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Introduction
Flow of non–Newtonian fluids has attracted attention of many 

scientists and researchers because of their fundamental and practical 
importance in the industry as well as in the daily life. Shear stress 
of such fluids is non–linearly related with shear rate and it is very 
difficult to analyze their flow. Examples include food, rubber, gel, 
polymers, petrol, paper coating, plasma and grease etc. One such fluid 
is the power–law fluid (Ostwald–de Waele model) which has been 
used extensively in the industry especially as a lubricant.

Couple stress fluid is another important non–Newtonian fluid first 
examined by Stokes1 to describe the polar effects. The couple stress 
fluid can be described by a new type of tensor called couple stress 
tensor in addition to the Cauchy stress tensor. In such fluids, polar 
effects play a significant role which are present due to the couple 
stresses (moment per unit area) and body couples (moment per unit 
volume). Because of significant importance of couple stress fluids in 
the industrial and engineering applications, many researchers have 
analyzed these flows. Some applications are animal blood, liquid 
crystals, polymer thickened oil, fluid mechanics and polymeric 
suspensions. Devakar et al.,2 considered Stokes’ problems for the 
couple stress fluid. In another investigation, Devakar et al.,3 discussed 
properties of the couple stress fluid flowing between parallel plates. 
Heat transfer analysis for the flow of a couple stress fluids near a 
stagnation point has been carried out by Hayat et al.,4 Muthuraj et al.,5 
studied viscous dissipation effects on MHD flow of a couple stress 
fluid in a vertical channel. Heat transfer analysis by Srinivasacharya 
et al.,6 has been carried out for couple stress flow due to expanding 
and contracting walls in a porous channel. Flow of couple stress fluid 
due to free convection through a porous channel was carried out by 
Hiremath and Patil7. Umavathi et al.,8 discussed heat transfer analysis 
for the channel flow of a couple stress fluid sandwiched between two 
viscous fluids. They showed that couple stress parameter is responsible 
for enhancing the fluid velocity.

A literature survey reveals that stagnation–point flow can be 
discussed in two ways either orthogonally or obliquely. Hiemenz9 
provided an exact solution of stagnation–point flow for the first time. 
An oblique stagnation–point flow arises when a detached flow of fluid 
retouches the face of body. Non–orthogonal stagnation–point flow 

on a wall was examined by Stuart10 and Tamada11. Dorrepaal12 found 
an exact solution for the oblique stagnation–point flow of a viscous 
fluid. Effects of Weissenberg number on the flow and heat transfer 
due to stagnation–point was analyzed by Li et al.13 Labropulu et al.,14 
discussed heat transfer analysis for the oblique flow impinging on 
a stretched sheet. Axisymmetric non–orthogonal stagnation–point 
flow over a circular cylinder has been considered by Weidman and 
Putkaradze15. Recently Ghaffari et al.,16–18 discussed different aspects 
for the flows towards oblique stagnation point.

Wang19 discussed the effects of slip parameter on the stagnation 
point flow of a viscous fluid. Devakar et al.,20 found an exact solution 
for a couple stress fluid by implementing slip condition at fluid–solid 
interface. Labropulu et al.,21 examined slip flow due to second grade 
fluid impinging orthogonally or obliquely on a surface. Blyth & 
Pozrikidis22 studied stagnation point flow by introducing slip condition 
at the interface of two viscous fluids. Axisymmetric stagnation–
point flow near a lubricated stationary disc has been carried out by 
Santra et al.23 They used power–law fluid as a lubricant. Sajid et al.24 
reconsidered the problem of Santra et al.,23 by applying generalized 
slip condition at fluid–lubricant interface introduced by Thompson & 
Troian.25 Recently Mahmood et el.,26 investigated oblique stagnation–
point flow of a second–grade fluid over a plate lubricated by a power–
law fluid. Some more recent investigations27–32 will also be fruitful for 
the readers.

Our aim in the present communication is to investigate the oblique 
flow of a couple stress fluids near a stagnation point over a lubricated 
plate. A power–law fluid has been utilized for the lubrication purpose. 
The flow problem consists of the set of coupled nonlinear ordinary 
differential equations along with nonlinear coupled boundary 
conditions. The Keller–box method33–36 has been implemented to 
solve the considered flow problem numerically. Influence of pertinent 
parameters on the flow characteristics is discussed through graphs and 
tables. The validity of present study has been checked by comparing 
results in the limiting case with that exist in the literature.

