Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 8 Issue 4

Describing Kepler Orbits with the Ulianov Orbital Model

Dr. Policarpo Yoshin Ulianov MSc, PhD

R&D Department, Power Opticks Tecnologia, Av. Luiz Boiteux Piazza, Brazil

Correspondence: Dr. Policarpo Yoshin Ulianov MSc PhD, R&D Department, Power Opticks Tecnologia, Av. Luiz Boiteux Piazza, Florian´opolis, 88056-000, SC, Brazil

Received: August 21, 2024 | Published: October 28, 2024

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

Download PDF

Abstract

This paper presents the Ulianov Orbital Model (UOM), a simplified approach to two-body orbital mechanics. The UOM provides equations to calculate the standard ellipse parameters (a and b) and orbital trajectories and velocities from three UOM basic parameters (Ue, R0, and V0). It introduces a new kind of elliptical trigonometric functions, which simplify plotting orbital trajectories and their velocities over time and in elliptical angular steps. The Ulianov Elliptic Transform (UET), generates an impressive effect of rotating and scaling an ellipse, transferring its center from one of the foci to the geometric center of the ellipse. The UET offers a new and easy way to create and manipulate ellipses using both numerical and analytical methods.

Keywords: Ulianov Orbital Model, Elliptical trigonometric functions, Ulianov Elliptic Transform, Orbital trajectories

Introduction

In celestial mechanics, the problem of two bodies interacting gravitationally is traditionally described using Keplerian orbits or the Newtonian approach. A Kepler orbit, named after Johannes Kepler,1 describes the motion of a body with small mass ( M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ ) relative to another body with a large mass ( M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ ). Due to the difference in masses, the movement of the body M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ in space is not significantly affected by the interaction with the body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ . Therefore, M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ can often be considered stationary or defined as the origin of the coordinate system used to define the movement of . This assumption defines the Kepler orbit problems and is valid for many cases, such as the movement of planets around the sun, communication satellites around the Earth, or small moons (such as the moons of Mars). However, it is not valid for the orbit of Earth’s moon because the difference in masses is smaller, causing the moon’s mass to make the Earth oscillate in its trajectory. When the mass M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ is much smaller than M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ , the orbit becomes an ellipse, parabola, or hyperbola. The Kepler Orbit Model (KOM)2 requires six orbital elements to fully describe the motion of the body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ :

  • Eccentricity ( e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyzaaaa@3817@ ): The shape of the ellipse.
  • Semi-major axis ( a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaaaa@3813@ ): Half the distance between the apoapsis and periapsis.
  • Inclination ( i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381B@ ): The tilt of the orbital plane.
  • Longitude of the ascending node ( Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCfaaa@38BB@ ): The horizontal orientation of the ascending node.
  • Argument of periapsis ( ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdChaaa@38FA@ ): The orientation of the ellipse in the orbital plane.
  • True anomaly (velocity ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4gaaa@38E5@ ,at angle θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E3@ ,) at epoch ( t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393A@ ): The position of the orbiting body along the ellipse at a specific time.

Note: Although these parameters are defined as six orbital elements, there are eight values listed, so we can also consider that the KOM has eight individual numeric parameters.

The Newtonian model,3 which solves the problem using numerical methods, requires a similar number of parameters. A complete simulation can be defined by the masses of the bodies ( M b , M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaakiaacYcapeGaamyt a8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@3C1C@ ) and their initial positions ( x,y,z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaiaacYcacaWG6baacaGL OaGaayzkaaaaaa@3D2F@ and velocities ( v x , v y , v z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadAhapaWaaSbaaSqaa8qacaWG4baapaqabaGc peGaaiilaiaadAhapaWaaSbaaSqaa8qacaWG5baapaqabaGcpeGaai ilaiaadAhapaWaaSbaaSqaa8qacaWG6baapaqabaaak8qacaGLOaGa ayzkaaaaaa@417C@ and a time reference t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393A@ , totaling nine values. If we consider a reference system that defines the ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaaa @3B80@ plane over the elliptical plane, the numerical methods can use only seven parameters: masses M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ , M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ , and initial positions ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaaa @3B80@ and velocities ( v x , v y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadAhapaWaaSbaaSqaa8qacaWG4baapaqabaGc peGaaiilaiaadAhapaWaaSbaaSqaa8qacaWG5baapaqabaaak8qaca GLOaGaayzkaaaaaa@3E5D@ and a time reference t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393A@ .

