaaaje aibeqaaKqzadWdbiaaikdaaaqcLbsacaWG1baak8aabaqcLbsapeGa eyOaIyRaamyEaOWdamaaCaaaleqajeaibaqcLbmapeGaaGOmaaaaaa qcLbsacqGHsislcaWG1bGcdaWcaaWdaeaajugib8qacqGHciITjuaG paWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiaadAhaaOWdae aajugib8qacqGHciITcaWG4bGcpaWaaWbaaSqabKqaGeaajugWa8qa caaIYaaaaaaajugibiabgkHiTiaadAhakmaalaaapaqaaKqzGeWdbi abgkGi2QWdamaaCaaaleqajeaibaqcLbmapeGaaGOmaaaajugibiaa dAhaaOWdaeaajugib8qacqGHciITcaWG4bGaeyOaIyRaamyEaaaacq GHsislcqaH9oGBkmaabmaapaqaa8qadaWcaaWdaeaajugib8qacqGH ciITjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaG4maaaajugibiaadw haaOWdaeaajugib8qacqGHciITcaWG5bGaeyOaIyRaamiEaKqba+aa daahaaqcbasabeaajugWa8qacaaIYaaaaaaajugibiabgUcaROWaaS aaa8aabaqcLbsapeGaeyOaIyBcfa4damaaCaaajeaibeqaaKqzadWd biaaiodaaaqcLbsacaWG1baak8aabaqcLbsapeGaeyOaIyRaamyEaK qba+aadaahaaqcbasabeaajugWa8qacaaIZaaaaaaajugibiabgkHi TOWaaSaaa8aabaqcLbsapeGaeyOaIyRcpaWaaWbaaSqabKqaGeaaju gWa8qacaaIZaaaaKqzGeGaamODaaGcpaqaaKqzGeWdbiabgkGi2kaa dIhak8aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaaaaaKqzGeGaey OeI0IcdaWcaaWdaeaajugib8qacqGHciITjuaGpaWaaWbaaKqaGeqa baqcLbmapeGaaG4maaaajugibiaadAhaaOWdaeaajugib8qacqGHci ITcaWG4bGaeyOaIyRaamyEaKqba+aadaahaaqcbasabeaajugWa8qa caaIYaaaaaaaaOGaayjkaiaawMcaaKqzGeGaey4kaScaaa@B3E0@

u 2 u yx +v 2 u y 2 u 2 v x 2 v 2 v xy ν( 3 u y x 2 + 3 u y 3 3 v x 3 3 v x y 2 )+ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyDaOWaaSaaa8aabaqcLbsapeGaeyOa IyBcfa4damaaCaaajeaibeqaaKqzadWdbiaaikdaaaqcLbsacaWG1b aak8aabaqcLbsapeGaeyOaIyRaamyEaiabgkGi2kaadIhaaaGaey4k aSIaamODaOWaaSaaa8aabaqcLbsapeGaeyOaIyBcfa4damaaCaaaje aibeqaaKqzadWdbiaaikdaaaqcLbsacaWG1baak8aabaqcLbsapeGa eyOaIyRaamyEaOWdamaaCaaaleqajeaibaqcLbmapeGaaGOmaaaaaa qcLbsacqGHsislcaWG1bGcdaWcaaWdaeaajugib8qacqGHciITjuaG paWaaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiaadAhaaOWdae aajugib8qacqGHciITcaWG4bGcpaWaaWbaaSqabKqaGeaajugWa8qa caaIYaaaaaaajugibiabgkHiTiaadAhakmaalaaapaqaaKqzGeWdbi abgkGi2QWdamaaCaaaleqajeaibaqcLbmapeGaaGOmaaaajugibiaa dAhaaOWdaeaajugib8qacqGHciITcaWG4bGaeyOaIyRaamyEaaaacq GHsislcqaH9oGBkmaabmaapaqaa8qadaWcaaWdaeaajugib8qacqGH ciITjuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaG4maaaajugibiaadw haaOWdaeaajugib8qacqGHciITcaWG5bGaeyOaIyRaamiEaKqba+aa daahaaqcbasabeaajugWa8qacaaIYaaaaaaajugibiabgUcaROWaaS aaa8aabaqcLbsapeGaeyOaIyBcfa4damaaCaaajeaibeqaaKqzadWd biaaiodaaaqcLbsacaWG1baak8aabaqcLbsapeGaeyOaIyRaamyEaK qba+aadaahaaqcbasabeaajugWa8qacaaIZaaaaaaajugibiabgkHi TOWaaSaaa8aabaqcLbsapeGaeyOaIyRcpaWaaWbaaSqabKqaGeaaju gWa8qacaaIZaaaaKqzGeGaamODaaGcpaqaaKqzGeWdbiabgkGi2kaa dIhak8aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaaaaaKqzGeGaey OeI0IcdaWcaaWdaeaajugib8qacqGHciITjuaGpaWaaWbaaKqaGeqa baqcLbmapeGaaG4maaaajugibiaadAhaaOWdaeaajugib8qacqGHci ITcaWG4bGaeyOaIyRaamyEaKqba+aadaahaaqcbasabeaajugWa8qa caaIYaaaaaaaaOGaayjkaiaawMcaaKqzGeGaey4kaScaaa@B3E0@   (6)

The expression for the skin friction or wall shear stress is given as

τ w =μ( u y )| y=0 μ 1 ( 3 u y 3 )| y=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiXdqxcfa4damaaBaaajeaibaqcLbma peGaam4DaaqcbaYdaeqaaOWdbmaaeiaapaqaaKqzGeWdbiabg2da9i abeY7aTPWaaeWaa8aabaWdbmaalaaapaqaaKqzGeWdbiabgkGi2kaa dwhaaOWdaeaajugib8qacqGHciITcaWG5baaaaGccaGLOaGaayzkaa aacaGLiWoajuaGpaWaaSbaaKqaGeaajugWa8qacaWG5bGaeyypa0Ja aGimaaqcbaYdaeqaaKqzGeWdbiabgkHiTOWaaqGaa8aabaqcLbsape GaeqiVd0McpaWaaSbaaKqaGeaajugWa8qacaaIXaaal8aabeaak8qa daqadaWdaeaapeWaaSaaa8aabaqcLbsapeGaeyOaIyRcpaWaaWbaaS qabKqaGeaajugWa8qacaaIZaaaaKqzGeGaamyDaaGcpaqaaKqzGeWd biabgkGi2kaadMhak8aadaahaaWcbeqcbasaaKqzadWdbiaaiodaaa aaaaGccaGLOaGaayzkaaaacaGLiWoajuaGpaWaaSbaaKqaGeaajugW a8qacaWG5bGaeyypa0JaaGimaaqcbaYdaeqaaaaa@6D8E@    (7)

where μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd0gaaa@3D68@ and μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd0McpaWaaSbaaKqaGeaajugWa8qa caaIXaaal8aabeaaaaa@3FDF@ are viscosity and couple stress viscosity respectively. The usual no–slip boundary condition at the solid–lubricant interface implies

U( x,0 )=0 ,   V( x,0 )= 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyvaOWaaeWaa8aabaqcLbsapeGaamiE aiaacYcacaaIWaaakiaawIcacaGLPaaajugibiabg2da9iaaicdaca GGGcGaaiilaiaacckacaGGGcGaaiiOaiaadAfakmaabmaapaqaaKqz GeWdbiaadIhacaGGSaGaaGimaaGccaGLOaGaayzkaaqcLbsacqGH9a qpcaGGGcGaaGimaiaac6caaaa@527F@   (8)

As the power–law coating is very slim, therefore

V( x, y 1 )=0 ,    y 1  ϵ [ 0, δ( x ) ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaOWaaeWaa8aabaqcLbsapeGaamiE aiaacYcacaWG5bGcpaWaaSbaaKqaGeaajugWa8qacaaIXaaal8aabe aaaOWdbiaawIcacaGLPaaajugibiabg2da9iaaicdacaGGGcGaaiil aiaacckacaGGGcGaeyiaIiIaaiiOaiaadMhak8aadaWgaaqcbasaaK qzadWdbiaaigdaaSWdaeqaaKqzGeWdbiaacckatuuDJXwAK1uy0Hwm aeHbfv3ySLgzG0uy0Hgip5wzaGGbaiab=v=aYlaacckakmaadmaapa qaaKqzGeWdbiaaicdacaGGSaGaaiiOaiabes7aKPWaaeWaa8aabaqc LbsapeGaamiEaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaqcLbsaca GGUaaaaa@6A25@    (9)

We assume that velocity and shear stress of both the fluids are continuous at the interface y=δ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyEaiabg2da9iabes7aKPWaaeWaa8aa baqcLbsapeGaamiEaaGccaGLOaGaayzkaaaaaa@42A3@ Thus continuity of shear stress implies

μ u y μ 1 3 u y 3 = μ L U y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd0McdaWcaaWdaeaajugib8qacqGH ciITcaWG1baak8aabaqcLbsapeGaeyOaIyRaamyEaaaacqGHsislcq aH8oqBjuaGpaWaaSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaGc peWaaSaaa8aabaqcLbsapeGaeyOaIyBcfa4damaaCaaajeaibeqaaK qzadWdbiaaiodaaaqcLbsacaWG1baak8aabaqcLbsapeGaeyOaIyRa amyEaOWdamaaCaaaleqajeaibaqcLbmapeGaaG4maaaaaaqcLbsacq GH9aqpcqaH8oqBjuaGpaWaaSbaaKqaGeaajugWa8qacaWGmbaajeai paqabaGcpeWaaSaaa8aabaqcLbsapeGaeyOaIyRaamyvaaGcpaqaaK qzGeWdbiabgkGi2kaadMhaaaGaaiOlaaaa@62FC@   (10)

In which μ L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd0McpaWaaSbaaKqaGeaajugWa8qa caWGmbaal8aabeaaaaa@3FF5@ represents the viscosity of the lubricant. Letting U x U y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaKqzGeWdbiabgkGi2kaadwfaaOWd aeaajugib8qacqGHciITcaWG4baaaiablQMi9OWaaSaaa8aabaqcLb sapeGaeyOaIyRaamyvaaGcpaqaaKqzGeWdbiabgkGi2kaadMhaaaaa aa@48BA@ the viscosity of lubricant can be written as

μ L =k ( U y ) n1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiVd0McpaWaaSbaaKqaGeaajugWa8qa caWGmbaal8aabeaajugib8qacqGH9aqpcaWGRbGcdaqadaWdaeaape WaaSaaa8aabaqcLbsapeGaeyOaIyRaamyvaaGcpaqaaKqzGeWdbiab gkGi2kaadMhaaaaakiaawIcacaGLPaaajuaGpaWaaWbaaKqaGeqaba qcLbmapeGaamOBaiabgkHiTiaaigdaaaWdaiaacYcaaaa@4FE1@     (11)

in which k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4Aaaaa@3CA2@ is dynamic coefficient of viscosity and n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOBaaaa@3CA5@ is the consistency index. Fluid behaves as viscous, shear thinning and shear thickening, respectively for n=1, n<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOBaiabg2da9iaaigdacaGGSaGaaiiO aiaad6gacqGH8aapcaaIXaaaaa@42EC@ and n>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOBaiabg6da+iaaigdaaaa@3E68@ .