 Mathematical formulation
Consider the steady, two–dimensional, oblique flow of a couple 

stress fluids towards a stagnation point over a lubricated plate. A 
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power–law fluid (Ostwald–de Waele model) is used as lubricant. The 
plate is fixed in xz–plane such that it is symmetric with respect to 
origin. The fluid impinges on the plate with an angle γ in the domain

0y > (Figure 1).

Figure 1 Schematic diagram for the considered flow problem.

We assume that power–law lubricant spreads on the plate forming 
a thin coating with the flow rate given as
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where ( ),U x y represents horizontal velocity component of the 
lubricant and ( )xδ denotes the variable thickness of the lubrication 
layer.

The flow problem is governed by the following equations37
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where u and v represent, respectively horizontal and vertical 
velocity components of the couple stress fluid. Parameters ρ , p ,ν
and 1ν respectively are density, pressure, kinematic viscosity and ratio 
of couple stress viscosity to the density.

Following Tooke & Blythe38 the free stream velocity components 
can be written as

		  ( ) ( ) ,  ,e eu ax b y v a yβ α= + − = − −  	            (5)

where a and b are constants. Furthermore β is the parameter 
that supervises the pressure gradient along x–axis which generates 
the shear flow incident to the orthogonal stagnation–point and the 
parameter α  represents the boundary layer displacement produced 
on the lubricated surface. It is worth to mention that the flow field (5) 
displays the combined effects of both the horizontal shear flow and the 
orthogonal stagnation–point flow.

Eliminating the pressure between Eqs. (2) and (3) one obtains
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The expression for the skin friction or wall shear stress is given as
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where µ and 1µ are viscosity and couple stress viscosity 
respectively. The usual no–slip boundary condition at the solid–
lubricant interface implies

		  ( ) ( ),0 0 ,   ,0  0.U x V x= =  		             (8)

As the power–law coating is very slim, therefore

		  ( ) ( )1 1, 0 ,     0, .V x y y xδ = ∀  
	            

(9)

We assume that velocity and shear stress of both the fluids are 
continuous at the interface ( )y xδ=  Thus continuity of shear stress 
implies
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In which Lµ represents the viscosity of the lubricant. Letting
U U
x y

∂ ∂
∂ ∂
 the viscosity of lubricant can be written as

		    ,

1n

L
Uk
y

µ
− ∂

=  ∂  			           
 (11)

in which k is dynamic coefficient of viscosity and n is the 
consistency index. Fluid behaves as viscous, shear thinning and shear 
thickening, respectively for 1, 1n n= < and 1n > .

We further assume that

		  ( ) ( )
( )

, .
U x y

U x y
xδ

=


 			           (12)

It is worth to point out that ( )U x is interfacial velocity component 

of both fluids. The thickness ( )xδ of the power–law lubricant is given 
by

		  ( ) ( )
2 .Qx

U x
δ =



			            (13)

The continuity of horizontal velocity components of both the 
fluids gives

		       uU =  				           (14)

Substituting Equations (11)–(14) in Equation (10) we get

		
3
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		          (15)

Similarly implementing the continuity of interfacial velocity 
components of bulk fluid and lubricant along y–axis we get

		  ( )( ) ( )( ) ,   , ,v x x V x xδ δ=  		          (16)

Employing Equation (9) we get
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		        ( )( ) ,  0.v x xδ =
			            

 (17)

Following Santra et al.,23 the boundary conditions (15) and (17) 
can be imposed at the fluid–solid interface. Boundary conditions at 
free stream have been mentioned in equation (5).

Introducing

	    ( ) ( ) ( ),  ,    ,ay u axf ag v a fη η η ν η
ν

= = + = −′ ′
         

 (18)

The governing Equations (6), (8), (15), and (17) reduce to
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Where 2 2
1 /K aν ν= is called the couple stress parameter and 

/b aγ =  denotes the free stream shear. The parameter λ in Equations 
(21) and (22) is given as
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Integrating Equations (19) and (20) and using free stream 
conditions, we get

		          2 1 0,vf f ff Kf′′′ ′ ′′− + + − = 	          (25)

		     ( )' ' ,vg fg f g Kg γ β α′′′ ′ − =′+ − − 	          (26)

