Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 2 Issue 2

Earth similarity index with two free parameters

Suresh Chandra,1 Subas Nepal,2 Mohit K Sharma1

1Amity Center for Astronomy & Astrophysics, Amity University, India
2Uniglobe Higher Secondary School/College, Kathmandu, Nepal

Correspondence: Suresh Chandra, Amity Center for Astronomy & Astrophysics, Amity Institute of Applied Sciences, Amity University, Sector-125, NOIDA 201313, U.P, India, Tel 9198 1800 5663

Received: February 01, 2018 | Published: March 12, 2018

Citation: Chandra S, Nepal S, Sharma MK. Earth similarity index with two free parameters. Phys Astron Int J. 2018;2(2):156-159. DOI: 10.15406/paij.2018.02.00061

Download PDF

Abstract

We have derived Earth Similarity Index (ESI) with two free parameters m and T, where m denotes the weight exponent and T denotes the threshold value. These free parameters are optimized with the consideration that the planet Mars is almost similar to the Earth. For the optimized values of free parameters, the interior-ESI, surface-ESI and ESI for some planets are calculated. The results for m= 0.8 and T= 0.8 are compared with the values obtained. We have found that the exoplanet 55 Cnc f is within 10% away from the threshold value T. The exoplanets HD 69830 c, 55 Cnc c, 55 Cnc f, 61 Vir d and HIP 57050 b are found to have ESI within 10% from the threshold value.

Keywords: earth similarity index, parameters, threshold value, planets, binocular telescope, circumstellar habitable zone

Introduction

In 1584, Catholic Monk Giordano Bruno asserted that there are countless suns and count-less earths, and all these earths are revolving around their respective suns.1 when he said this in public, he was removed from the Church by charging that he was against the religion. But, this fact was found true when the confirmation of the first extra-solar planet was announced by Mayor et al.2 revolving around a sun-type 51 Pegasi. Detection of new planets is progressing continuously and as of 9 July 2015, there are 1858 exoplanets, including 468 multiple planetary systems (http://exoplanetarchive.ipac.caltech.edu/).

The number of known exoplanets is increasing each day as the detection methods used for both the ground based and space missions have improved in terms of technology and more scientists are getting interested in this field. There are many ground based and space missions to detect the exoplanets. The Search for Extra Terrestrial Intelligence (SETI) is the name of mission for searching life-forms outside the Earth. Radio telescopes having large antennas are being used to investigate the exoplanets. In Arizona, the Large Binocular Telescope Interferometer (LBTI) is being used for advanced interferometry for detection of exoplanets. These instruments are bound to advance and improve our understanding and detection of a number of exoplanets which may be similar to our Earth or not. The Kepler mission is aimed for detection of earth-like planets and the space missions such as CHEOPS (CHaracterizing ExOPlanet Satellite) and James Webb Space Telescope (JWST) are in progress. With the new generation of telescopes and missions, detection of a large number of exoplanets is expected. The exoplanets need to be classified if one is similar to the Earth or not. We, therefore, need a scheme which can be used for classification on the basis of data available to us. The data contain the information about planets, such as mass, radius, surface temperature, etc. These planetary parameters can be used to know about the probability of existing life-forms somewhere other than the Earth. The probability of existing life-forms outside the Earth is given as a concept of ‘circumstellar habitable zone’ by Kasting et al.3 It suggests that the focus should be made on those worlds which can hold atmosphere and liquid water. Some life-forms are most likely to be found on those planetary bodies which have similar Earth-like conditions.

A two-tiered classification scheme of exoplanets is suggested by Schulze-Makuch et al.1 The first tier consists of Earth Similarity Index (ESI), which decides about the worlds with respect to their similarity to the Earth. The ESI was calculated on the basis of data for exoplanets, such as mass, radius and temperature. The second tier of the scheme is the Planetary Habitability Index (PHI), based on the presence of a stable substrate, available energy, appropriate chemistry and potential for holding liquid solvent.

In the present investigation, we have derived the ESI with two free parameters. These free parameters have been optimized with the consideration that the planet Mars is almost similar to the Earth. For the optimized values of free parameters, the interior-ESI, surface-ESI and ESI for some planets are calculated. The results are compared with the available data.

Earth similarity index

The similarity index is a mathematical tool that can be applied for a set of data. It is used in various fields of science, such as Mathematics (e.g., Set Theory), Ecology (e.g., Sorensen similarity index), Computer imaging (e.g., structural similarity index) and many others.1 This method is a measure of deviation from a reference system, usually on a scale lying between zero and one. The ESI is a quantitative measure of Earth-likeness.

