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Introduction
In micro and nanosciences, classical fluid models can rarely be 

adequately considered, since micro–phenomena, which cannot 
be covered using classical models, increasingly come to the fore. 
Therefore, the models which can describe the phenomena at the micro 
level are increasingly analyzed.1 One example of such a model is the 
model of the micropolar continuum, which is the subject of this paper.

The model of the micropolar continuum was introduced by 
Eringen2. The behavior of the continuum at the microlevel in this 
model is described by using one new vector field, which Eringen calls 
microrotation velocity, whereby microdeformations are neglected.

Although the usability of the micropolar fluid model is easy to 
understand and even practically proven,3 from the technical and 
physical point of view, we still know very little about this model, 
especially in the compressible case. The rheological constants 
are almost unknown; therefore the study of physical properties for 
this model is practically impossible. In such situations, the non–
dimensional formulation is of great importance, which is addressed 
in this paper. Let us note that the micropolar fluid model could be 
appropriate for describing different kinds of biological fluids, smog, 
lubricants, gaseous stars, etc. Recently, the micropolar fluid model has 
been applied as the model for blood flow,4 for water–based nanofluid,5 
for mimicking bacterial physical phenomena,6 for the behavior of 
epididymal material,7 for describing lubricants with additives, for the 
motion of synovial fluid in the joints,8 etc.

It is important to point out that the mathematical analysis of 
the related initial–boundary problems has progressed considerably 
in terms of the solution’s existence analysis as well in terms of the 
corresponding numerical methods.9 This is the basis for exploring 
different fluid flow regimes in order to increase our understanding 
of the effect of micropolarity, or, in other words, the effect of 
microfenomena on the global fluid behaviour. The non–dimensional 
formulation becomes significant, precisely in this aspect of the 
research.

The basis for deriving non–dimensional constants was the classic 
fluid model and corresponding relative numbers (e.g., Mach number), 
which were partly redefined to accommodate the introduction of a 
new hydrodynamic variable (microrotation). In accordance with 
similar papers,10 some new constants have been introduced which are 
primarily used to describe the effect of micropolarity. These are the 
Microscopic Reynolds number, the Eringen number and the Coupling 
number.

This paper is organized as follows. In Section 2, we describe 
the model and derive its one–dimensional form, whereby we limit 
ourselves just to equations and not to the initial and boundary 
conditions. In Section 3, we introduce the relative numbers, perform 
the non–dimensionalization of the equations, and derive the non–
dimensional form of the corresponding system.

The mathematical model
In this paper we analyze the compressible flow of an isotropic, 

viscous, and heat–conducting micropolar fluid, which is in the 
thermodynamical sense perfect and polytropic. The corresponding 
hydrodynamical variables are: 

• ρ –mass density, 

• 1 2 3= ( , , )v v vv –velocity, 

• 1 2 3w = ( , , )ω ω ω – microrotation velocity, 

• E –internal energy density, 

• θ –absolute temperature, 

• T –stress tensor, 

• C –couple stress tensor, 

• q –heat flux density vector, 

• f –outer body force density, 

• g –outer body couple density, 

• p –pressure. 
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Abstract

In this paper, we consider the compressible, micropolar, viscous, and heat–conducting 
fluid, which is in thermodynamical sense perfect and polytropic. We describe the 
mathematical model of the described fluid and derive its one–dimensional form. For 
the given set of partial differential equations we perform non–dimensionalization and 
introduce the corresponding relative numbers.
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The mathematical model of the described flow is stated, for 
example, in the book of Lukaszewicz11 and reads

= ,ρ ρ− ∇ ⋅ v                                                                                    (1)

= ,ρ ρ∇ ⋅ +v T f                                                                          (2)

w = ,ρ ρ∇ ⋅ + +I xj C T g
                                                                 

 (3)

= : : w w.ρ −∇ ⋅ + ∇ + ∇ − ⋅

xE q T v C T
                                       

(4)

