Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 2 Issue 2

Diamagnetic expulsion as a possible cause of the origin and stability of saturn’s rings

Tchernyi VV,1 Kapranov SV,2 Pospelov AY1

1Modern Science Institute, Russia
2AO Kovalevsky Institute of Marine Biological Research, Russia

Correspondence: Tchernyi VV, Modern Science Institute, SAIBR, 20-2-702, Osennii Blvd, Moscow?121614, Russia, Tel 79164268392

Received: February 25, 2017 | Published: March 29, 2018

Citation: Tchernyi VV, Kapranov SV, Pospelov AY. Diamagnetic expulsion as a possible cause of the origin and stability of saturn’s rings. Phys Astron Int J. 2018;2(2):121-126. DOI: 10.15406/paij.2018.02.00073

Download PDF

Abstract

In this work, the problems of a uniformly magnetized sphere in magnetic field are solved for modeling the magnetic properties of Saturn’s rings particles, with the problem of a sphere in an infinite “disk” of evenly distributed identical spheres being formulated and solved for the first time. The found magnetic moments of the spheres are used in deriving the equations of motion of the particles in the gravitational and magnetic field. The solutions of two special cases of these equations indicate that the diamagnetic expulsion in combination with the gravitational attraction to the planet is a plausible cause of stability of Saturn’s rings, and the semi-analytically calculated formation time of the stable orbits is some tens of millennia.

Keywords: saturn rings, outer space superconductivity, diamagnetic expulsion, outer space ice, orthorhombic ice XI

Introduction

To date, the origin and evolution of Saturn’s rings have not been consistently explained. There are several hypotheses concerning the origin of Saturn’s rings, which can be summarized as follows.1 (a) The ring particles can be collision-generated debris from current moons. (b) A satellite in the Roche Zone was destroyed by a passing comet. (c) A massive comet was tidally disrupted during a close passage by Saturn. (d) The rings are the remnants of Saturn’s protosatellite disk. Existing approaches to dynamics of Saturn’s rings2−6 postulate that ring particles orbit the planet close to its equatorial plane without giving a physical explanation of this peculiarity. Other theories explaining stability of the rings in the equatorial plane, for example, by the gravitational quadrupole moment of the planet,7 are in poor agreement with certain characteristics of the rings, e.g. with the particle size distribution.8

In Tchernyi et al.9−12 superconductivity of ring particles was surmised to be a factor determining location of Saturn’s rings in the plane of its magnetic equator, where superconductive particles have a minimum of potential energy. A number of experimental observations of rings’ properties gave evidence of electromagnetic anomalies resembling those of superconductors.13 Still, the question remained as to whether the superconductivity of ring particles was a physical reality.

Saturn’s rings are more than 90 per cent water ice.14 Ice has long been known to be a diamagnetic,15 and it may become superconductive at low temperatures and high pressures, at least in the order of hundreds of GPa.16,17 It is unlikely that such pressures can be reached many thousands of kilometers away from Saturn’s surface, so the hypothesis of macroscopic superconductivity of material of Saturn’s rings appears implausible.

Yet, the expulsion of a magnetic field from macroscopically non-superconductive ice and the concurrent ejection of the ice particles into weak field areas is possible due to a phenomenon of collective quantum proton transfer discovered a few years ago in ice phases with ordered protons in hydrogen bonds.18−20 The concerted proton transfer implies virtually resistance-free transfer of positive charges, which results in persistent current loops. As in the case of superconductors, the magnetic permeabilityof μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBaaa@383C@ such materials will tend to zero. In contrast to currents in superconductor, these can persist only in molecular-scale rings consisting of several hydrogen-bonded water molecules. Directed loop currents of such type can be excited, according to Lenz’s law, by applying a magnetic field.

The proton-ordered ice phases are ice II, VIII-XI, and XIII-XV.21,22 All of them, except for orthorhombic ice XI, are high-pressure polymorphs. In contrast to other proton-ordered phases, orthorhombic ice XI is stable at low pressures and temperatures (below ~73 K),22 and it is therefore an appropriate material to form rings in Saturn’s magnetic equator plane. Moreover, partial proton ordering is detected in computer simulations of ice Ic, an intermediate-temperature ice phase,23 and it may be present in Saturn’s rings as well.

The Cassini spacecraft determined that the temperature of Saturn’s rings varies from 70 K to 110 K,24 with middle rings being colder, but at equinox, the temperatures are below 73 K over the entire area of the rings.25 Thus, the temperature of Saturn’s rings is favorable for proton ordering in the ice material of the rings, and it is likely that the emergence of microscopic proton currents at this temperature contributes to orbiting of the ice particles in the magnetic equator plane.

Seeking weak magnetic fields is typical for all diamagnetics, not necessarily superconductors, so the problem of magnetic contribution to the formation of planetary rings can be quite general. Study of electromagnetism and dynamics of particles in the planetary magnetic field may help understand the evolution and sustainability of Saturn’s rings. The aim of this work is considering equations of collision less motion of diamagnetic (and possibly loop-current-supporting) particles in the magnetic field of Saturn and disclosing physical implications through solving particular cases of these equations.

The paper is organized as follows. Section 2 is devoted to magnetostatics of a spherical particle in external magnetic field and simulation of magnetic field of the planet with a thin superconductive disk in the equator plane. In Section 3, the potential energy relationship for a particle in the gravitational and magnetic fields and its equations of motion are derived. The solutions for two important special cases are presented and discussed there. Conclusions are made in Section 4.

Magnetostatics of uniformly magnetized spheres in external magnetic field

Sole uniformly magnetized sphere
From Maxwell’s equation of magnetic field induced around a closed loop is26

×B= μ 0 ( J+ ε 0 E t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcLbsacq WFhis0cqGHxdaTcaWHcbGaeyypa0JaeqiVd0wcfa4aaSbaaKqaGeaa jugWaiaaicdaaSqabaqcfa4aaeWaaOqaaKqzGeGaaCOsaiabgUcaRi abew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqbaoaalaaa keaajugibiabgkGi2kaahweaaOqaaKqzGeGaeyOaIyRaamiDaaaaaO GaayjkaiaawMcaaaaa@4F5B@ . (1)

Then taking into account zero current density ( J=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHkb Gaeyypa0JaaCimaaaa@3918@ ) and zero rate of change of electric field ( E/ t =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaeyOaIyRaaCyraaGcbaqcLbsacqGHciITcaWG0baaaiab g2da9iaahcdaaaa@3E1F@ ), we obtain

×B=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacceqcLbsacq WFhis0cqGHxdaTcaWHcbGaeyypa0JaaCimaaaa@3CB1@ . (2)

In (1), μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3AA4@ and ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3A95@ are the vacuum permeability and permittivity, respectively. The zero curl magnetic fields implies existence of a scalar magnetic potential Φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo Graaa@3800@ , the solution of the Laplace equation

2 Φ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqGHhi s0lmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabfA6agjabg2da 9iaaicdaaaa@3E16@ . (3)

The general complex solution of (3) in spherical coordinates is

Φ( r,θ,φ )= l=0 m=l l ( A l r l + C l r l1 ) P l m ( cosθ ) e imφ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrjuaGdaqadaGcbaqcLbsacaWGYbGaaiilaiabeI7aXjaacYcacqaH gpGAaOGaayjkaiaawMcaaKqzGeGaeyypa0tcfa4aaabCaOqaaKqbao aaqahakeaajuaGdaqadaGcbaqcLbsacaWGbbWcdaWgaaqcbasaaKqz adGaamiBaaqcbasabaqcLbsacaWGYbWcdaahaaqcbasabeaajugWai aadYgaaaqcLbsacqGHRaWkcaWGdbWcdaWgaaqcbasaaKqzadGaamiB aaqcbasabaqcLbsacaWGYbWcdaahaaqcbasabeaajugWaiabgkHiTi aadYgacqGHsislcaaIXaaaaaGccaGLOaGaayzkaaqcLbsacaWGqbWc daqhaaqcbasaaKqzadGaamiBaaqcbasaaKqzadGaamyBaaaajuaGda qadaGcbaqcLbsaciGGJbGaai4BaiaacohacqaH4oqCaOGaayjkaiaa wMcaaKqzGeGaamyzaKqbaoaaCaaaleqajeaibaqcLbmacqGHsislca WGPbGaamyBaiabeA8aQbaaaKqaGeaajugWaiaad2gacqGH9aqpcqGH sislcaWGSbaajeaibaqcLbmacaWGSbaajugibiabggHiLdaajeaiba qcLbmacaWGSbGaeyypa0JaaGimaaqcbasaaKqzadGaeyOhIukajugi biabggHiLdaaaa@8205@ (4)

Where P l m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb WcdaqhaaqcbasaaKqzadGaamiBaaqcbasaaKqzadGaamyBaaaaaaa@3C1B@ is the associated Legendre polynomial of degree l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSb aaaa@3777@ and order m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb aaaa@3778@ , and A l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb WcdaWgaaqcbasaaKqzadGaamiBaaqcbasabaaaaa@39EB@ and C l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqcbasaaKqzadGaamiBaaqcbasabaaaaa@39ED@ are constants.
In case of azimuthal symmetry, m=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGTb Gaeyypa0JaaGimaaaa@3938@ and

Φ( r,θ )= l=0 ( A l r l + C l r l1 ) P l ( cosθ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrjuaGdaqadaGcbaqcLbsacaWGYbGaaiilaiabeI7aXbGccaGLOaGa ayzkaaqcLbsacqGH9aqpjuaGdaaeWbGcbaqcfa4aaeWaaOqaaKqzGe GaamyqaKqbaoaaBaaajeaibaqcLbmacaWGSbaaleqaaKqzGeGaamOC aSWaaWbaaKqaGeqabaqcLbmacaWGSbaaaKqzGeGaey4kaSIaam4qaS WaaSbaaKqaGeaajugWaiaadYgaaKqaGeqaaKqzGeGaamOCaSWaaWba aKqaGeqabaqcLbmacqGHsislcaWGSbGaeyOeI0IaaGymaaaaaOGaay jkaiaawMcaaKqzGeGaamiuaSWaaSbaaKqaGeaajugWaiaadYgaaKqa GeqaaKqbaoaabmaakeaajugibiGacogacaGGVbGaai4CaiabeI7aXb GccaGLOaGaayzkaaaajeaibaqcLbmacaWGSbGaeyypa0JaaGimaaqc basaaKqzadGaeyOhIukajugibiabggHiLdaaaa@6AFD@ . (5)

