Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 2 Issue 5

Dimensionless formulation for the one–dimensional compressible flow of the viscous and heat–conducting micropolar fluid

Ivan Dra i

Faculty of Engineering, University of Rijeka, Croatia

Correspondence: Ivan Dra?i?, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia

Received: June 28, 2018 | Published: September 20, 2018

Citation: Dražic I. Dimensionless formulation for the one–dimensional compressible flow of the viscous and heat–conducting micropolar fluid. Phys Astron Int J. 2018;2(5):420-423. DOI: 10.15406/paij.2018.02.00119

Download PDF

Abstract

In this paper, we consider the compressible, micropolar, viscous, and heat–conducting fluid, which is in thermodynamical sense perfect and polytropic. We describe the mathematical model of the described fluid and derive its one–dimensional form. For the given set of partial differential equations we perform non–dimensionalization and introduce the corresponding relative numbers.

Keywords: compressible micropolar fluid, relative numbers

Introduction

In micro and nanosciences, classical fluid models can rarely be adequately considered, since micro–phenomena, which cannot be covered using classical models, increasingly come to the fore. Therefore, the models which can describe the phenomena at the micro level are increasingly analyzed.1 One example of such a model is the model of the micropolar continuum, which is the subject of this paper.

The model of the micropolar continuum was introduced by Eringen2. The behavior of the continuum at the microlevel in this model is described by using one new vector field, which Eringen calls microrotation velocity, whereby microdeformations are neglected.

Although the usability of the micropolar fluid model is easy to understand and even practically proven,3 from the technical and physical point of view, we still know very little about this model, especially in the compressible case. The rheological constants are almost unknown; therefore the study of physical properties for this model is practically impossible. In such situations, the non–dimensional formulation is of great importance, which is addressed in this paper. Let us note that the micropolar fluid model could be appropriate for describing different kinds of biological fluids, smog, lubricants, gaseous stars, etc. Recently, the micropolar fluid model has been applied as the model for blood flow,4 for water–based nanofluid,5 for mimicking bacterial physical phenomena,6 for the behavior of epididymal material,7 for describing lubricants with additives, for the motion of synovial fluid in the joints,8 etc.

It is important to point out that the mathematical analysis of the related initial–boundary problems has progressed considerably in terms of the solution’s existence analysis as well in terms of the corresponding numerical methods.9 This is the basis for exploring different fluid flow regimes in order to increase our understanding of the effect of micropolarity, or, in other words, the effect of microfenomena on the global fluid behaviour. The non–dimensional formulation becomes significant, precisely in this aspect of the research.

The basis for deriving non–dimensional constants was the classic fluid model and corresponding relative numbers (e.g., Mach number), which were partly redefined to accommodate the introduction of a new hydrodynamic variable (microrotation). In accordance with similar papers,10 some new constants have been introduced which are primarily used to describe the effect of micropolarity. These are the Microscopic Reynolds number, the Eringen number and the Coupling number.

This paper is organized as follows. In Section 2, we describe the model and derive its one–dimensional form, whereby we limit ourselves just to equations and not to the initial and boundary conditions. In Section 3, we introduce the relative numbers, perform the non–dimensionalization of the equations, and derive the non–dimensional form of the corresponding system.

The mathematical model

In this paper we analyze the compressible flow of an isotropic, viscous, and heat–conducting micropolar fluid, which is in the thermodynamical sense perfect and polytropic. The corresponding hydrodynamical variables are:

  • ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCaaa@3845@ –mass density,
  • v=( v 1 , v 2 , v 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWH2b GaaGypaiaaiIcacaWG2bqcfa4aaSbaaKqaGeaajugWaiaaigdaaKqa GeqaaKqzGeGaaGilaiaadAhajuaGdaWgaaqcbasaaKqzadGaaGOmaa WcbeaajugibiaaiYcacaWG2bqcfa4aaSbaaKqaGeaajugWaiaaioda aSqabaqcLbsacaaIPaaaaa@4843@ –velocity,
  • w=( ω 1 , ω 2 , ω 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGI3b GaaGypaiaaiIcacqaHjpWDlmaaBaaajeaibaqcLbmacaaIXaaajeai beaajugibiaaiYcacqaHjpWDjuaGdaWgaaqcbasaaKqzadGaaGOmaa WcbeaajugibiaaiYcacqaHjpWDlmaaBaaajeaibaqcLbmacaaIZaaa jeaibeaajugibiaaiMcaaaa@49D6@ – microrotation velocity,
  • E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb aaaa@374F@ –internal energy density,
  • θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383B@ –absolute temperature,
  • T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHub aaaa@3762@ –stress tensor,
  • C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHdb aaaa@3751@ –couple stress tensor,
  • q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHXb aaaa@377F@ –heat flux density vector,
  • f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHMb aaaa@3774@ –outer body force density,
  • g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHNb aaaa@3775@ –outer body couple density,
  • p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb aaaa@377A@ –pressure.

The mathematical model of the described flow is stated, for example, in the book of Lukaszewicz11 and reads

ρ ˙ =ρv, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaHbp GCgaGaaiaai2dacqGHsislcqaHbpGCcqGHhis0cqGHflY1caWH2bGa aGilaaaa@4147@    (1)

ρ v ˙ =T+ρf, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCceWH2bGbaiaacaaI9aGaey4bIeTaeyyXICTaaCivaiabgUcaRiab eg8aYjaahAgacaaISaaaaa@4308@    (2)

ρ j I w ˙ =C+ T x +ρg, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcaWGQbqcfa4aaSbaaKqaGeaajugWaiaadMeaaSqabaqcLbsaceGI 3bGbaiaacaaI9aGaey4bIeTaeyyXICTaaC4qaiabgUcaRiaahsfalm aaBaaajeaibaqcLbmacaWG4baajeaibeaajugibiabgUcaRiabeg8a YjaahEgacaaISaaaaa@4C53@    (3)

ρ E ˙ =q+T:v+C:w T x w. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCceWGfbGbaiaacaaI9aGaeyOeI0Iaey4bIeTaeyyXICTaaCyCaiab gUcaRiaahsfacaaI6aGaey4bIeTaaCODaiabgUcaRiaahoeacaaI6a Gaey4bIeTaaO4DaiabgkHiTiaahsfajuaGdaWgaaqcbasaaKqzadGa amiEaaWcbeaajugibiabgwSixlaakEhacaaIUaaaaa@5306@    (4)

Equations (1)–(4) are respectively, local forms of the conservation laws for mass, momentum, angular momentum and energy. We assume that our fluid is isotropic, which means that the intrinsic angular momentum per unit mass can be written in the form j I w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGQb WcdaWgaaqcbasaaKqzadGaamysaaqcbasabaqcLbsacaGI3baaaa@3B82@ , where the positive constant j I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGQb qcfa4aaSbaaKqaGeaajugWaiaadMeaaSqabaaaaa@3A54@ is called imicroinertia density. For the readers’ convenience let us first explain the notation used in the system (1)–(18). The differential (dot) operator in equations (0.1)–(0.4) denotes material derivative defined by

a ˙ = a t +(a)v, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWHHb GbaiaacaaI9aGaaCyyaSWaaSbaaKqaGeaajugWaiaadshaaKqaGeqa aKqzGeGaey4kaSIaaGikaiabgEGirlaahggacaaIPaGaeyyXICTaaC ODaiaaiYcaaaa@4515@    (5)