Equations (1)–(4) are respectively, local forms of the conservation 
laws for mass, momentum, angular momentum and energy. We 
assume that our fluid is isotropic, which means that the intrinsic 
angular momentum per unit mass l can be written in the form wIj
, where the positive constant Ij is called imicroinertia density. For 
the readers’ convenience let us first explain the notation used in the 
system (1)–(18). The differential (dot) operator in equations (0.1)–
(0.4) denotes material derivative defined by

= ( ) ,+ ∇ ⋅ ta a a v                                                                         (5)

For vector field a and

= ( ) ,+ ∇ ⋅ tu u u v                                                                               (6)

For scalar field u . The differential operator∇ is classical nabla 
(del) operator where∇ ⋅ a is the divergence of corresponding vector 
(or tensor) field, and∇a is the gradient of the vector field a (or u is 
gradient of the scalar field u ). Vector xT in the equations (3) & (4) is a 
vector with Cartesian components

( )23 32 31 13 12 21= , , .− − −x T T T T T TT
                                         

(7)

The colon operator in the equation (0.4) is the dyadic notation for 
the scalar product of the tensors defined by

 
( ): = ,⋅ TTrA B A B

                                                          
(8)

Where Tr denotes the trace operator.

The components of the tensors T and C are given by

                                                                                                        (9)

                                                                                                      
(10)

The derivatives in (9)–(10) are in the indicial notation, i.e., for

 ( )1 2 3= , ,a a aa we have

, = .
∂

∂
i

i j
j

a

x
a

                                                                                   

(11)

In (9)–(10), we use Kronecker’s delta symbolδ ij as well as Levi–

Civita’s symbol ε ijk , which are defined by

{1, = ,
=

0,
δ

≠ij
i j
i j

                                                                             (12)

And

                                                                                                                                                                                                                                                                                                            
                                                                                                             (13)

                                                                                                          
                                                                                                                                                                                                        
Here, we assume the Einstein summation convention, i.e., when an 

index variable appears twice in a single term, it implies summation of 
that term over all the values of the index.

Let us note that equations (0.9)–(0.10) are constitutive equations 
for the micropolar continuum, whereby we have the following 
material parameters:

• λ –coefficient of dilatational viscosity

• µ –coefficient of dynamical viscosity

• 
µr –coefficient of rotational viscosity

• 0c –coefficient of bulk spin (angular) viscosity

• dc –coefficient of shear spin (angular) viscosity

• dc –coefficient of rotational spin (angular) viscosity

The coefficients of viscosity are related through the Clausius–
Duhem inequalities, as follows:(14)

00, 3 2 0,  | | .≥ + ≥ − ≤ +d d d a d ac c c c c c c
                                   

(15)

As it is mentioned in the introduction, we assume that our fluid is 
perfect and polytropic in the thermodynamical sense, which we model 
by the following equations:

= ,θ− ∇kq                                                                                      (16)

= ,ρθp R                                                                                        (17)

= .θvE c                                                                                     (18)

Equation (16) is the Fourier law, where 0≥k is the heat conduction 

coefficient. Equation (17) is the ideal gas law, where > 0R is the 
universal gas constant, while (18) presents the assumption that our 

fluid is polytropic. The positive constant vc in (18) is called specific 

heat at a constant volume.

For simplicity reasons, we will assume that the outer impact can be 
neglected, i.e. we take:

= = 0.f g                                                                                         (19)

To simplify the system (1)–(4), we will first substitute the (9), (10) 
and (16)–(18) into (1)–(4) together with (19). We get:

= ( ) ,ρ ρ ρ− ∇ ⋅ − ∇ ⋅t v v
                                                            

(20)

( )= ( ) ) ( ) ( )
( ) 2 w,

ρ ρ ρθ λ µ µ

µ µ µ

− ∇ ⋅ − ∇ + + − ∇ ∇ ⋅

+ + ∆ + ∇ ×
t r

r r

Rv v v v
v

                
(21)