The Ulianov Orbital Model introduces a new approach that reduces the complexity to only five parameters (seven numerical values) because the ellipse shape is represented by only one parameter, named the Ulianov Ellipse parameter ( U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ ), while maintaining accuracy in the ellipse representation and also defining parabolas and hyperbolas. Additionally, it offers a methodology that facilitates the orbit position and velocity calculation by applying two Ulianov Elliptic trigonometric functions (cosuell( α, U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaaiilaiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaa aa@3B9A@ ) and sinuell( α, U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaaiilaiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaa aa@3B9A@ )) to calculate the UOM elliptical orbit positions and velocities. The UOM also provides routines for determining these parameters from data observed in the body trajectory.

The Ulianov Orbital Model

The Ulianov Orbital Model (UOM) characterizes an orbit using the following five parameters:

  1. Inclination ( i ): The vertical tilt of the ellipse with respect to the reference plane.
  2. Longitude of the ascending node ( Ω ): The horizontal orientation of the ascending node.
  3. Argument of periapsis (ellipse angle E ang MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbWdamaaBaaaleaapeGaamyyaiaad6gacaWGNbaapaqabaaa aa@3A00@ ): The orientation of the ellipse in the orbital plane.
  4. Initial condition, given by the minimum orbital distance ( R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ ) (the minimum distance between the orbital body and the central body), the maximum velocity ( V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ ) (the velocity at R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ distance, which is the maximum velocity in the orbit) at epoch ( t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393A@ ) (UTC time for an angle α= 0, occurring at the point ( x e , y e )=( R 0 ,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGLbaapaqabaGc peGaaiilaiaadMhapaWaaSbaaSqaa8qacaWGLbaapaqabaaak8qaca GLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbiaadkfapaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeGaaiilaiaaicdaaiaawIcacaGLPaaaaa a@4459@ and velocity ( v x , v y )=( 0, V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadAhapaWaaSbaaSqaa8qacaWG4baapaqabaGc peGaaiilaiaadAhapaWaaSbaaSqaa8qacaWG5baapaqabaaak8qaca GLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbiaaicdacaGGSaGaamOv a8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaaaa a@447E@ ).
  5. Ulianov elliptical parameter ( U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ ): Defines the shape and size of the orbit.

Although these parameters are defined as five orbital elements, there are seven values defined in this list, so we can also consider that the UOM has seven individual numeric parameters.

Note that the UOM provides a reduction of one parameter compared to the KOM because the parameters eccentricity ( e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyzaaaa@3817@ ) and semi-major axis ( a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaaaa@3813@ ) are replaced by only one parameter, the Ulianov Ellipse parameter ( U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ ), with some advantages:

  • The application of elliptic trigonometric functions (cosuell( α, U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaaiilaiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaa aa@3B9A@ ) and sinuell( α, U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaaiilaiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaa aa@3B9A@ )) to determine the orbit values and velocities as a function of any given time or ellipse angle.
  • The easy obtaining of the elliptic orbit range (standard ellipse parameters a and b or eccentricity ( e )) and period from initial values R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@3802@ and V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGwbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@3806@ or generic positions ( e x , e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacaGGSaGaamyz a8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3C7A@ ) and velocities ( v x , v y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacaGGSaGaamOD a8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3C9C@ ) defined in the ellipse orbit.

Another important aspect is that the Keplerian orbital model stores an angular position in the orbit and a velocity for a specific time, which can be, for example, close to a present time of interest. This scheme is used because, normally, to move this point within the orbit, numerical simulations based on the Newtonian method are necessary, which must be calculated with a very small time interval dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ , making it faster to calculate the orbit from the defined time to a new time for nearby times. In the case of the UOM, the model parameter stores the time, position, and velocity for the angle α equal to zero because the model can very quickly calculate the position and velocity for any desired time or angle.