The ESI, we have proposed, may be understood in the following manner. Consider a physical quantity having value x0 on the surface of our Earth. Suppose, the value of this quantity varies from xa to xb, such that x a <  x 0 <  x b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiEaSWdamaaBaaajeaibaqcLbmapeGa amyyaaqcbaYdaeqaaKqzGeWdbiabgYda8iaabccacaWG4bWcpaWaaS baaKqaGeaajugWa8qacaaIWaaajeaipaqabaqcLbsapeGaeyipaWJa aeiiaiaadIhal8aadaWgaaqcbasaaKqzadWdbiaadkgaaKqaG8aabe aaaaa@490C@ , on the Earth. Then, the percentage variations p and q are expressed as

p =  x 0   x a x 0 ×100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamiCaiaacckacqGH9aqpcaGGGcqcfa4a aSaaaOWdaeaajugib8qacaWG4bqcfa4damaaBaaaleaajugWa8qaca aIWaGaaiiOaiabgkHiTiaacckacaWG4bWcpaWaaSbaaKGaGeaajugW a8qacaWGHbaajiaipaqabaaaleqaaaGcbaqcLbsapeGaamiEaKqba+ aadaWgaaqcbasaaKqzadWdbiaaicdaaSWdaeqaaaaajugib8qacqGH xdaTcaaIXaGaaGimaiaaicdaaaa@534B@  and q =  x b x o x 0 ×100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyCaiaacckacqGH9aqpcaGGGcqcfa4a aSaaaOWdaeaajugib8qacaWG4bWcpaWaaSbaaKqaGeaajugWa8qaca WGIbGaeyOeI0IaamiEaSWdamaaBaaajiaibaqcLbmapeGaam4Baaqc caYdaeqaaaqcbasabaaakeaajugib8qacaWG4bWcpaWaaSbaaKqaGe aajugWa8qacaaIWaaajeaipaqabaaaaKqzGeWdbiabgEna0kaaigda caaIWaGaaGimaaaa@5096@

Now, we define the threshold value T as,

T = [ 1 ( x 0 x a x 0 + x a ) m   ] w a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaiaabccacqGH9aqpjuaGdaWadaGc paqaaKqzGeWdbiaaigdacqGHsisljuaGdaqadaGcpaqaaKqba+qada WcaaGcpaqaaKqzGeWdbiaadIhajuaGpaWaaSbaaKqaGeaajugWa8qa caaIWaGaeyOeI0IaamiEaSWdamaaBaaajiaibaqcLbmapeGaamyyaa qccaYdaeqaaaWcbeaaaOqaaKqzGeWdbiaadIhal8aadaWgaaqcbasa aKqzadWdbiaaicdaaKqaG8aabeaajugWa8qacqGHRaWkcaWG4bWcpa WaaSbaaKqaGeaajugWa8qacaWGHbaajeaipaqabaaaaaGcpeGaayjk aiaawMcaaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaad2gaaaqcLb sacaGGGcaakiaawUfacaGLDbaal8aadaahaaqcbasabeaajugWa8qa caWG3bWcpaWaaSbaaKGaGeaajugWa8qacaWGHbaajiaipaqabaaaaa aa@6176@  (1)

T = [ 1 ( x b x 0 x b + x 0 ) m   ] w b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaiaabccacqGH9aqpjuaGdaWadaGc paqaaKqzGeWdbiaaigdacqGHsisljuaGdaqadaGcpaqaaKqba+qada WcaaGcpaqaaKqzGeWdbiaadIhal8aadaWgaaqcbasaaKqzadWdbiaa dkgacqGHsislcaWG4bWcpaWaaSbaaKGaGeaajugWa8qacaaIWaaaji aipaqabaaajeaibeaaaOqaaKqzGeWdbiaadIhal8aadaWgaaqcbasa aKqzadWdbiaadkgaaKqaG8aabeaajugWa8qacqGHRaWkcaWG4bWcpa WaaSbaaKqaGeaajugWa8qacaaIWaaajeaipaqabaaaaaGcpeGaayjk aiaawMcaaKqba+aadaahaaWcbeqcbasaaKqzadWdbiaad2gaaaqcLb sacaGGGcaakiaawUfacaGLDbaajuaGpaWaaWbaaSqabKqaGeaajugW a8qacaWG3bWcpaWaaSbaaKGaGeaajugWa8qacaWGIbaajiaipaqaba aaaaaa@61A3@  (2)