Taking into account that the potential must be finite in the centre of the sphere and at infinite distance from it, the relationships for the potential inside ( rR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaeyizImQaamOuaaaa@3A09@ ) and outside ( rR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaeyyzImRaamOuaaaa@3A1A@ ) the sphere differs in the radial function:
Φ in ( r,θ )= l=0 A l r l P l ( cosθ ) ,rR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrlmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcfa4aaeWa aOqaaKqzGeGaamOCaiaacYcacqaH4oqCaOGaayjkaiaawMcaaKqzGe Gaeyypa0tcfa4aaabCaOqaaKqzGeGaamyqaSWaaSbaaKqaGeaajugW aiaadYgaaKqaGeqaaKqzGeGaamOCaSWaaWbaaKqaGeqabaqcLbmaca WGSbaaaKqzGeGaamiuaSWaaSbaaKqaGeaajugWaiaadYgaaKqaGeqa aKqbaoaabmaakeaajugibiGacogacaGGVbGaai4CaiabeI7aXbGcca GLOaGaayzkaaaajeaibaqcLbmacaWGSbGaeyypa0JaaGimaaqcbasa aKqzadGaeyOhIukajugibiabggHiLdGaaiilaiaaykW7caaMc8UaaG PaVlaaykW7caWGYbGaeyizImQaamOuaaaa@6AF3@ , (6)

and
Φ out ( r,θ )= l=0 C l r l1 P l ( cosθ ) ,rR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrlmaaBaaajeaibaqcLbmacaWGVbGaamyDaiaadshaaKqaGeqaaKqb aoaabmaakeaajugibiaadkhacaGGSaGaeqiUdehakiaawIcacaGLPa aajugibiabg2da9KqbaoaaqahakeaajugibiaadoealmaaBaaajeai baqcLbmacaWGSbaajeaibeaajugibiaadkhalmaaCaaajeaibeqaaK qzadGaeyOeI0IaamiBaiabgkHiTiaaigdaaaqcLbsacaWGqbWcdaWg aaqcbasaaKqzadGaamiBaaqcbasabaqcfa4aaeWaaOqaaKqzGeGaci 4yaiaac+gacaGGZbGaeqiUdehakiaawIcacaGLPaaaaKqaGeaajugW aiaadYgacqGH9aqpcaaIWaaajeaibaqcLbmacqGHEisPaKqzGeGaey yeIuoacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaadkhacqGHLjYS caWGsbaaaa@6EA1@ . (7)

Where R is the radius of the sphere. Magnetic field intensity is the negative gradient of the scalar magnetic potential:

Η=Φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHxo acceGae8xpa0Jae8NeI0Iae83bIeTaeuOPdyeaaa@3C92@ . (8)

Its radial component has discontinuity at r=R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb Gaeyypa0JaamOuaaaa@395A@ due to the non-zero magnetic surface charge density σ M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WClmaaBaaajeaibaqcLbmacaWGnbaajeaibeaaaaa@3AC9@ , which is found from the magnetization M using Gauss’s theorem:

σ M =nM=Mcosθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WClmaaBaaajeaibaqcLbmacaWGnbaajeaibeaajugibiabg2da9iaa h6gacqGHflY1caWHnbGaeyypa0JaamytaiGacogacaGGVbGaai4Cai abeI7aXbaa@46D6@ . (9)

Then,

( Φ in r Φ out r )| r=R = σ M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqGaaO qaaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacqGHciITcqqHMoGr lmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaaakeaajugibi abgkGi2kaadkhaaaGaeyOeI0scfa4aaSaaaOqaaKqzGeGaeyOaIyRa euOPdy0cdaWgaaqcbasaaKqzadGaam4BaiaadwhacaWG0baajeaibe aaaOqaaKqzGeGaeyOaIyRaamOCaaaaaOGaayjkaiaawMcaaaGaayjc Sdqcfa4aaSbaaKqaGeaajugWaiaadkhacqGH9aqpcaWGsbaaleqaaK qzGeGaeyypa0Jaeq4Wdm3cdaWgaaqcbasaaKqzadGaamytaaqcbasa baaaaa@5C39@ (10)

and, from (6)-(10),

l=0 l A l R l1 P l ( cosθ ) + l=0 ( l+1 ) C l R l2 P l ( cosθ ) =Mcosθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qaaKqzGeGaamiBaiaadgealmaaBaaajeaibaqcLbmacaWGSbaajeai beaajugibiaadkfalmaaCaaajeaibeqaaKqzadGaamiBaiabgkHiTi aaigdaaaqcLbsacaWGqbWcdaWgaaqcbasaaKqzadGaamiBaaqcbasa baqcfa4aaeWaaOqaaKqzGeGaci4yaiaac+gacaGGZbGaeqiUdehaki aawIcacaGLPaaaaKqaGeaajugWaiaadYgacqGH9aqpcaaIWaaajeai baqcLbmacqGHEisPaKqzGeGaeyyeIuoacqGHRaWkjuaGdaaeWbGcba qcfa4aaeWaaOqaaKqzGeGaamiBaiabgUcaRiaaigdaaOGaayjkaiaa wMcaaKqzGeGaam4qaSWaaSbaaKqaGeaajugWaiaadYgaaKqaGeqaaK qzGeGaamOuaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaWGSbGaeyOe I0IaaGOmaaaajugibiaadcfalmaaBaaajeaibaqcLbmacaWGSbaaje aibeaajuaGdaqadaGcbaqcLbsaciGGJbGaai4BaiaacohacqaH4oqC aOGaayjkaiaawMcaaaqcbasaaKqzadGaamiBaiabg2da9iaaicdaaK qaGeaajugWaiabg6HiLcqcLbsacqGHris5aiabg2da9iaad2eaciGG JbGaai4BaiaacohacqaH4oqCaaa@8225@ . (11)

For this equality to be fulfilled, the only non-zero term in the sums in (11) must be that with l=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSb Gaeyypa0JaaGymaaaa@3938@ . Then,

A 1 +2 C 1 R 3 =M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGHRaWkcaaI YaGaam4qaSWaaSbaaKqaGeaajugWaiaaigdaaKqaGeqaaKqzGeGaam OuaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIZaaaaKqzGeGaeyyp a0Jaamytaaaa@460F@ . (12)

Another boundary condition is the continuity of the magnetic potential at the surface of the sphere (at r=R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb Gaeyypa0JaamOuaaaa@395A@ ):

( Φ in Φ out )| r=R =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqGaaO qaaKqbaoaabmaakeaajugibiabfA6agTWaaSbaaKqaGeaajugWaiaa dMgacaWGUbaajeaibeaajugibiabgkHiTiabfA6agTWaaSbaaKqaGe aajugWaiaad+gacaWG1bGaamiDaaqcbasabaaakiaawIcacaGLPaaa aiaawIa7aSWaaSbaaKqaGeaajugWaiaadkhacqGH9aqpcaWGsbaaje aibeaajugibiabg2da9iaaicdaaaa@4E44@ , (13)

Whence, taking into account (6), (7) and l=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGSb Gaeyypa0JaaGymaaaa@3938@ ,

A 1 = C 1 R 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGH9aqpcaWG dbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacaWGsbWcda ahaaqcbasabeaajugWaiabgkHiTiaaiodaaaaaaa@4374@ . (14) 

Alternatively, this relationship can be obtained from the continuity of the tangential components of the magnetic field intensity. Then, from (12) and (14), the integration constants are

A 1 =M/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGbb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGH9aqpjuaG daWcgaGcbaqcLbsacaWGnbaakeaajugibiaaiodaaaaaaa@3EAF@ (15)

and
C 1 = M R 3 /3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqcbasaaKqzadGaaGymaaqcbasabaqcLbsacqGH9aqpjuaG daWcgaGcbaqcLbsacaWGnbGaamOuaKqbaoaaCaaaleqajeaibaqcLb macaaIZaaaaaGcbaqcLbsacaaIZaaaaaaa@4258@ . (16)

By definition, magnetic moment m per unit volume is the magnetization:

m=( 4/3 )π R 3 M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHTb Gaeyypa0tcfa4aaeWaaOqaaKqbaoaalyaakeaajugibiaaisdaaOqa aKqzGeGaaG4maaaaaOGaayjkaiaawMcaaKqzGeGaeqiWdaNaamOuaS WaaWbaaKqaGeqabaqcLbmacaaIZaaaaKqzGeGaaCytaaaa@44C8@ . (17)

Then, the magnetic potential in (6) and (7) can be written as
Φ in ( r,θ )= ( Mrcosθ )/3 = mr/ ( 4π R 3 ) forrR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrlmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcfa4aaeWa aOqaaKqzGeGaamOCaiaacYcacqaH4oqCaOGaayjkaiaawMcaaKqzGe Gaeyypa0tcfa4aaSGbaOqaaKqbaoaabmaakeaajugibiaad2eacaWG YbGaci4yaiaac+gacaGGZbGaeqiUdehakiaawIcacaGLPaaaaeaaju gibiaaiodaaaGaeyypa0tcfa4aaSGbaOqaaKqzGeGaaCyBaiabgwSi xlaahkhaaOqaaKqbaoaabmaakeaajugibiaaisdacqaHapaCcaWGsb WcdaahaaqcbasabeaajugWaiaaiodaaaaakiaawIcacaGLPaaaaaqc LbsacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabAgacaqGVbGaae OCaiaaykW7caaMc8UaamOCaiabgsMiJkaadkfaaaa@6EC6@ , (18)