For vector field a and

u ˙ = u t +(u)v, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaceWG1b GbaiaacaaI9aGaamyDaSWaaSbaaKazba4=baqcLbmacaWG0baajqwa a+FabaqcLbsacqGHRaWkcaaIOaGaey4bIeTaamyDaiaaiMcacqGHfl Y1caWH2bGaaGilaaaa@48CB@    (6)

For scalar field u. The differential operator MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0aaa@380B@ is classical nabla (del) operator where a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0cqGHflY1caWHHbaaaa@3B3F@ is the divergence of corresponding vector (or tensor) field, and a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0caWHHbaaaa@38F5@ is the gradient of the vector field a(or u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0caWG1baaaa@3905@ is gradient of the scalar field u). Vector T x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHub qcfa4aaSbaaKqaGeaajugWaiaadIhaaSqabaaaaa@3A71@ in the equations (3) & (4) is a vector with Cartesian components

T x =( T 23 T 32 , T 31 T 13 , T 12 T 21 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHub qcfa4aaSbaaKqaGeaajugWaiaadIhaaSqabaqcLbsacaaI9aqcfa4a aeWaaOqaaKqzGeGaamivaSWaaSbaaKqaGeaajugWaiaaikdacaaIZa aajeaibeaajugibiabgkHiTiaadsfalmaaBaaajeaibaqcLbmacaaI ZaGaaGOmaaqcbasabaqcLbsacaaISaGaamivaSWaaSbaaKqaGeaaju gWaiaaiodacaaIXaaajeaibeaajugibiabgkHiTiaadsfalmaaBaaa jeaibaqcLbmacaaIXaGaaG4maaqcbasabaqcLbsacaaISaGaamivaS WaaSbaaKqaGeaajugWaiaaigdacaaIYaaajeaibeaajugibiabgkHi TiaadsfalmaaBaaajeaibaqcLbmacaaIYaGaaGymaaqcbasabaaaki aawIcacaGLPaaajugibiaai6caaaa@5EC0@     (7)

The colon operator in the equation (0.4) is the dyadic notation for the scalar product of the tensors defined by

A:B=Tr( A B T ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHbb GaaGOoaiaahkeacaaI9aGaamivaiaadkhajuaGdaqadaGcbaqcLbsa caWHbbGaeyyXICTaaCOqaKqbaoaaCaaaleqajeaibaqcLbmacaWGub aaaaGccaGLOaGaayzkaaqcLbsacaaISaaaaa@463F@    (8)

Where Tr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub GaamOCaaaa@3855@ denotes the trace operator.

The components of the tensors T and C are given by

T ij =(p+λ v k,k ) δ ij +μ( v i,j + v j,i )+ μ r ( v j,i v i,j )2 μ r ε mij w m , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHub WcdaWgaaqcbasaaKqzadGaamyAaiaadQgaaKqaGeqaaKqzGeGaaGyp aiaaiIcacqGHsislcaWGWbGaey4kaSIaeq4UdWMaaCODaKqbaoaaBa aajeaibaqcLbmacaWGRbGaaGilaiaadUgaaSqabaqcLbsacaaIPaGa eqiTdqwcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaKqzGe Gaey4kaSIaeqiVd0wcfa4aaeWaaOqaaKqzGeGaaCODaKqbaoaaBaaa jeaibaqcLbmacaWGPbGaaGilaiaadQgaaSqabaqcLbsacqGHRaWkca WH2bqcfa4aaSbaaKqaGeaajugWaiaadQgacaaISaGaamyAaaWcbeaa aOGaayjkaiaawMcaaKqzGeGaey4kaSIaeqiVd0wcfa4aaSbaaKqaGe aajugWaiaadkhaaSqabaqcfa4aaeWaaOqaaKqzGeGaaCODaKqbaoaa BaaajeaibaqcLbmacaWGQbGaaGilaiaadMgaaSqabaqcLbsacqGHsi slcaWH2bWcdaWgaaqcbasaaKqzadGaamyAaiaaiYcacaWGQbaajeai beaaaOGaayjkaiaawMcaaKqzGeGaeyOeI0IaaGOmaiabeY7aTLqbao aaBaaajeaibaqcLbmacaWGYbaaleqaaKqzGeGaeqyTduwcfa4aaSba aKqaGeaajugWaiaad2gacaWGPbGaamOAaaWcbeaajugibiaakEhaju aGdaWgaaqcbasaaKqzadGaamyBaaWcbeaajugibiaaiYcaaaa@89B7@    (9)

C ij = c 0 w k,k δ ij + c d ( w i,j + w j,i )+ c a ( w j,i w i,j ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHdb qcfa4aaSbaaKqaGeaajugWaiaadMgacaWGQbaaleqaaKqzGeGaaGyp aiaadogajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaakE halmaaBaaajeaibaqcLbmacaWGRbGaaGilaiaadUgaaKqaGeqaaKqz GeGaeqiTdq2cdaWgaaqcbasaaKqzadGaamyAaiaadQgaaKqaGeqaaK qzGeGaey4kaSIaam4yaSWaaSbaaKqaGeaajugWaiaadsgaaKqaGeqa aKqbaoaabmaakeaajugibiaakEhalmaaBaaajeaibaqcLbmacaWGPb GaaGilaiaadQgaaKqaGeqaaKqzGeGaey4kaSIaaO4DaKqbaoaaBaaa jeaibaqcLbmacaWGQbGaaGilaiaadMgaaSqabaaakiaawIcacaGLPa aajugibiabgUcaRiaadogajuaGdaWgaaqcbasaaKqzadGaamyyaaWc beaajuaGdaqadaGcbaqcLbsacaGI3bWcdaWgaaqcbasaaKqzadGaam OAaiaaiYcacaWGPbaajeaibeaajugibiabgkHiTiaakEhalmaaBaaa jeaibaqcLbmacaWGPbGaaGilaiaadQgaaKqaGeqaaaGccaGLOaGaay zkaaqcLbsacaaIUaaaaa@753C@     (10)