The Ulianov Elliptical Parameter definition

The Ulianov Elliptical Parameter U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ value is calculated by the equation:

U e = V 0 2 R 0 G M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamOva8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaaik daaaGccaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcbaWdbiaa dEeacaWGnbWdamaaBaaaleaapeGaamOyaaWdaeqaaaaaaaa@4244@                         (1)

where G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raaaa@37F8@ is the gravitational constant and M b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@393F@ is the mass of the primary body.

The Ulianov elliptical parameter eliminates the need to explicitly include M b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@393F@ and G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raaaa@37F8@ in the calculations, and also defines the velocity over the orbit and the complete elliptical orbit path, simplifying the model. However, to understand how the parameter U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ works, we need to first observe some basic definitions.

The general solution for the elliptical orbit is given by:

x 2 a 2 + y 2 b 2 =1 x e ( α ) =acos( α ) y e ( α ) =bsin( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqadiaaae aaqaaaaaaaaaWdbmaalaaapaqaa8qacaWG4bWdamaaCaaaleqabaWd biaaikdaaaaak8aabaWdbiaadggapaWaaWbaaSqabeaapeGaaGOmaa aaaaaak8aabaWdbiabgUcaRmaalaaapaqaa8qacaWG5bWdamaaCaaa leqabaWdbiaaikdaaaaak8aabaWdbiaadkgapaWaaWbaaSqabeaape GaaGOmaaaaaaGccqGH9aqpcaaIXaaapaqaa8qacaWG4bWdamaaBaaa leaapeGaamyzaaWdaeqaaOWdbmaabmaapaqaa8qacqaHXoqyaiaawI cacaGLPaaaa8aabaWdbiabg2da9iaadggacaqGJbGaae4Baiaaboha daqadaWdaeaapeGaeqySdegacaGLOaGaayzkaaaapaqaa8qacaWG5b WdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbmaabmaapaqaa8qacqaH XoqyaiaawIcacaGLPaaaa8aabaWdbiabg2da9iaadkgacaqGZbGaae yAaiaab6gadaqadaWdaeaapeGaeqySdegacaGLOaGaayzkaaaaaaaa @5E77@

where a and b are the semi-major and semi-minor axes of the ellipse, respectively. Note that the α angle is defined in the ellipse center, instead of being centered on the focus where the orbited body is located, which normally defines the origin of the system in both Cartesian and polar coordinates. In this way, these ellipse equations, despite being very simple, do not perform well in the case of a coordinate system centered on the orbited body. Additionally, the values a and b need to be calculated from some observed positions and velocities of the body in orbit. For certain initial velocities, a and b become very large and exhibit chaotic behavior, because very small changes in the initial orbital velocity ( V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391B@ ) can generate large variations in the a and b values. This chaotic behavior difficult to calculate a and b values using analytics solutions of differential equations, requiring numerical simulation to obtain these parameters. These simulations are normally based on the calculation of forces and acceleration in a small time interval (in the order of fractions of a second) to be precise. For larger orbits, with periods of many years or even many centuries, a large number of processing steps are needed to determine complete orbit positions and velocities. To use an angle α centered in the ellipse focus, we can consider an ellipse equation defined as:

  x e ( α ) = R 0 K x cos( α ) R 0 ( K x 1 ) y e ( α ) = R 0 K y sin( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOa8aafaqaceGacaaabaWdbiaadIhapaWaaSbaaSqaa8qacaWG LbaapaqabaGcpeWaaeWaa8aabaWdbiabeg7aHbGaayjkaiaawMcaaa WdaeaapeGaeyypa0JaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaa k8qacaWGlbWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiaabogaca qGVbGaae4Camaabmaapaqaa8qacqaHXoqyaiaawIcacaGLPaaacqGH sislcaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaabmaapa qaa8qacaWGlbWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiabgkHi TiaaigdaaiaawIcacaGLPaaaa8aabaWdbiaadMhapaWaaSbaaSqaa8 qacaWGLbaapaqabaGcpeWaaeWaa8aabaWdbiabeg7aHbGaayjkaiaa wMcaaaWdaeaapeGaeyypa0JaamOua8aadaWgaaWcbaWdbiaaicdaa8 aabeaak8qacaWGlbWdamaaBaaaleaapeGaamyEaaWdaeqaaOWdbiaa bohacaqGPbGaaeOBamaabmaapaqaa8qacqaHXoqyaiaawIcacaGLPa aaaaaaaa@636D@