And

Φ out ( r,θ )= M R 3 cosθ/ ( 3 r 2 ) = mr/ ( 4π r 3 ) forrR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrlmaaBaaajeaibaqcLbmacaWGVbGaamyDaiaadshaaKqaGeqaaKqb aoaabmaakeaajugibiaadkhacaGGSaGaeqiUdehakiaawIcacaGLPa aajugibiabg2da9Kqbaoaalyaakeaajugibiaad2eacaWGsbWcdaah aaqcbasabeaajugWaiaaiodaaaqcLbsaciGGJbGaai4Baiaacohacq aH4oqCaOqaaKqbaoaabmaakeaajugibiaaiodacaWGYbWcdaahaaqc basabeaajugWaiaaikdaaaaakiaawIcacaGLPaaaaaqcLbsacqGH9a qpjuaGdaWcgaGcbaqcLbsacaWHTbGaeyyXICTaaCOCaaGcbaqcfa4a aeWaaOqaaKqzGeGaaGinaiabec8aWjaadkhalmaaCaaajeaibeqaaK qzadGaaG4maaaaaOGaayjkaiaawMcaaaaajugibiaaykW7caaMc8Ua aGPaVlaaykW7caqGMbGaae4BaiaabkhacaaMc8UaaGPaVlaadkhacq GHLjYScaWGsbaaaa@74F4@ . (19)

The magnetic field intensity inside the sphere is

Η in = Φ in = M( e r cosθ e θ sinθ )/3 = M/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHxo WcdaWgaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqaaGGabKqzGeGa e8xpa0Jae8NeI0Iae83bIeTaeuOPdy0cdaWgaaqcbasaaKqzadGaam yAaiaad6gaaKqaGeqaaKqzGeGaeyypa0tcfa4aaSGbaOqaaKqzGeGa eyOeI0IaamytaKqbaoaabmaakeaajugibiaahwgalmaaBaaajeaiba qcLbmacaWGYbaajeaibeaajugibiGacogacaGGVbGaai4CaiabeI7a XjabgkHiTiaahwgalmaaBaaajeaibaqcLbmacqaH4oqCaKqaGeqaaK qzGeGaci4CaiaacMgacaGGUbGaeqiUdehakiaawIcacaGLPaaaaeaa jugibiaaiodaaaGaeyypa0tcfa4aaSGbaOqaaKqzGeGaeyOeI0IaaC ytaaGcbaqcLbsacaaIZaaaaaaa@6539@ , (20)

and that outside the sphere is

Η out = Φ out = M R 3 ( 2 e r cosθ+ e θ sinθ )/ ( 3 r 3 ) = m( 2 e r cosθ+ e θ sinθ )/ ( 4π r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHxo WcdaWgaaqcbasaaKqzadGaam4BaiaadwhacaWG0baajeaibeaaiiqa jugibiab=1da9iab=jHiTiab=DGirlabfA6agTWaaSbaaKqaGeaaju gWaiaad+gacaWG1bGaamiDaaqcbasabaqcLbsacqGH9aqpjuaGdaWc gaGcbaqcLbsacaWGnbGaamOuaSWaaWbaaKqaGeqabaqcLbmacaaIZa aaaKqbaoaabmaakeaajugibiaaikdacaWHLbqcfa4aaSbaaKqaGeaa jugWaiaadkhaaSqabaqcLbsaciGGJbGaai4BaiaacohacqaH4oqCcq GHRaWkcaWHLbWcdaWgaaqcbasaaKqzadGaeqiUdehajeaibeaajugi biGacohacaGGPbGaaiOBaiabeI7aXbGccaGLOaGaayzkaaaabaqcfa 4aaeWaaOqaaKqzGeGaaG4maiaadkhalmaaCaaajeaibeqaaKqzadGa aG4maaaaaOGaayjkaiaawMcaaaaajugibiabg2da9Kqbaoaalyaake aajugibiaad2gajuaGdaqadaGcbaqcLbsacaaIYaGaaCyzaSWaaSba aKqaGeaajugWaiaadkhaaKqaGeqaaKqzGeGaci4yaiaac+gacaGGZb GaeqiUdeNaey4kaSIaaCyzaSWaaSbaaKqaGeaajugWaiabeI7aXbqc basabaqcLbsaciGGZbGaaiyAaiaac6gacqaH4oqCaOGaayjkaiaawM caaaqaaKqbaoaabmaakeaajugibiaaisdacqaHapaCcaWGYbWcdaah aaqcbasabeaajugWaiaaiodaaaaakiaawIcacaGLPaaaaaaaaa@8D32@  (21)

Where e r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHLb WcdaWgaaqcbasaaKqzadGaamOCaaqcbasabaaaaa@3A19@ and e θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHLb qcfa4aaSbaaKqaGeaajugWaiabeI7aXbWcbeaaaaa@3B3C@ are the radial and polar unit vectors of the spherical coordinate system.

Let the magnetized sphere be placed in an external magnetic field B 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHcb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A1D@ with intensity H 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHib qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A23@ . The total magnetic field inside the sphere is the sum of the external magnetic field and the fields due to the induced current and magnetization:

B= B 0 + B in = B 0 + μ 0 ( H in +M )= B 0 + 2 μ 0 M/3 forrR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHcb Gaeyypa0JaaCOqaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqz GeGaey4kaSIaaCOqaSWaaSbaaKqaGeaajugWaiaadMgacaWGUbaaje aibeaajugibiabg2da9iaahkealmaaBaaajeaibaqcLbmacaaIWaaa jeaibeaajugibiabgUcaRiabeY7aTTWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaKqbaoaabmaakeaajugibiaahIealmaaBaaajeaibaqc LbmacaWGPbGaamOBaaqcbasabaqcLbsacqGHRaWkcaWHnbaakiaawI cacaGLPaaajugibiabg2da9iaahkealmaaBaaajeaibaqcLbmacaaI WaaajeaibeaajugibiabgUcaRKqbaoaalyaakeaajugibiaaikdacq aH8oqBlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiaah2ea aOqaaKqzGeGaaG4maaaacaaMc8UaaGPaVlaaykW7caaMc8UaaeOzai aab+gacaqGYbGaaGPaVlaaykW7caWGYbGaeyizImQaamOuaaaa@73AD@ , (22)

and the total magnetic field intensity is

H= H 0 + H in = B 0 / μ 0 M/3 forrR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHib Gaeyypa0JaaCisaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaey4kaSIaaCisaSWaaSbaaKqaGeaajugWaiaadMgacaWGUbaaje aibeaajugibiabg2da9KqbaoaalyaakeaajugibiaahkealmaaBaaa jeaibaqcLbmacaaIWaaajeaibeaaaOqaaKqzGeGaeqiVd02cdaWgaa qcbasaaKqzadGaaGimaaqcbasabaaaaKqzGeGaeyOeI0scfa4aaSGb aOqaaKqzGeGaaCytaaGcbaqcLbsacaaIZaaaaiaaykW7caaMc8UaaG PaVlaaykW7caqGMbGaae4BaiaabkhacaaMc8UaaGPaVlaadkhacqGH KjYOcaWGsbaaaa@6101@ . (23)

Because the total magnetic field is proportional to the total magnetic field intensity

B=μH MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHcb Gaeyypa0JaeqiVd0MaaCisaaaa@3ADE@ (24)

With the absolute permeability μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBaaa@383C@ as the proportionality factor, it follows from (22)-(24) that

B 0 + 2 μ 0 M/3 =μ( B 0 / μ 0 M/3 )forrR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHcb WcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqGHRaWkjuaG daWcgaGcbaqcLbsacaaIYaGaeqiVd02cdaWgaaqcbasaaKqzadGaaG imaaqcbasabaqcLbsacaWHnbaakeaajugibiaaiodaaaGaeyypa0Ja eqiVd0wcfa4aaeWaaOqaaKqbaoaalyaakeaajugibiaahkealmaaBa aajeaibaqcLbmacaaIWaaajeaibeaaaOqaaKqzGeGaeqiVd02cdaWg aaqcbasaaKqzadGaaGimaaqcbasabaaaaKqzGeGaeyOeI0scfa4aaS GbaOqaaKqzGeGaaCytaaGcbaqcLbsacaaIZaaaaaGccaGLOaGaayzk aaqcLbsacaaMc8UaaGPaVlaaykW7caaMc8UaaeOzaiaab+gacaqGYb GaaGPaVlaaykW7caWGYbGaeyizImQaamOuaaaa@6713@ , (25)

Whence

M= 3 B 0 μ 0 μ μ 0 μ+2 μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHnb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaaG4maiaahkeajuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaaaOqaaKqzGeGaeqiVd02cdaWgaaqcba saaKqzadGaaGimaaqcbasabaaaaKqbaoaalaaakeaajugibiabeY7a TjabgkHiTiabeY7aTTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaa GcbaqcLbsacqaH8oqBcqGHRaWkcaaIYaGaeqiVd0wcfa4aaSbaaKqa GeaajugWaiaaicdaaSqabaaaaaaa@530B@ (26)

and
m= 4π R 3 B 0 μ 0 μ μ 0 μ+2 μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHTb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGinaiabec8aWjaadkfalmaa CaaajeaibeqaaKqzadGaaG4maaaajugibiaahkealmaaBaaajeaiba qcLbmacaaIWaaajeaibeaaaOqaaKqzGeGaeqiVd0wcfa4aaSbaaKqa GeaajugWaiaaicdaaSqabaaaaKqbaoaalaaakeaajugibiabeY7aTj abgkHiTiabeY7aTTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaaGc baqcLbsacqaH8oqBcqGHRaWkcaaIYaGaeqiVd02cdaWgaaqcbasaaK qzadGaaGimaaqcbasabaaaaaaa@582D@ . (27)

From (26) and (27) it is clear that magnetization and magnetic moment of diamagnetic spheres are directed oppositely to the external field. Among diamagnetics, the largest absolute values of these properties are demonstrated by superconductors, which have μ=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBcqGH9aqpcaaIWaaaaa@39FC@  NA-2, magnetization 3 B 0 / ( 2 μ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaeyOeI0IaaG4maiaahkeajuaGdaWgaaqcbasaaKqzadGa aGimaaWcbeaaaOqaaKqbaoaabmaakeaajugibiaaikdacqaH8oqBlm aaBaaajeaibaqcLbmacaaIWaaajeaibeaaaOGaayjkaiaawMcaaaaa aaa@4413@ , and magnetic moment 2π R 3 B 0 / μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaeyOeI0IaaGOmaiabec8aWjaadkfalmaaCaaajeaibeqa aKqzadGaaG4maaaajugibiaahkealmaaBaaajeaibaqcLbmacaaIWa aajeaibeaaaOqaaKqzGeGaeqiVd02cdaWgaaqcbasaaKqzadGaaGim aaqcbasabaaaaaaa@462C@ .