( )
0

w = ( w) ) 2 2w
( ) ( w) ( ) w,
ρ ρ µ− ∇ ⋅ + ∇ × − +

+ − ∇ ∇ ⋅ + + ∆
I t r

d a d a

j
c c c c c

v v

                           
(22)

                                                                    

                                    (23)

In this paper, we consider the model (20)–(23) for the one–
dimensional flow; therefore, we assume

( ) ( ), , , , ,= ( ) 2 w ,λ δ µ µ µ ε− + + + + − −ij k k ij i j j i r j i i j r mij mpT v v v v v

2

2

2
0

= ( ) ( ) ( )

1
( ( ) ) : ( ( ) ) 4 w

2
( w) ( ) w : w ( ) w : ( w) .

ρθ ρ θ θ ρθ λ

µ µ

− ∇ ⋅ + ∆ − ∇ ⋅ + ∇ ⋅

+ ∇ + ∇ ∇ + ∇ + ∇ × −

+ ∇ ⋅ + + ∇ ∇ + − ∇ ∇

 
 
 

v t v

T T
r

T
d a d a

c c k R

c c c c c

v v v

v v v v v

( ) ( )0 , , , , ,= w w w w w .δ + + + −ij k k ij d i j j i a j i i jc c cC

1, if isevenpermutationof123,
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( , ) = ( , ), ( , ) = ( ( , ), 0, 0),
( , ) = ( ( , ), 0, 0), ( , ) = ( , ),

ρ ρ
ω ω θ θ

t x t t v x t
t x t t x t

x v x
x x                        (0.24)

and obtain

= ,ρ ρ ρ− −t x xv v
                                                                        

(25)

= ( ) ( 2 ) ,ρ ρ ρθ λ µ− − + +t x x xxv vv R v                                      
(26)

0= ( 2 ) 4 ,ρω ρ ω ω µ ω− + + −I t I x d xx rj j v c c
                               

(27)

       

                                                                                                            
(28)

Let us note that the system (25) was first analyzed by Mujaković12 
coupled with homogeneous boundary conditions for velocity, 
microrotation velocity and heat flux, as well as non–homogeneous 
initial conditions. In this work, Mujaković proved that the 
corresponding problem has a unique generalized solution.9

This model was later analyzed by other author too, whereby 
different mathematical properties were described, such as regularity 
and large time behavior of the solution.13 In her later works, Mujaković 
considered non–homogeneous boundary conditions, as well as free 
boundary conditions.14,15

From the physical point of view, homogeneous boundary conditions 
for velocity and heat flux describe the solid thermo–insulated walls, 
with non–homogenous boundary conditions for velocity we model the 
piston problem, and free boundary conditions describe the expansion 
of fluid into vacuum. For more details about different boundary 
conditions.9,12

Nondimensionalization
As it is pointed out in the introduction, to get a better picture of the 

behaviour of the compressible micropolar flow it is essential to derive 
a dimensionless formulation of the problem, which is the main goal of 
this paper. To convert the equations (25)–(28) to their dimensionless 
form, we first introduce dimensionless independent variables by:

* *= , = ,
τ

x t
x t

L                                                                                 
(29)

As well as dimensionless dependent variables by:

* * * *= , = , = , = ,
ρ ω θ

ρ ω θ
ρ ω θ∞ ∞ ∞ ∞

v
v

v                                           

(30)

Whereτ ,τ , ρ∞ , ∞v ,andθ∞ are dimension–bearing constants. 
According to Bayada G, et al.16 and Chen J, et al.10 we additionally 
take

= .ω∞
∞

L

v                                                                                           

(31)

Now, we will convert parameters of the model into their 
dimensionless versions, which are called relative numbers. We mostly 
use common relative numbers, but some are slightly modified or 
redefined:

Strouhal number:

=
τ ∞

L
St

v                                                                                      

(32)

which measures unsteadiness of the flow, i.e., it indicates the 
significance of time derivative term.

Mach number:

=
γ θ

∞

∞

v
Ma

R
                                                                   (33)

which measures compressibility of the flow. Let us note that the 
definition (33) is valid for perfect gas only.