The derivatives in (9)–(10) are in the indicial notation, i.e., for a=( a 1 , a 2 , a 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHHb GaaGypaKqbaoaabmaakeaajugibiaadggalmaaBaaajeaibaqcLbma caaIXaaajeaibeaajugibiaaiYcacaWGHbqcfa4aaSbaaKqaGeaaju gWaiaaikdaaSqabaqcLbsacaaISaGaamyyaSWaaSbaaKqaGeaajugW aiaaiodaaKqaGeqaaaGccaGLOaGaayzkaaaaaa@47CE@ we have

a i,j = a i x j . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHHb qcfa4aaSbaaKqaGeaajugWaiaadMgacaaISaGaamOAaaWcbeaajugi biaai2dajuaGdaWcaaGcbaqcLbsacqGHciITcaWGHbqcfa4aaSbaaK qaGeaajugWaiaadMgaaSqabaaakeaajugibiabgkGi2kaadIhajuaG daWgaaqcbasaaKqzadGaamOAaaWcbeaaaaqcLbsacaaIUaaaaa@4B31@    (11)

In (9)–(10), we use Kronecker’s delta symbol δ ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azjuaGdaWgaaqcbasaaKqzadGaamyAaiaadQgaaSqabaaaaa@3C19@ as well as Levi–Civita’s symbol ε ijk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzlmaaBaaajeaibaqcLbmacaWGPbGaamOAaiaadUgaaKqaGeqaaaaa @3CA7@ , which are defined by

δ ij =( 1, i=j, 0, ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH0o azlmaaBaaajeaibaqcLbmacaWGPbGaamOAaaqcbasabaqcLbsacaaI 9aqcfa4aaeqaaOqaaKqzGeqbaeqabiGaaaGcbaqcLbsacaaIXaGaaG ilaaGcbaqcLbsacaWGPbGaaGypaiaadQgacaaISaaakeaajugibiaa icdacaaISaaakeaajugibiaadMgacqGHGjsUcaWGQbaaaaGccaGL7b aaaaa@4BA8@    (12)

And

ε ijk =( +1, ifijkisevenpermutationof123, 1, ifijkisoddpermutationof123, 0, ifanyindexisrepeated. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzlmaaBaaajeaibaqcLbmacaWGPbGaamOAaiaadUgaaKqaGeqaaKqz GeGaaGypaKqbaoaabeaakeaajugibuaabeqadiaaaOqaaKqzGeGaey 4kaSIaaGymaiaaiYcaaOqaaKqzGeGaaeyAaiaabAgacaWGPbGaamOA aiaadUgacaqGPbGaae4CaiaabwgacaqG2bGaaeyzaiaab6gacaqGWb GaaeyzaiaabkhacaqGTbGaaeyDaiaabshacaqGHbGaaeiDaiaabMga caqGVbGaaeOBaiaab+gacaqGMbGaaGymaiaaikdacaaIZaGaaGilaa GcbaqcLbsacqGHsislcaaIXaGaaGilaaGcbaqcLbsacaqGPbGaaeOz aiaadMgacaWGQbGaam4AaiaabMgacaqGZbGaae4BaiaabsgacaqGKb GaaeiCaiaabwgacaqGYbGaaeyBaiaabwhacaqG0bGaaeyyaiaabsha caqGPbGaae4Baiaab6gacaqGVbGaaeOzaiaaigdacaaIYaGaaG4mai aaiYcaaOqaaKqzGeGaaGimaiaaiYcaaOqaaKqzGeGaaeyAaiaabAga caqGHbGaaeOBaiaabMhacaqGPbGaaeOBaiaabsgacaqGLbGaaeiEai aabMgacaqGZbGaaeOCaiaabwgacaqGWbGaaeyzaiaabggacaqG0bGa aeyzaiaabsgacaaIUaaaaaGccaGL7baaaaa@8F18@    (13)

Here, we assume the Einstein summation convention, i.e., when an index variable appears twice in a single term, it implies summation of that term over all the values of the index.

Let us note that equations (0.9)–(0.10) are constitutive equations for the micropolar continuum, whereby we have the following material parameters:

  • λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBaaa@3839@ –coefficient of dilatational viscosity
  • μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBaaa@383B@ –coefficient of dynamical viscosity
  • μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaBaaajeaibaqcLbmacaWGYbaajeaibeaaaaa@3AE0@ –coefficient of rotational viscosity
  • c 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb WcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaaaa@39D5@ –coefficient of bulk spin (angular) viscosity
  • c d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb WcdaWgaaqcbasaaKqzadGaamizaaqcbasabaaaaa@3A04@ –coefficient of shear spin (angular) viscosity
  • c d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaadsgaaSqabaaaaa@3A68@ –coefficient of rotational spin (angular) viscosity

The coefficients of viscosity are related through the Clausius–Duhem inequalities, as follows:

μ0, 3λ+2μ0,  μ r 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBcqGHLjYScaaIWaGaaGilaabaaaaaaaaapeGaaiiOa8aacaaIZaGa eq4UdWMaey4kaSIaaGOmaiabeY7aTjabgwMiZkaaicdacaaISaWdbi aacckapaGaeqiVd02cdaWgaaqcbasaaKqzadGaamOCaaqcbasabaqc LbsacqGHLjYScaaIWaGaaGilaaaa@4F22@ (14)   

c d 0, 3 c 0 +2 c d 0, | c d c a | c d + c a .a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb WcdaWgaaqcbasaaKqzadGaamizaaqcbasabaqcLbsacqGHLjYScaaI WaGaaGilaabaaaaaaaaapeGaaiiOa8aacaaIZaGaam4yaKqbaoaaBa aajeaibaqcLbmacaaIWaaaleqaaKqzGeGaey4kaSIaaGOmaiaadoga lmaaBaaajeaibaqcLbmacaWGKbaajeaibeaajugibiabgwMiZkaaic dacaaISaWdbiaacckapaGaaGiFaiaadogalmaaBaaajeaibaqcLbma caWGKbaajeaibeaajugibiabgkHiTiaadogalmaaBaaajeaibaqcLb macaWGHbaajeaibeaajugibiaaiYhacqGHKjYOcaWGJbWcdaWgaaqc basaaKqzadGaamizaaqcbasabaqcLbsacqGHRaWkcaWGJbqcfa4aaS baaKqaGeaajugWaiaadggaaSqabaqcLbsacaaIUaGaamyyaaaa@6605@    (15)

As it is mentioned in the introduction, we assume that our fluid is perfect and polytropic in the thermodynamical sense, which we model by the following equations:

q=kθ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHXb GaaGypaiabgkHiTiaadUgacqGHhis0cqaH4oqCcaaISaaaaa@3E15@    (16)

p=Rρθ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGWb GaaGypaiaadkfacqaHbpGCcqaH4oqCcaaISaaaaa@3D44@    (17)

E= c v θ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb GaaGypaiaadogalmaaBaaajeaibaqcLbmacaWG2baajeaibeaajugi biabeI7aXjaai6caaaa@3EA4@     (18)

 

Equation (16) is the Fourier law, where k0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGRb GaeyyzImRaaGimaaaa@39F5@ is the heat conduction coefficient. Equation (17) is the ideal gas law, where R>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGsb GaaGOpaiaaicdaaaa@38DE@ is the universal gas constant, while (18) presents the assumption that our fluid is polytropic. The positive constant c v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb WcdaWgaaqcbasaaKqzadGaamODaaqcbasabaaaaa@3A16@ in (18) is called specific heat at a constant volume.