Uniformly magnetized sphere in a magnetized “disk” consisting of identical spheres

Let a magnetized sphere be placed amidst identical magnetized spheres forming an infinite “disk”. Such a disk is a model of dense planetary rings such as those of Saturn. We assume that the spheres are distributed uniformly in hexagonal arrangement with the planar density σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHdp WCaaa@3849@ .

Each sphere will then experience magnetic fields of all other spheres with the magnetic dipole moments m. If the disk is tilted at an angle ϑ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHrp GslmaaBaaajeaibaqcLbmacaWG0baajeaibeaaaaa@3AD5@  =to the magnetic equator plane and the distance from the sphere centre to the edge of the disk is r 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb qcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaa@3A49@ , the magnetic field intensity of the magnetized disk exerted on a sphere in it is

H d = S H out σds = σm 4π 0 2π dφ r 0 sinφcos ϑ t 2 e r 1 sin 2 φ cos 2 ϑ t + e θ sinφcos ϑ t r 2 dr = e θ σm cos 2 ϑ t / ( 4 r 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHib qcfa4aaSbaaKqaGeaajugWaiaadsgaaSqabaqcLbsacqGH9aqpjuaG daWdraGcbaqcLbsacaWHibWcdaWgaaqcbasaaKqzadGaam4Baiaadw hacaWG0baajeaibeaajugibiabeo8aZjaadsgacaWGZbaajeaibaqc LbmacaWGtbaaleqajugibiabgUIiYdGaeyypa0tcfa4aaSaaaOqaaK qzGeGaeq4WdmNaamyBaaGcbaqcLbsacaaI0aGaeqiWdahaaKqbaoaa pedakeaajugibiaabsgacqaHgpGAjuaGdaWdXaGcbaqcLbsaciGGZb GaaiyAaiaac6gacqaHgpGAciGGJbGaai4BaiaacohacqaHrpGsjuaG daWgaaqcbasaaKqzadGaamiDaaWcbeaajuaGdaWcaaGcbaqcLbsaca aIYaGaaCyzaKqbaoaaBaaajeaibaqcLbmacaWGYbaaleqaaKqbaoaa kaaakeaajugibiaaigdacqGHsislciGGZbGaaiyAaiaac6galmaaCa aajeaibeqaaKqzadGaaGOmaaaajugibiabeA8aQjGacogacaGGVbGa ai4CaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeqy0dO0cda WgaaqcbasaaKqzadGaamiDaaqcbasabaaaleqaaKqzGeGaey4kaSIa aCyzaSWaaSbaaKqaGeaajugWaiabeI7aXbqcbasabaqcLbsaciGGZb GaaiyAaiaac6gacqaHgpGAciGGJbGaai4BaiaacohacqaHrpGsjuaG daWgaaqcbasaaKqzadGaamiDaaWcbeaaaOqaaKqzGeGaamOCaKqbao aaCaaaleqajeaibaqcLbmacaaIYaaaaaaajugibiaabsgacaWGYbaa jeaibaqcLbmacaWGYbWcdaWgaaqccasaaKqzadGaaGimaaqccasaba aajeaibaqcLbmacqGHEisPaKqzGeGaey4kIipaaKqaGeaajugWaiaa icdaaKqaGeaajugWaiaaikdacqaHapaCaKqzGeGaey4kIipacqGH9a qpcqGHsislcaWHLbWcdaWgaaqcbasaaKqzadGaeqiUdehajeaibeaa juaGdaWcgaGcbaqcLbsacqaHdpWCcaWGTbGaci4yaiaac+gacaGGZb WcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHrpGslmaaBaaa jeaibaqcLbmacaWG0baajeaibeaaaOqaaKqbaoaabmaakeaajugibi aaisdacaWGYbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaakiaa wIcacaGLPaaaaaaaaa@C589@ (28)

Here the integration is performed over the area of the disk, which is assumed continuous. Then, by analogy with (22) and (23), the total magnetic field inside the sphere is

B= B 0 + B in + B d = B 0 + μ 0 ( H in +M+ H d )= B 0 + μ 0 M( 2 π R 3 σ cos 2 ϑ t / r 0 )/3 forrR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHcb Gaeyypa0JaaCOqaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaey4kaSIaaCOqaSWaaSbaaKqaGeaajugWaiaadMgacaWGUbaaje aibeaajugibiabgUcaRiaahkealmaaBaaajeaibaqcLbmacaWGKbaa jeaibeaajugibiabg2da9iaahkeajuaGdaWgaaqcbasaaKqzadGaaG imaaWcbeaajugibiabgUcaRiabeY7aTTWaaSbaaKqaGeaajugWaiaa icdaaKqaGeqaaKqbaoaabmaakeaajugibiaahIealmaaBaaajeaiba qcLbmacaWGPbGaamOBaaqcbasabaqcLbsacqGHRaWkcaWHnbGaey4k aSIaaCisaSWaaSbaaKqaGeaajugWaiaadsgaaKqaGeqaaaGccaGLOa GaayzkaaqcLbsacqGH9aqpcaWHcbWcdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcLbsacqGHRaWkjuaGdaWcgaGcbaqcLbsacqaH8oqBlm aaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiaah2eajuaGdaqa daGcbaqcLbsacaaIYaGaeyOeI0scfa4aaSGbaOqaaKqzGeGaeqiWda NaamOuaSWaaWbaaKqaGeqabaqcLbmacaaIZaaaaKqzGeGaeq4WdmNa ci4yaiaac+gacaGGZbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLb sacqaHrpGslmaaBaaajeaibaqcLbmacaWG0baajeaibeaaaOqaaKqz GeGaamOCaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaaaaaOGaay jkaiaawMcaaaqaaKqzGeGaaG4maaaacaaMc8UaaGPaVlaaykW7caaM c8UaaeOzaiaab+gacaqGYbGaaGPaVlaaykW7caWGYbGaeyizImQaam Ouaaaa@977D@ , (29)

and its intensity is

H= H 0 + H in + H d = B 0 / μ 0 M( 1 π R 3 σ cos 2 ϑ t / r 0 )/3 forrR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHib Gaeyypa0JaaCisaSWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqz GeGaey4kaSIaaCisaSWaaSbaaKqaGeaajugWaiaadMgacaWGUbaaje aibeaajugibiabgUcaRiaahIealmaaBaaajeaibaqcLbmacaWGKbaa jeaibeaajugibiabg2da9KqbaoaalyaakeaajugibiaahkealmaaBa aajeaibaqcLbmacaaIWaaajeaibeaaaOqaaKqzGeGaeqiVd02cdaWg aaqcbasaaKqzadGaaGimaaqcbasabaaaaKqzGeGaeyOeI0scfa4aaS GbaOqaaKqzGeGaaCytaKqbaoaabmaakeaajugibiaaigdacqGHsisl juaGdaWcgaGcbaqcLbsacqaHapaCcaWGsbWcdaahaaqcbasabeaaju gWaiaaiodaaaqcLbsacqaHdpWCciGGJbGaai4BaiaacohalmaaCaaa jeaibeqaaKqzadGaaGOmaaaajugibiabeg9akLqbaoaaBaaajeaiba qcLbmacaWG0baaleqaaaGcbaqcLbsacaWGYbWcdaWgaaqcbasaaKqz adGaaGimaaqcbasabaaaaaGccaGLOaGaayzkaaaabaqcLbsacaaIZa aaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaeOzaiaab+gacaqGYbGaaGPaVlaaykW7caWGYbGaeyizImQaam Ouaaaa@86AD@ . (30)

By analogy with the derivation of (26) and (27), it is easy to find the magnetization

M= 3 B 0 μ 0 μ μ 0 μ+2 μ 0 ( μ+ μ 0 )π R 3 σ cos 2 ϑ t / r 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHnb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaaG4maiaahkeajuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaaaOqaaKqzGeGaeqiVd0wcfa4aaSbaaK qaGeaajugWaiaaicdaaSqabaaaaKqbaoaalaaakeaajugibiabeY7a TjabgkHiTiabeY7aTTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaa GcbaqcLbsacqaH8oqBcqGHRaWkcaaIYaGaeqiVd02cdaWgaaqcbasa aKqzadGaaGimaaqcbasabaqcLbsacqGHsisljuaGdaWcgaGcbaqcfa 4aaeWaaOqaaKqzGeGaeqiVd0Maey4kaSIaeqiVd02cdaWgaaqcbasa aKqzadGaaGimaaqcbasabaaakiaawIcacaGLPaaajugibiabec8aWj aadkfalmaaCaaajeaibeqaaKqzadGaaG4maaaajugibiabeo8aZjGa cogacaGGVbGaai4CaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGe Gaeqy0dOucfa4aaSbaaKqaGeaajugWaiaadshaaSqabaaakeaajugi biaadkhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaaaaaaa@74AA@  (31)

and the magnetic moment

m= 4π R 3 B 0 μ 0 μ μ 0 μ+2 μ 0 ( μ+ μ 0 )π R 3 σ cos 2 ϑ t / r 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHTb Gaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGinaiabec8aWjaadkfalmaa CaaajeaibeqaaKqzadGaaG4maaaajugibiaahkealmaaBaaajeaiba qcLbmacaaIWaaajeaibeaaaOqaaKqzGeGaeqiVd02cdaWgaaqcbasa aKqzadGaaGimaaqcbasabaaaaKqbaoaalaaakeaajugibiabeY7aTj abgkHiTiabeY7aTLqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaGc baqcLbsacqaH8oqBcqGHRaWkcaaIYaGaeqiVd02cdaWgaaqcbasaaK qzadGaaGimaaqcbasabaqcLbsacqGHsisljuaGdaWcgaGcbaqcfa4a aeWaaOqaaKqzGeGaeqiVd0Maey4kaSIaeqiVd02cdaWgaaqcbasaaK qzadGaaGimaaqcbasabaaakiaawIcacaGLPaaajugibiabec8aWjaa dkfalmaaCaaajeaibeqaaKqzadGaaG4maaaajugibiabeo8aZjGaco gacaGGVbGaai4CaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa eqy0dOucfa4aaSbaaKqaGeaajugWaiaadshaaSqabaaakeaajugibi aadkhalmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaaaaaaa@79CC@ . (32)