Where wa and wb denote the weight exponents and m is a free parameter. The threshold is the limiting value of ESI above which a planet is considered similar to the Earth. Further, the threshold value T can be expressed as

T =(1 t 100 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamivaiaabccacqGH9aqppaGaaiika8qa caaIXaGaeyOeI0scfa4aaSaaaOWdaeaajugib8qacaWG0baak8aaba qcLbsapeGaaGymaiaaicdacaaIWaaaa8aacaGGPaaaaa@4455@  (3)

Where t can assume positive values between zero and 100, so that T is positive, having the value between zero and 1. Thus, we have taken T also as another free parameter. In the work of Schulze-Makuch et al.1 t is taken as 20, so that T = 0.8, and m as 1. In our investigation, we have considered m to assume the values from 0.6 to 1.2.

From equation (1) and (2), we get

w a = lnT ln[ 1 ( p 200p ) m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4DaSWdamaaBaaajeaibaqcLbmapeGa amyyaaqcbaYdaeqaaKqzGeWdbiabg2da9Kqbaoaalaaak8aabaqcLb sapeGaamiBaiaad6gacaWGubaak8aabaqcLbsapeGaaeiBaiaab6ga juaGdaWadaGcpaqaaKqzGeWdbiaaigdacqGHsisljuaGdaqadaGcpa qaaKqba+qadaWcaaGcpaqaaKqzGeWdbiaadchaaOWdaeaajugib8qa caaIYaGaaGimaiaaicdacqGHsislcaWGWbaaaaGccaGLOaGaayzkaa qcfa4damaaCaaaleqajeaibaqcLbmapeGaamyBaaaaaOGaay5waiaa w2faaaaaaaa@56E9@  and w b = lnT ln[ 1 ( q 200+q ) m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4DaKqba+aadaWgaaqcbasaaKqzGeWd biaadkgaaKqaG8aabeaajugib8qacqGH9aqpjuaGdaWcaaGcpaqaaK qzGeWdbiaadYgacaWGUbGaamivaaGcpaqaaKqzGeWdbiaabYgacaqG Ubqcfa4aamWaaOWdaeaajugib8qacaaIXaGaeyOeI0scfa4aaeWaaO WdaeaajuaGpeWaaSaaaOWdaeaajugib8qacaWGXbaak8aabaqcLbsa peGaaGOmaiaaicdacaaIWaGaey4kaSIaamyCaaaaaOGaayjkaiaawM caaSWdamaaCaaajeaibeqaaKqzadWdbiaad2gaaaaakiaawUfacaGL Dbaaaaaaaa@5637@  (4)

We finally take the weight exponent wx as the geometrical mean of wa and wb. That is

w x = w a × w b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaam4DaSWdamaaBaaajeaibaqcLbmapeGa amiEaaqcbaYdaeqaaKqzGeWdbiabg2da9Kqbaoaakaaak8aabaqcLb sapeGaam4DaSWdamaaBaaajeaibaqcLbmapeGaamyyaaqcbaYdaeqa aKqzGeWdbiabgEna0kaadEhajuaGpaWaaSbaaKqaGeaajugWa8qaca WGIbaal8aabeaaa8qabeaaaaa@4AE5@  (5)

Here, the subscript x denotes a physical quantity. The basic ESIx for a physical quantity x is expressed as

ES I x = ( 1| x x 0 x+ x 0 | ) w x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraiaadofacaWGjbWcpaWaaSbaaKqa GeaajugWa8qacaWG4baajeaipaqabaqcLbsapeGaeyypa0tcfa4aae WaaOWdaeaajugib8qacaaIXaGaeyOeI0scfa4aaqWaaOWdaeaajuaG peWaaSaaaOWdaeaajugib8qacaWG4bGaeyOeI0IaamiEaKqba+aada WgaaqcbasaaKqzadWdbiaaicdaaSWdaeqaaaGcbaqcLbsapeGaamiE aiabgUcaRiaadIhal8aadaWgaaqcbasaaKqzadWdbiaaicdaaKqaG8 aabeaaaaaak8qacaGLhWUaayjcSdaacaGLOaGaayzkaaWcpaWaaWba aKqaGeqabaqcLbmapeGaam4DaSWdamaaBaaajiaibaqcLbmapeGaam iEaaqccaYdaeqaaaaaaaa@5B93@ (6)