where the ellipse’s foci are in the x axis direction and for a>b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiabg6da+iaadkgaaaa@3A01@ , R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3917@ is the minimum orbital radius and K x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3953@ , K y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3954@ are gain factors that can be calculated by:

  R 0 =a a 2 b 2 K x = a R 0 K y = b R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOa8aafaqaceWacaaabaWdbiaadkfapaWaaSbaaSqaa8qacaaI WaaapaqabaaakeaapeGaeyypa0JaamyyaiabgkHiTmaakaaapaqaa8 qacaWGHbWdamaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaWGIbWd amaaCaaaleqabaWdbiaaikdaaaaabeaaaOWdaeaapeGaam4sa8aada WgaaWcbaWdbiaadIhaa8aabeaaaOqaa8qacqGH9aqpdaWcaaWdaeaa peGaamyyaaWdaeaapeGaamOua8aadaWgaaWcbaWdbiaaicdaa8aabe aaaaaakeaapeGaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaOqa a8qacqGH9aqpdaWcaaWdaeaapeGaamOyaaWdaeaapeGaamOua8aada WgaaWcbaWdbiaaicdaa8aabeaaaaaaaaaa@4F75@

Note: These definitions consider that the angle α  starts at and rotates counterclockwise. At α=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGimaaaa@3A8C@ , x e = R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaWG sbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@3C79@ , y e =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaaI Waaaaa@3B49@ , v x =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacqGH9aqpcaaI Waaaaa@3B59@ , and v y = V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGH9aqpcaWG wbWdamaaBaaaleaapeGaaGimaaWdaeqaaaaa@3C8F@ .

The velocity V( d e ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaWGKbWdamaaBaaaleaapeGaamyzaaWd aeqaaaGcpeGaayjkaiaawMcaaaaa@3BF7@ of body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ along its trajectory is defined by the conservation of energy equation:

1 2 M a V ( d e ) 2 = 1 2 M a V 0 2 G M b M a R 0 + G M b M a d e V ( d e ) 2 = V 0 2 2 G M b R 0 +2 G M b d e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIYaaa aiaad2eapaWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaamOvamaabm aapaqaa8qacaWGKbWdamaaBaaaleaapeGaamyzaaWdaeqaaaGcpeGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacq GH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaaaacaWGnbWd amaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadAfapaWaa0baaSqaa8 qacaaIWaaapaqaa8qacaaIYaaaaOGaeyOeI0YaaSaaa8aabaWdbiaa dEeacaWGnbWdamaaBaaaleaapeGaamOyaaWdaeqaaOWdbiaad2eapa WaaSbaaSqaa8qacaWGHbaapaqabaaakeaapeGaamOua8aadaWgaaWc baWdbiaaicdaa8aabeaaaaGcpeGaey4kaSYaaSaaa8aabaWdbiaadE eacaWGnbWdamaaBaaaleaapeGaamOyaaWdaeqaaOWdbiaad2eapaWa aSbaaSqaa8qacaWGHbaapaqabaaakeaapeGaamiza8aadaWgaaWcba Wdbiaadwgaa8aabeaaaaaakeaapeGaamOvamaabmaapaqaa8qacaWG KbWdamaaBaaaleaapeGaamyzaaWdaeqaaaGcpeGaayjkaiaawMcaa8 aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacqGH9aqpcaWGwbWd amaaDaaaleaapeGaaGimaaWdaeaapeGaaGOmaaaakiabgkHiTiaaik dadaWcaaWdaeaapeGaam4raiaad2eapaWaaSbaaSqaa8qacaWGIbaa paqabaaakeaapeGaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaa GcpeGaey4kaSIaaGOmamaalaaapaqaa8qacaWGhbGaamyta8aadaWg aaWcbaWdbiaadkgaa8aabeaaaOqaa8qacaWGKbWdamaaBaaaleaape GaamyzaaWdaeqaaaaaaaaaaa@713A@               (2)