For superconductors, the magnetization in this case reduces to 3 B 0 / ( 2 μ 0 μ 0 π R 3 σ cos 2 ϑ t / r 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaeyOeI0IaaG4maiaahkealmaaBaaajeaibaqcLbmacaaI WaaajeaibeaaaOqaaKqbaoaabmaakeaajugibiaaikdacqaH8oqBlm aaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiabgkHiTKqbaoaa lyaakeaajugibiabeY7aTTWaaSbaaKqaGeaajugWaiaaicdaaKqaGe qaaKqzGeGaeqiWdaNaamOuaSWaaWbaaKqaGeqabaqcLbmacaaIZaaa aKqzGeGaeq4WdmNaci4yaiaac+gacaGGZbWcdaahaaqcbasabeaaju gWaiaaikdaaaqcLbsacqaHrpGslmaaBaaajeaibaqcLbmacaWG0baa jeaibeaaaOqaaKqzGeGaamOCaSWaaSbaaKqaGeaajugWaiaaicdaaK qaGeqaaaaaaOGaayjkaiaawMcaaaaaaaa@6027@ and the magnetic moment becomes 4π R 3 B 0 / ( 2 μ 0 μ 0 π R 3 σ cos 2 ϑ t / r 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaeyOeI0IaaGinaiabec8aWjaadkfalmaaCaaajeaibeqa aKqzadGaaG4maaaajugibiaahkealmaaBaaajeaibaqcLbmacaaIWa aajeaibeaaaOqaaKqbaoaabmaakeaajugibiaaikdacqaH8oqBlmaa BaaajeaibaqcLbmacaaIWaaajeaibeaajugibiabgkHiTKqbaoaaly aakeaajugibiabeY7aTTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqa aKqzGeGaeqiWdaNaamOuaSWaaWbaaKqaGeqabaqcLbmacaaIZaaaaK qzGeGaeq4WdmNaci4yaiaac+gacaGGZbWcdaahaaqcbasabeaajugW aiaaikdaaaqcLbsacqaHrpGslmaaBaaajeaibaqcLbmacaWG0baaje aibeaaaOqaaKqzGeGaamOCaSWaaSbaaKqaGeaajugWaiaaicdaaKqa GeqaaaaaaOGaayjkaiaawMcaaaaaaaa@658D@ . The absolute values of magnetization and magnetic moment are higher than those obtained for a sole sphere, and the force of diamagnetic expulsion into the weak-field areas in this case will be stronger.

Simulation of magnetic field of a planet with a uniform superconductive disk

Comsol Multi‒physics software has been used to simulate the magnetic structure of Saturn and its magnetosphere. The red sphere (Figure 1A) representing the metallic hydrogen interior of Saturn27 has a uniform magnetization. A superconducting disk modeling Saturn’s rings is in the plane of magnetic equator of the planet whose equatorial surface field is about 20μT.28 In Figure 1A, the simulation results for z-component of magnetization, normal component of the magnetic flux density and magnetic field of Saturn are presented. The disk is thin (0.01 of the radius). The shell over it has the relative permeability 2. The vertical red line represents the line along which the z-component of the magnetic flux density is plotted in Figure 1B.

Figure 1

  1. Simulated magnetic structure of a planet with metallic magnetic core and superconductive disk in the magnetic equator plane. Surface: z-component of magnetization, contour: normal component of the magnetic flux density, arrows: magnetic field.
  2.  z-component of the magnetic flux density along the vertical red line in Figure 1a.

The disk significantly modifies the magnetic field of the sphere. If we consider a superconducting particle flying in the vicinity of the disk, the magnetic well will eventually attract the particle to the disk. In z-direction the well is not quadratic but rather cusp-like (triangular), and this is consistent with the small thickness of main rings of Saturn (around 10 m).

Potential energy and equations of motion of magnetized spheres

The magnetic moment relationships in (27) and (32) has the form

m=C B 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHTb Gaeyypa0Jaam4qaiaahkealmaaBaaajeaibaqcLbmacaaIWaaajeai beaaaaa@3C7D@ (33)

Where C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb aaaa@374E@ is the parameter depending on the magnetic properties and size of the spheres. For diamagnetics C<0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaeyipaWJaaGimaaaa@390C@ .

The potential energy U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb aaaa@3760@ of a magnetized sphere with the mass M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb aaaa@3758@ in the magnetic and gravitational field is

U= G M S M/r m B out = G M S M/r C μ 0 2 m 2 ( 3 cos 2 θ+1 )/ ( 4π r 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb Gaeyypa0tcfa4aaSGbaOqaaKqzGeGaeyOeI0Iaam4raiaad2ealmaa BaaajeaibaqcLbmacaWGtbaajeaibeaajugibiaad2eaaOqaaKqzGe GaamOCaaaacqGHsislcaWHTbGaeyyXICTaaCOqaSWaaSbaaKqaGeaa jugWaiaad+gacaWG1bGaamiDaaqcbasabaqcLbsacqGH9aqpjuaGda WcgaGcbaqcLbsacqGHsislcaWGhbGaamytaKqbaoaaBaaajeaibaqc LbmacaWGtbaaleqaaKqzGeGaamytaaGcbaqcLbsacaWGYbaaaiabgk HiTKqbaoaalyaakeaajugibiaadoeacqaH8oqBlmaaDaaajeaibaqc LbmacaaIWaaajeaibaqcLbmacaaIYaaaaKqzGeGaamyBaSWaaWbaaK qaGeqabaqcLbmacaaIYaaaaKqbaoaabmaakeaajugibiaaiodaciGG JbGaai4BaiaacohalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibi abeI7aXjabgUcaRiaaigdaaOGaayjkaiaawMcaaaqaaKqbaoaabmaa keaajugibiaaisdacqaHapaCcaWGYbWcdaahaaqcbasabeaajugWai aaiodaaaaakiaawIcacaGLPaaalmaaCaaajeaibeqaaKqzadGaaGOm aaaaaaaaaa@7A43@  (34)

Where M S =5.68319 10 26 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb WcdaWgaaqcbasaaKqzadGaam4uaaqcbasabaqcLbsacqGH9aqpcaaI 1aGaaiOlaiaaiAdacaaI4aGaaG4maiaaigdacaaI5aGaeyyXICTaaG ymaiaaicdalmaaCaaajeaibeqaaKqzadGaaGOmaiaaiAdaaaaaaa@4761@  kg is the mass of the planet and G=6.67408 10 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGhb Gaeyypa0JaaGOnaiaac6cacaaI2aGaaG4naiaaisdacaaIWaGaaGio aiabgwSixlaaigdacaaIWaWcdaahaaqcbasabeaajugWaiabgkHiTi aaigdacaaIXaaaaaaa@452C@ m3∙kg-1∙s-2 is the gravitational constant.

The force acting on the sphere is the negative gradient of the potential energy:

Ma=U= U r e r 1 r U θ e θ = e r [ G M S M r 2 3C μ 0 2 m 2 8 π 2 r 7 ( 3 cos 2 θ+1 ) ] e θ 3C μ 0 2 m 2 8 π 2 r 7 sinθcosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb GaaCyyaiabg2da9iabgkHiTGGabiab=DGirlaadwfacqGH9aqpcqGH sisljuaGdaWcaaGcbaqcLbsacqGHciITcaWGvbaakeaajugibiabgk Gi2kaadkhaaaGaaCyzaSWaaSbaaKqaGeaajugWaiaadkhaaKqaGeqa aKqzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsaca WGYbaaaKqbaoaalaaakeaajugibiabgkGi2kaadwfaaOqaaKqzGeGa eyOaIyRaeqiUdehaaiaahwgalmaaBaaajeaibaqcLbmacqaH4oqCaK qaGeqaaKqzGeGaeyypa0JaaCyzaKqbaoaaBaaajeaibaqcLbmacaWG YbaaleqaaKqbaoaadmaakeaajugibiabgkHiTKqbaoaalaaakeaaju gibiaadEeacaWGnbWcdaWgaaqcbasaaKqzadGaam4uaaqcbasabaqc LbsacaWGnbaakeaajugibiaadkhalmaaCaaajeaibeqaaKqzadGaaG OmaaaaaaqcLbsacqGHsisljuaGdaWcaaGcbaqcLbsacaaIZaGaam4q aiabeY7aTTWaa0baaKqaGeaajugWaiaaicdaaKqaGeaajugWaiaaik daaaqcLbsacaWGTbWcdaahaaqcbasabeaajugWaiaaikdaaaaakeaa jugibiaaiIdacqaHapaClmaaCaaajeaibeqaaKqzadGaaGOmaaaaju gibiaadkhalmaaCaaajeaibeqaaKqzadGaaG4naaaaaaqcfa4aaeWa aOqaaKqzGeGaaG4maiGacogacaGGVbGaai4CaSWaaWbaaKqaGeqaba qcLbmacaaIYaaaaKqzGeGaeqiUdeNaey4kaSIaaGymaaGccaGLOaGa ayzkaaaacaGLBbGaayzxaaqcLbsacqGHsislcaWHLbWcdaWgaaqcba saaKqzadGaeqiUdehajeaibeaajuaGdaWcaaGcbaqcLbsacaaIZaGa am4qaiabeY7aTTWaa0baaKqaGeaajugWaiaaicdaaKqaGeaajugWai aaikdaaaqcLbsacaWGTbqcfa4aaWbaaSqabKqaGeaajugWaiaaikda aaaakeaajugibiaaiIdacqaHapaClmaaCaaajeaibeqaaKqzadGaaG OmaaaajugibiaadkhalmaaCaaajeaibeqaaKqzadGaaG4naaaaaaqc LbsacaGGZbGaaiyAaiaac6gacqaH4oqCciGGJbGaai4Baiaacohacq aH4oqCaaa@B667@  (35)