We further assume that

U( x,y )= U ˜ ( x )y δ( x ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyvaOWaaeWaa8aabaqcLbsapeGaamiE aiaacYcacaWG5baakiaawIcacaGLPaaajugibiabg2da9OWaaSaaa8 aabaqcLbsapeGabmyvayaaiaGcdaqadaWdaeaajugib8qacaWG4baa kiaawIcacaGLPaaajugibiaadMhaaOWdaeaajugib8qacqaH0oazkm aabmaapaqaaKqzGeWdbiaadIhaaOGaayjkaiaawMcaaaaajugibiaa c6caaaa@5083@    (12)

It is worth to point out that U ˜ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmyvayaaiaGcdaqadaWdaeaajugib8qa caWG4baakiaawIcacaGLPaaaaaa@3FE3@ is interfacial velocity component of both fluids. The thickness δ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMcdaqadaWdaeaajugib8qacaWG 4baakiaawIcacaGLPaaaaaa@409E@ of the power–law lubricant is given by

δ( x )= 2Q U ˜ ( x ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMcdaqadaWdaeaajugib8qacaWG 4baakiaawIcacaGLPaaajugibiabg2da9OWaaSaaa8aabaqcLbsape GaaGOmaiaadgfaaOWdaeaajugib8qaceWGvbGbaGaakmaabmaapaqa aKqzGeWdbiaadIhaaOGaayjkaiaawMcaaaaajugibiaac6caaaa@4AB8@    (13)

The continuity of horizontal velocity components of both the fluids gives

U ˜ =u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadwfagaacaabaaaaaaaaapeGaeyypa0JaamyDaaaa@3E9B@    (14)

Substituting Equations (11)–(14) in Equation (10) we get

u y μ 1 μ 3 u y 3 = k μ ( 1 2Q ) n u 2n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaKqzGeWdbiabgkGi2kaadwhaaOWd aeaajugib8qacqGHciITcaWG5baaaiabgkHiTOWaaSaaa8aabaqcLb sapeGaeqiVd0McpaWaaSbaaKqaGeaajugWa8qacaaIXaaal8aabeaa aOqaaKqzGeWdbiabeY7aTbaakmaalaaapaqaaKqzGeWdbiabgkGi2Q WdamaaCaaaleqajeaibaqcLbmapeGaaG4maaaajugibiaadwhaaOWd aeaajugib8qacqGHciITcaWG5bGcpaWaaWbaaSqabKqaGeaajugWa8 qacaaIZaaaaaaajugibiabg2da9OWaaSaaa8aabaqcLbsapeGaam4A aaGcpaqaaKqzGeWdbiabeY7aTbaakmaabmaapaqaa8qadaWcaaWdae aajugib8qacaaIXaaak8aabaqcLbsapeGaaGOmaiaadgfaaaaakiaa wIcacaGLPaaajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaamOBaaaaju gibiaadwhajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaiaad6ga aaqcLbsacaGGSaaaaa@6A39@    (15)

Similarly implementing the continuity of interfacial velocity components of bulk fluid and lubricant along y–axis we get

v ( x,δ( x ) )= V ( x,δ( x ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamODaiaacckakmaabmaapaqaaKqzGeWd biaadIhacaGGSaGaeqiTdqMcdaqadaWdaeaajugib8qacaWG4baaki aawIcacaGLPaaaaiaawIcacaGLPaaajugibiabg2da9iaacckacaWG wbGaaiiOaOWaaeWaa8aabaqcLbsapeGaamiEaiaacYcacqaH0oazkm aabmaapaqaaKqzGeWdbiaadIhaaOGaayjkaiaawMcaaaGaayjkaiaa wMcaaKqzGeGaaiilaaaa@557E@  (16)

Employing Equation (9) we get

v ( x,δ( x ) )= 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamODaiaacckakmaabmaapaqaaKqzGeWd biaadIhacaGGSaGaeqiTdqMcdaqadaWdaeaajugib8qacaWG4baaki aawIcacaGLPaaaaiaawIcacaGLPaaajugibiabg2da9iaacckacaaI WaGaaiOlaaaa@4AD1@   (17)

Following Santra et al.,23 the boundary conditions (15) and (17) can be imposed at the fluid–solid interface. Boundary conditions at free stream have been mentioned in equation (5).

Introducing

η=y a ν ,  u=ax f ( η )+a g ( η ),  v=  aν  f( η ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4TdGMaeyypa0JaamyEaOWaaOaaa8aa baWdbmaalaaapaqaaKqzGeWdbiaadggaaOWdaeaajugib8qacqaH9o GBaaaaleqaaKqzGeGaaiilaiaacckacaGGGcGaamyDaiabg2da9iaa dggacaWG4bGabmOza8aagaqbaOWdbmaabmaapaqaaKqzGeWdbiabeE 7aObGccaGLOaGaayzkaaqcLbsacqGHRaWkcaWGHbGabm4za8aagaqb aOWdbmaabmaapaqaaKqzGeWdbiabeE7aObGccaGLOaGaayzkaaqcLb sacaGGSaGaaiiOaiaacckacaWG2bGaeyypa0JaeyOeI0IaaiiOaOWa aOaaa8aabaqcLbsapeGaamyyaiabe27aUbWcbeaajugibiaacckaca WGMbGcdaqadaWdaeaajugib8qacqaH3oaAaOGaayjkaiaawMcaaKqz GeGaaiilaaaa@6A74@   (18)

The governing Equations (6), (8), (15), and (17) reduce to

f iv +f f + f f 2f'f''K f vi =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaKqba+aadaahaaqcbasabeaajugW a8qacaWGPbGaamODaaaajugibiabgUcaRiaadAgaceWGMbWdayaasa WdbiabgUcaRiqadAgapaGbauaapeGabmOza8aagaGba8qacqGHsisl caaIYaGaamOzaiaacEcacaWGMbGaai4jaiaacEcacqGHsislcaWGlb GaamOzaKqba+aadaahaaqcbasabeaajugWa8qacaWG2bGaamyAaaaa jugibiabg2da9iaaicdacaGGSaaaaa@5672@    (19)

g iv + f g +f g f g g f K g vi =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4zaKqba+aadaahaaqcbasabeaajugW a8qacaWGPbGaamODaaaajugibiabgUcaRiqadAgapaGbauaapeGabm 4za8aagaGba8qacqGHRaWkcaWGMbGabm4za8aagaGea8qacqGHsisl ceWGMbWdayaafaWdbiqadEgapaGbayaapeGaeyOeI0Iabm4za8aaga qba8qaceWGMbWdayaagaWdbiabgkHiTiaadUeacaWGNbqcfa4damaa CaaajeaibeqaaKqzadWdbiaadAhacaWGPbaaaKqzGeGaeyypa0JaaG imaiaacYcaaaa@572B@    (20)

f( 0 )=0,   f'''( 0 )=0,    f ( 0 )K f iv ( 0 )=λ ( f' ( 0 ) ) 2n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaOWaaeWaa8aabaqcLbsapeGaaGim aaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIWaGaaiilaiaacckaca GGGcGaaiiOaiaadAgacaGGNaGaai4jaiaacEcakmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGimaiaacY cacaGGGcGaaiiOaiaacckaceWGMbWdayaagaGcpeWaaeWaa8aabaqc LbsapeGaaGimaaGccaGLOaGaayzkaaqcLbsacqGHsislcaWGlbGaam OzaKqba+aadaahaaqcbasabeaajugWa8qacaWGPbGaamODaaaakmaa bmaapaqaaKqzGeWdbiaaicdaaOGaayjkaiaawMcaaKqzGeGaeyypa0 Jaeq4UdWMcdaqadaWdaeaajugib8qacaWGMbGaai4jaiaacckakmaa bmaapaqaaKqzGeWdbiaaicdaaOGaayjkaiaawMcaaaGaayjkaiaawM caaKqba+aadaahaaqcbasabeaajugWa8qacaaIYaGaamOBaaaajugi biaacYcaaaa@712F@   (21)

g( 0 )=0,  g'''( 0 )=0,   g '' ( 0 )K g iv ( 0 )=2nλ  g ( 0 ) ( f ( 0 ) ) 2n1 ,  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4zaOWaaeWaa8aabaqcLbsapeGaaGim aaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIWaGaaiilaiaacckaca GGGcGaam4zaiaacEcacaGGNaGaai4jaOWaaeWaa8aabaqcLbsapeGa aGimaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIWaGaaiilaiaacc kacaGGGcGaam4zaOWdamaaCaaaleqabaqcLbsapeGaai4jaiaacEca aaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcacaGLPaaajugibi abgkHiTiaadUeacaWGNbqcfa4damaaCaaajeaibeqaaKqzadWdbiaa dMgacaWG2baaaOWaaeWaa8aabaqcLbsapeGaaGimaaGccaGLOaGaay zkaaqcLbsacqGH9aqpcaaIYaGaamOBaiabeU7aSjaacckaceWGNbWd ayaafaGcpeWaaeWaa8aabaqcLbsapeGaaGimaaGccaGLOaGaayzkaa WaaeWaa8aabaqcLbsapeGabmOza8aagaqbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaKqba+aada ahaaqcbasabeaajugWa8qacaaIYaGaamOBaiabgkHiTiaaigdaaaqc LbsacaGGSaGaaiiOaaaa@7907@   (22)

g ( )=γ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabm4za8aagaGbaOWdbmaabmaapaqaaKqz GeWdbiabg6HiLcGccaGLOaGaayzkaaqcLbsacqGH9aqpcqaHZoWzca GGSaaaaa@4471@ (23)

Where K= ν 1 a 2 / ν 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saiabg2da9iabe27aULqba+aadaWg aaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaajugib8qacaWGHbGcpa WaaWbaaSqabKqaGeaajugWa8qacaaIYaaaaKqzGeGaai4laiabe27a ULqba+aadaahaaqcbasabeaajugWa8qacaaIYaaaaaaa@4C26@ is called the couple stress parameter and γ=b/a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdCMaeyypa0JaamOyaiaac+cacaWG Hbaaaa@40DF@ denotes the free stream shear. The parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ in Equations (21) and (22) is given as

λ= k ν μ   a 2n  x 2n1 a 3/2   ( 2Q ) n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JcdaWcaaWdaeaajugi b8qacaWGRbGcdaGcaaWdaeaajugib8qacqaH9oGBaSqabaaak8aaba qcLbsapeGaeqiVd0gaaiaacckakmaalaaapaqaaKqzGeWdbiaadgga juaGpaWaaWbaaKqaGeqabaqcLbmapeGaaGOmaiaad6gacaGGGcaaaK qzGeGaamiEaOWdamaaCaaaleqajeaibaqcLbmapeGaaGOmaiaad6ga cqGHsislcaaIXaaaaaGcpaqaaKqzGeWdbiaadggajuaGpaWaaWbaaK qaGeqabaqcLbmapeGaaG4maiaac+cacaaIYaaaaKqzGeGaaiiOaOWa aeWaa8aabaqcLbsapeGaaGOmaiaadgfaaOGaayjkaiaawMcaaKqba+ aadaahaaqcbasabeaajugWa8qacaWGUbaaaaaaaaa@6215@ f f 2 +f f +1K f v =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaGea8qacqGHsislceWGMbWd ayaafaqcfa4aaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiabgU caRiaadAgaceWGMbWdayaagaWdbiabgUcaRiaaigdacqGHsislcaWG lbGaamOzaKqba+aadaahaaqcbasabeaajugWa8qacaWG2baaaKqzGe Gaeyypa0JaaGimaiaacYcaaaa@4F75@ (24)

Integrating Equations (19) and (20) and using free stream conditions, we get

f f 2 +f f +1K f v =0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaGea8qacqGHsislceWGMbWd ayaafaqcfa4aaWbaaKqaGeqabaqcLbmapeGaaGOmaaaajugibiabgU caRiaadAgaceWGMbWdayaagaWdbiabgUcaRiaaigdacqGHsislcaWG lbGaamOzaKqba+aadaahaaqcbasabeaajugWa8qacaWG2baaaKqzGe Gaeyypa0JaaGimaiaacYcaaaa@4F75@    (25)

g +f g f'g'K g v =γ( βα ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabm4za8aagaGea8qacqGHRaWkcaWGMbGa bm4za8aagaGba8qacqGHsislcaWGMbGaai4jaiaadEgacaGGNaGaey OeI0Iaam4saiaadEgajuaGpaWaaWbaaKqaGeqabaqcLbmapeGaamOD aaaajugibiabg2da9iabeo7aNPWaaeWaa8aabaqcLbsapeGaeqOSdi MaeyOeI0IaeqySdegakiaawIcacaGLPaaajugibiaacYcaaaa@5493@    (26)

Where β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ is a free parameter and α= η f( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdeMaeyypa0Jaeq4TdGwcfa4damaa BaaajeaibaqcLbmapeGaeyOhIukajeaipaqabaqcLbsapeGaeyOeI0 IaamOzaOWaaeWaa8aabaqcLbsapeGaeyOhIukakiaawIcacaGLPaaa aaa@4A06@ . In order to eliminate γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdCgaaa@3D59@ from Equation (26)we let g ( η )=γh( η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabm4za8aagaqbaOWdbmaabmaapaqaaKqz GeWdbiabeE7aObGccaGLOaGaayzkaaqcLbsacqGH9aqpcqaHZoWzca WGObGcdaqadaWdaeaajugib8qacqaH3oaAaOGaayjkaiaawMcaaaaa @48E0@ to obtain

h +f h f hK h iv =βα. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmiAa8aagaGba8qacqGHRaWkcaWGMbGa bmiAa8aagaqba8qacqGHsislceWGMbWdayaafaWdbiaadIgacqGHsi slcaWGlbGaamiAaKqba+aadaahaaqcbasabeaajugWa8qacaWGPbGa amODaaaajugibiabg2da9iabek7aIjabgkHiTiabeg7aHjaac6caaa a@4FCE@     (27)

The boundary conditions in new variables become

h ( 0 )=0,    h ' ( 0 )K h ( 0 )=2nλ h( 0 ) ( f'( 0 ) ) 2n1 ,    h ' ( )=1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmiAa8aagaGbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGimaiaacY cacaGGGcGaaiiOaiaacckacaWGObGcpaWaaWbaaSqabeaajugib8qa caGGNaaaaOWaaeWaa8aabaqcLbsapeGaaGimaaGccaGLOaGaayzkaa qcLbsacqGHsislcaWGlbGabmiAa8aagaGeaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGOmaiaad6 gacqaH7oaBcaGGGcGaamiAaOWaaeWaa8aabaqcLbsapeGaaGimaaGc caGLOaGaayzkaaWaaeWaa8aabaqcLbsapeGaamOzaiaacEcakmaabm aapaqaaKqzGeWdbiaaicdaaOGaayjkaiaawMcaaaGaayjkaiaawMca aKqba+aadaahaaqcbasabeaajugWa8qacaaIYaGaamOBaiabgkHiTi aaigdaaaqcLbsacaGGSaGaaiiOaiaacckacaGGGcGaamiAaOWdamaa CaaaleqabaqcLbsapeGaai4jaaaakmaabmaapaqaaKqzGeWdbiabg6 HiLcGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIXaGaaiOlaaaa@7677@     (28)