For simplicity reasons, we will assume that the outer impact can be neglected, i.e. we take:

f=g=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHMb GaaGypaiaahEgacaaI9aGaaGimaiaai6caaaa@3B64@    (19)

To simplify the system (1)–(4), we will first substitute the (9), (10) and (16)–(18) into (1)–(4) together with (19). We get:

ρ t =(ρ)vρv, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GClmaaBaaajeaibaqcLbmacaWG0baajeaibeaajugibiaai2dacqGH sislcaaIOaGaey4bIeTaeqyWdiNaaGykaiabgwSixlaahAhacqGHsi slcqaHbpGCcqGHhis0cqGHflY1caWH2bGaaGilaaaa@4D55@    (20)

ρ v t =ρ(v)v)R( ρθ )+(λ+μ μ r )(v) +(μ+ μ r )Δv+2 μ r ×w, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaae Gabaaakeaajugibiabeg8aYjaahAhalmaaBaaajeaibaqcLbmacaWG 0baajeaibeaajugibiaai2dacqGHsislcqaHbpGCcaaIOaGaey4bIe TaaCODaiaaiMcacqGHflY1caWH2bGaaGykaiabgkHiTiaadkfacqGH his0juaGdaqadaGcbaqcLbsacqaHbpGCcqaH4oqCaOGaayjkaiaawM caaKqzGeGaey4kaSIaaGikaiabeU7aSjabgUcaRiabeY7aTjabgkHi TiabeY7aTTWaaSbaaKqaGeaajugWaiaadkhaaKqaGeqaaKqzGeGaaG ykaiabgEGirlaaiIcacqGHhis0cqGHflY1caWH2bGaaGykaaGcbaqc LbsacqGHRaWkcaaIOaGaeqiVd0Maey4kaSIaeqiVd02cdaWgaaqcba saaKqzadGaamOCaaqcbasabaqcLbsacaaIPaGaeuiLdqKaaCODaiab gUcaRiaaikdacqaH8oqBlmaaBaaajeaibaqcLbmacaWGYbaajeaibe aajugibiabgEGirlabgEna0kaakEhacaaISaaaaaaa@7F4B@    (21)

j I ρ w t =ρ(w)v)+2 μ r ( ×v2w )+ ( c 0 + c d c a )(w)+( c d + c a )Δw, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaae GabaaakeaajugibiaadQgajuaGdaWgaaqcbasaaKqzadGaamysaaWc beaajugibiabeg8aYjaakEhalmaaBaaajeaibaqcLbmacaWG0baaje aibeaajugibiaai2dacqGHsislcqaHbpGCcaaIOaGaey4bIeTaaO4D aiaaiMcacqGHflY1caWH2bGaaGykaiabgUcaRiaaikdacqaH8oqBju aGdaWgaaqcbasaaKqzadGaamOCaaWcbeaajuaGdaqadaGcbaqcLbsa cqGHhis0cqGHxdaTcaWH2bGaeyOeI0IaaGOmaiaakEhaaOGaayjkai aawMcaaKqzGeGaey4kaScakeaajugibiaaiIcacaWGJbqcfa4aaSba aKqaGeaajugWaiaaicdaaSqabaqcLbsacqGHRaWkcaWGJbqcfa4aaS baaKqaGeaajugWaiaadsgaaSqabaqcLbsacqGHsislcaWGJbqcfa4a aSbaaKqaGeaajugWaiaadggaaSqabaqcLbsacaaIPaGaey4bIeTaaG ikaiabgEGirlabgwSixlaakEhacaaIPaGaey4kaSIaaGikaiaadoga juaGdaWgaaqcbasaaKqzadGaamizaaWcbeaajugibiabgUcaRiaado gajuaGdaWgaaqcbasaaKqzadGaamyyaaWcbeaajugibiaaiMcacqqH uoarcaGI3bGaaGilaaaaaaa@8687@    (22)

c v ρ θ t = c v ρ(θ)v+kΔθRρθ(v)+λ (v) 2 +μ(v+ (v) T ):(v+ (v) T )+4 μ r ( 1 2 ×vw ) 2 + c 0 (w) 2 +( c d + c a )w:w+( c d c a )w:(w ) T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaae WabaaakeaajugibiaadogajuaGdaWgaaqcbasaaKqzadGaamODaaWc beaajugibiabeg8aYjabeI7aXLqbaoaaBaaajeaibaqcLbmacaWG0b aaleqaaKqzGeGaaGypaiabgkHiTiaadogajuaGdaWgaaqcbasaaKqz adGaamODaaWcbeaajugibiabeg8aYjaaiIcacqGHhis0cqaH4oqCca aIPaGaeyyXICTaaCODaiabgUcaRiaadUgacqqHuoarcqaH4oqCcqGH sislcaWGsbGaeqyWdiNaeqiUdeNaaGikaiabgEGirlabgwSixlaahA hacaaIPaGaey4kaSIaeq4UdWMaaGikaiabgEGirlabgwSixlaahAha caaIPaqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaakeaajugibi abgUcaRiabeY7aTjaaiIcacqGHhis0caWH2bGaey4kaSIaaGikaiab gEGirlaahAhacaaIPaqcfa4aaWbaaSqabKqaGeaajugWaiaadsfaaa qcLbsacaaIPaGaaGOoaiaaiIcacqGHhis0caWH2bGaey4kaSIaaGik aiabgEGirlaahAhacaaIPaqcfa4aaWbaaSqabKqaGeaajugWaiaads faaaqcLbsacaaIPaGaey4kaSIaaGinaiabeY7aTTWaaSbaaKqaGeaa jugWaiaadkhaaKqaGeqaaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLb sacaaIXaaakeaajugibiaaikdaaaGaey4bIeTaey41aqRaaCODaiab gkHiTiaakEhaaOGaayjkaiaawMcaaSWaaWbaaKqaGeqabaqcLbmaca aIYaaaaaGcbaqcLbsacqGHRaWkcaWGJbWcdaWgaaqcbasaaKqzadGa aGimaaqcbasabaqcLbsacaaIOaGaey4bIeTaeyyXICTaaO4DaiaaiM calmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRiaaiIca caWGJbWcdaWgaaqcbasaaKqzadGaamizaaqcbasabaqcLbsacqGHRa WkcaWGJbWcdaWgaaqcbasaaKqzadGaamyyaaqcbasabaqcLbsacaaI PaGaey4bIeTaaO4DaiaaiQdacqGHhis0caGI3bGaey4kaSIaaGikai aadogalmaaBaaajeaibaqcLbmacaWGKbaajeaibeaajugibiabgkHi TiaadogalmaaBaaajeaibaqcLbmacaWGHbaajeaibeaajugibiaaiM cacqGHhis0caGI3bGaaGOoaiaaiIcacqGHhis0caGI3bGaaGykaSWa aWbaaKqaGeqabaqcLbmacaWGubaaaKqzGeGaaGOlaaaaaaa@D4CF@ > > > (23)