Where a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWHHb aaaa@3770@ is the acceleration. In spherical coordinates, the equations of motion are29

{ r ¨ r θ ˙ 2 r φ ˙ 2 sin 2 θ= ( U ) r = G M S r 2 3C μ 0 2 m 2 8 π 2 r 7 M ( 3 cos 2 θ+1 ), r θ ¨ +2 r ˙ θ ˙ r φ ˙ 2 sinθcosθ= ( U ) θ = 3C μ 0 2 m 2 8 π 2 r 7 M sinθcosθ, r φ ¨ +2 r ˙ φ ˙ +2r θ ˙ φ ˙ cosθ= ( U ) φ =0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiqadkhagaWaaiabgkHiTiaadkhacuaH4oqC gaGaaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0Iaam OCaiqbeA8aQzaacaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsa ciGGZbGaaiyAaiaac6galmaaCaaajeaibeqaaKqzadGaaGOmaaaaju gibiabeI7aXjabg2da9iabgkHiTKqbaoaabmaakeaaiiaajugibiab =DGirlaadwfaaOGaayjkaiaawMcaaKqbaoaaBaaajeaibaqcLbmaca WGYbaaleqaaKqzGeGaeyypa0JaeyOeI0scfa4aaSaaaOqaaKqzGeGa am4raiaad2eajuaGdaWgaaqcbasaaKqzadGaam4uaaWcbeaaaOqaaK qzGeGaamOCaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaajugibiab gkHiTKqbaoaalaaakeaajugibiaaiodacaWGdbGaeqiVd02cdaqhaa qcbasaaKqzadGaaGimaaqcbasaaKqzadGaaGOmaaaajugibiaad2ga lmaaCaaajeaibeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaaGioaiabec 8aWTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaamOCaSWaaWba aKqaGeqabaqcLbmacaaI3aaaaKqzGeGaamytaaaajuaGdaqadaGcba qcLbsacaaIZaGaci4yaiaac+gacaGGZbWcdaahaaqcbasabeaajugW aiaaikdaaaqcLbsacqaH4oqCcqGHRaWkcaaIXaaakiaawIcacaGLPa aajugibiaacYcaaOqaaKqzGeGaamOCaiqbeI7aXzaadaGaey4kaSIa aGOmaiqadkhagaGaaiqbeI7aXzaacaGaeyOeI0IaamOCaiqbeA8aQz aacaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsaciGGZbGaaiyA aiaac6gacqaH4oqCciGGJbGaai4BaiaacohacqaH4oqCcqGH9aqpcq GHsisljuaGdaqadaGcbaqcLbsacqWFhis0caWGvbaakiaawIcacaGL PaaalmaaBaaajeaibaqcLbmacqaH4oqCaKqaGeqaaKqzGeGaeyypa0 JaeyOeI0scfa4aaSaaaOqaaKqzGeGaaG4maiaadoeacqaH8oqBlmaa DaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaaIYaaaaKqzGeGaam yBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaGcbaqcLbsacaaI4aGa eqiWda3cdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWGYbWcda ahaaqcbasabeaajugWaiaaiEdaaaqcLbsacaWGnbaaaiaacohacaGG PbGaaiOBaiabeI7aXjGacogacaGGVbGaai4CaiabeI7aXjaacYcaaO qaaKqzGeGaamOCaiqbeA8aQzaadaGaey4kaSIaaGOmaiqadkhagaGa aiqbeA8aQzaacaGaey4kaSIaaGOmaiaadkhacuaH4oqCgaGaaiqbeA 8aQzaacaGaci4yaiaac+gacaGGZbGaeqiUdeNaeyypa0JaeyOeI0sc fa4aaeWaaOqaaKqzGeGae83bIeTaamyvaaGccaGLOaGaayzkaaWcda WgaaqcbasaaKqzadGaeqOXdOgajeaibeaajugibiabg2da9iaaicda caGGUaaaaOGaay5Eaaaaaa@EF51@  (36)

Equations (36) cannot be solved analytically. At the same time, direct numerical integration of (36) generating long-term, on a cosmic scale, solutions is neither feasible nor informative because one needs to integrate over thousands of oscillations with only one set of initial conditions. For this reason, we will confine ourselves to considering several important consequences arising out of the equations of motion. Consider several special cases of these equations.

  1. Particles orbiting at equal distance from the centre (r =const) with neglect of magnetic force (C= 0)

This is the case of classical motion around the planetary centre of mass. The equations of motion is in (36) are then reduced to

{ θ ˙ 2 + φ ˙ 2 sin 2 θ= G M S / r 3 , θ ¨ φ ˙ 2 sinθcosθ=0, φ ¨ + 2 θ ˙ φ ˙ / tanθ =0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaK qzGeabaeqakeaajugibiqbeI7aXzaacaWcdaahaaqcbasabeaajugW aiaaikdaaaqcLbsacqGHRaWkcuaHgpGAgaGaaSWaaWbaaKqaGeqaba qcLbmacaaIYaaaaKqzGeGaci4CaiaacMgacaGGUbWcdaahaaqcbasa beaajugWaiaaikdaaaqcLbsacqaH4oqCcqGH9aqpjuaGdaWcgaGcba qcLbsacaWGhbGaamytaKqbaoaaBaaajeaibaqcLbmacaWGtbaaleqa aaGcbaqcLbsacaWGYbWcdaahaaqcbasabeaajugWaiaaiodaaaaaaK qzGeGaaiilaaGcbaqcLbsacuaH4oqCgaWaaiabgkHiTiqbeA8aQzaa caWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsaciGGZbGaaiyAai aac6gacqaH4oqCciGGJbGaai4BaiaacohacqaH4oqCcqGH9aqpcaaI WaGaaiilaaGcbaqcLbsacuaHgpGAgaWaaiabgUcaRKqbaoaalyaake aajugibiaaikdacuaH4oqCgaGaaiqbeA8aQzaacaaakeaajugibiGa cshacaGGHbGaaiOBaiabeI7aXbaacqGH9aqpcaaIWaGaaiOlaaaaki aawUhaaaaa@79CF@  (37)

From the first and second equations in (37), the following one is obtained:

θ ¨ + θ ˙ 2 cotθ =G M S cotθ/ r 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaWaaiabgUcaRiqbeI7aXzaacaWcdaahaaqcbasabeaajugWaiaa ikdaaaqcLbsaciGGJbGaai4BaiaacshacqaH4oqCjuaGdaWcgaGcba qcLbsacqGH9aqpcaWGhbGaamytaKqbaoaaBaaajeaibaqcLbmacaWG tbaaleqaaKqzGeGaci4yaiaac+gacaGG0bGaeqiUdehakeaajugibi aadkhalmaaCaaajeaibeqaaKqzadGaaG4maaaaaaaaaa@51F7@ , (38)

which has the solution

θ=arccos[ θ ˙ 0 r 3 / ( G M S ) sin( t G M S / r 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcqGH9aqpciGGHbGaaiOCaiaacogacaGGJbGaai4BaiaacohajuaG daWadaGcbaqcLbsacqGHsislcuaH4oqCgaGaaSWaaSbaaKqaGeaaju gWaiaaicdaaKqaGeqaaKqbaoaakaaakeaajuaGdaWcgaGcbaqcLbsa caWGYbWcdaahaaqcbasabeaajugWaiaaiodaaaaakeaajuaGdaqada GcbaqcLbsacaWGhbGaamytaKqbaoaaBaaajeaibaqcLbmacaWGtbaa leqaaaGccaGLOaGaayzkaaaaaaWcbeaajugibiGacohacaGGPbGaai OBaKqbaoaabmaakeaajugibiaadshajuaGdaGcaaGcbaqcfa4aaSGb aOqaaKqzGeGaam4raiaad2eajuaGdaWgaaqcbasaaKqzadGaam4uaa WcbeaaaOqaaKqzGeGaamOCaSWaaWbaaKqaGeqabaqcLbmacaaIZaaa aaaaaSqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@64DD@  (39)

With the initial angle θ 0 =π/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qClmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiabg2da9Kqb aoaalyaakeaajugibiabec8aWbGcbaqcLbsacaaIYaaaaaaa@4088@  at t=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b Gaeyypa0JaaGimaaaa@393F@ .

The azimuthal velocity is then equal to

φ ˙ = G M S G M S / r 3 θ ˙ 0 2 G M S r 3 θ ˙ 0 2 sin 2 ( t G M S / r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaHgp GAgaGaaiabg2da9KqbaoaalaaakeaajugibiaadEeacaWGnbWcdaWg aaqcbasaaKqzadGaam4uaaqcbasabaqcfa4aaOaaaOqaaKqbaoaaly aakeaajugibiaadEeacaWGnbqcfa4aaSbaaKqaGeaajugWaiaadofa aSqabaaakeaajugibiaadkhalmaaCaaajeaibeqaaKqzadGaaG4maa aaaaqcLbsacqGHsislcuaH4oqCgaGaaSWaa0baaKqaGeaajugWaiaa icdaaKqaGeaajugWaiaaikdaaaaaleqaaaGcbaqcLbsacaWGhbGaam ytaSWaaSbaaKqaGeaajugWaiaadofaaKqaGeqaaKqzGeGaeyOeI0Ia amOCaSWaaWbaaKqaGeqabaqcLbmacaaIZaaaaKqzGeGafqiUdeNbai aalmaaDaaajeaibaqcLbmacaaIWaaajeaibaqcLbmacaaIYaaaaKqz GeGaci4CaiaacMgacaGGUbWcdaahaaqcbasabeaajugWaiaaikdaaa qcfa4aaeWaaOqaaKqzGeGaamiDaKqbaoaakaaakeaajuaGdaWcgaGc baqcLbsacaWGhbGaamytaSWaaSbaaKqaGeaajugWaiaadofaaKqaGe qaaaGcbaqcLbsacaWGYbWcdaahaaqcbasabeaajugWaiaaiodaaaaa aaWcbeaaaOGaayjkaiaawMcaaaaaaaa@73D8@ . (40)