Equation (24) suggests that to obtain similar solution, one should have n=½ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOBaiabg2da9iaab2laaaa@3EEB@ . The parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ given in Equation (24) measures slip produced on the surface and can be written as

λ= ν a μ k 2Q = L visc L lub  . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JcdaWcaaWdaeaapeWa aOaaa8aabaWdbmaalaaapaqaaKqzGeWdbiabe27aUbGcpaqaaKqzGe WdbiaadggaaaaaleqaaaGcpaqaa8qadaWcaaWdaeaajugib8qacqaH 8oqBaOWdaeaajugib8qacaWGRbaaaOWaaOaaa8aabaqcLbsapeGaaG OmaiaadgfaaSqabaaaaKqzGeGaeyypa0JcdaWcaaWdaeaajugib8qa caWGmbGcpaWaaSbaaKqaGeaajugWa8qacaWG2bGaamyAaiaadohaca WGJbaal8aabeaaaOqaaKqzGeWdbiaadYeajuaGpaWaaSbaaKqaGeaa jugWa8qacaWGSbGaamyDaiaadkgaaKqaG8aabeaaaaqcLbsapeGaai iOaiaac6caaaa@5B70@    (29)

As clear from Equation (29), λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ is a representation of ratio of viscous length scale L visc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamitaOWdamaaBaaajeaibaqcLbmapeGa amODaiaadMgacaWGZbGaam4yaaWcpaqabaaaaa@4207@ to the lubrication length scales L lub MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamitaKqba+aadaWgaaqcbasaaKqzadWd biaadYgacaWG1bGaamOyaaqcbaYdaeqaaaaa@41B3@ . For a highly viscous bulk fluid (i.e. when L visc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamitaOWdamaaBaaajeaibaqcLbmapeGa amODaiaadMgacaWGZbGaam4yaaWcpaqabaaaaa@4207@ is large) and a very thin lubricant (i.e. when L lub MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamitaKqba+aadaWgaaqcbasaaKqzadWd biaadYgacaWG1bGaamOyaaqcbaYdaeqaaaaa@41B3@ is small), the parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ is increased. As the parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ approaches to infinity, the traditional no–slip conditions f ( 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaqbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGimaaaa@421C@ , and h( 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaOWaaeWaa8aabaqcLbsapeGaaGim aaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIWaaaaa@41F3@ can be recovered from Equations (21) and (28). On the other hand when the bulk fluid is less viscous and L lub MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamitaKqba+aadaWgaaqcbasaaKqzadWd biaadYgacaWG1bGaamOyaaqcbaYdaeqaaaaa@41B3@ attains a massive value, λ0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyOKH4QaaGimaaaa@400D@ and consequently the full slip boundary conditions f ( 0 )=0, f iv ( 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaqbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGimaiaacY cacaWGMbqcfa4damaaCaaajeaibeqaaKqzadWdbiaadMgacaWG2baa aOWaaeWaa8aabaqcLbsapeGaaGimaaGccaGLOaGaayzkaaqcLbsacq GH9aqpcaaIWaaaaa@4D1B@ , h ( 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmiAa8aagaqbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGimaaaa@421E@ and h ( 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmiAa8aagaGeaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGimaaaa@422B@ are achieved.Therefore λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ interprets the inverse measure of slip called slip parameter.

Employing (18), the dimensionless wall shear stress is given by

τ w =x( f ( 0 )K f iv ( 0 ) )+( g ( 0 )K g iv ( 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiXdqNcpaWaaSbaaKqaGeaajugWa8qa caWG3baal8aabeaajugib8qacqGH9aqpcaWG4bGcdaqadaWdaeaaju gib8qaceWGMbWdayaagaGcpeWaaeWaa8aabaqcLbsapeGaaGimaaGc caGLOaGaayzkaaqcLbsacqGHsislcaWGlbGaamOzaKqba+aadaahaa qcbasabeaajugWa8qacaWGPbGaamODaaaakmaabmaapaqaaKqzGeWd biaaicdaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaKqzGeGaey4kaS IcdaqadaWdaeaajugib8qaceWGNbWdayaagaGcpeWaaeWaa8aabaqc LbsapeGaaGimaaGccaGLOaGaayzkaaqcLbsacqGHsislcaWGlbGaam 4zaOWdamaaCaaaleqajeaibaqcLbmapeGaamyAaiaadAhaaaGcdaqa daWdaeaajugib8qacaaIWaaakiaawIcacaGLPaaaaiaawIcacaGLPa aaaaa@651D@

=x( f ( 0 )K f iv ( 0 ) )+γ( h'( 0 )K h ( 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeyypa0JaamiEaOWaaeWaa8aabaqcLbsa peGabmOza8aagaGbaOWdbmaabmaapaqaaKqzGeWdbiaaicdaaOGaay jkaiaawMcaaKqzGeGaeyOeI0Iaam4saiaadAgajuaGpaWaaWbaaKqa GeqabaqcLbmapeGaamyAaiaadAhaaaGcdaqadaWdaeaajugib8qaca aIWaaakiaawIcacaGLPaaaaiaawIcacaGLPaaajugibiabgUcaRiab eo7aNPWaaeWaa8aabaqcLbsapeGaamiAaiaacEcakmaabmaapaqaaK qzGeWdbiaaicdaaOGaayjkaiaawMcaaKqzGeGaeyOeI0Iaam4saiqa dIgapaGbaibak8qadaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaaaiaawIcacaGLPaaaaaa@5ECA@   (30)

To find the stagnation–point x s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiEaKqba+aadaWgaaqcbasaaKqzadWd biaadohaaKqaG8aabeaaaaa@4006@ on the surface, we set   τ w =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiabes8a0PWdamaaBaaajeaibaqc LbmapeGaam4DaaWcpaqabaqcLbsapeGaeyypa0JaaGimaaaa@43B2@  Therefore

x s = g ( 0 )K g iv ( 0 ) f ( 0 )K f iv ( 0 ) =γ h ( 0 )K h ( 0 ) f ( 0 )K f iv ( 0 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiEaKqba+aadaWgaaqcbasaaKqzadWd biaadohaaKqaG8aabeaajugib8qacqGH9aqpcqGHsislkmaalaaapa qaaKqzGeWdbiqadEgapaGbayaak8qadaqadaWdaeaajugib8qacaaI WaaakiaawIcacaGLPaaajugibiabgkHiTiaadUeacaWGNbqcfa4dam aaCaaajeaibeqaaKqzadWdbiaadMgacaWG2baaaOWaaeWaa8aabaqc LbsapeGaaGimaaGccaGLOaGaayzkaaaapaqaaKqzGeWdbiqadAgapa Gbayaak8qadaqadaWdaeaajugib8qacaaIWaaakiaawIcacaGLPaaa jugibiabgkHiTiaadUeacaWGMbqcfa4damaaCaaajeaibeqaaKqzad WdbiaadMgacaWG2baaaOWaaeWaa8aabaqcLbsapeGaaGimaaGccaGL OaGaayzkaaaaaKqzGeGaeyypa0JaeyOeI0Iaeq4SdCMcdaWcaaWdae aajugib8qaceWGObWdayaafaGcpeWaaeWaa8aabaqcLbsapeGaaGim aaGccaGLOaGaayzkaaqcLbsacqGHsislcaWGlbGabmiAa8aagaGeaO WdbmaabmaapaqaaKqzGeWdbiaaicdaaOGaayjkaiaawMcaaaWdaeaa jugib8qaceWGMbWdayaagaGcpeWaaeWaa8aabaqcLbsapeGaaGimaa GccaGLOaGaayzkaaqcLbsacqGHsislcaWGlbGaamOzaKqba+aadaah aaqcbasabeaajugWa8qacaWGPbGaamODaaaakmaabmaapaqaaKqzGe WdbiaaicdaaOGaayjkaiaawMcaaaaajugibiaac6caaaa@80BB@    (31)

Figure 1 Reported bird strikes and parts mostly hit(* FAA wildlife strike data base).

Numerical method (the keller–box method)

Equations (21), (25), (27) and (28) are solved using Keller–box method33–36 which is based on an implicit finite difference approach. This numerical scheme is very effective to solve non–linear and coupled boundary value problems directly without converting them into initial value problems. As a first step, a system of first order ordinary differential equations is obtained in the following way:

f =u,   u =v,   v =w,   w =p,  h'=U,  U'=V,  V'=W, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaqba8qacqGH9aqpcaWG1bGa aiilaiaacckacaGGGcGabmyDa8aagaqba8qacqGH9aqpcaWG2bGaai ilaiaacckacaGGGcGabmODa8aagaqba8qacqGH9aqpcaWG3bGaaiil aiaacckacaGGGcGabm4Da8aagaqba8qacqGH9aqpcaWGWbGaaiilai aacckacaGGGcGaamiAaiaacEcacqGH9aqpcaWGvbGaaiilaiaaccka caGGGcGaamyvaiaacEcacqGH9aqpcaWGwbGaaiilaiaacckacaGGGc GaamOvaiaacEcacqGH9aqpcaWGxbGaaiilaaaa@64FE@  (32)

Therefore, Equations (25) and (27) imply

w u 2 +fv+1Kp'=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4DaiabgkHiTiaadwhajuaGpaWaaWba aKqaGeqabaqcLbmapeGaaGOmaaaajugibiabgUcaRiaadAgacaWG2b Gaey4kaSIaaGymaiabgkHiTiaadUeacaWGWbGaai4jaiabg2da9iaa icdacaGGSaaaaa@4C39@

V+fUuhK W =βα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaiabgUcaRiaadAgacaWGvbGaeyOe I0IaamyDaiaadIgacqGHsislcaWGlbGabm4va8aagaqba8qacqGH9a qpcqaHYoGycqGHsislcqaHXoqyaaa@49FF@  (33)

The transformed boundary conditions n=0.5 for  imply

f( 0 )=0,  w( 0 )=0,  v( 0 )Kp( 0 )=λ u( 0 ),  u( )=1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaOWaaeWaa8aabaqcLbsapeGaaGim aaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIWaGaaiilaiaacckaca GGGcGaam4DaOWaaeWaa8aabaqcLbsapeGaaGimaaGccaGLOaGaayzk aaqcLbsacqGH9aqpcaaIWaGaaiilaiaacckacaGGGcGaamODaOWaae Waa8aabaqcLbsapeGaaGimaaGccaGLOaGaayzkaaqcLbsacqGHsisl caWGlbGaamiCaOWaaeWaa8aabaqcLbsapeGaaGimaaGccaGLOaGaay zkaaqcLbsacqGH9aqpcqaH7oaBcaGGGcGaamyDaOWaaeWaa8aabaqc LbsapeGaaGimaaGccaGLOaGaayzkaaqcLbsacaGGSaGaaiiOaiaacc kacaWG1bGcdaqadaWdaeaajugib8qacqGHEisPaOGaayjkaiaawMca aKqzGeGaeyypa0JaaGymaiaacYcaaaa@6C20@   (34)

V( 0 )=0,  U( 0 )KW( 0 )=λ h( 0 ),  U( )=1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaOWaaeWaa8aabaqcLbsapeGaaGim aaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaaIWaGaaiilaiaacckaca GGGcGaamyvaOWaaeWaa8aabaqcLbsapeGaaGimaaGccaGLOaGaayzk aaqcLbsacqGHsislcaWGlbGaam4vaOWaaeWaa8aabaqcLbsapeGaaG imaaGccaGLOaGaayzkaaqcLbsacqGH9aqpcqaH7oaBcaGGGcGaamiA aOWaaeWaa8aabaqcLbsapeGaaGimaaGccaGLOaGaayzkaaqcLbsaca GGSaGaaiiOaiaacckacaWGvbGcdaqadaWdaeaajugib8qacqGHEisP aOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGymaiaacYcaaaa@6261@   (35)