Where β is a free parameter and ( )fα η∞= − ∞ . In order to 

eliminate γ from Equation (26) we let ( ) ( )g hη γ η′ = to obtain

		          .ivh fh f h Kh β α′′ ′+ =′− − − 	            (27)

The boundary conditions in new variables become
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Equation (24) suggests that to obtain similar solution, one should 
have ½n = . The parameter λ given in Equation (24) measures slip 
produced on the surface and can be written as

		   .
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As clear from Equation (29), λ is a representation of ratio of 
viscous length scale viscL to the lubrication length scales lubL . For 
a highly viscous bulk fluid (i.e. when lubL is large) and a very thin 
lubricant (i.e. when lubL is small), the parameter λ is increased. 
As the parameter λ  approaches to infinity, the traditional no–slip 
conditions ( )0 0f ′ = , and can be recovered from Equations (21) 
and (28). On the other hand when the bulk fluid is less viscous and

lubL attains a massive value, 0λ → and consequently the full slip 
boundary conditions ( ) ( )0 0, 0 0ivf f′ = = , ( )0 0h′ = and ( )0 0h′′′ =  
are achieved. Therefore λ interprets the inverse measure of slip called 
slip parameter.

Employing (18), the dimensionless wall shear stress is given by
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To find the stagnation–point sx on the surface, we set  0wτ =  
Therefore
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Numerical method (the keller–box method)
Equations (21), (25), (27) and (28) are solved using Keller–box 

method33–36 which is based on an implicit finite difference approach. 
This numerical scheme is very effective to solve non–linear and 
coupled boundary value problems directly without converting them 
into initial value problems. As a first step, a system of first order 
ordinary differential equations is obtained in the following way:
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The obtained first–order system is approximated with central–
difference for derivatives and averages for the dependent variables. 
The reduced algebraic system is given by
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whereetc 1
1
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2

j j

j

f f
f −

−

+
= . Equations (38) and (39) are nonlinear 

algebraic equations and therefore, have to be linearized before the 
factorization scheme can be used. We write the Newton iterates in the 
following way:

For the ( )1j th+ iterates:

		  1 , .,j j jf f f etcδ+ = +  		         (40)

for all dependent variables. By substituting these expressions in 
Equations (36)–(39) and dropping the quadratic and higher–order 
terms in jfδ , a linear tridiagonal system of equations will be obtained 
as follows:
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subject to boundary conditions
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where ( ) ( ) ( )1 2 14
j

j jj j

k
v vψ ψ −= = + etc. The resulting linearized 

system of algebraic equations is solved by the block–elimination 

method. In matrix–vector form, the above system can be written as

			   = ,rΑδ  			           (49)

in which

 

						               (50)

where the elements in A  are 9 9×  matrices and that of δ  and r
are respectively of order. Now, we let

			   ,=A LU  			          (51)

where L is a lower and U is an upper triangular matrix.

Equation (51) can be substituted into Equation (49) to get

			   LU rδ = . 			           (52)

Defining

 			    U Wδ = , 		           (53)

Equation (52) becomes

			   ,=LW r 			       (54)

where the elements of W are 9 1×  column matrices. The elements 
of W can be solved from Equation (54). Once the elements of W are 
found, Equation (53) then gives the solution ä . When the elements of
ä are found, Equation (49) can be used to find the next iteration.

Numerical results and discussions
The values of 'f and 'h are displayed graphically for different 

values of K , K and β and are presented in Figures 2–6. The influences 
of pertinent parameters on the streamlines have been shown in 
Figures 7–8 while the impact of these parameters on ( )0f ′′ ,α , ( )' 0h
and stagnation points are displayed in Tables 1–5. The comparison of 
numerical values of ( )0f ′′ , ( )' 0h and ( )' 0h in the special cases with that 
of existing in the literature are presented in Tables 6–7.

Figure 2 displays the variation in horizontal velocity component 
under the influence of slip parameter λ . Dashed lines show the results 
for viscous and solid lines for the couple stress fluid. We observe that

'f decreases by decreasing K . Moreover, couple stress parameter 
enhances the effects of slip parameter. Analysis showing the impact 
of couple stress parameter K on 'f for fixed 'f is presented in Figure 
3. It is clear from this figure that 'f is an increasing function of K . 
We observe some alteration inside the boundary layer. However, the 
curve becomes smooth at the free stream. Effects of slip parameter λ
on 'h for two values of β when  0.5K = have been provided in Figure 
4. According to this figure 'h decreases for positive values of β and 
increases for negative values of 'h . Figure 5 is displayed to analyze 
the behavior of 'h under the influence of β both for the no–slip and 
partial slip cases. It is noted that an increment in the value of β results 
in the decrease of 'h . This decrease is more significant on the rough 
surface (when λ →∞ ). Influence of parameter β on 'h for two values 
of K when 2λ = is presented in Figure 6. The analysis shows that 'h

decreases by increasing K .This decrease is diminished by enlarging 
couple stress parameter K .