In this paper, we consider the model (20)–(23) for the one–dimensional flow; therefore, we assume

ρ(x,t)=ρ(x,t),v(x,t)=(v(x,t),0,0), ω(x,t)=(ω(x,t),0,0),θ(x,t)=θ(x,t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaae Gabaaakeaajugibiabeg8aYjaaiIcacaWH4bGaaGilaiaadshacaaI PaGaaGypaiabeg8aYjaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaG ilaiaahAhacaaIOaGaaCiEaiaaiYcacaWG0bGaaGykaiaai2dacaaI OaGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaiaaic dacaaISaGaaGimaiaaiMcacaaISaaakeaajugibiabeM8a3jaaiIca caWH4bGaaGilaiaadshacaaIPaGaaGypaiaaiIcacqaHjpWDcaaIOa GaamiEaiaaiYcacaWG0bGaaGykaiaaiYcacaaIWaGaaGilaiaaicda caaIPaGaaGilaiabeI7aXjaaiIcacaWH4bGaaGilaiaadshacaaIPa GaaGypaiabeI7aXjaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGil aaaaaaa@7359@      (0.24)

and obtain

ρ t = ρ x vρ v x , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GClmaaBaaajeaibaqcLbmacaWG0baajeaibeaajugibiaai2dacqGH sislcqaHbpGCjuaGdaWgaaqcbasaaKqzadGaamiEaaWcbeaajugibi aadAhacqGHsislcqaHbpGCcaWG2bqcfa4aaSbaaKqaGeaajugWaiaa dIhaaSqabaqcLbsacaaISaaaaa@4B84@    (25)

ρ v t =ρv v x R (ρθ) x +(λ+2μ) v xx , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCcaWG2bWcdaWgaaqcbasaaKqzadGaamiDaaqcbasabaqcLbsacaaI 9aGaeyOeI0IaeqyWdiNaamODaiaadAhalmaaBaaajeaibaqcLbmaca WG4baajeaibeaajugibiabgkHiTiaadkfacaaIOaGaeqyWdiNaeqiU deNaaGykaKqbaoaaBaaajeaibaqcLbmacaWG4baaleqaaKqzGeGaey 4kaSIaaGikaiabeU7aSjabgUcaRiaaikdacqaH8oqBcaaIPaGaamOD aSWaaSbaaKqaGeaajugWaiaadIhacaWG4baajeaibeaajugibiaaiY caaaa@5C8E@    (26)

j I ρ ω t = j I ρv ω x +( c 0 +2 c d ) ω xx 4 μ r ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGQb qcfa4aaSbaaKqaGeaajugWaiaadMeaaSqabaqcLbsacqaHbpGCcqaH jpWDjuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugibiaai2dacq GHsislcaWGQbqcfa4aaSbaaKqaGeaajugWaiaadMeaaSqabaqcLbsa cqaHbpGCcaWG2bGaeqyYdCxcfa4aaSbaaKqaGeaajugWaiaadIhaaS qabaqcLbsacqGHRaWkcaaIOaGaam4yaSWaaSbaaKqaGeaajugWaiaa icdaaKqaGeqaaKqzGeGaey4kaSIaaGOmaiaadogajuaGdaWgaaqcba saaKqzadGaamizaaWcbeaajugibiaaiMcacqaHjpWDlmaaBaaajeai baqcLbmacaWG4bGaamiEaaqcbasabaqcLbsacqGHsislcaaI0aGaeq iVd0wcfa4aaSbaaKqaGeaajugWaiaadkhaaSqabaqcLbsacqaHjpWD caaISaaaaa@6BF8@     (27)

c v ρ θ t = c v ρv θ x +k θ xx Rρθ v x +(λ+2μ)( v x ) 2 +( c 0 +2 c d )( ω x ) 2 +4 μ r ω 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaadAhaaSqabaqcLbsacqaHbpGCcqaH 4oqCjuaGdaWgaaqcbasaaKqzadGaamiDaaWcbeaajugibiaai2dacq GHsislcaWGJbWcdaWgaaqcbasaaKqzadGaamODaaqcbasabaqcLbsa cqaHbpGCcaWG2bGaeqiUdexcfa4aaSbaaKqaGeaajugWaiaadIhaaS qabaqcLbsacqGHRaWkcaWGRbGaeqiUdexcfa4aaSbaaKqaGeaajugW aiaadIhacaWG4baaleqaaKqzGeGaeyOeI0IaamOuaiabeg8aYjabeI 7aXjaadAhajuaGdaWgaaqcbasaaKqzadGaamiEaaWcbeaajugibiab gUcaRiaaiIcacqaH7oaBcqGHRaWkcaaIYaGaeqiVd0MaaGykaiaaiI cacaWG2bqcfa4aaSbaaKqaGeaajugWaiaadIhaaSqabaqcLbsacaaI PaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaIOa Gaam4yaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaey4k aSIaaGOmaiaadogajuaGdaWgaaqcbasaaKqzadGaamizaaWcbeaaju gibiaaiMcacaaIOaGaeqyYdCxcfa4aaSbaaKqaGeaajugWaiaadIha aSqabaqcLbsacaaIPaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLb sacqGHRaWkcaaI0aGaeqiVd0wcfa4aaSbaaKqaGeaajugWaiaadkha aSqabaqcLbsacqaHjpWDlmaaCaaajeaibeqaaKqzadGaaGOmaaaaju gibiaai6caaaa@9428@    (28)

Let us note that the system (25) was first analyzed by Mujaković12 coupled with homogeneous boundary conditions for velocity, microrotation velocity and heat flux, as well as non–homogeneous initial conditions. In this work, Mujaković proved that the corresponding problem has a unique generalized solution.9

This model was later analyzed by other author too, whereby different mathematical properties were described, such as regularity and large time behavior of the solution.13 In her later works, Mujaković considered non–homogeneous boundary conditions, as well as free boundary conditions.14,15

From the physical point of view, homogeneous boundary conditions for velocity and heat flux describe the solid thermo–insulated walls, with non–homogenous boundary conditions for velocity we model the piston problem, and free boundary conditions describe the expansion of fluid into vacuum. For more details about different boundary conditions.9,12

Nondimensionalization

As it is pointed out in the introduction, to get a better picture of the behaviour of the compressible micropolar flow it is essential to derive a dimensionless formulation of the problem, which is the main goal of this paper. To convert the equations (25)–(28) to their dimensionless form, we first introduce dimensionless independent variables by:

x * = x L , t * = t τ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG4b WcdaahaaqcbasabeaajugWaiaaiQcaaaqcLbsacaaI9aqcfa4aaSaa aOqaaKqzGeGaamiEaaGcbaqcLbsacaWGmbaaaiaaiYcacaWG0bqcfa 4aaWbaaSqabKqaGeaajugWaiaaiQcaaaqcLbsacaaI9aqcfa4aaSaa aOqaaKqzGeGaamiDaaGcbaqcLbsacqaHepaDaaGaaGilaaaa@49BF@ (29)   