Considering the Ulianov Elliptical Factor U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ defined in Equation (1), Equation (2) becomes the Ulianov orbital velocity equation:

d e = x e 2 + y e 2 V ( d e ) 2 = V 0 2 ( 1 2 U e ( R 0 d e 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadsgapaWaaSbaaSqaa8qacaWGLbaapaqabaaa keaapeGaeyypa0ZaaOaaa8aabaWdbiaadIhapaWaa0baaSqaa8qaca WGLbaapaqaa8qacaaIYaaaaOGaey4kaSIaamyEa8aadaqhaaWcbaWd biaadwgaa8aabaWdbiaaikdaaaaabeaaaOWdaeaapeGaamOvamaabm aapaqaa8qacaWGKbWdamaaBaaaleaapeGaamyzaaWdaeqaaaGcpeGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacq GH9aqpcaWGwbWdamaaDaaaleaapeGaaGimaaWdaeaapeGaaGOmaaaa kmaabmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaaikdaa8 aabaWdbiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaaaOWdbmaa bmaapaqaa8qadaWcaaWdaeaapeGaamOua8aadaWgaaWcbaWdbiaaic daa8aabeaaaOqaa8qacaWGKbWdamaaBaaaleaapeGaamyzaaWdaeqa aaaak8qacqGHsislcaaIXaaacaGLOaGaayzkaaaacaGLOaGaayzkaa aaaaaa@5A10@                      (3)

Note that at this point we need two additional parameters to represent the elliptical orbit: The values of gains K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ , and K y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3955@ that not are included in the UOM parameter list presented at beginning of this section. Otherwise, as will be demonstrated in the next section, the U e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394A@ parameter allows the calculation of the K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ and K y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3954@ values, reducing this model to only five parameters (seven values in total), an new result that was obtained by applying the Ulianov Elliptical Transform.

Ulianov Elliptical Parameter and orbital types

Analyzing Equation (3), we can observe that the nature of the orbit depends on the value of U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ . Considering that in this equation the d e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@395A@ value is equal to R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , the V( d e ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaWGKbWdamaaBaaaleaapeGaamyzaaWd aeqaaaGcpeGaayjkaiaawMcaaaaa@3BF7@ value is equal to V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ . Considering that the d e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@395A@ value tends to infinity, Equation (3) can be defined as:

V( ) = V 0 ( 1 2 U e ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqabiaaae aaqaaaaaaaaaWdbiaadAfadaqadaWdaeaapeGaeqOhIukacaGLOaGa ayzkaaaapaqaa8qacqGH9aqpcaWGwbWdamaaBaaaleaapeGaaGimaa WdaeqaaOWdbmaakaaapaqaa8qadaqadaWdaeaapeGaaGymaiabgkHi Tmaalaaapaqaa8qacaaIYaaapaqaa8qacaWGvbWdamaaBaaaleaape GaamyzaaWdaeqaaaaaaOWdbiaawIcacaGLPaaaaSqabaaaaaaa@4527@                        (4)

In Equation (4), for 0< U e <2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaGc peGaeyipaWJaaGOmaaaa@3CE3@ , we have the root of a negative number, which indicates that in this range of values the value of d e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@395A@ will be limited and will never reach infinity. Therefore, this range of U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ values defines a closed curve, which is the ellipse.

For U e =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaaI Yaaaaa@3B27@ , the V( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacqaHEisPaiaawIcacaGLPaaaaaa@3B1F@ value is equal to zero, marking the limit of the ellipse range, with the K x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3953@ parameter tending to infinity, which also defines a parabola.

For U e >2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH+aGpcaaI Yaaaaa@3B29@ , the V( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacqaHEisPaiaawIcacaGLPaaaaaa@3B1F@ value is greater than zero, and the U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ value defines a hyperbola.