Heat capacity ratio:

=γ p

v

c

c                                                                                             

(34)

which is the ratio of the heat capacity at constant pressure ( vc ) 
to heat capacity at constant volume ( vc ). The heat capacity ratio is 
an intrinsic property of a fluid, i.e., it contains no length scale in its 
definition and is dependent only on the fluid and the fluid state.

Macroscopic reynolds numbers:

= , = , =
2

µ λ

ρ ρ ρ

µ λ λ µ
∞ ∞ ∞ ∞ ∞ ∞

+
M

Lv Lv Lv
Re Re Re

                          
(35)

which indicate how effectively the macroscopic viscous forces 
compensate the inertia forces, i.e., it quantifies the importance 

of macroscopic viscous forces in the flow (small value of MRe
corresponds to a flow with large macroscopic viscous effects, while 

a large value of MRe corresponds to a flow with small macroscopic 
viscous effects).

Microscopic reynolds number:

0

=
2

ρ∞ ∞

+
I

m
d

j Lv
Re

c c                                                                             

(36)

which quantifies the importance of microscopic viscous forces in 
the flow in the same manner as MRe .

Eringen number:

2= IjEr
L                                                                                                

(37)

which governs the micropolar nature of the fluid. If Er is closer 
to unity, the effect of the micropollarity will be more pronounced. 
Square root of microintertia density is commonly used as dynamic 
internal characteristic length for isotropic micropolar continuum.

Coupling number:
4

=
2

µ

λ µ+
rN

                                                                                     
(38)

2 2 2
0= ( 2 )( ) ( 2 )( ) 4 .ρθ ρ θ θ ρθ λ µ ω µ ω− + − + + + + +v t v x xx x x d x rc c v k R v v c c
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which measures the intensity of coupling between microrotations 
and rotations at macrolevel, i.e. it is a measure of the degree to which 
a particle is constrained to rotate with the average angular velocity of 
the region in which it is embedded.

Prandtl number:

=
µpc

Pr
k                                                                                             

(39)

which assesses the relation between momentum transport and 
thermal transport capacity of a fluid. For example, when Pr is small, 
it means that the heat diffuses quickly compared to the velocity 
(momentum). As well as heat capacity ratio, the Prandtl number is an 
intrinsic property of a fluid.

Peclet number:

                                                                                                   (40)

which is related to both the Prandtl number, as well as the Reynolds 
number. It measures the relative strength of convection to diffusion. 
If the Péclet number is small we can neglect convection. On the other 
side, when Péclet is high, convection is more dominant and diffusive 
processes can be neglected.

Eckert number:
2

=
θ
∞

∞p

v
Ec

c
                                                                                       

(41)

which is used to characterize the influence of self–heating of a 
fluid as a consequence of heat dissipation. 

We are now in the position to rewrite the equations (25)–(28) using 
the introduced relative numbers. To simplify the equations we omit 
the asterisk, and get

= ,ρ ρ ρ− −x xv vSt t                                                                 
(42)

2

1 1
= ( ) ,ρ ρ ρθ

γ
− − +t x x xx

M

v vv vSt
Ma Re

                                  

(43)

1
= ,ρω ρ ω ω ω− + −

⋅
t x xx

m M

N
vSt

Re ReEr
   (44)

2

2 2

= ( )2

( ) ,

γ γ
ρθ ρ θ θ ρθ

γ γ
ω ω

⋅
− + − +

⋅ ⋅ ⋅ ⋅
+ +

t x xx x x
M

x
m M

Ec Ecv v vSt
RePe Ma

Er NEc Ec

Re Re

 

                                                                                                   (45)

which is the desired form of the considered problem.

Conclusion
In this paper, for the first time, the non–dimensional form of the 

model for the compressible flow of an isotropic, viscous, and heat 
conducting micropolar fluid is given, whereby the set of redefined 
relative numbers is introduced. The resulting formulation, coupled 
with appropriate boundary and initial conditions, is of great 

importance for future numerical experiments in the research of the 
physical properties of this fluid model.
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