As well as dimensionless dependent variables by:

ρ * = ρ ρ , v * = v v , ω * = ω ω , θ * = θ θ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GClmaaCaaajeaibeqaaKqzadGaaGOkaaaajugibiaai2dajuaGdaWc aaGcbaqcLbsacqaHbpGCaOqaaKqzGeGaeqyWdi3cdaWgaaqcbasaaK qzadGaeyOhIukajeaibeaaaaqcLbsacaaISaGaamODaSWaaWbaaKqa GeqabaqcLbmacaaIQaaaaKqzGeGaaGypaKqbaoaalaaakeaajugibi aadAhaaOqaaKqzGeGaamODaKqbaoaaBaaajeaibaqcLbmacqGHEisP aSqabaaaaKqzGeGaaGilaiabeM8a3TWaaWbaaKqaGeqabaqcLbmaca aIQaaaaKqzGeGaaGypaKqbaoaalaaakeaajugibiabeM8a3bGcbaqc LbsacqaHjpWDjuaGdaWgaaqcbasaaKqzadGaeyOhIukaleqaaaaaju gibiaaiYcacqaH4oqClmaaCaaajeaibeqaaKqzadGaaGOkaaaajugi biaai2dajuaGdaWcaaGcbaqcLbsacqaH4oqCaOqaaKqzGeGaeqiUde xcfa4aaSbaaKqaGeaajugWaiabg6HiLcWcbeaaaaqcLbsacaaISaaa aa@7177@ (30) 

Where L, τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHep aDaaa@384A@ , ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCjuaGdaWgaaqcbasaaKqzadGaeyOhIukaleqaaaaa@3BC8@ , v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG2b qcfa4aaSbaaKqaGeaajugWaiabg6HiLcWcbeaaaaa@3B03@ , ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaajeaibaqcLbmacqGHEisPaKqaGeqaaaaa@3B71@ and θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCjuaGdaWgaaqcbasaaKqzadGaeyOhIukaleqaaaaa@3BBE@ are dimension–bearing constants. According to Bayada G, et al.16 and Chen J, et al.10 we additionally take

ω = L v . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaqcbasaaKqzadGaeyOhIukaleqaaKqzGeGaaGypaKqb aoaalaaakeaajugibiaadYeaaOqaaKqzGeGaamODaKqbaoaaBaaaje aibaqcLbmacqGHEisPaSqabaaaaKqzGeGaaGOlaaaa@4591@    (31)

Now, we will convert parameters of the model into their dimensionless versions, which are called relative numbers. We mostly use common relative numbers, but some are slightly modified or redefined:

Strouhal number:

St = L τ v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadofacaWG0baaaiaai2dajuaGdaWcaaGc baqcLbsacaWGmbaakeaajugibiabes8a0jaadAhajuaGdaWgaaqcba saaKqzadGaeyOhIukaleqaaaaaaaa@431E@    (32)

which measures unsteadiness of the flow, i.e., it indicates the significance of time derivative term.

Mach number:

Ma = v γR θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaad2eacaWGHbaaaiaai2dajuaGdaWcaaGc baqcLbsacaWG2bqcfa4aaSbaaKqaGeaajugWaiabg6HiLcWcbeaaaO qaaKqbaoaakaaakeaajugibiabeo7aNjaadkfacqaH4oqCjuaGdaWg aaqcbasaaKqzadGaeyOhIukaleqaaaqabaaaaaaa@48CE@     (33)

which measures compressibility of the flow. Let us note that the definition (33) is valid for perfect gas only.

Heat capacity ratio:

γ= c p c v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo WzcaaI9aqcfa4aaSaaaOqaaKqzGeGaam4yaKqbaoaaBaaajeaibaqc LbmacaWGWbaaleqaaaGcbaqcLbsacaWGJbqcfa4aaSbaaKqaGeaaju gWaiaadAhaaSqabaaaaaaa@42A7@    (34)

which is the ratio of the heat capacity at constant pressure ( c p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb qcfa4aaSbaaKqaGeaajugWaiaadchaaSqabaaaaa@3A74@ ) to heat capacity at constant volume ( c v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGJb WcdaWgaaqcbasaaKqzadGaamODaaqcbasabaaaaa@3A16@ ). The heat capacity ratio is an intrinsic property of a fluid, i.e., it contains no length scale in its definition and is dependent only on the fluid and the fluid state.

Macroscopic reynolds numbers:

R e μ = L v ρ μ , R e λ = L v ρ λ , R e M = L v ρ λ+2μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadkfacaWGLbqcfa4aaSbaaKazba4=baqc LbmacqaH8oqBaSqabaaaaKqzGeGaaGypaKqbaoaalaaakeaajugibi aadYeacaWG2bqcfa4aaSbaaKqaGeaajugWaiabg6HiLcWcbeaajugi biabeg8aYLqbaoaaBaaajeaibaqcLbmacqGHEisPaSqabaaakeaaju gibiabeY7aTbaacaaISaqcfa4aaybuaOqabSqabeqakeaajugibiaa dkfacaWGLbWcdaWgaaqcbasaaKqzadGaeq4UdWgajeaibeaaaaqcLb sacaaI9aqcfa4aaSaaaOqaaKqzGeGaamitaiaadAhajuaGdaWgaaqc basaaKqzadGaeyOhIukaleqaaKqzGeGaeqyWdixcfa4aaSbaaKqaGe aajugWaiabg6HiLcWcbeaaaOqaaKqzGeGaeq4UdWgaaiaaiYcajuaG daGfqbGcbeWcbeqabOqaaKqzGeGaamOuaiaadwgajuaGdaWgaaqcba saaKqzadGaamytaaWcbeaaaaqcLbsacaaI9aqcfa4aaSaaaOqaaKqz GeGaamitaiaadAhajuaGdaWgaaqcbasaaKqzadGaeyOhIukaleqaaK qzGeGaeqyWdixcfa4aaSbaaKqaGeaajugWaiabg6HiLcWcbeaaaOqa aKqzGeGaeq4UdWMaey4kaSIaaGOmaiabeY7aTbaaaaa@80C1@    (35)

which indicate how effectively the macroscopic viscous forces compensate the inertia forces, i.e., it quantifies the importance of macroscopic viscous forces in the flow (small value of R e M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaubeaO qabSqabeqakeaajugibiaadkfacaWGLbqcfa4aaSbaaKqaGeaajugW aiaad2eaaSqabaaaaaaa@3C06@ corresponds to a flow with large macroscopic viscous effects, while a large value of R e M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaubeaO qabSqabeqakeaajugibiaadkfacaWGLbqcfa4aaSbaaKqaGeaajugW aiaad2eaaSqabaaaaaaa@3C06@ corresponds to a flow with small macroscopic viscous effects).