Figure 2 Effects of slip parameter λ on ( )'f η for viscous and couple stress 
fluids.
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Figure 3 Impact of couple stress parameter K  on ( )'f η when 2λ = .

Figure 4 Influence of slip parameter λ  on ( )'h η when  0.5K =  for two 
different values of β .

Figure 5 Influence of parameter β on ( )'h η
 
when  0.5K =   for two 

different values of λ . 

Figure 6 Influence of parameter β on ( )'h η when  2λ =  for different values 
of K .

The streamlines explored in Figure 7 show the influence of β on 
the stagnation point in the presence of slip when 8 and 0.5Kγ = =
. It has been observed that the stagnation point moves towards left 
by increasing β . Streamlines showing the impact of slip and couple 
stress parameters are expressed in Figure 8. It is evident that stagnation 
point shifts towards right by increasing λ as well as K when 0β = .

                               (A) 8, 0.5, 0.5Kγ λ= = =

		  (B) 8, 0.5, 0.5Kγ λ= = =

Figure 7 Streamlines showing the effects of parameter β .
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Influence of parameters λ and K on the skin friction coefficient
( )0f ′′ and boundary layer displacementα has been provided through 

Table 1. It is observed through Table 1 that ( )0f ′′ increases by 
increasing λ and decreases by increasing K . Likewise,α is increased 
by enhancing λ and K independently. Impact of λ on ( )' 0h is shown 
in Table 2. It has been observed that ( )' 0h gains the magnitude by 
enhancing λ for 0β ≤ and loses for 0β > . Data showing ( )' 0h  for 
various values of K is represented through Table 3. It is observed that

( )' 0h gains the magnitude as K is accelerated for 0β ≥ and loses its 
values for 0β < . The movement of the stagnation point under the 

influence of increasing λ , K and β is demonstrated through Tables 
4–5. We observe that stagnation point moves towards right on the x–
axis by raising both λ and K while it shifts leftwards by augmenting β
. The tabular results shown in Tables 4–5 do confirm the investigations 
made through Figures 7–8.

The numerical data regarding ( )0f ′′ ,α and ( )' 0h in the limiting 
case (when λ →∞ ) acknowledges the values already recorded in 
the research articles.13,14 This evidence certifies the correctness of our 
investigation.

Table 1 Variation in ( )0f ′′ and α  under the influence of λ . 

K = 0.5 K = 5 K = 10

λ ( )f'' 0 α ( )f'' 0 α ( )f'' 0 α

0.05 0.024513 0.016329 0.011422 0.018947 0.008514 0.020793

0.1 0.047914 0.032162 0.022481 0.037498 0.016793 0.041183

0.5 0.201357 0.142545 0.099287 0.172333 0.075344 0.1903459

1.0 0.331885 0.24714 0.171830 0.310541 0.132596 0.345523

2.0 0.482678 0.384176 0.266567 0.510465 0.210874 0.575286

5.0 0.645204 0.559482 0.385209 0.801933 0.315692 0.923349

10 0.717872 0.651212 0.444105 0.969866 0.370759 1.130525

50 0.782587 0.742733 0.498917 1.145315 0.423622 1.350408

100 0.791011 0.755479 0.506158 1.170181 0.430701 1.381723

500 0.797793 0.765898 0.511999 1.190562 0.436424 1.407399

∞ 0.799494 0.768534 0.513465 1.195725 0.437862 1.413905

Table 2 Variation in ( )' 0h
 
under the influence of λ and β when 0.5K = . 