The obtained first–order system is approximated with central–difference for derivatives and averages for the dependent variables. The reduced algebraic system is given by

f j f j1 k j = u j 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaKqzGeWdbiaadAgak8aadaWgaaqc basaaKqzadWdbiaadQgaaSWdaeqaaKqzGeWdbiabgkHiTiaadAgak8 aadaWgaaWcbaqcLbmapeGaamOAaiabgkHiTiaaigdaaSWdaeqaaaGc baqcLbsapeGaam4AaOWdamaaBaaajeaibaqcLbmapeGaamOAaaWcpa qabaaaaKqzGeWdbiabg2da9iaadwhak8aadaWgaaqcbasaaKqzadWd biaadQgacqGHsisljuaGdaWcaaqcbaYdaeaajugWa8qacaaIXaaaje aipaqaaKqzadWdbiaaikdaaaaal8aabeaaaaa@55A0@ , u j u j1 k j = v j 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaKqzGeWdbiaadwhak8aadaWgaaqc basaaKqzadWdbiaadQgaaSWdaeqaaKqzGeWdbiabgkHiTiaadwhak8 aadaWgaaqcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaal8aabeaa aOqaaKqzGeWdbiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qacaWGQb aajeaipaqabaaaaKqzGeWdbiabg2da9iaadAhak8aadaWgaaqcbasa aKqzadWdbiaadQgacqGHsisljuaGdaWcaaqcbaYdaeaajugWa8qaca aIXaaajeaipaqaaKqzadWdbiaaikdaaaaal8aabeaaaaa@5681@  , v j v j1 k j = w j 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaKqzGeWdbiaadAhak8aadaWgaaqc basaaKqzadWdbiaadQgaaSWdaeqaaKqzGeWdbiabgkHiTiaadAhak8 aadaWgaaqcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaal8aabeaa aOqaaKqzGeWdbiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qacaWGQb aajeaipaqabaaaaKqzGeWdbiabg2da9iaadEhak8aadaWgaaqcbasa aKqzadWdbiaadQgacqGHsisljuaGdaWcaaqcbaYdaeaajugWa8qaca aIXaaajeaipaqaaKqzadWdbiaaikdaaaaal8aabeaaaaa@5684@ , w j w j1 k j = p j 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaKqzGeWdbiaadEhajuaGpaWaaSba aKqaGeaajugWa8qacaWGQbaajeaipaqabaqcLbsapeGaeyOeI0Iaam 4DaOWdamaaBaaajeaibaqcLbmapeGaamOAaiabgkHiTiaaigdaaSWd aeqaaaGcbaqcLbsapeGaam4AaOWdamaaBaaajeaibaqcLbmapeGaam OAaaWcpaqabaaaaKqzGeWdbiabg2da9iaadchak8aadaWgaaqcbasa aKqzadWdbiaadQgacqGHsisljuaGdaWcaaqcbaYdaeaajugWa8qaca aIXaaajeaipaqaaKqzadWdbiaaikdaaaaal8aabeaaaaa@567F@ ,    (36)

h j h j1 k j = U j 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaKqzGeWdbiaadIgak8aadaWgaaqc basaaKqzadWdbiaadQgaaSWdaeqaaKqzGeWdbiabgkHiTiaadIgak8 aadaWgaaqcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaal8aabeaa aOqaaKqzGeWdbiaadUgak8aadaWgaaqcbasaaKqzadWdbiaadQgaaS Wdaeqaaaaajugib8qacqGH9aqpcaWGvbGcpaWaaSbaaKqaGeaajugW a8qacaWGQbGaeyOeI0scfa4aaSaaaKqaG8aabaqcLbmapeGaaGymaa qcbaYdaeaajugWa8qacaaIYaaaaaWcpaqabaaaaa@55A3@ , U j U j1 k j = V j 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaKqzGeWdbiaadwfak8aadaWgaaqc basaaKqzadWdbiaadQgaaSWdaeqaaKqzGeWdbiabgkHiTiaadwfak8 aadaWgaaqcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaal8aabeaa aOqaaKqzGeWdbiaadUgak8aadaWgaaqcbasaaKqzadWdbiaadQgaaS Wdaeqaaaaajugib8qacqGH9aqpcaWGwbGcpaWaaSbaaKqaGeaajugW a8qacaWGQbGaeyOeI0scfa4aaSaaaKqaG8aabaqcLbmapeGaaGymaa qcbaYdaeaajugWa8qacaaIYaaaaaWcpaqabaaaaa@557E@  , V j V j1 k j = W j 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaalaaapaqaaKqzGeWdbiaadAfajuaGpaWaaSba aKqaGeaajugWa8qacaWGQbaajeaipaqabaqcLbsapeGaeyOeI0Iaam OvaOWdamaaBaaajeaibaqcLbmapeGaamOAaiabgkHiTiaaigdaaSWd aeqaaaGcbaqcLbsapeGaam4AaOWdamaaBaaajeaibaqcLbmapeGaam OAaaWcpaqabaaaaKqzGeWdbiabg2da9iaadEfak8aadaWgaaqcbasa aKqzadWdbiaadQgacqGHsisljuaGdaWcaaqcbaYdaeaajugWa8qaca aIXaaajeaipaqaaKqzadWdbiaaikdaaaaal8aabeaaaaa@5624@   (37)

w j 1 2 u 2 j 1 2 + f j 1 2   v j 1 2 +1K( p j p j1 k j )=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4DaKqba+aadaWgaaqcbasaaKqzadWd biaadQgacqGHsisljuaGdaWcaaqcbaYdaeaajugWa8qacaaIXaaaje aipaqaaKqzadWdbiaaikdaaaaajeaipaqabaqcLbsapeGaeyOeI0Ia amyDaKqba+aadaahaaqcbasabeaajugWa8qacaaIYaaaaKqba+aada WgaaqcbasaaKqzadWdbiaadQgacqGHsisljuaGdaWcaaqcbaYdaeaa jugWa8qacaaIXaaajeaipaqaaKqzadWdbiaaikdaaaaajeaipaqaba qcLbsapeGaey4kaSIaamOzaOWdamaaBaaajeaibaqcLbmapeGaamOA aiabgkHiTKqbaoaalaaajeaipaqaaKqzadWdbiaaigdaaKqaG8aaba qcLbmapeGaaGOmaaaaaSWdaeqaaKqzGeWdbiaacckacaWG2bGcpaWa aSbaaKqaGeaajugWa8qacaWGQbGaeyOeI0scfa4aaSaaaKqaG8aaba qcLbmapeGaaGymaaqcbaYdaeaajugWa8qacaaIYaaaaaWcpaqabaqc LbsapeGaey4kaSIaaGymaiabgkHiTiaadUeakmaabmaapaqaa8qada WcaaWdaeaajugib8qacaWGWbGcpaWaaSbaaKqaGeaajugWa8qacaWG Qbaal8aabeaajugib8qacqGHsislcaWGWbqcfa4damaaBaaajeaiba qcLbmapeGaamOAaiabgkHiTiaaigdaaKqaG8aabeaaaOqaaKqzGeWd biaadUgajuaGpaWaaSbaaKqaGeaajugWa8qacaWGQbaajeaipaqaba aaaaGcpeGaayjkaiaawMcaaKqzGeGaeyypa0JaaGimaiaacYcaaaa@8473@ (38)

V j 1 2 + f j 1 2   U j 1 2 u j 1 2   h j 1 2 +1K( W j W j1 k j )=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOvaKqba+aadaWgaaqcbasaaKqzadWd biaadQgacqGHsisljuaGdaWcaaqcbaYdaeaajugWa8qacaaIXaaaje aipaqaaKqzadWdbiaaikdaaaaajeaipaqabaqcLbsapeGaey4kaSIa amOzaOWdamaaBaaajeaibaqcLbmapeGaamOAaiabgkHiTKqbaoaala aajeaipaqaaKqzadWdbiaaigdaaKqaG8aabaqcLbmapeGaaGOmaaaa aSWdaeqaaKqzGeWdbiaacckacaWGvbqcfa4damaaBaaajeaibaqcLb mapeGaamOAaiabgkHiTKqbaoaalaaajeaipaqaaKqzadWdbiaaigda aKqaG8aabaqcLbmapeGaaGOmaaaaaKqaG8aabeaajugib8qacqGHsi slcaWG1bGcpaWaaSbaaKqaGeaajugWa8qacaWGQbGaeyOeI0scfa4a aSaaaKqaG8aabaqcLbmapeGaaGymaaqcbaYdaeaajugWa8qacaaIYa aaaaWcpaqabaqcLbsapeGaaiiOaiaadIgak8aadaWgaaqcbasaaKqz adWdbiaadQgacqGHsisljuaGdaWcaaqcbaYdaeaajugWa8qacaaIXa aajeaipaqaaKqzadWdbiaaikdaaaaal8aabeaajugib8qacqGHRaWk caaIXaGaeyOeI0Iaam4saOWaaeWaa8aabaWdbmaalaaapaqaaKqzGe WdbiaadEfajuaGpaWaaSbaaKqaGeaajugWa8qacaWGQbaajeaipaqa baqcLbsapeGaeyOeI0Iaam4vaOWdamaaBaaajeaibaqcLbmapeGaam OAaiabgkHiTiaaigdaaSWdaeqaaaGcbaqcLbsapeGaam4AaKqba+aa daWgaaqcbasaaKqzadWdbiaadQgaaKqaG8aabeaaaaaak8qacaGLOa GaayzkaaqcLbsacqGH9aqpcaaIWaGaaiilaaaa@8C67@   (39)

where f j 1 2  = f j + f j1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaOWdamaaBaaajeaibaqcLbmapeGa amOAaiabgkHiTKqbaoaalaaajeaipaqaaKqzadWdbiaaigdaaKqaG8 aabaqcLbmapeGaaGOmaaaaaSWdaeqaaKqzGeWdbiaacckacqGH9aqp kmaalaaapaqaaKqzGeWdbiaadAgak8aadaWgaaqcbasaaKqzadWdbi aadQgaaSWdaeqaaKqzGeWdbiabgUcaRiaadAgak8aadaWgaaqcbasa aKqzadWdbiaadQgacqGHsislcaaIXaaal8aabeaaaOqaaKqzGeWdbi aaikdaaaaaaa@5483@ etc. Equations (38) and (39) are nonlinear algebraic equations and therefore, have to be linearized before the factorization scheme can be used. We write the Newton iterates in the following way:

For the ( j+1 )th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaabmaapaqaaKqzGeWdbiaadQgacqGHRaWkcaaI XaaakiaawIcacaGLPaaajugibiaadshacaWGObaaaa@4265@ iterates:

f j+1 = f j +δ f j ,etc., MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaOWdamaaBaaajeaibaqcLbmapeGa amOAaiabgUcaRiaaigdaaSWdaeqaaKqzGeWdbiabg2da9iaadAgak8 aadaWgaaqcbasaaKqzadWdbiaadQgaaSWdaeqaaKqzGeWdbiabgUca Riabes7aKjaadAgajuaGpaWaaSbaaKqaGeaajugWa8qacaWGQbaaje aipaqabaqcLbsacaGGSaWdbiaadwgacaWG0bGaam4yaiaac6cacaGG Saaaaa@52FB@    (40)

for all dependent variables. By substituting these expressions in Equations (36)–(39) and dropping the quadratic and higher–order terms in δ f j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaamOzaOWdamaaBaaajeaibaqc LbmapeGaamOAaaWcpaqabaaaaa@40ED@ , a linear tridiagonal system of equations will be obtained as follows:

δ f j  δ f j1 k j ( u j + u j1 2 )= ( r 1 ) j 1 2  , δ u j δ u j1 k j ( v j + v j1 2 )= ( r 2 ) j 1 2  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaamOzaOWdamaaBaaajeaibaqc LbmapeGaamOAaaWcpaqabaqcLbsapeGaeyOeI0IaaeiOaiabes7aKj aadAgak8aadaWgaaqcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaa l8aabeaajugib8qacqGHsislcaWGRbGcpaWaaSbaaKqaGeaajugWa8 qacaWGQbaal8aabeaak8qadaqadaWdaeaapeWaaSaaa8aabaqcLbsa peGaamyDaOWdamaaBaaajeaibaqcLbmapeGaamOAaaWcpaqabaqcLb sapeGaey4kaSIaamyDaKqba+aadaWgaaqcbasaaKqzadWdbiaadQga cqGHsislcaaIXaaajeaipaqabaaakeaajugib8qacaaIYaaaaaGcca GLOaGaayzkaaqcLbsacqGH9aqpkmaabmaapaqaaKqzGeWdbiaadkha juaGpaWaaSbaaKqaGeaajugWa8qacaaIXaaajeaipaqabaaak8qaca GLOaGaayzkaaqcfa4damaaBaaajeaibaqcLbmapeGaamOAaiabgkHi TKqbaoaalaaajeaipaqaaKqzadWdbiaaigdaaKqaG8aabaqcLbmape GaaGOmaaaaaKqaG8aabeaajugib8qacaGGGcGaaiilaiaacckacqaH 0oazcaWG1bGcpaWaaSbaaKqaGeaajugWa8qacaWGQbaal8aabeaaju gib8qacqGHsislcqaH0oazcaWG1bqcfa4damaaBaaajeaibaqcLbma peGaamOAaiabgkHiTiaaigdaaKqaG8aabeaajugib8qacqGHsislca WGRbGcpaWaaSbaaKqaGeaajugWa8qacaWGQbaal8aabeaak8qadaqa daWdaeaapeWaaSaaa8aabaqcLbsapeGaamODaOWdamaaBaaajeaiba qcLbmapeGaamOAaaWcpaqabaqcLbsapeGaey4kaSIaamODaKqba+aa daWgaaqcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaajeaipaqaba aakeaajugib8qacaaIYaaaaaGccaGLOaGaayzkaaqcLbsacqGH9aqp kmaabmaapaqaaKqzGeWdbiaadkhak8aadaWgaaqcbasaaKqzadWdbi aaikdaaSWdaeqaaaGcpeGaayjkaiaawMcaa8aadaWgaaqcbasaaKqz adWdbiaadQgacqGHsisljuaGdaWcaaqcbaYdaeaajugWa8qacaaIXa aajeaipaqaaKqzadWdbiaaikdaaaaal8aabeaajugib8qacaGGGcGa aiilaaaa@A87C@ (41)