Microscopic reynolds number:

R e m = j I L v ρ c 0 +2 c d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadkfacaWGLbqcfa4aaSbaaKqaGeaajugW aiaad2gaaSqabaaaaKqzGeGaaGypaKqbaoaalaaakeaajugibiaadQ gajuaGdaWgaaqcbasaaKqzadGaamysaaWcbeaajugibiaadYeacaWG 2bWcdaWgaaqcbasaaKqzadGaeyOhIukajeaibeaajugibiabeg8aYL qbaoaaBaaajeaibaqcLbmacqGHEisPaSqabaaakeaajugibiaadoga juaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiabgUcaRiaaik dacaWGJbqcfa4aaSbaaKqaGeaajugWaiaadsgaaSqabaaaaaaa@586C@    (36)

which quantifies the importance of microscopic viscous forces in the flow in the same manner as R e M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaubeaO qabSqabeqakeaajugibiaadkfacaWGLbqcfa4aaSbaaKqaGeaajugW aiaad2eaaSqabaaaaaaa@3C06@ .

Eringen number:

Er = j I L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadweacaWGYbaaaiaai2dajuaGdaWcaaGc baqcLbsacaWGQbqcfa4aaSbaaKqaGeaajugWaiaadMeaaSqabaaake aajugibiaadYeajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaaa aa@4369@    (37)

which governs the micropolar nature of the fluid. If Er MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaubeaO qabSqabeqakeaajugibiaadweacaWGYbaaaaaa@3922@ is closer to unity, the effect of the micropollarity will be more pronounced. Square root of microintertia density is commonly used as dynamic internal characteristic length for isotropic micropolar continuum.

Coupling number:

N = 4 μ r λ+2μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaad6eaaaGaaGypaKqbaoaalaaakeaajugi biaaisdacqaH8oqBjuaGdaWgaaqcbasaaKqzadGaamOCaaWcbeaaaO qaaKqzGeGaeq4UdWMaey4kaSIaaGOmaiabeY7aTbaaaaa@4591@    (38)

which measures the intensity of coupling between microrotations and rotations at macrolevel, i.e. it is a measure of the degree to which a particle is constrained to rotate with the average angular velocity of the region in which it is embedded.

Prandtl number:

Pr = c p μ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadcfacaWGYbaaaiaai2dajuaGdaWcaaGc baqcLbsacaWGJbqcfa4aaSbaaKqaGeaajugWaiaadchaaSqabaqcLb sacqaH8oqBaOqaaKqzGeGaam4Aaaaaaaa@4329@    (39)

which assesses the relation between momentum transport and thermal transport capacity of a fluid. For example, when Pr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaubeaO qabSqabeqakeaajugibiaadcfacaWGYbaaaaaa@392D@ is small, it means that the heat diffuses quickly compared to the velocity (momentum). As well as heat capacity ratio, the Prandtl number is an intrinsic property of a fluid.

Peclet number:

Pe = Pr R e μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadcfacaWGLbaaaiaai2dajuaGdaGfqbGc beWcbeqabOqaaKqzGeGaamiuaiaadkhaaaGaeyyXICDcfa4aaybuaO qabSqabeqakeaajugibiaadkfacaWGLbqcfa4aaSbaaKqaGeaajugW aiabeY7aTbWcbeaaaaaaaa@471F@    (40)

which is related to both the Prandtl number, as well as the Reynolds number. It measures the relative strength of convection to diffusion. If the Péclet number is small we can neglect convection. On the other side, when Péclet is high, convection is more dominant and diffusive processes can be neglected.

Eckert number:

Ec = v 2 c p θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadweacaWGJbaaaiaai2dajuaGdaWcaaGc baqcLbsacaWG2bWcdaqhaaqcbasaaKqzadGaeyOhIukajeaibaqcLb macaaIYaaaaaGcbaqcLbsacaWGJbqcfa4aaSbaaKqaGeaajugWaiaa dchaaSqabaqcLbsacqaH4oqCjuaGdaWgaaqcbasaaKqzadGaeyOhIu kaleqaaaaaaaa@4BA7@     (41)

 

which is used to characterize the influence of self–heating of a fluid as a consequence of heat dissipation.

We are now in the position to rewrite the equations (25)–(28) using the introduced relative numbers. To simplify the equations we omit the asterisk, and get

St ρ t = ρ x vρ v x , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadofacaWG0baaaiabeg8aYLqbaoaaBaaa leaajugibiaadshaaSqabaqcLbsacaaI9aGaeyOeI0IaeqyWdi3cda WgaaqcbasaaKqzadGaamiEaaqcbasabaqcLbsacaWG2bGaeyOeI0Ia eqyWdiNaamODaSWaaSbaaKqaGeaajugWaiaadIhaaKqaGeqaaKqzGe GaaGilaaaa@4D50@    (42)

St ρ v t =ρv v x 1 γM a 2 (ρθ) x + 1 R e M v xx , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadofacaWG0baaaiabeg8aYjaadAhalmaa Baaajqwaa+FaaKqzadGaamiDaaqcKfaG=hqaaKqzGeGaaGypaiabgk HiTiabeg8aYjaadAhacaWG2bWcdaWgaaqcKfaG=haajugWaiaadIha aKqaGeqaaKqzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcba qcLbsacqaHZoWzcaWGnbGaamyyaKqbaoaaCaaaleqajeaibaqcLbma caaIYaaaaaaajugibiaaiIcacqaHbpGCcqaH4oqCcaaIPaWcdaWgaa qcKfaG=haajugWaiaadIhaaKqaGeqaaKqzGeGaey4kaSscfa4aaSaa aOqaaKqzGeGaaGymaaGcbaqcLbsacaWGsbGaamyzaKqbaoaaBaaajq waa+FaaKqzadGaamytaaqcbasabaaaaKqzGeGaamODaSWaaSbaaKaz ba4=baqcLbmacaWG4bGaamiEaaqcKfaG=hqaaKqzGeGaaGilaaaa@754F@ ) ) ) (43)

St ρ ω t =ρv ω x + 1 R e m ω xx N Er R e M ω, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadofacaWG0baaaiabeg8aYjabeM8a3TWa aSbaaKqaGeaajugWaiaadshaaKqaGeqaaKqzGeGaaGypaiabgkHiTi abeg8aYjaadAhacqaHjpWDjuaGdaWgaaqcbasaaKqzadGaamiEaaWc beaajugibiabgUcaRKqbaoaalaaakeaajugibiaaigdaaOqaaKqbao aawafakeqaleqabeGcbaqcLbsacaWGsbGaamyzaSWaaSbaaKqaGeaa jugWaiaad2gaaKqaGeqaaaaaaaqcLbsacqaHjpWDlmaaBaaajeaiba qcLbmacaWG4bGaamiEaaqcbasabaqcLbsacqGHsisljuaGdaWcaaGc baqcLbsacaWGobaakeaajuaGdaGfqbGcbeWcbeqabOqaaKqzGeGaam yraiaadkhaaaGaeyyXICDcfa4aaybuaOqabSqabeqakeaajugibiaa dkfacaWGLbqcfa4aaSbaaKqaGeaajugWaiaad2eaaSqabaaaaaaaju gibiabeM8a3jaaiYcaaaa@6BA9@    (44)