Based on this analysis, the U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ parameter can be used to define a total of six types of orbits:

  • U e =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaaI Waaaaa@3B25@ : The body has a velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ pointing along the radial line, or V 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaI Waaaaa@3AF6@ . This indicates that the M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ body is in a direct collision trajectory, defined by a straight line to the body M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ .
  • U e =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaaI Xaaaaa@3B26@ : The trajectory is circular, representing that V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ is equal to the orbital velocity.
  • 0< U e <1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaGc peGaeyipaWJaaGymaaaa@3CE2@ : The trajectory is an ellipse, but the R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ value is the maximum orbital radius and V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ is the minimum velocity in the orbit.
  • 1< U e <2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgYda8iaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaGc peGaeyipaWJaaGOmaaaa@3CE4@ : The trajectory is an ellipse, and the R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ value is the minimum orbital radius and V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ is the maximum velocity in the orbit.
  • U e =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaaI Yaaaaa@3B27@ : The trajectory is a parabola, representing that V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ is equal to the escape velocity.
  • U e >2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH+aGpcaaI Yaaaaa@3B29@ : The trajectory is a hyperbola.

The Ulianov Path Force

In the context of the Ulianov Gravitational Model (UGM),4 which is aligned with the space-time distortion caused by the presence of matter as defined in Einstein’s General Relativity Theory (GRT),5,6 there are significant parallels and novel insights provided by the Ulianov theory.7

As shown in Figure 1-a, if the body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ starts with v 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaI Waaaaa@3B16@ , the gravitational force ( F G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaa@391E@ ) acts directly towards body M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ , causing body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ to move in a straight line until collision. In this case, the UGM considers that the mass of body M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ reduces the Higgs Ulianov Perfect Liquid (HUPL) pressure,8 generating a buoyancy force on body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ which directs it towards the center of M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ where the HUPL pressure is zero.

Thus, with body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ stationary, UGM generates a force that moves the body. However, the action of this force depends on pressure waves generated in M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ that are not instantaneous but travel at the speed of light, similar to the definition in GRT. Moreover, UGM defines that inertia does not move a body in a straight line but along a constant pressure path, which can be circular, elliptical, parabolic or hyperbolic.

Based on the pressure conservation law (combining dynamic pressure generated by body M a 's MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaakiaacEcacaWGZbaa aa@3AEC@ force with a magnitude equal to the gravitational force. In the case of a circular orbit, these two forces cancel each other. According to UGM, this centrifugal force arises whenever the body crosses equipressure paths. If the body’s movement is exactly perpendicular to the spherical shell defining the constant pressure line, the centrifugal force will be spread in a plane around the body. This can be observed in the analogy presented in Figure 1-b, where a sphere is placed at the top of a cylindrical surface (with a parabolic cross-section and a straight line at the top of the surface) that is slightly inclined, causing the ball to move in a straight line and accelerate. In this analogy, it’s as if there are two equal centrifugal forces pulling the ball to both sides simultaneously, but this is an extremely unstable equilibrium because a minimal deviation from the trajectory will cause the ball to fall off the top of the surface.

Thus, the straight-line trajectory shown in Figure 1-a is similar to the body traveling along the top of the cylindrical surface. From Newton’s mechanics viewpoint, this can occur because only F G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaa@391E@ is considered, and it acts in a straight line. However, from GRT’s perspective, this straight line can be distorted by spacetime curvature. Therefore, UGM predicts that the ball will fall off the top of the cylindrical surface, meaning a minimal deviation from the straight line will cause the centrifugal force to act in a specific direction (perpendicular to F G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaa@391E@ ) with a magnitude equal to F G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaa@391E@ .

The vector sum of F G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaa@391E@ and F C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadoeaa8aabeaaaaa@391A@ creates the Ulianov Path Force ( F P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadcfaa8aabeaaaaa@3927@ ), which is a force that changes the velocity vector’s direction, attempting to make the body follow a constant pressure path compatible with its current velocity.