δ v j δ v j1 k j ( w j + w j1 2 )= ( r 3 ) j 1 2  , δ w j δ w j1 k j ( p j + p j1 2 )= ( r 4 ) j 1 2  , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaamODaKqba+aadaWgaaqcbasa aKqzadWdbiaadQgaaKqaG8aabeaajugib8qacqGHsislcqaH0oazca WG2bqcfa4damaaBaaajeaibaqcLbmapeGaamOAaiabgkHiTiaaigda aKqaG8aabeaajugib8qacqGHsislcaWGRbGcpaWaaSbaaKqaGeaaju gWa8qacaWGQbaal8aabeaak8qadaqadaWdaeaapeWaaSaaa8aabaqc LbsapeGaam4DaKqba+aadaWgaaqcbasaaKqzadWdbiaadQgaaKqaG8 aabeaajugib8qacqGHRaWkcaWG3bGcpaWaaSbaaKqaGeaajugWa8qa caWGQbGaeyOeI0IaaGymaaWcpaqabaaakeaajugib8qacaaIYaaaaa GccaGLOaGaayzkaaqcLbsacqGH9aqpkmaabmaapaqaaKqzGeWdbiaa dkhajuaGpaWaaSbaaKqaGeaajugWa8qacaaIZaaajeaipaqabaaak8 qacaGLOaGaayzkaaWdamaaBaaajeaibaqcLbmapeGaamOAaiabgkHi TKqbaoaalaaajeaipaqaaKqzadWdbiaaigdaaKqaG8aabaqcLbmape GaaGOmaaaaaSWdaeqaaKqzGeWdbiaacckacaGGSaGaaeiOaiabes7a KjaadEhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGQbaajeaipaqaba qcLbsapeGaeyOeI0IaeqiTdqMaam4DaKqba+aadaWgaaqcbasaaKqz adWdbiaadQgacqGHsislcaaIXaaajeaipaqabaqcLbsapeGaeyOeI0 Iaam4AaOWdamaaBaaajeaibaqcLbmapeGaamOAaaWcpaqabaGcpeWa aeWaa8aabaWdbmaalaaapaqaaKqzGeWdbiaadchak8aadaWgaaqcba saaKqzadWdbiaadQgaaSWdaeqaaKqzGeWdbiabgUcaRiaadchak8aa daWgaaqcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaal8aabeaaaO qaaKqzGeWdbiaaikdaaaaakiaawIcacaGLPaaajugibiabg2da9OWa aeWaa8aabaqcLbsapeGaamOCaOWdamaaBaaajeaibaqcLbmapeGaaG inaaWcpaqabaaak8qacaGLOaGaayzkaaqcfa4damaaBaaajeaibaqc LbmapeGaamOAaiabgkHiTKqbaoaalaaajeaipaqaaKqzadWdbiaaig daaKqaG8aabaqcLbmapeGaaGOmaaaaaKqaG8aabeaajugib8qacaGG GcGaaiilaaaa@A8BF@    (42)

( ψ 1 ) δ f j +( ψ 2 ) δ f j1 +( ψ 3 ) δ u j +( ψ 4 ) δ u j1 + ( ψ 5 ) δ v j +( ψ 6 ) δ v j1 + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaabmaapaqaaKqzGeWdbiabeI8a5Lqba+aadaWg aaqcbasaaKqzadWdbiaaigdaaKqaG8aabeaaaOWdbiaawIcacaGLPa aajugibiaabckacqaH0oazcaWGMbqcfa4damaaBaaajeaibaqcLbma peGaamOAaaqcbaYdaeqaaKqzGeWdbiabgUcaROWaaeWaa8aabaqcLb sapeGaeqiYdKNcpaWaaSbaaKqaGeaajugWa8qacaaIYaaal8aabeaa aOWdbiaawIcacaGLPaaajugibiaabckacqaH0oazcaWGMbqcfa4dam aaBaaajeaibaqcLbmapeGaamOAaiabgkHiTiaaigdaaKqaG8aabeaa jugib8qacqGHRaWkkmaabmaapaqaaKqzGeWdbiabeI8a5PWdamaaBa aajeaibaqcLbmapeGaaG4maaWcpaqabaaak8qacaGLOaGaayzkaaqc LbsacaqGGcGaeqiTdqMaamyDaOWdamaaBaaajeaibaqcLbmapeGaam OAaaqcbaYdaeqaaKqzGeWdbiabgUcaROWaaeWaa8aabaqcLbsapeGa eqiYdKNcpaWaaSbaaKqaGeaajugWa8qacaaI0aaajeaipaqabaaak8 qacaGLOaGaayzkaaqcLbsacaqGGcGaeqiTdqMaamyDaOWdamaaBaaa jeaibaqcLbmapeGaamOAaiabgkHiTiaaigdaaKqaG8aabeaajugib8 qacqGHRaWkcaGGGcGcdaqadaWdaeaajugib8qacqaHipqEk8aadaWg aaqcbasaaKqzadWdbiaaiwdaaSWdaeqaaaGcpeGaayjkaiaawMcaaK qzGeGaaeiOaiabes7aKjaadAhak8aadaWgaaqcbasaaKqzadWdbiaa dQgaaKqaG8aabeaajugib8qacqGHRaWkkmaabmaapaqaaKqzGeWdbi abeI8a5PWdamaaBaaajeaibaqcLbmapeGaaGOnaaWcpaqabaaak8qa caGLOaGaayzkaaqcLbsacaqGGcGaeqiTdqMaamODaOWdamaaBaaaje aibaqcLbmapeGaamOAaiabgkHiTiaaigdaaKqaG8aabeaajugibiab gUcaRaaa@9E49@

( ψ 7 ) δ w j +( ψ 8 ) δ w j1 +( ψ 9 ) δ p j +( ψ 10 ) δ p j1 = ( r 5 ) j 1 2  , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaabmaapaqaaKqzGeWdbiabeI8a5PWdamaaBaaa jeaibaqcLbmapeGaaG4naaWcpaqabaaak8qacaGLOaGaayzkaaqcLb sacaqGGcGaeqiTdqMaam4DaKqba+aadaWgaaqcbasaaKqzadWdbiaa dQgaaKqaG8aabeaajugib8qacqGHRaWkkmaabmaapaqaaKqzGeWdbi abeI8a5PWdamaaBaaajeaibaqcLbmapeGaaGioaaWcpaqabaaak8qa caGLOaGaayzkaaqcLbsacaqGGcGaeqiTdqMaam4DaKqba+aadaWgaa qcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaajeaipaqabaqcLbsa peGaey4kaSIcdaqadaWdaeaajugib8qacqaHipqEjuaGpaWaaSbaaK qaGeaajugWa8qacaaI5aaajeaipaqabaaak8qacaGLOaGaayzkaaqc LbsacaqGGcGaeqiTdqMaamiCaKqba+aadaWgaaqcbasaaKqzadWdbi aadQgaaKqaG8aabeaajugib8qacqGHRaWkkmaabmaapaqaaKqzGeWd biabeI8a5PWdamaaBaaajeaibaqcLbmapeGaaGymaiaaicdaaSWdae qaaaGcpeGaayjkaiaawMcaaKqzGeGaaeiOaiabes7aKjaadchak8aa daWgaaqcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaal8aabeaaju gib8qacqGH9aqpkmaabmaapaqaaKqzGeWdbiaadkhajuaGpaWaaSba aKqaGeaajugWa8qacaaI1aaajeaipaqabaaak8qacaGLOaGaayzkaa qcfa4damaaBaaajeaibaqcLbmapeGaamOAaiabgkHiTKqbaoaalaaa jeaipaqaaKqzadWdbiaaigdaaKqaG8aabaqcLbmapeGaaGOmaaaaaK qaG8aabeaajugib8qacaGGGcGaaiilaaaa@9077@    (43)

δ h j δ h j1 k j ( U j + U j1 2 )= ( r 6 ) j 1 2  ,  δ U j δ U j1 k j ( V j + V j1 2 )= ( r 7 ) j 1 2  , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaamiAaOWdamaaBaaajeaibaqc LbmapeGaamOAaaWcpaqabaqcLbsapeGaeyOeI0IaeqiTdqMaamiAaK qba+aadaWgaaqcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaajeai paqabaqcLbsapeGaeyOeI0Iaam4AaKqba+aadaWgaaqcbasaaKqzad WdbiaadQgaaKqaG8aabeaak8qadaqadaWdaeaapeWaaSaaa8aabaqc LbsapeGaamyvaKqba+aadaWgaaqcbasaaKqzadWdbiaadQgaaKqaG8 aabeaajugib8qacqGHRaWkcaWGvbqcfa4damaaBaaajeaibaqcLbma peGaamOAaiabgkHiTiaaigdaaKqaG8aabeaaaOqaaKqzGeWdbiaaik daaaaakiaawIcacaGLPaaajugibiabg2da9OWaaeWaa8aabaqcLbsa peGaamOCaKqba+aadaWgaaqcbasaaKqzadWdbiaaiAdaaKqaG8aabe aaaOWdbiaawIcacaGLPaaajuaGpaWaaSbaaKqaGeaajugWa8qacaWG QbGaeyOeI0scfa4aaSaaaKqaG8aabaqcLbmapeGaaGymaaqcbaYdae aajugWa8qacaaIYaaaaaqcbaYdaeqaaKqzGeWdbiaacckacaGGSaGa aiiOaiaacckacqaH0oazcaWGvbqcfa4damaaBaaajeaibaqcLbmape GaamOAaaqcbaYdaeqaaKqzGeWdbiabgkHiTiabes7aKjaadwfajuaG paWaaSbaaKqaGeaajugWa8qacaWGQbGaeyOeI0IaaGymaaqcbaYdae qaaKqzGeWdbiabgkHiTiaadUgajuaGpaWaaSbaaKqaGeaajugWa8qa caWGQbaajeaipaqabaGcpeWaaeWaa8aabaWdbmaalaaapaqaaKqzGe WdbiaadAfajuaGpaWaaSbaaKqaGeaajugWa8qacaWGQbaajeaipaqa baqcLbsapeGaey4kaSIaamOvaKqba+aadaWgaaqcbasaaKqzadWdbi aadQgacqGHsislcaaIXaaajeaipaqabaaakeaajugib8qacaaIYaaa aaGccaGLOaGaayzkaaqcLbsacqGH9aqpkmaabmaapaqaaKqzGeWdbi aadkhajuaGpaWaaSbaaKqaGeaajugWa8qacaaI3aaajeaipaqabaaa k8qacaGLOaGaayzkaaqcfa4damaaBaaajeaibaqcLbmapeGaamOAai abgkHiTKqbaoaalaaajeaipaqaaKqzadWdbiaaigdaaKqaG8aabaqc LbmapeGaaGOmaaaaaKqaG8aabeaajugib8qacaGGGcGaaiilaaaa@ACEE@    (44)

δ V j δ V j1 k j ( W j + W j1 2 )= ( r 8 ) j 1 2  , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaamOvaKqba+aadaWgaaqcbasa aKqzadWdbiaadQgaaKqaG8aabeaajugib8qacqGHsislcqaH0oazca WGwbGcpaWaaSbaaKqaGeaajugWa8qacaWGQbGaeyOeI0IaaGymaaWc paqabaqcLbsapeGaeyOeI0Iaam4AaKqba+aadaWgaaqcbasaaKqzad WdbiaadQgaaKqaG8aabeaak8qadaqadaWdaeaapeWaaSaaa8aabaqc LbsapeGaam4vaKqba+aadaWgaaqcbasaaKqzadWdbiaadQgaaKqaG8 aabeaajugib8qacqGHRaWkcaWGxbqcfa4damaaBaaajeaibaqcLbma peGaamOAaiabgkHiTiaaigdaaKqaG8aabeaaaOqaaKqzGeWdbiaaik daaaaakiaawIcacaGLPaaajugibiabg2da9OWaaeWaa8aabaqcLbsa peGaamOCaKqba+aadaWgaaqcbasaaKqzadWdbiaaiIdaaKqaG8aabe aaaOWdbiaawIcacaGLPaaapaWaaSbaaKqaGeaajugWa8qacaWGQbGa eyOeI0scfa4aaSaaaKqaG8aabaqcLbmapeGaaGymaaqcbaYdaeaaju gWa8qacaaIYaaaaaWcpaqabaqcLbsapeGaaiiOaiaacYcaaaa@7220@    (45)