The initial velocity θ ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaGaaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaaaa@3B11@ should be sought from the thickness b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb aaaa@376D@ of Saturn’s main rings ( b10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb GaeyisISRaaGymaiaaicdaaaa@3A93@  m). Expanding (39) in the series near π/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaeqiWdahakeaajugibiaaikdaaaaaaa@3A46@ , one obtains

θπ/2 + θ ˙ 0 r 3 / ( G M S ) sin( t G M S / r 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcqGHijYUjuaGdaWcgaGcbaqcLbsacqaHapaCaOqaaKqzGeGaaGOm aaaacqGHRaWkcuaH4oqCgaGaaSWaaSbaaKqaGeaajugWaiaaicdaaK qaGeqaaKqbaoaakaaakeaajuaGdaWcgaGcbaqcLbsacaWGYbWcdaah aaqcbasabeaajugWaiaaiodaaaaakeaajuaGdaqadaGcbaqcLbsaca WGhbGaamytaKqbaoaaBaaajeaibaqcLbmacaWGtbaaleqaaaGccaGL OaGaayzkaaaaaaWcbeaajugibiGacohacaGGPbGaaiOBaKqbaoaabm aakeaajugibiaadshajuaGdaGcaaGcbaqcfa4aaSGbaOqaaKqzGeGa am4raiaad2eajuaGdaWgaaqcbasaaKqzadGaam4uaaWcbeaaaOqaaK qzGeGaamOCaSWaaWbaaKqaGeqabaqcLbmacaaIZaaaaaaaaSqabaaa kiaawIcacaGLPaaaaaa@611E@ ,    (41)

Whence the difference Δθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcqaH4oqCaaa@39A2@ between the maximal and minimal polar angles is

Δθ2 θ ˙ 0 r 3 / ( G M S ) =b/r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcqaH4oqCcqGHijYUcaaIYaGafqiUdeNbaiaalmaaBaaajeaibaqc LbmacaaIWaaajeaibeaajuaGdaGcaaGcbaqcfa4aaSGbaOqaaKqzGe GaamOCaSWaaWbaaKqaGeqabaqcLbmacaaIZaaaaaGcbaqcfa4aaeWa aOqaaKqzGeGaam4raiaad2eajuaGdaWgaaqcbasaaKqzadGaam4uaa WcbeaaaOGaayjkaiaawMcaaaaaaSqabaqcLbsacqGH9aqpjuaGdaWc gaGcbaqcLbsacaWGIbaakeaajugibiaadkhaaaaaaa@51F4@ . (42)

Hence,

θ ˙ 0 = b G M S / r 5 /2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaGaaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaeyyp a0tcfa4aaSGbaOqaaKqzGeGaamOyaKqbaoaakaaakeaajuaGdaWcga GcbaqcLbsacaWGhbGaamytaKqbaoaaBaaajeaibaqcLbmacaWGtbaa leqaaaGcbaqcLbsacaWGYbWcdaahaaqcbasabeaajugWaiaaiwdaaa aaaaWcbeaaaOqaaKqzGeGaaGOmaaaaaaa@4A6B@ . (43)

Equation (43) gives the initial angular velocity 1.7∙10-12 s-1 at the mean ring radius of 105 000 km, which corresponds to the linear velocity of 0.2 mm∙s-1. This value is in a striking disparity with the Keplerian orbital velocity from (40) at the same radial distance: G M S /r = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqbaoaalyaakeaajugibiaadEeacaWGnbWcdaWgaaqcbasaaKqz adGaam4uaaqcbasabaaakeaajugibiaadkhaaaaaleqaaKqzGeGaey ypa0daaa@3F30@ 19 km∙s-1. It is improbable that colliding ring particles of imperfect shape have such different components of the velocity.

On the other hand, assuming the velocity components to be comparable, i.e. θ ˙ 0 = G M S / r 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaGaaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqzGeGaeyyp a0tcfa4aaOaaaOqaaKqbaoaalyaakeaajugibiaadEeacaWGnbWcda WgaaqcbasaaKqzadGaam4uaaqcbasabaaakeaajugibiaadkhajuaG daahaaWcbeqcbasaaKqzadGaaG4maaaaaaaaleqaaaaa@471A@ , we arrive at θ=arccos[ sin( t G M S / r 3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcqGH9aqpciGGHbGaaiOCaiaacogacaGGJbGaai4BaiaacohajuaG daWadaGcbaqcLbsacqGHsislciGGZbGaaiyAaiaac6gajuaGdaqada GcbaqcLbsacaWG0bqcfa4aaOaaaOqaaKqbaoaalyaakeaajugibiaa dEeacaWGnbqcfa4aaSbaaKqaGeaajugWaiaadofaaSqabaaakeaaju gibiaadkhalmaaCaaajeaibeqaaKqzadGaaG4maaaaaaaaleqaaaGc caGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@53B2@ , a triangular periodic function of time with the extreme values of 0 and π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHap aCaaa@3843@ , which is inconsistent with the flat structure of the rings.

  1. Magnetized particles orbiting at equal distance from the centre (r = const)

In this case C0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaeyiyIKRaaGimaaaa@39CF@ and the equation of the polar coordinate variation is

θ ¨ + θ ˙ 2 cotθ= G M S r 3 cotθ+ 3C μ 0 2 m 2 2 π 2 r 8 M cotθ cos 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaH4o qCgaWaaiabgUcaRiqbeI7aXzaacaqcfa4aaWbaaSqabKqaGeaajugW aiaaikdaaaqcLbsaciGGJbGaai4BaiaacshacqaH4oqCcqGH9aqpju aGdaWcaaGcbaqcLbsacaWGhbGaamytaSWaaSbaaKqaGeaajugWaiaa dofaaKqaGeqaaaGcbaqcLbsacaWGYbWcdaahaaqcbasabeaajugWai aaiodaaaaaaKqzGeGaci4yaiaac+gacaGG0bGaeqiUdeNaey4kaSsc fa4aaSaaaOqaaKqzGeGaaG4maiaadoeacqaH8oqBlmaaDaaajeaiba qcLbmacaaIWaaajeaibaqcLbmacaaIYaaaaKqzGeGaamyBaSWaaWba aKqaGeqabaqcLbmacaaIYaaaaaGcbaqcLbsacaaIYaGaeqiWda3cda ahaaqcbasabeaajugWaiaaikdaaaqcLbsacaWGYbWcdaahaaqcbasa beaajugWaiaaiIdaaaqcLbsacaWGnbaaaiGacogacaGGVbGaaiiDai abeI7aXjGacogacaGGVbGaai4CaKqbaoaaCaaajeaibeqaaKqzadGa aGOmaaaajugibiabeI7aXbaa@766A@ . (44)

Using the MuPAD symbolic calculation tool of Matlab environment, we arrive at the following solution of (44):

θ=π/2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCcqGH9aqpjuaGdaWcgaGcbaqcLbsacqaHapaCaOqaaKqzGeGaaGOm aaaaaaa@3D91@ . (45)

The azimuth velocity in this case is

φ ˙ = G M S / r 3 + 3C μ 0 2 m 2 / ( 8 π 2 r 8 M ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacuaHgp GAgaGaaiabg2da9KqbaoaakaaakeaajuaGdaWcgaGcbaqcLbsacaWG hbGaamytaSWaaSbaaKqaGeaajugWaiaadofaaKqaGeqaaaGcbaqcLb sacaWGYbWcdaahaaqcbasabeaajugWaiaaiodaaaaaaKqzGeGaey4k aSscfa4aaSGbaOqaaKqzGeGaaG4maiaadoeacqaH8oqBlmaaDaaaje aibaqcLbmacaaIWaaajeaibaqcLbmacaaIYaaaaKqzGeGaamyBaSWa aWbaaKqaGeqabaqcLbmacaaIYaaaaaGcbaqcfa4aaeWaaOqaaKqzGe GaaGioaiabec8aWTWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa amOCaSWaaWbaaKqaGeqabaqcLbmacaaI4aaaaKqzGeGaamytaaGcca GLOaGaayzkaaaaaaWcbeaaaaa@5DE7@ , (46)

Which emphasizes that the gravitational force is counterbalanced not only by the centrifugal one, but also by the force of diamagnetic expulsion. The result given in (45) accounts for the fact that rings of Saturn are essentially planar and lie in the plane of its equator.

As the next task, it is possible to estimate the time period over which the magnetic force will significantly modify the orbit of a particle driving it into the magnetic equator plane. The gravitational force acting on a particle is almost perfectly counterbalanced by the centrifugal force and the particle is very slowly approaching the planet ( rconst MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb GaeyisISRaae4yaiaab+gacaqGUbGaae4Caiaabshaaaa@3DE4@ ). Then, the period of orbiting at a distance r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb aaaa@377D@ from the centre is r 3 / ( G M S ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaOaaaO qaaKqbaoaalyaakeaajugibiaadkhalmaaCaaajeaibeqaaKqzadGa aG4maaaaaOqaaKqbaoaabmaakeaajugibiaadEeacaWGnbqcfa4aaS baaKqaGeaajugWaiaadofaaSqabaaakiaawIcacaGLPaaaaaaaleqa aaaa@426B@ .