Note that the use of F P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadcfaa8aabeaaaaa@3927@ eliminates F G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaa@391E@ and F C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadoeaa8aabeaaaaa@391A@ (i.e., F P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadcfaa8aabeaaaaa@3927@ incorporates the combined effect of gravitational force interacting with centrifugal force), aligning with GRT models where F G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaa@391E@ also doesn’t exist, and the body is moved by inertia along geodesic lines.

Thus, in UGM, F P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadcfaa8aabeaaaaa@3927@ aligns with a concept of force that is "behind" inertia, and in the presence of pressure variation paths in HUPL, F P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadcfaa8aabeaaaaa@3927@ makes the body follow constant pressure lines as if it were following a straight line, similar to how a ping-pong ball (massless and with volume) placed inside a circular glass tube follows the water flow, moving with the liquid in a circular trajectory, without hitting the duct walls or being subjected to any additional force.

In summary, we can observe Figure 1-c, which shows the behavior of a body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ with zero initial velocity, attracted straight to the lowest pressure point in HUPL. However, as it moves, a minimal trajectory variation (generated for example, by quantum fluctuations) causes the centrifugal force to take a random direction perpendicular to F G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadEeaa8aabeaaaaa@391E@ , generating F P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadcfaa8aabeaaaaa@3927@ , which tries to make the body enter a constant pressure trajectory.

Figure 1

Figure 1 Ulianov Path Force in the two bodies problem. a) Newtonian model: A small body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ with initial velocity equal to zero is attracted by the large mass of body M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyta8aadaWgaaWcbaWdbiaabkgaa8aabeaaaaa@393C@ in a straight line. As there is only the action of gravitational force, the body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ collides with M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyta8aadaWgaaWcbaWdbiaabkgaa8aabeaaaaa@393C@ . b) An analogy where a sphere goes in a straight line at the top of a gently inclined cylindrical surface (with a parabolic cross-section and a straight line at the top of the surface), pulled by gravitational force. In the Ulianov gravitational model, passing through equipressure paths generates centrifugal forces with a magnitude equal to the gravitational force. c) Ulianov gravitational model: A minimal random deviation is enough for the centrifugal force equilibrium to "collapse" and act to one side, generating a Ulianov path force that deflects the straight trajectory and takes the body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ into a circular or elliptical orbit.

Thus, F P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadcfaa8aabeaaaaa@3927@ arises mainly when constant pressure lines are crossed by the body, deflecting the body laterally until it finally assumes a circular or elliptical trajectory instead of colliding with body M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaaeyta8aadaWgaaWcbaWdbiaabkgaa8aabeaaaaa@393C@ as predicted in the Newtonian model for this case.

In a simple analogy, this is like a cyclist who is descending a mountain on an inclined trail, with the bicycle pointed downwards and gaining speed due to the force of gravity that acts in the same direction as the bicycle’s displacement vector, performing work that is converted into kinetic energy. Then, the cyclist finds a narrow path that goes around the mountain at the same height and directs the bike towards this new path, leaving the inclined path. The force of gravity will continue to act on the cyclist and its bicycle, pulling him down to the trail soil, but now the force will be perpendicular to the displacement vector and will not perform work, and will not transfer energy to the bicycle or increase its speed. In this analogy, the Ulianov path force F P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadcfaa8aabeaaaaa@3927@ appears when the bicycle crosses the lateral paths (equipressure paths in the M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ real case) and keeps trying to divert the bicycle so that it enters one of these paths (keeps trying that M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ follow an elliptic orbit). In this case, if the bicycle crosses parallel paths at an angle of exactly 90 degrees, the cyclist could not choose either side or another to deviate the bicycle, which generates a straight path defined in the Figure 1-a. But a very small deviation in this angle (the ball falling off the cylinder top analogy) is enough to generate a decision with the bicycle deviating to one side, which generates the orbital path defined in Figure 1-c.

Numerical simulations

The Ulianov Orbital Model was applied as the simplest example of a two-body problem in the context of the Ulianov Gravitational Model, aiming to replace the concept of gravitational force with the concept of Ulianov path force. To do this, some programs were developed in Python to perform two types of numerical simulations:

  • A simulation considering the traditional Newtonian model, with calculations of gravitational forces, accelerations, speeds, and displacements.
  • Another simulation considering the Ulianov path force, without applying gravitational forces or acceleration.