For the planetary property x, the terrestrial reference is x0. The ESIx can assume a value between zero (no similarity with the Earth) and one (identical to the Earth). We have calculated ESIr, ESIρ, ESIe and ESIT corresponding to radius, density, escape velocity and temperature, respectively. The ESIr and ESIρ, for mean radius r and bulk density ρ, respectively, are used to define the interior earth similarity index ESII, expressed as

Thus, the ESII is the geometrical mean of ESIr and ESIρ. The ESIe and ESIT for escape velocity v and mean surface temperature T , respectively, are used to define the surface earth similarity index ESIS , expressed as

ES I I  =  ( ES I r × ES I ρ ) 1 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraiaadofacaWGjbWcpaWaaSbaaKqa GeaajugWa8qacaWGjbaajeaipaqabaqcLbmapeGaaiiOaKqzGeGaey ypa0JaaeiiaKqba+aadaqadaGcbaqcLbsapeGaamyraiaadofacaWG jbWcpaWaaSbaaKqaGeaajugWa8qacaWGYbaajeaipaqabaqcLbsape Gaey41aqRaaeiiaiaadweacaWGtbGaamysaSWdamaaBaaajeaibaqc LbmapeGaeqyWdihajeaipaqabaaakiaawIcacaGLPaaalmaaCaaaje aibeqaaKqzadWdbiaaigdaaaWcpaWaaWbaaKqaGeqabaqcLbmapeGa ai4laiaaikdaaaaaaa@5A06@ (7)

ES I S  =  ( ES I e × ES I T ) 1 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraiaadofacaWGjbWcpaWaaSbaaKqa GeaajugWa8qacaWGtbaajeaipaqabaqcLbsapeGaaiiOaiabg2da9i aabccajuaGpaWaaeWaaOqaaKqzGeWdbiaadweacaWGtbGaamysaSWd amaaBaaajeaibaqcLbmapeGaamyzaaqcbaYdaeqaaKqzGeWdbiabgE na0kaabccacaWGfbGaam4uaiaadMeal8aadaWgaaqcbasaaKqzadWd biaadsfaaKqaG8aabeaaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqaba qcLbmapeGaaGymaaaal8aadaahaaqcbasabeaajugWa8qacaGGVaGa aGOmaaaaaaa@57EE@  (8)

Thus, the ESIS is the geometrical mean of ESIe and ESIT. The ESI (sometimes called the global ESI) is expressed as
ESI =  ( ES I I × ES I S ) 1 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraiaadofacaWGjbGaaeiiaiabg2da 9iaabccajuaGpaWaaeWaaOqaaKqzGeWdbiaadweacaWGtbGaamysaS WdamaaBaaajeaibaqcLbmapeGaamysaaqcbaYdaeqaaKqzGeWdbiab gEna0kaabccacaWGfbGaam4uaiaadMeal8aadaWgaaqcbasaaKqzad WdbiaadofaaKqaG8aabeaaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqa baqcLbmapeGaaGymaaaal8aadaahaaqcbasabeaajugWa8qacaGGVa GaaGOmaaaaaaa@53FD@  (9)

Using equations (3) and (4) in (5), we have

ESI =  ( ES I r × ES I ρ × ES I e × ES I T ) 1 /4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibabaaaaaaaaapeGaamyraiaadofacaWGjbGaaeiiaiabg2da 9iaabccajuaGpaWaaeWaaOqaaKqzGeWdbiaadweacaWGtbGaamysaS WdamaaBaaajeaibaqcLbmapeGaamOCaaqcbaYdaeqaaKqzGeWdbiab gEna0kaabccacaWGfbGaam4uaiaadMeal8aadaWgaaqcbasaaKqzad Wdbiabeg8aYbqcbaYdaeqaaKqzGeWdbiabgEna0kaabccacaWGfbGa am4uaiaadMeal8aadaWgaaqcbasaaKqzadWdbiaadwgaaKqaG8aabe aajugib8qacqGHxdaTcaqGGaGaamyraiaadofacaWGjbqcfa4damaa BaaajeaibaqcLbmapeGaamivaaWcpaqabaaakiaawIcacaGLPaaalm aaCaaajeaibeqaaKqzadWdbiaaigdaaaWcpaWaaWbaaKqaGeqabaqc LbmapeGaai4laiaaisdaaaaaaa@6681@

Analysis

In our investigation, we have considered two values of T as 0.8 and 0.9. The value of T can never be greater than 1, as we are considering the Earth to be the most superior planet. The variations of parameters, relative to those of the mean values on the Earth, are taken as the following. The definitional limits for radius are from 0.5 to 1.5 times the Earth’s radius Sotin et al.4 The limit for the mass of an existing planet is from 0.1 to 10 times that of the Earth Gaidos et al.5 For the density, the definitional limits are 0.7 and 1.5 times the Earth’s density. The temperature variation is taken from 273 K to 232 K. The definitional limits for the escape velocity are considered as 0.4 and 1.4 times that of the Earth. For these limits, we have calculated earth similarity indexes corresponding to radius, density, escape velocity and temperature.