 β = 0 β = 5 β = -5

0.05 0.429505 0.307015 0.551994

0.1 0.443315 0.203884 0.682746

0.5 0.542598 –0.463751 1.548947

1.0 0.641277 –1.017849 2.300403

2.0 0.776652 –1.637394 3.190698

5.0 0.958302 –2.270844 4.187448

10 1.056333 –2.537892 4.650558

50 1.155641 –2.764100 5.075382

100 1.169566 –2.792576 5.131708

500 1.180963 –2.815320 5.177246

∞ 1.183848 –2.820999 5.188695

Table 3 Variation in ( )' 0h under the influence of K and β  when 1λ = . 

K  β = 0 β = 5 β = -5

0 0.540232 –2.427089 3.507552

0.5 0.641277 –1.017849 2.300403

1 0.670213 –0.749052 2.089478

5 0.770745 –0.152261 1.693750

10 0.834636 0.138111 1.531161

50 0.949295 0.709083 1.189507

100 0.972800 0.840434 1.105165

500 0.994183 0.965210 1.023155

5000 0.999406 0.996439 1.002374
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Table 4 Variation in the stagnation point ( )sx under the influence of 
parameters of λ , β and γ when 1K = .

γ λ β = -3 β = 0 β = 3

1
0.5 2.558763 –0.4412284 –3.441220

5.0 3.197895 0.1979019 –2.802092

2
0.5 5.117527 –0.8824568 –6.882440

5.0 6.395791 0.3958038 –5.604183

5
0.5 12.79382 –2.2061420 –17.20610

5.0 15.98948 0.9895095 –14.01046

8
0.5 20.47011 –3.5298270 –27.52976

5.0 25.58316 1.5832150 –22.41673

Table 5 Variation in the stagnation point ( )sx
 
under the influence of 

parameters of K , β and γ when 1λ = . 

γ K β = -3 β = 0 β = 3

1
0.5 2.667206 –0.3327937 –3.332794

5.0 2.870132 –0.1293493 –3.128831

2
0.5 5.334413 –0.6655873 –6.665587

5.0 5.740265 –0.2586985 –6.257662

5
0.5 13.33603 –1.6639680 –16.66397

5.0 14.35066 –0.6467463 –15.64415

8
0.5 21.33765 –2.6623490 –26.66235

5.0 22.96106 –1.0347940 –25.03065

Table 6 Comparison of computed results of ( )'' 0  f andα with that of Labropulu et al.14 for no–slip case ( λ =∞ ). 

( )f'' 0 α

Present result when 0ε = Result by Labropulu et al.14 when 0ε =
Present result
when 0K =

Result by Labropulu et al.14

when 0ε =

1.232594 1.23259 0.6479025 0.64790

Table 7 Comparison of computed results of ( )' 0  h
 
with that of Li et al.13 and Labropulu et al.14 for no–slip case ( λ =∞ ). 

( )' h 0  β = 5 β = 5 β α= β α= -

Present results when 0K = –4.756217 1.406514 2.205136 0.607917

Results by Labropulu et al.14 

when 0ε = −4.7562 1.4065 2.2051 0.6079

Results by Li et al.13 when
0ε = −4.756 1.4063 2.2049 0.6077

                    (A) 8, 0.5, 0Kγ β= = =
		      (B) 10, 2, 0γ λ β= = =

Figure 8 Influence of slip parameter K and couple stress parameter K on 
streamlines.
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Conclusion
In this paper, oblique flow of a couple stress fluids near stagnation 

point over a lubricated plate is investigated. A power–law fluid 
has been used as a lubricant. To obtain similar solution of the flow 
problem, we have fixed 1/2n = . The Keller–box method is employed 
to solve the flow problem numerically. Our interest is to figure out 
the effects of free parameter β and couple stress parameter K on the 
flow characteristics on the lubricated surface. Obtained results in the 
special case are compared.13,14 It has been concluded that: 

(i)	 Slip produced on the surface increases the velocity of the bulk 
fluid and abolishes the effects of free stream velocity for large 
values. 

(ii)	 The stagnation point is shifted towards right and left along x
–axis under the influence of physical parameters in the presence 
of lubrication.

(iii)	 The skin friction coefficient ( )0f ′′ increases by increasing
λ and decreases by increasing K . However boundary layer 
displacementα is increased by enhancing K and/or K . 

(iv)	 It has been observed that ( )' 0h gains the magnitude by enhancingλ
for 0β ≤ and loses for 0β > . Data showing ( )' 0h for various 

values of K is represented through Table 3. It is observed that
( )' 0h gains the magnitude as K is accelerated for 0β ≥ and 

loses its values for 0β < .
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