On the assumption of the distances traveled by the particle in the r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb aaaa@377D@ - and θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH4o qCaaa@383C@ -directions being proportional to the corresponding forces, the ratio of the right-hand sides of the second and first equations in (36) gives the dimensionless acceleration, and it is tangent of the angle through which the particle’s orbit has rotated over a certain time. Because the tangent is small, this ratio is approximately the orbit rotation angle. The dimensionless time needed to rotate the orbit through the mean angle π/4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaeqiWdahakeaajugibiaaisdaaaaaaa@3A48@  is t G M S / r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaOaaaOqaaKqbaoaalyaakeaajugibiaadEeacaWGnbqcfa4a aSbaaKqaGeaajugWaiaadofaaSqabaaakeaajugibiaadkhajuaGda ahaaWcbeqcbasaaKqzadGaaG4maaaaaaaaleqaaaaa@4256@ . Then, using the ratio of the forces from (36), one can obtain the following approximate equality:

t G M S / r 3 16 π 2 G M S M r 5 / ( 3C μ 0 2 m 2 ) 5 π/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamiDaKqbaoaakaaakeaajuaGdaWcgaGcbaqcLbsacaWG hbGaamytaKqbaoaaBaaajeaibaqcLbmacaWGtbaaleqaaaGcbaqcLb sacaWGYbWcdaahaaqcbasabeaajugWaiaaiodaaaaaaaWcbeaaaOqa aKqbaoaalyaakeaajugibiaaigdacaaI2aGaeqiWda3cdaahaaqcba sabeaajugWaiaaikdaaaqcLbsacaWGhbGaamytaKqbaoaaBaaajeai baqcLbmacaWGtbaaleqaaKqzGeGaamytaiaadkhalmaaCaaajeaibe qaaKqzadGaaGynaaaaaOqaaKqbaoaabmaakeaajugibiaaiodacaWG dbGaeqiVd02cdaqhaaqcbasaaKqzadGaaGimaaqcbasaaKqzadGaaG Omaaaajugibiaad2gajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa aOGaayjkaiaawMcaaaaajugibiabgkHiTiaaiwdaaaGaeyisISBcfa 4aaSGbaOqaaKqzGeGaeqiWdahakeaajugibiaaisdaaaaaaa@69C2@  (47)

Where the products of the harmonic functions were replaced by their averages over the angle range [0,π/2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGBb GaaGimaiaacYcajuaGdaWcgaGcbaqcLbsacqaHapaCaOqaaKqzGeGa aGOmaaaacaGGDbaaaa@3DFF@ . Let the orbit radius be r= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGYb Gaeyypa0daaa@3883@ 105 000 km and the particle is an ice sphere with the magnetic moment 2π R 3 B 0 / μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbaO qaaKqzGeGaeyOeI0IaaGOmaiabec8aWjaadkfalmaaCaaajeaibeqa aKqzadGaaG4maaaajugibiaahkealmaaBaaajeaibaqcLbmacaaIWa aajeaibeaaaOqaaKqzGeGaeqiVd02cdaWgaaqcbasaaKqzadGaaGim aaqcbasabaaaaaaa@462C@  (see Section 2.1), radius 1 m and density 934 kg∙m-3 at ‒180°C30 so that its mass is M=3912 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb Gaeyypa0JaaG4maiaaiMdacaaIXaGaaGOmaaaa@3B55@  kg. Then, the time of the orbit plane rotation is t=9.36 10 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b Gaeyypa0JaaGyoaiaac6cacaaIZaGaaGOnaiabgwSixlaaigdacaaI WaWcdaahaaqcbasabeaajugWaiaaigdacaaIXaaaaaaa@4231@ s, which corresponds to 29.7 10 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaaIYa GaaGyoaiaac6cacaaI3aGaeyyXICTaaGymaiaaicdalmaaCaaajeai beqaaKqzadGaaG4maaaaaaa@3F79@ years. This value can be treated as the time of formation of stable orbits of Saturn’s main middle rings, and it is in reasonable agreement with the recent estimates.31

Conclusion

In this work, we have studied magnetostatics and dynamics of magnetized spheres in the spherically symmetric gravitational and axially symmetric magnetic field of Saturn. For the first time, the magnetization and magnetic moment of a sphere placed in an infinite “disk” of evenly distributed identical spheres modeling Saturn’s dense rings in its magnetic field have been found. The magnetic force acting on a sphere in the “disk” of magnetized spheres proves to be stronger than that acting on a sole sphere.

Simulation of magnetic characteristics in the system of a finite superconductive disk in the magnetic field of Saturn has shown that this disk significantly modifies the structure of the magnetic field and attracts the diamagnetic particles, thus increasing the mass of the disk. The superconductivity of the disk is involved to simulate the system of Saturn’s rings because the particles of the low-temperature ice phase, as emphasized in Introduction, may demonstrate some typical properties of superconductors in magnetic field such as existence of resistance-free loop currents and expulsion of magnetic field out of the ice material. The sustainability of the proton loop currents in the proton-ordered ice XI can explain the sharp edges of the rings: temperature increase observed at both edges stimulates the phase transition to a proton-disordered ice modification which has higher magnetic permeability, the diamagnetic expulsion force of this ice phase becomes much weaker, and the respective orbits are no longer stable.

Derivation of the potential energy relationship for the spherical particles in the gravitational and magnetic fields has led to formulating the equations of collision less motion of the ring particles. Two special cases of these equations have been considered: with and without the magnetic force at constant radial distance from the centre. In the gravitational field only, the solution of the equations of motion yields the ratio of angular velocity components that turns out to be extremely unlikely, which speaks against the purely gravitational approach to Saturn’s rings. Furthermore, if the magnetic force is taken into account, the location of circular orbits of the particles in the magnetic equator plane consistently follows from the equation solution.

Finally, we have estimated the formation time of stable orbits of Saturn’s rings (some tens of millennia) and found it consistent with the recent estimates. All the results obtained suggest that the additional force of diamagnetic repulsion of ice particles stabilizes their orbits in the plane of magnetic equator of Saturn.

Acknowledgements

None.

Conflict of interest

Authors declare there is no conflict of interest.

References

  1. Charnoz S, Morbidelli A, Dones L, et al. Did Saturn's rings form during the Late Heavy Bombardment? Icarus. 2009;199(2):413−428.
  2. Fridman AM, Gorkavyi NN. Physics of Planetary Rings: Celestial Mechanics of a Continuous Media. Germany: Springer−Verlag; 1999.
  3. Esposito LW. Composition, structure, dynamics, and evolution of Saturn’s rings. Annual Review of Earth and Planetary Sciences. 2010;38:383–410.
  4. Schmidt J, Ohtsuki K, Rappaport N, et al. Dynamics of Saturn’s dense rings. In: Dougherty M, editor. Saturn from Cassini−Huygens, Chapter 14. Netherlands: Springer Science+Business Media BV; 2009. p. 413−458.
  5. Goldreich P, Tremaine S. The dynamics of planetary rings. Annual Review of Astronomy and Astrophysics. 1982;20:249−283.
  6. Borderies N, Longaretti PY. Description and behavior of streamlines in planetary rings. Icarus. 1987;72(3):593–603.
  7. Tsygan AI. What maintains Saturn's rings? Soviet Astronomy. 1977;21(4):491−494.
  8. Brilliantov N, Krapivsky PL, Bodrova A, et al. Size distribution of particles in Saturn’s rings from aggregation and fragmentation. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(31):9536−9541 .
  9. Tchernyi VV, Pospelov AY. Possible electromagnetic nature of the Saturn's rings: superconductivity and magnetic levitation. Progress In Electromagnetic Research, PIER. 2005;52:277−299.
  10. Tchernyi VV, Chensky EV. Movements of the protoplanetary superconducting particles in the magnetic field of the Saturn lead to the origin of the rings. IEEE Geoscience and Remote Sensing Letters. 2005;2(4):445−446.
  11. Tchernyi VV, Chensky EV. Electromagnetic background for possible magnetic levitation of the superconducting rings of Saturn. Journal of Electromagnetic Waves and Applications. 2005;19(7):1997−2006.
  12.  Tchernyi VV, Pospelov AY. About hypothesis of the superconducting origin of the Saturn’s rings. Astrophysics and Space Science. 2007;307(4):347−356.
  13. Tchernyi VV. About role of electromagnetism to the Saturn rings origin–to the unified theory of the planetary rings origin. International Journal of Astronomy and Astrophysics. 2013;3(4):412−420.
  14. Cuzzi JN, Burns JA, Charnoz S, et al. An evolving view of Saturn’s dynamic rings. Science. 2010;327(5972):1470−1475.
  15. Senftle FE, Thorpe A. Oxygen adsorption and the magnetic susceptibility of ice at low temperatures. Nature. 1962;194:673−674.
  16. Babushkina GV, Kobelev LY, Yakovlev EN, et al. Electrical conductivity of ice under high pressure. Physics of the Solid State. 1986l;28(12):3732–3734.
  17. Flores−Livas JA, Sanna A, Graužinytė M, et al. Emergence of superconductivity in doped H2O ice at high pressure. Scientific Reports. 2017;7:6825.
  18. Bove LE, Klotz S, Paciaroni A, et al. Anomalous proton dynamics in ice at low temperatures. Physical Review Letters. 2009;103(16):165901.
  19. Yen F, Gao T. Dielectric anomaly in ice near 20 K: evidence of macroscopic quantum phenomena. The Journal of Physical Chemistry Letters. 2015;6(14):2822–2825.
  20. Drechsel−Grau C, Marx D. Collective proton transfer in ordinary ice: local environments, temperature dependence and deuteration effects. Physical Chemistry Chemical Physics. 2017;19(4):2623−2635.
  21. Savage H. Water structure in crystalline solids. Water Science Reviews 2. In: Franks F, editor. UK: Cambridge University Press; 1986.
  22. Lobban C, Finney JL, Kuhs WF. The structure of a new phase of ice. Nature. 1998;391(6664):268−270.
  23. Geiger P, Dellago C, Macher M, et al. Proton ordering of cubic ice Ic: spectroscopy and computer simulations. The Journal of Physical Chemistry C. 2014;118(20):10989–10997.
  24. https://www.nasa.gov/mission_pages/cassini/media/cassini−090204.html
  25. Spilker L, Ferrari C, Morishima R. Saturn’s ring temperatures at equinox. Icarus. 2013;226(1):316−322.
  26. Jackson JD. Classical Electrodynamics. 3rd ed. USA: Wiley; 1999.
  27. Smoluchowski R. Metallic interiors and magnetic fields of Jupiter and Saturn. Astrophysical Journal. 1971;166 (6):435−439.
  28. Russell CT, Dougherty MK. Magnetic fields of the outer planets. Space Science Reviews. 2010;152(1−4):251–269.
  29. Shapiro IL, Berredo−Peixoto GD. Lecture Notes on Newtonian Mechanics: Lessons from Modern Concepts. USA: Springer; 2013.
  30. CRC Handbook of Chemistry and Physics. In: Lide DR, editotr. 86th ed. USA: CRC Press; 2005.
  31. Tcherny VV, Pospelov AY. Superconductivity of Saturn rings: Quantum locking, rings disc thickness and its time creation. Journal of Modern Physics. 2018;9(3):419−432.
Creative Commons Attribution License

©2018 Tchernyi, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.