For the given values of parameters for the planets in our solar system, we have calculated ESI, where m and T are considered as the free parameters. The values of ESI are found large for the Mars, Mercury and Venus. For these three planets, in Figure 1, we have plotted ESI versus m for T=0.8 and T=0.9. In the figure, solid line is for the Mars, dashed line for the Mercury and dotted line for the Venus. For other solar planets, the ESI is small and therefore is not shown in the figure. We have also drawn a line for ESI=0.8 and ESI=0.9 in the respective part of figure. For the optimization of free parameter m, we have considered that the Mars has the ESI equal to the terminal value T. For both, T=0.8 and T=0.9, we have found m=0.8, where the ESI of Mars is equal to the terminal value T. Hence, in the further calculations of the ESIS, ESII and ESI for various solar planets and satellites, and exoplanets, we have taken two values of T as 0.8 and 0.9, and the value of m as 0.8.

Figure 1Variation of ESI versus for T= 0.8 and T= 0.9. Solid line is for the Mars, dashedline for the Mercury and dotted line for the Venus. We have also plotted line for ESI=0.8 and ESI=0.9 in the respective figure. For other solar-planets, the value of ESI is very small.

In Table 1, we have given the values of physical parameters, interior-ESI, surface-ESI and ESI for 31 objects. For 21 objects, the values of physical parameters are the same as given by Schulze-Makuch et al.1 In their calculations, there are m=1 and T=0.8. In the last column of Table 1, we have given the values of Schulze-Makuch et al.1 for the ESI. Table 2 gives the similar results for m=0.8 and T=0.9.

S.No.

Body

Radius
(EU)

Density
(EU)

Esc. Vel.
(EU)