( μ 1 ) δ f j +( μ 2 ) δ f j1 +( μ 3 ) δ u j +( μ 4 ) δ u j1 +( μ 5 ) δ h j +( μ 6 ) δ h j1 + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaabmaapaqaaKqzGeWdbiabeY7aTPWdamaaBaaa jeaibaqcLbmapeGaaGymaaWcpaqabaaak8qacaGLOaGaayzkaaqcLb sacaqGGcGaeqiTdqMaamOzaOWdamaaBaaajeaibaqcLbmapeGaamOA aaWcpaqabaqcLbsapeGaey4kaSIcdaqadaWdaeaajugib8qacqaH8o qBk8aadaWgaaqcbasaaKqzadWdbiaaikdaaSWdaeqaaaGcpeGaayjk aiaawMcaaKqzGeGaaeiOaiabes7aKjaadAgajuaGpaWaaSbaaKqaGe aajugWa8qacaWGQbGaeyOeI0IaaGymaaqcbaYdaeqaaKqzGeWdbiab gUcaROWaaeWaa8aabaqcLbsapeGaeqiVd0McpaWaaSbaaKqaGeaaju gWa8qacaaIZaaal8aabeaaaOWdbiaawIcacaGLPaaajugibiaabcka cqaH0oazcaWG1bqcfa4damaaBaaajeaibaqcLbmapeGaamOAaaqcba YdaeqaaKqzGeWdbiabgUcaROWaaeWaa8aabaqcLbsapeGaeqiVd0wc fa4damaaBaaajeaibaqcLbmapeGaaGinaaqcbaYdaeqaaaGcpeGaay jkaiaawMcaaKqzGeGaaeiOaiabes7aKjaadwhajuaGpaWaaSbaaKqa GeaajugWa8qacaWGQbGaeyOeI0IaaGymaaqcbaYdaeqaaKqzGeWdbi abgUcaROWaaeWaa8aabaqcLbsapeGaeqiVd0McpaWaaSbaaKqaGeaa jugWa8qacaaI1aaal8aabeaaaOWdbiaawIcacaGLPaaajugibiaabc kacqaH0oazcaWGObqcfa4damaaBaaajeaibaqcLbmapeGaamOAaaqc baYdaeqaaKqzGeWdbiabgUcaROWaaeWaa8aabaqcLbsapeGaeqiVd0 wcfa4damaaBaaajeaibaqcLbmapeGaaGOnaaqcbaYdaeqaaaGcpeGa ayjkaiaawMcaaKqzGeGaaeiOaiabes7aKjaadIgajuaGpaWaaSbaaK qaGeaajugWa8qacaWGQbGaeyOeI0IaaGymaaqcbaYdaeqaaKqzGeWd biabgUcaRaaa@9E7B@ ( μ 7 ) δ U j +( μ 8 ) δ U j1 +( μ 9 ) δ V j +( μ 10 ) δ V j1 = ( r 9 ) j 1 2  , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaabmaapaqaaKqzGeWdbiabeY7aTPWdamaaBaaa jeaibaqcLbmapeGaaG4naaWcpaqabaaak8qacaGLOaGaayzkaaqcLb sacaqGGcGaeqiTdqMaamyvaKqba+aadaWgaaqcbasaaKqzadWdbiaa dQgaaKqaG8aabeaajugib8qacqGHRaWkkmaabmaapaqaaKqzGeWdbi abeY7aTLqba+aadaWgaaqcbasaaKqzadWdbiaaiIdaaKqaG8aabeaa aOWdbiaawIcacaGLPaaajugibiaabckacqaH0oazcaWGvbqcfa4dam aaBaaajeaibaqcLbmapeGaamOAaiabgkHiTiaaigdaaKqaG8aabeaa jugib8qacqGHRaWkkmaabmaapaqaaKqzGeWdbiabeY7aTPWdamaaBa aajeaibaqcLbmapeGaaGyoaaWcpaqabaaak8qacaGLOaGaayzkaaqc LbsacaqGGcGaeqiTdqMaamOvaKqba+aadaWgaaqcbasaaKqzadWdbi aadQgaaKqaG8aabeaajugib8qacqGHRaWkkmaabmaapaqaaKqzGeWd biabeY7aTLqba+aadaWgaaqcbasaaKqzadWdbiaaigdacaaIWaaaje aipaqabaaak8qacaGLOaGaayzkaaqcLbsacaqGGcGaeqiTdqMaamOv aKqba+aadaWgaaqcbasaaKqzadWdbiaadQgacqGHsislcaaIXaaaje aipaqabaqcLbsapeGaeyypa0JcdaqadaWdaeaajugib8qacaWGYbGc paWaaSbaaKqaGeaajugWa8qacaaI5aaal8aabeaaaOWdbiaawIcaca GLPaaajuaGpaWaaSbaaKqaGeaajugWa8qacaWGQbGaeyOeI0scfa4a aSaaaKqaG8aabaqcLbmapeGaaGymaaqcbaYdaeaajugWa8qacaaIYa aaaaqcbaYdaeqaaKqzGeWdbiaacckacaGGSaaaaa@9046@     (46)

subject to boundary conditions

δ f 0 =0,  δ w 0 =0,  λδ u 0 δ v 0 +Kδ p 0 = v 0 K p 0 λ u 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaamOzaOWdamaaBaaajeaibaqc LbmapeGaaGimaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcaca GGGcGaaeiOaiabes7aKjaadEhak8aadaWgaaqcbasaaKqzadWdbiaa icdaaSWdaeqaaKqzGeWdbiabg2da9iaaicdacaGGSaGaaeiOaiaabc kacqaH7oaBcqaH0oazcaWG1bqcfa4damaaBaaajeaibaqcLbmapeGa aGimaaqcbaYdaeqaaKqzGeWdbiabgkHiTiabes7aKjaadAhak8aada WgaaqcbasaaKqzadWdbiaaicdaaSWdaeqaaKqzGeWdbiabgUcaRiaa dUeacqaH0oazcaWGWbqcfa4damaaBaaajeaibaqcLbmapeGaaGimaa qcbaYdaeqaaKqzGeWdbiabg2da9iaadAhajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIWaaajeaipaqabaqcLbsapeGaeyOeI0Iaam4saiaadc hajuaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLbsa peGaeyOeI0Iaeq4UdWMaamyDaKqba+aadaWgaaqcbasaaKqzadWdbi aaicdaaKqaG8aabeaajugib8qacaGGSaaaaa@7B51@    (47)

δ V 0 =0,  λδ h 0 δ U 0 +Kδ W 0 = U 0 K W 0 λ h 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqiTdqMaamOvaOWdamaaBaaajeaibaqc LbmapeGaaGimaaWcpaqabaqcLbsapeGaeyypa0JaaGimaiaacYcaca qGGcGaaeiOaiabeU7aSjabes7aKjaadIgajuaGpaWaaSbaaKqaGeaa jugWa8qacaaIWaaajeaipaqabaqcLbsapeGaeyOeI0IaeqiTdqMaam yvaOWdamaaBaaajeaibaqcLbmapeGaaGimaaWcpaqabaqcLbsapeGa ey4kaSIaam4saiabes7aKjaadEfak8aadaWgaaqcbasaaKqzadWdbi aaicdaaSWdaeqaaKqzGeWdbiabg2da9iaadwfajuaGpaWaaSbaaKqa GeaajugWa8qacaaIWaaajeaipaqabaqcLbsapeGaeyOeI0Iaam4sai aadEfajuaGpaWaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaqc LbsapeGaeyOeI0Iaeq4UdWMaamiAaOWdamaaBaaajeaibaqcLbmape GaaGimaaWcpaqabaqcLbsacaGGSaaaaa@6EF0@  (48)

where ( ψ 1 ) j = ( ψ 2 ) j = k j 4 ( v j + v j1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaabmaapaqaaKqzGeWdbiabeI8a5PWdamaaBaaa jeaibaqcLbmapeGaaGymaaWcpaqabaaak8qacaGLOaGaayzkaaqcfa 4damaaBaaajeaibaqcLbmapeGaamOAaaqcbaYdaeqaaKqzGeWdbiab g2da9OWaaeWaa8aabaqcLbsapeGaeqiYdKNcpaWaaSbaaKqaGeaaju gWa8qacaaIYaaal8aabeaaaOWdbiaawIcacaGLPaaajuaGpaWaaSba aKqaGeaajugWa8qacaWGQbaajeaipaqabaqcLbsapeGaeyypa0Jcda WcaaWdaeaajugib8qacaWGRbqcfa4damaaBaaajeaibaqcLbmapeGa amOAaaqcbaYdaeqaaaGcbaqcLbsapeGaaGinaaaakmaabmaapaqaaK qzGeWdbiaadAhajuaGpaWaaSbaaKqaGeaajugWa8qacaWGQbaajeai paqabaqcLbsapeGaey4kaSIaamODaOWdamaaBaaajeaibaqcLbmape GaamOAaiabgkHiTiaaigdaaSWdaeqaaaGcpeGaayjkaiaawMcaaaaa @6620@ etc. The resulting linearized system of algebraic equations is solved by the block–elimination method. In matrix–vector form, the above system can be written as

Aδ=r, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8xqaiaa=r7acqGH9aqpcaWFYbGa aiilaaaa@4061@    (49)

in which

A=[ [ A 1 ] [ C 1 ] [ B 1 ] [ A 2 ] [ C 2 ] [ B J1 ] [ A J1 ] [ C J1 ] [ B J ] [ A J ] ],δ=[ [ δ 1 ] [ δ 2 ] [ δ J1 ] [ δ J ] ],r=[ [ r 1 ] [ r 2 ] [ r J1 ] [ r J ] ], MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyqaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7daWadaqaauaabeqahCaaaaaa baWaamWaaeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaaGccaGLBbGaay zxaaaabaWaamWaaeaacaWGdbWaaSbaaSqaaiaaigdaaeqaaaGccaGL BbGaayzxaaaabaaabaaabaaabaaabaaabaWaamWaaeaacaWGcbWaaS baaSqaaiaaigdaaeqaaaGccaGLBbGaayzxaaaabaWaamWaaeaacaWG bbWaaSbaaSqaaiaaikdaaeqaaaGccaGLBbGaayzxaaaabaWaamWaae aacaWGdbWaaSbaaSqaaiaaikdaaeqaaaGccaGLBbGaayzxaaaabaaa baaabaaabaaabaaabaGaeSy8I8eabaGaeSy8I8eabaGaeSy8I8eaba aabaaabaaabaaabaaabaGaeSy8I8eabaGaeSy8I8eabaGaeSy8I8ea baaabaaabaaabaaabaaabaGaeSy8I8eabaGaeSy8I8eabaGaeSy8I8 eabaaabaaabaaabaaabaaabaWaamWaaeaacaWGcbWaaSbaaSqaaiaa dQeacqGHsislcaaIXaaabeaaaOGaay5waiaaw2faaaqaamaadmaaba GaamyqamaaBaaaleaacaWGkbGaeyOeI0IaaGymaaqabaaakiaawUfa caGLDbaaaeaadaWadaqaaiaadoeadaWgaaWcbaGaamOsaiabgkHiTi aaigdaaeqaaaGccaGLBbGaayzxaaaabaaabaaabaaabaaabaaabaWa amWaaeaacaWGcbWaaSbaaSqaaiaadQeaaeqaaaGccaGLBbGaayzxaa aabaWaamWaaeaacaWGbbWaaSbaaSqaaiaadQeaaeqaaaGccaGLBbGa ayzxaaaaaaGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaacYcaca aMc8UaaGPaVlaahs7acaaMc8UaaGPaVlabg2da9iaaykW7caaMc8+a amWaaeaafaqabeqbbaaaaeaadaWadaqaaiabes7aKnaaBaaaleaaca aIXaaabeaaaOGaay5waiaaw2faaaqaamaadmaabaGaeqiTdq2aaSba aSqaaiaaikdaaeqaaaGccaGLBbGaayzxaaaabaGaeSy8I8eabaWaam WaaeaacqaH0oazdaWgaaWcbaGaamOsaiabgkHiTiaaigdaaeqaaaGc caGLBbGaayzxaaaabaWaamWaaeaacqaH0oazdaWgaaWcbaGaamOsaa qabaaakiaawUfacaGLDbaaaaaacaGLBbGaayzxaaGaaGPaVlaaykW7 caGGSaGaaGPaVlaaykW7caaMc8UaaCOCaiaaykW7caaMc8Uaeyypa0 JaaGPaVlaaykW7caaMc8+aamWaaeaafaqabeqbbaaaaeaadaWadaqa aiaadkhadaWgaaWcbaGaaGymaaqabaaakiaawUfacaGLDbaaaeaada WadaqaaiaadkhadaWgaaWcbaGaaGOmaaqabaaakiaawUfacaGLDbaa aeaacqWIXlYtaeaadaWadaqaaiaadkhadaWgaaWcbaGaamOsaiabgk HiTiaaigdaaeqaaaGccaGLBbGaayzxaaaabaWaamWaaeaacaWGYbWa aSbaaSqaaiaadQeaaeqaaaGccaGLBbGaayzxaaaaaaGaay5waiaaw2 faaiaaykW7caaMc8Uaaiilaaaa@CF90@    (50)

where the elements inA are of 9×9 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGyoaiabgEna0kaaiMdaaaa@3F4F@ matrices and that of δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hTdaaa@3CF6@ and r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8NCaaaa@3CB1@ are respectively of order 9×1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGyoaiabgEna0kaaigdaaaa@3F47@ . Now, we let

A=LU, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8xqaiabg2da9iaa=XeacaWFvbGa aiilaaaa@3FD9@    (51)

where L is a lower and U is an upper triangular matrix.