St ρ θ t =ρv θ x + γ Pe θ xx Ec Ma 2 ρθ v x + γ Ec R e M ( v x ) 2 + γ Ec Er R e m ( ω x ) 2 + γ Ec N R e M ω 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsafaqaae GabaaakeaajuaGdaGfqbGcbeWcbeqabOqaaKqzGeGaam4uaiaadsha aaGaeqyWdiNaeqiUde3cdaWgaaqcbasaaKqzadGaamiDaaqcbasaba qcLbsacaaI9aGaeyOeI0IaeqyWdiNaamODaiabeI7aXLqbaoaaBaaa jeaibaqcLbmacaWG4baaleqaaKqzGeGaey4kaSscfa4aaSaaaOqaaK qzGeGaeq4SdCgakeaajuaGdaGfqbGcbeWcbeqabOqaaKqzGeGaamiu aiaadwgaaaaaaiabeI7aXTWaaSbaaKqaGeaajugWaiaadIhacaWG4b aajeaibeaajugibiabgkHiTKqbaoaalaaakeaajuaGdaGfqbGcbeWc beqabOqaaKqzGeGaamyraiaadogaaaaakeaajuaGdaGfGbGcbeWcbe qaaKqzGeGaaGOmaaGcbaqcLbsacaWGnbGaamyyaaaaaaGaeqyWdiNa eqiUdeNaamODaKqbaoaaBaaajeaibaqcLbmacaWG4baaleqaaKqzGe Gaey4kaSscfa4aaSaaaOqaaKqzGeGaeq4SdCMaeyyXICDcfa4aaybu aOqabSqabeqakeaajugibiaadweacaWGJbaaaaGcbaqcfa4aaybuaO qabSqabeqakeaajugibiaadkfacaWGLbqcfa4aaSbaaKqaGeaajugW aiaad2eaaSqabaaaaaaajugibiaaiIcacaWG2bqcfa4aaSbaaKqaGe aajugWaiaadIhaaSqabaqcLbsacaaIPaWcdaahaaqcbasabeaajugW aiaaikdaaaaakeaajugibiabgUcaRKqbaoaalaaakeaajugibiabeo 7aNjabgwSixNqbaoaawafakeqaleqabeGcbaqcLbsacaWGfbGaam4y aaaacqGHflY1caWGfbGaamOCaaGcbaqcfa4aaybuaOqabSqabeqake aajugibiaadkfacaWGLbqcfa4aaSbaaKqaGeaajugWaiaad2gaaSqa baaaaaaajugibiaaiIcacqaHjpWDlmaaBaaajeaibaqcLbmacaWG4b aajeaibeaajugibiaaiMcalmaaCaaajeaibeqaaKqzadGaaGOmaaaa jugibiabgUcaRKqbaoaalaaakeaajugibiabeo7aNjabgwSixNqbao aawafakeqaleqabeGcbaqcLbsacaWGfbGaam4yaaaacqGHflY1caWG obaakeaajuaGdaGfqbGcbeWcbeqabOqaaKqzGeGaamOuaiaadwgalm aaBaaajeaibaqcLbmacaWGnbaajeaibeaaaaaaaKqzGeGaeqyYdC3c daahaaqcbasabeaajugWaiaaikdaaaqcLbsacaaISaaaaaaa@B8B4@     (45)

which is the desired form of the considered problem.

Conclusion

In this paper, for the first time, the non–dimensional form of the model for the compressible flow of an isotropic, viscous, and heat conducting micropolar fluid is given, whereby the set of redefined relative numbers is introduced. The resulting formulation, coupled with appropriate boundary and initial conditions, is of great importance for future numerical experiments in the research of the physical properties of this fluid model.

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

  1. Gad–el–Hak M. The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture. Journal of Fluids Engineering. 1999;121(1):1–29.
  2. Eringen CA. Simple microuids. International Journal of Engineering Science. 1964;2(2):205–217.
  3. Papautsky I, Brazzle J, Ameel T, et al. Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors and Actuators A: Physical. 1999;73(1–2):101–108.
  4. Chaube MK, Yadav A, Tripathi D, et al. Electroosmotic flow of biorheological micropolar fluids through microuidic channels. Korea–Australia Rheology Journal. 2018;30(2):89–98.
  5. Swalmeh MZ, Alkasasbeh HT, Hussanan A, et al. Heat transfer flow of Cu–water and Al2O3–water micropolar nanouids about a solid sphere in the presence of natural convection using Keller–box method. Results in Physics. 2018;9:717–724.
  6. Asghar Z, Ali N, Beg OA, et al. Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition. Results in Physics. 2018;9:682–691.
  7. Farooq AA. On the transport of epididymal fluid induced by the metachronal wave of cilia. Journal of Engineering Mathematics. 2018;110(1):167–180.
  8. Khanukaeva DY. On the Analogy between Filtration Flow of Newtonian Fluid and Free Flow of Micropolar Fluid. Petroleum Chemistry. 2018;58(6):503–507.
  9. Dražić I, Simcic L. One–dimensional flow of a compressible viscous and heatconducting micropolar fluid with homogeneous boundary conditions: a brief survey of the theory and recent progress. Global and stochastic analysis. 2018;5(1):45–55.
  10. Chen J, Liang C, Lee JD. Numerical simulation for unsteady compressible micropolar fluid flow. Computers & Fluids. 2012;66:1–9.
  11. Lukaszewicz G. Micropolar Fluids: Theory and Applications. Modeling and Simulation in Science, Engineering and Technology. USA: Birkhäuser; 1999.
  12. Mujakovic N. One–dimensional flow of a compressible viscous micropolar fluid: a local existence theorem. Glasnik Matematicki. 1998;33(1):71–91.
  13. Huang L, Nie D. Exponential stability for a one–dimensional compressible viscous micropolar fluid. Mathematical Methods in the Applied Sciences. 2015;38(18):5197–5206.
  14. Mujakovic N. The existence of a global solution for one dimensional compressible viscous micropolar fluid with non–homogeneous boundary conditions for temperature. Nonlinear analysis. 2014;19:19–30.
  15. Mujakovic N, Crnjaric–Zic N. Global solution to 1D model of a compressible viscous micropolar heat–conducting fluid with a free boundary. Acta Mathematica Scientia. 2016;36(6):1541–1576.
  16. Bayada G, Benhaboucha N, Chambat M. New models in micropolar fluid and their application to lubrication. Mathematical Models and Methods in Applied Sciences. 2005;15(03):343–374.
Creative Commons Attribution License

©2018 Dražic. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.