Temp
K

ESII

ESIS

ESI

ESI*

1

Earth

1

1

1

288

1

1

1

1

2

Mars

0.532

0.713

0.449

227

0.8643

0.7394

0.7994

0.7

3

Mercury

0.382

0.984

0.379

440

0.8773

0.6143

0.7341

0.6

4

Moon

0.272

0.606

0.212

220

0.7509

0.6235

0.6842

0.56

5

Venus

0.949

0.95

0.925

730

0.9849

0.4381

0.6568

0.44

6

Io

0.285

0.639

0.228

130

0.766

0.3941

0.5494

0.36

7

Callisto

0.378

0.352

0.218

134

0.6916

0.4022

0.5274

0.34

8

Jupiter

10.973

0.24

5.379

152

0.48

0.4387

0.4589

0.29

9

Ganymede

0.412

0.352

0.244

110

0.7009

0.3375

0.4864

0.29

10

Ceres

0.074

0.376

0.045

167

0.5225

0.3447

0.4244

0.27

11

Europa

0.244

0.546

0.18

102

0.7194

0.2925

0.4587

0.26

12

Saturn

9.14

0.124

3.225

134

0.4049

0.4318

0.4181

0.25

13

Titan

0.404

0.341

0.235

94

0.6928

0.2836

0.4432

0.24

14

Uranus

3.98

0.23

1.91

76

0.5728

0.2604

0.3862

0.19

15

Neptune

3.864

0.297

2.105

72

0.62

0.2409

0.3865

0.18

16

Titania

0.123

0.301

0.069

60

0.5433

0.1295

0.2652

0.1

17

Enceladus

0.039

0.291

0.021

75

0.4271

0.1255

0.2315

0.094

18

Pluto

0.18

0.371

0.109

40

0.618

0.0878

0.2329

0.075

19

Triton

0.212

0.379

0.13

38

0.6402

0.0856

0.2341

0.074

20

HD69830 d

4.19

0.25

2.1

312

0.5818

0.8439

0.7007

0.6

21

55 Cnc c

5.68

0.25

2.84

310

0.551

0.8031

0.6652

0.56

22

55 Cnc f

4.91

0.39

3.06

310

0.6405

0.7918

0.7121

0.614

23

61 Vir d

3.68

0.46

2.5

375

0.7028

0.7093

0.706

24

HIP 57050 b

6.64

0.32

3.78

250

0.5743

0.7217

0.6438

25

Mu Ara d

8.38

0.28

4.45

327

0.5292

0.7059

0.6112

26

HD 142 b

11.12

0.24

5.43

286

0.4787

0.7397

0.5951

27

HD 96167 b

9.36

0.26

4.81

334

0.507

0.6833

0.5886

28

HD 108874 b

12.49

0.22

5.89

294

0.4558

0.7197

0.5728

29

HD 210277 b

11.98

0.23

5.72

275

0.4658

0.7109

0.5754

30

HD 147513 b

10.99

0.24

5.38

263

0.4798

0.697

0.5783

31

HD 69830 c

2.82

0.54

2.07

549

0.7636

0.5253

0.6333

Table 1 Values of various ESI for some solar planets and satellites and exoplanets with m=0.8 and T=0.8

*Values reported by Schulze-Makuch et al.1 for m=1 and T =0.8.

S.No.

Body

ESII

ESIS

ESI

1

Earth

1

1

1

2

Mars

0.9334

0.8671

0.8997

3

Mercury

0.9401

0.7945

0.8642

4

Moon

0.8735

0.8001

0.836

5

Venus

0.9928

0.6773

0.82

6

Io

0.8817

0.6442

0.7537

7

Callisto

0.8402

0.6505

0.7393

8

Jupiter

0.7071

0.6777

0.6923

9

Ganymede

0.8455

0.5988

0.7115

10

Ceres

0.736

0.6048

0.6672

11

Europa

0.856

0.5597

0.6922

12

Saturn

0.6525

0.6726

0.6625

13

Titan

0.8409

0.5515

0.681

14

Uranus

0.7686

0.5298

0.6381

15

Neptune

0.798

0.5106

0.6383

16

Titania

0.7497

0.3809

0.5344

17

Enceladus

0.6692

0.3753

0.5012

18

Pluto

0.7968

0.317

0.5026

19

Triton

0.8101

0.3133

0.5038

20

HD69830 d

0.7744

0.923

0.8454

21

55 Cnc c

0.7547

0.9016

0.8249

22

55 Cnc f

0.8103

0.8956

0.8519

23

61 Vir d

0.8466

0.8503

0.8484

24

HIP 57050 b

0.7696

0.8573

0.8123

25

Mu Ara d

0.7404

0.8483

0.7926

26

HD 142 b

0.7062

0.8673

0.7826

27

HD 96167 b

0.7256

0.8354

0.7786

28

HD 108874 b

0.6901

0.8562

0.7686

29

HD 210277 b

0.6971

0.8512

0.7703

30

HD 147513 b

0.707

0.8433

0.7721

31

HD 69830 c

0.8804

0.7379

0.806

Table 2 Same as Table 1 with m=0.8 and T =0.9

Most of the exoplanets are detected by transit photometry method and radial velocity method. The transit photometry method cannot measure the mass of exoplanet whereas the radial velocity method cannot measure the radius of exoplanet by Jones et al.6 So, for the exoplanets for which either mass or radius was not measured, the mass or radius is calculated with the help of mass-radius relation, given by Sotin et al.4

Discussion

From Table 1, we have found that for each object, the present value of ESI, in general, larger than that of Schulze-Makuch et al.1 It is due to the change in the value of m. We have also found that the exoplanet 55 Cnc f is within 10% limit from the threshold value T. The exoplanets HD 69830 d, 55 Cnc c, 55 Cnc f, 61 Vir d and HIP 57050 b have the ESI within 10% limit from the threshold value. This supports the opinion for existence of life in the universe.

Conclusion

We have derived the ESI with two free parameters, the threshold value T and m. After optimization that the ESI of Mars is equal to the threshold value T, we got the value of m as 0.8. In the paper of Schulze-Makuch et al.1 the value of m is 1. For the present value of m=0.8, some exoplanets have come in the range up to the threshold value. It enhances the probability of finding life in the interstellar medium.

Acknowledgements

Financial support from the Department of Science & Technology is thankfully acknowl-edged. We are grateful to Hon’ble Dr. Ashok K Chauhan, the Founder President and Hon’ble Dr. Atul Chauhan , Chancellor of Amity University, Noida for support and encouragements.

Conflict of interest

Authors declare there is on conflicts of interest.

References

Creative Commons Attribution License

©2018 Chandra, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.