Equation (51) can be substituted into Equation (49) to get

LUδ=r. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8htaiaa=vfacaWF0oGaeyypa0Ja a8NCaiaac6caaaa@4144@    (52)

Defining

Uδ=W, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8xvaiaa=r7acqGH9aqpcaWFxbGa aiilaaaa@405A@ (53)

Equation (52) becomes

LW=r, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8htaiaa=DfacqGH9aqpcaWFYbGa aiilaaaa@400C@  (54)

where the elements of W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa83vaaaa@3C96@ are 9×1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaGyoaiabgEna0kaaigdaaaa@3F47@ column matrices. The elements of W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa83vaaaa@3C96@ can be solved from Equation (54). Once the elements of W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa83vaaaa@3C96@ are found, Equation (53) then gives the solution δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hTdaaa@3CF6@ . When the elements of δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaieWajugibabaaaaaaaaapeGaa8hTdaaa@3CF6@ are found, Equation (49) can be used to find the next iteration.

Numerical results and discussions

The values of f' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaiaacEcaaaa@3D48@ and h' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcaaaa@3D4A@ are displayed graphically for different values of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ , K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saaaa@3C82@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ are presented in Figures 2–6. The influences of pertinent parameters on the streamlines have been shown in Figures 7–8 while the impact of these parameters on f ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaGbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaaaa@3FCE@ , α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdegaaa@3D51@ ,   h ' ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadIgak8aadaahaaWcbeqaaKqz GeWdbiaacEcaaaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaaaaa@4258@ and stagnation points are displayed in Tables 1–5. The comparison of numerical values of f ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaGbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaaaa@3FCE@ , α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdegaaa@3D51@ and   h ' ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadIgak8aadaahaaWcbeqaaKqz GeWdbiaacEcaaaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaaaaa@4258@ in the special cases with that of existing in the literature are presented in Tables 6–7.

Figure 2 displays the variation in horizontal velocity component under the influence of slip parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ . Dashed lines show the results for viscous and solid lines for the couple stress fluid. We observe that f' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaiaacEcaaaa@3D48@ decreases by decreasing λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ . Moreover, couple stress parameter enhances the effects of slip parameter. Analysis showing the impact of couple stress parameter k on f' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaiaacEcaaaa@3D48@ for fixed λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ is presented in Figure 3. It is clear from this figure that f' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaiaacEcaaaa@3D47@ is an increasing function of k. We observe some alteration inside the boundary layer. However, the curve becomes smooth at the free stream. Effects of slip parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ on h' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcaaaa@3D4A@ for two values of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ when K= 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saiabg2da9iaacckacaaIWaGaaiOl aiaaiwdaaaa@40D7@ have been provided in Figure 4. According to this figure h' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcaaaa@3D4A@ decreases for positive values of and increases for negative values of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ . Figure 5 is displayed to analyze the behavior of h' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcaaaa@3D4A@ under the influence of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ both for the no–slip and partial slip cases. It is noted that an increment in the value of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ results in the decrease of h' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcaaaa@3D4A@ . This decrease is more significant on the rough surface (when λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyOKH4QaeyOhIukaaa@40C4@ ). Influence of parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ on h' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcaaaa@3D4A@ for two values of k when λ=2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JaaGOmaaaa@3F28@ is presented in Figure 6. The analysis shows that h' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcaaaa@3D4A@ decreases by increasing β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ .This decrease is diminished by enlarging couple stress parameter k.

The streamlines explored in Figure 7 show the influence of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ on the stagnation point in the presence of slip when γ=8 and K=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdCMaeyypa0JaaGioaiaacckacaqG HbGaaeOBaiaabsgacaGGGcGaam4saiabg2da9iaaicdacaGGUaGaaG ynaaaa@4826@ . It has been observed that the stagnation point moves towards left by increasing β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ . Streamlines showing the impact of slip and couple stress parameters are expressed in Figure 8. It is evident that stagnation point shifts towards right by increasing λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ as well as k when β=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaeyypa0JaaGimaaaa@3F13@ .

Influence of parameters λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ and k on the skin friction coefficient λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ and boundary layer displacement α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdegaaa@3D51@ has been provided through Table 1. It is observed through Table 1 that f ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaGbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaaaa@3FCE@ increases by increasing λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ and decreases by increasing k. Likewise, α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdegaaa@3D51@ is increased by enhancing λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ and k independently.Impact of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ on   h ' ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadIgak8aadaahaaWcbeqaaKqz GeWdbiaacEcaaaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaaaaa@4258@ is shown in Table 2. It has been observed that   h ' ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadIgak8aadaahaaWcbeqaaKqz GeWdbiaacEcaaaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaaaaa@4258@ gains the magnitude by enhancing λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ for β0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaeyizImQaaGimaaaa@3FC2@ and loses for β>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaeyOpa4JaaGimaaaa@3F15@ . Data showing   h ' ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadIgak8aadaahaaWcbeqaaKqz GeWdbiaacEcaaaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaaaaa@4258@ for various values of k is represented through Table 3. It is observed that   h ' ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadIgak8aadaahaaWcbeqaaKqz GeWdbiaacEcaaaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaaaaa@4258@ gains the magnitude as k is accelerated for β0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaeyyzImRaaGimaaaa@3FD3@ and loses its values for β<0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaeyipaWJaaGimaaaa@3F11@ . The movement of the stagnation point under the influence of increasing λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ ,k and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ is demonstrated through Tables 4–5. We observe that stagnation point moves towards right on the x–axis by raising both λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ and K while it shifts leftwards by augmenting β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ . The tabular results shown in Tables 4–5 do confirm the investigations made through Figures 7–8.

The numerical data regarding f ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaGbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaaaa@3FCE@ , α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdegaaa@3D51@ and h'( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcakmaabmaapaqaaKqzGeWd biaaicdaaOGaayjkaiaawMcaaaaa@404F@ in the limiting case (when λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyOKH4QaeyOhIukaaa@40C4@ ) acknowledges the values already recorded in the research articles.13,14 This evidence certifies the correctness of our investigation.

Figure 2 Effects of slip parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ on f'( η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaiaacEcakmaabmaapaqaaKqzGeWd biabeE7aObGccaGLOaGaayzkaaaaaa@413F@ for viscous and couple stress fluids.

Figure 3 Impact of couple stress parameter k on f'( η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaiaacEcakmaabmaapaqaaKqzGeWd biabeE7aObGccaGLOaGaayzkaaaaaa@413F@ when λ=2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JaaGOmaaaa@3F28@ .

Figure 4 Influence of slip parameter λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ on h'( η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcakmaabmaapaqaaKqzGeWd biabeE7aObGccaGLOaGaayzkaaaaaa@4141@ when K= 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saiabg2da9iaacckacaaIWaGaaiOl aiaaiwdaaaa@40D7@  for two different values of β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ .

Figure 5 Influence of parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ on h'( η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcakmaabmaapaqaaKqzGeWd biabeE7aObGccaGLOaGaayzkaaaaaa@4141@ when K= 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saiabg2da9iaacckacaaIWaGaaiOl aiaaiwdaaaa@40D7@  for two different values of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ .

Figure 6 Influence of parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ on h'( η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcakmaabmaapaqaaKqzGeWd biabeE7aObGccaGLOaGaayzkaaaaaa@4141@ when λ= 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JaaiiOaiaaikdaaaa@404C@  for different values of k.

(A) γ=8, K=0.5, λ=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdCMaeyypa0JaaGioaiaacYcacaGG GcGaam4saiabg2da9iaaicdacaGGUaGaaGynaiaacYcacaGGGcGaeq 4UdWMaeyypa0JaaGimaiaac6cacaaI1aaaaa@4BAF@

(B) γ=8, K=0.5, λ=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdCMaeyypa0JaaGioaiaacYcacaGG GcGaam4saiabg2da9iaaicdacaGGUaGaaGynaiaacYcacaGGGcGaeq 4UdWMaeyypa0JaaGimaiaac6cacaaI1aaaaa@4BAF@

Figure 7 Streamlines showing the effects of parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@

.
  • (A) γ=8, K=0.5, β=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdCMaeyypa0JaaGioaiaacYcacaGG GcGaam4saiabg2da9iaaicdacaGGUaGaaGynaiaacYcacaGGGcGaeq OSdiMaeyypa0JaaGimaaaa@4A2B@

    (B) γ=10,λ=2, β=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdCMaeyypa0JaaGymaiaaicdacaGG SaGaeq4UdWMaeyypa0JaaGOmaiaacYcacaGGGcGaeqOSdiMaeyypa0 JaaGimaaaa@492F@

    Figure 8 Influence of slip parameter and couple stress parameter on streamlines.

 

K=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa83saiaa=1dacaWFWaGaa8Nlaiaa =vdaaaa@3F61@

K=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa83saiaa=1dacaWF1aaaaa@3E01@

K=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa83saiaa=1dacaWFXaGaa8hmaaaa @3EAE@

λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa83Udaaa@3D00@

f''( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8Nzaiaa=DcacaWFNaGcdaqadaWd aeaajugib8qacaWFWaaakiaawIcacaGLPaaaaaa@40F4@

α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8xSdaaa@3CF6@

f''( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8Nzaiaa=DcacaWFNaGcdaqadaWd aeaajugib8qacaWFWaaakiaawIcacaGLPaaaaaa@40F4@

α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8xSdaaa@3CF6@

f''( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8Nzaiaa=DcacaWFNaGcdaqadaWd aeaajugib8qacaWFWaaakiaawIcacaGLPaaaaaa@40F4@

α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8xSdaaa@3CF6@

0.05

0.024513

0.016329

0.011422

0.018947

0.008514

0.020793

0.1

0.047914

0.032162

0.022481

0.037498

0.016793

0.041183

0.5

0.201357

0.142545

0.099287

0.172333

0.075344

0.1903459

1.0

0.331885

0.24714

0.171830

0.310541

0.132596

0.345523

2.0

0.482678

0.384176

0.266567

0.510465

0.210874

0.575286

5.0

0.645204

0.559482

0.385209

0.801933

0.315692

0.923349

10

0.717872

0.651212

0.444105

0.969866

0.370759

1.130525

50

0.782587

0.742733

0.498917

1.145315

0.423622

1.350408

100

0.791011

0.755479

0.506158

1.170181

0.430701

1.381723

500

0.797793

0.765898

0.511999

1.190562

0.436424

1.407399

0.799494

0.768534

0.513465

1.195725

0.437862

1.413905

Table 1 Variation in f ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaGbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaaaa@3FCE@ and α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdegaaa@3D51@ under the influence of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ .

β=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFWaaaaa@3E66@  

β=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWF1aaaaa@3E6B@

β=-5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFTaGaa8xnaaaa @3F19@

0.05

0.429505

0.307015

0.551994

0.1

0.443315

0.203884

0.682746

0.5

0.542598

–0.463751

1.548947

1.0

0.641277

–1.017849

2.300403

2.0

0.776652

–1.637394

3.190698

5.0

0.958302

–2.270844

4.187448

10

1.056333

–2.537892

4.650558

50

1.155641

–2.764100

5.075382

100

1.169566

–2.792576

5.131708

500

1.180963

–2.815320

5.177246

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeyOhIukaaa@3D23@

1.183848

–2.820999

5.188695

Table 2 Variation in h'( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcakmaabmaapaqaaKqzGeWd biaaicdaaOGaayjkaiaawMcaaaaa@404F@ under the influence of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ when K=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saiabg2da9iaaicdacaGGUaGaaGyn aaaa@3FB3@ .

K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa83saaaa@3C8D@

β=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFWaaaaa@3E66@  

β=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWaqaaaaaaaaaWdbiaa=j7acaWF9aGaa8xnaaaa@3DDC@

β=-5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWaqaaaaaaaaaWdbiaa=j7acaWF9aGaa8xlaiaa=vdaaaa@3E8A@

0

0.540232

–2.427089

3.507552

0.5

0.641277

–1.017849

2.300403

1

0.670213

–0.749052

2.089478

5

0.770745

–0.152261

1.693750

10

0.834636

0.138111

1.531161

50

0.949295

0.709083

1.189507

100

0.972800

0.840434

1.105165

500

0.994183

0.965210

1.023155

5000

0.999406

0.996439

1.002374

Table 3 Variation in h'( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiAaiaacEcakmaabmaapaqaaKqzGeWd biaaicdaaOGaayjkaiaawMcaaaaa@404F@ under the influence of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saaaa@3C82@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ when λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JaaGymaaaa@3F27@ .

γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa83Sdaaa@3CF8@

λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa83Udaaa@3D00@

β=-3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFTaGaa83maaaa @3F17@

β=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFWaaaaa@3E66@

β=3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFZaaaaa@3E69@

1

0.5

2.558763

–0.4412284

–3.441220

5.0

3.197895

0.1979019

–2.802092

2

0.5

5.117527

–0.8824568

–6.882440

5.0

6.395791

0.3958038

–5.604183

5

0.5

12.79382

–2.2061420

–17.20610

5.0

15.98948

0.9895095

–14.01046

8

0.5

20.47011

–3.5298270

–27.52976

5.0

25.58316

1.5832150

–22.41673

Table 4 Variation in the stagnation point ( x s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaabmaapaqaaKqzGeWdbiaadIhak8aadaWgaaqc basaaKqzadWdbiaadohaaSWdaeqaaaGcpeGaayjkaiaawMcaaaaa@4125@ under the influence of parameters of λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ , β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ and γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdCgaaa@3D59@ when K=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saiabg2da9iaaigdaaaa@3E43@ .

γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa83Sdaaa@3CF8@

K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa83saaaa@3C8D@

β=-3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFTaGaa83maaaa @3F17@

β=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFWaaaaa@3E66@

β=3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFZaaaaa@3E69@

1

0.5

2.667206

–0.3327937

–3.332794

5.0

2.870132

–0.1293493

–3.128831

2

0.5

5.334413

–0.6655873

–6.665587

5.0

5.740265

–0.2586985

–6.257662

5

0.5

13.33603

–1.6639680

–16.66397

5.0

14.35066

–0.6467463

–15.64415

8

0.5

21.33765

–2.6623490

–26.66235

5.0

22.96106

–1.0347940

–25.03065

Table 5 Variation in the stagnation point ( x s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaqaaaaaaaaaWdbmaabmaapaqaaKqzGeWdbiaadIhajuaGpaWaaSba aKqaGeaajugWa8qacaWGZbaajeaipaqabaaak8qacaGLOaGaayzkaa aaaa@41C8@ under the influence of parameters of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saaaa@3C82@ β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ ,and γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4SdCgaaa@3D59@ when λ=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JaaGymaaaa@3F27@

f''( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8Nzaiaa=DcacaWFNaGcdaqadaWd aeaajugib8qacaWFWaaakiaawIcacaGLPaaaaaa@40F4@

α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8xSdaaa@3CF6@

Present result when K=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saiabg2da9iaaicdaaaa@3E42@

Result by Labropulu et al.14 when ε=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduMaeyypa0JaaGimaaaa@3F19@

Present result
when K=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saiabg2da9iaaicdaaaa@3E42@

Result by Labropulu et al.14
when ε=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduMaeyypa0JaaGimaaaa@3F19@

1.232594

1.23259

0.6479025

0.64790

Table 6 Comparison of computed results of f''( 0 )  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOzaiaacEcacaGGNaGcdaqadaWdaeaa jugib8qacaaIWaaakiaawIcacaGLPaaajugibiaacckaaaa@42AA@ and α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdegaaa@3D51@ with that of Labropulu et al.14 for no–slip case ( λ= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JaeyOhIukaaa@3FDD@ ).

  h ' ( 0 )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8hOaiaa=Hgak8aadaahaaWcbeqa aKqzGeWdbiaa=DcaaaGcdaqadaWdaeaajugib8qacaWFWaaakiaawI cacaGLPaaajugibiaa=bkaaaa@4404@

β=5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWaqaaaaaaaaaWdbiaa=j7acaWF9aGaa8xnaaaa@3DDC@

β=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFWaaaaa@3E66@

β=α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFXoaaaa@3EEA@

β=-α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aaiqWajugibabaaaaaaaaapeGaa8NSdiaa=1dacaWFTaGaa8xSdaaa @3F98@

Present results when K=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4saiabg2da9iaaicdaaaa@3E42@

–4.756217

1.406514

2.205136

0.607917

Results by Labropulu et al.14 when ε=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduMaeyypa0JaaGimaaaa@3F19@

−4.7562

1.4065

2.2051

0.6079

Results by Li et al.13 when ε=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqyTduMaeyypa0JaaGimaaaa@3F19@

−4.756

1.4063

2.2049

0.6077

Table 7 Comparison of computed results of   h ' ( 0 )  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadIgak8aadaahaaWcbeqaaKqz GeWdbiaacEcaaaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaajugibiaacckaaaa@440B@ with that of Li et al.13 and Labropulu et al.14 for no–slip case ( λ= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWMaeyypa0JaeyOhIukaaa@3FDD@ ).

Conclusion

In this paper, oblique flow of a couple stress fluids near stagnation point over a lubricated plate is investigated. A power–law fluid has been used as a lubricant. To obtain similar solution of the flow problem, we have fixed n=1/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamOBaiabg2da9iaaigdacaGGVaGaaGOm aaaa@3FD5@ . The Keller–box method is employed to solve the flow problem numerically. Our interest is to figure out the effects of free parameter β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdigaaa@3D53@ and couple stress parameter k on the flow characteristics on the lubricated surface. Obtained results in the special case are compared.13,14 It has been concluded that:

  1. Slip produced on the surface increases the velocity of the bulk fluid and abolishes the effects of free stream velocity for large values.
  2. The stagnation point is shifted towards right and left along x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiEaaaa@3CAE@ –axis under the influence of physical parameters in the presence of lubrication.
  3. The skin friction coefficient f ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGabmOza8aagaGbaOWdbmaabmaapaqaaKqz GeWdbiaaicdaaOGaayjkaiaawMcaaaaa@3FCE@ increases by increasing λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ and decreases by increasing k. However boundary layer displacement α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqySdegaaa@3D51@ is increased by enhancing λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ and/or k .
  4. It has been observed that   h ' ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadIgak8aadaahaaWcbeqaaKqz GeWdbiaacEcaaaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaaaaa@4258@ gains the magnitude by enhancing λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeq4UdWgaaa@3D66@ for β0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaeyizImQaaGimaaaa@3FC2@ and loses for β>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaeyOpa4JaaGimaaaa@3F15@ .Data showing   h ' ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadIgak8aadaahaaWcbeqaaKqz GeWdbiaacEcaaaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaaaaa@4258@ for various values of k is represented through Table 3. It is observed that   h ' ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaaiiOaiaadIgak8aadaahaaWcbeqaaKqz GeWdbiaacEcaaaGcdaqadaWdaeaajugib8qacaaIWaaakiaawIcaca GLPaaaaaa@4258@ gains the magnitude as k is accelerated for β0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaeyyzImRaaGimaaaa@3FD3@ and loses its values for β<0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacPqFH0xe9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaeqOSdiMaeyipaWJaaGimaaaa@3F11@ .

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

  1. Stokes VK. Couple stresses in fluids. Physics of Fluids. 1966;9(9):1709–1715.
  2. Devakar M, Iyengar TKV. Run up flow of a couple stress fluid between parallel plates. Non–linear Analysis: Modelling and Control. 2010;15(1):29–37.
  3. Devakar M, Iyengar TKV. Stokes’ problems for an incompressible couple stress fluid. Non–linear Analysis: Modelling and Control. 2008;1(2):181–190.
  4. Hayat T, Mustafa M, Iqbal Z, et al. Stagnation point flow of couple stress fluid with melting heat transfer. Applied Mathematics and Mechanics. 2013;34(2):167–176.
  5. Muthuraj R, Srinivas S, Immaculate DL. Heat and mass transfer effects on MHD fully developed flow of a couple stress fluid in a vertical channel with viscous dissipation and oscillating wall temperature. International Journal of Applied Mathematics and Mechanics. 2013;9:95–117.
  6. Srinivasacharya D, Srinivasacharyulu N, Odelu O. Flow and heat transfer of couple stress fluid in a porous channel with expanding and contracting walls. International Communications in Heat and Mass Transfer. 2009;36(2):180–185.
  7. Hiremath PS, Patil PM. Free convection effects on the oscillating flow of a couple stress fluid through a porous medium. Acta Mechanica. 1993;98:143–158.
  8. Umavathi JC, Chamka AJ, Manjula MH, et al. Flow and heat transfer for a couple stress fluid sandwiched between viscous fluid layers. Canadian Journal of Physics. 2005;83(7):705–720.
  9. Hiemenz K. Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder. Dinglers Polytech Journal. 1911;326:321–324.
  10. Stuart JT. The viscous flow near a stagnation–point when the external flow has uniform vorticity. Journal of the Aerospace Sciences. 1959;26;124–125.
  11. Tamada KJ. Two–dimensional stagnation–point flow impinging obliquely on a plane wall. Journal of the Physical Society of Japan. 1979;46:310–311.
  12. Dorrepaal JM. An exact solution of the Navier–Stokes equation which describes non–orthogonal stagnation–point flow in two dimensions. Journal of Fluid Mechanics. 1986;163:141–147.
  13.  Li D, Labropulu F, Pop I. Oblique stagnation–point flow of a viscoelastic fluid with heat transfer. International Journal of Non–Linear Mechanics. 2009;44:1024–1030.
  14. Labropulu F, Ghaffar A. Oblique Newtonian fluid flow with heat transfer towards a stretching sheet. Computational Problems in Engineering. 2014;307:93–103.
  15. Weidman PD, Putkaradze V. Axisymmetric stagnation flow obliquely impinging on a circular cylinder. European Journal of Mechanics. 2003;22(2):123–131.
  16. Ghaffari T, Javed, Labropulu F. Oblique stagnation point flow of a non–Newtonian nanofluid over stretching surface with radiation: A numerical study. Thermal Science. 2015;21(5):2139–2153.
  17. Javed T, Ghaffari A, Ahmad H. Numerical study of unsteady MHD oblique stagnation point flow with heat transfer over an oscillating flat plate. Canadian Journal of Physics. 2015;93(10):1138–1143.
  18. Ghaffari A, Javed T, Majeed A. Influence of radiation on non–Newtonian fluid in the region of oblique stagnation point flow in a porous medium: A numerical study. Transport in Porous Media. 2016;113(1):245–266.
  19. Wang CY. Stagnation flows with slip: Exact solution of the Navier–Stokes equations. Zeitschrift für angewandte Mathematik und Physik ZAMP. 2003;54(1):184–189.
  20. Devakar M, Sreenivasu D, Shankar B. Analytical solution of couple stress fluid flows with slip boundary condition. Alexandria Engineering Journal. 2014;53(3):723–730.
  21. Labropulu F, Li D. Stagnation–point flow of a second–grade fluid with slip. International Journal of Non–Linear Mechanics. 2008;43(9):941–947.
  22. Blyth MG, Pozrikidis C. Stagnation–point flow against a liquid film on a plane wall. Acta Mechanica. 2005;180(4):203–219.
  23. Santra B, Dandapat BS, Andersson HI. Axisymmetric stagnation–point flow over a lubricated surface. Acta Mechanica. 2007;194(4):1–10.
  24. Sajid M, Mahmood K, Abbas Z. Axisymmetric stagnation–point flow with a general slip boundary condition over a lubricated surface. Chinese Physics Letters. 2012;29(2):024702.
  25. Thompson PA, Troian SM. A general boundary condition for liquid flow at solid surfaces. Nature. 1997;389:360–362.
  26. Mahmood K, Sajid M, Ali N. Non–orthogonal Stagnation–point Flow of a Second–grade Fluid Past a Lubricated Surface. ZNA. 2016;71(3):273–280.
  27. Mehmood R, Rana S,  Nadeem S. Transverse thermopherotic MHD Oldroyd–B fluid with Newtonian heating. Results in Physics. 2018;8:686–693.
  28. Tabassum R, Mehmood R, Akbar NS. Magnetite micropolar nanofluid non–aligned MHD flow with mixed convection. The European Physical Journal Plus. 2017;132:275.
  29. Tabassum R, Mehmood S, Nadeem S. Impact of viscosity variation and micro rotation on oblique transport of Cu–water fluid. Journal of Colloid and Interface Science. 2017;501:304–310.
  30. Mehmood R, Nadeem S, Saleem S. Flow and heat transfer analysis of Jeffery nano fluid impinging obliquely over a stretched plate. Journal of the Taiwan Institute of Chemical Engineers. 2017;74:49–58.
  31. Rana S, Mehmood R, Narayana PVS, et al. Free convective nonaligned non–Newtonian flow with non–linear thermal radiation. Communications in Theoretical Physics. 2016;66(6):687–693.
  32. Rana S, Mehmood R, Akbar NS. Mixed convective oblique flow of a Casson fluid with partial slip, internal heating and homogeneous–heterogeneous reactions. Journal of Molecular Liquids. 2016;222:1010–1019.
  33. Na TY. Computational Methods in Engineering Boundary Value Problem. USA: Academic Press; 1979.
  34. Cebeci T, Bradshaw P. Physical and Computational Aspects of Convective Heat Transfer. USA: Springer; 1984.
  35. Keller HB, Cebeci T. Accurate Numerical Methods for Boundary Layer Flows II: Two Dimentional Turbulent Flows. AIAA Journal. 1972;10(9):1193–1199.
  36. Keller HB. A new difference scheme for parabolic problems, in Numerical Solution of Partial–Differential Equations. In: Bramble J, editor. USA: Academic Press; 1970.
  37. Ramesh K, Devakar M. Effects of Heat and Mass Transfer on the Peristaltic Transport of MHD Couple Stress Fluid through Porous Medium in a Vertical Asymmetric Channel. Journal of Fluids; 2015:1–20.
  38. Tooke RM, Blyth MG. A note on oblique stagnation–point flow. Physics of Fluids. (2008);20(3).
Creative Commons Attribution License

©2018 Mahmood, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.