Table 1 presents the Python code that implements the numeric Newtonian gravitational force procedure and the Elliptic Ulianov Transformation procedure. The Newtonian calculation is a standard procedure that considers a small time interval ( dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ ), calculates the gravitational force on body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ in two components ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaaa @3B80@ , its acceleration, and updates the velocities and positions. This procedure is easy to implement and generates very good results but with cumulative error (in velocity and position) that depends on the value of dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ used.

Figure 2

Figure 2 The base of Ulianov Elliptic Transform: a) An Original Ellipse (OE) defined by a and b parameters (or R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ parameters) is transformed into the Ulianov Reduced Ellipse (URE), which is proportional (multiplied by a b/a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGIbGaai4laiaadggaaaa@3897@ factor), rotated 90° , and centralized. b) Numeric procedure: From a point ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaaa @3B80@ in the original ellipse, a point ( cx,cy ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadogacaWG4bGaaiilaiaadogacaWG5baacaGL OaGaayzkaaaaaa@3D50@ is defined in the URE. Since this point is centralized, the ellipse can be treated as if it were a circle, where a small angular displacement can be generated, leading to a new point ( ncx,ncy ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaad6gacaWGJbGaamiEaiaacYcacaWGUbGaam4y aiaadMhaaiaawIcacaGLPaaaaaa@3F36@ within the URE, which is then converted back, generating the next position ( nx,ny ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaad6gacaWG4bGaaiilaiaad6gacaWG5baacaGL OaGaayzkaaaaaa@3D66@ on the OE.

Gravitational force calculation

Ulianov elliptic transform

# Gravitational force calculation:
Fg = G * M1 * M2 / d**2
Fg_x = -Fg * dx
Fg_y = -Fg * dy
# Calculate acceleration:
ax = Fg_x / M2
ay = Fg_y / M2
# Update speed:
vx = vx + ax * dt
vy = vy + ay * dt
vm = np.sqrt(vx**2 + vy**2)
# Update position:
x += vx * dt + 0.5 * ax * dt**2
y += vy * dt + 0.5 * ay * dt**2

# Calc. radius and theoretical speed:
d = np.sqrt(x**2 + y**2)
vteo = V0 * np.sqrt(1 + (2 / Ue) * (R0 / d - 1))
# Apply the Elliptic Ulianov Transform:
cy = y + d* Ue
cx = x - d* Ue
de = np.sqrt(cx**2 + cy**2)
# Calculate the current angle:
angle = np.arctan2(cy, cx)
# Angular increment proportional to speed:
dang = vteo * dt / (2 * np.pi * d)
angle += dang
# Update position
ncy = de * np.cos(angle)
ncx = de * np.sin(angle)
# Inverse Ulianov Elliptic Transform
# Return to the original ellipse:
nx  = ncx + d * Ue
ny  = ncy - d* Ue
# Calculate the speed obtained:
vxn = (xn - x) / dt
vyn = (yn - y) / dt
vmn = np.sqrt(vxn**2 + vyn**2)
# Pass to the theoretical speed value:
vx = vxn / vmn * vteo
vy = vyn / vmn * vteo
# Update position without use acceleration:
x += vx * dt
y += vy * dt

Table 1 Python code of numeric Newtonian gravitational force procedure and Ulianov Elliptic Transform procedure

The Ulianov Elliptic Transform (UET), as presented in Figure 2, converts a given original ellipse, defined by a and b parameters (or R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ parameters), into the Ulianov Reduced Ellipse (URE), which is proportional (multiplied by a b/a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaiaac+cacaWGHbaaaa@39AD@ factor), rotated 90° , and centralized. In this way, the UET numerical procedure converts a known point ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaaa @3B80@ on the original ellipse (which is centered on one of the focuses) to a point ( cx,cy ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadogacaWG4bGaaiilaiaadogacaWG5baacaGL OaGaayzkaaaaaa@3D50@ on the URE (which is centered). It generates a small angle of rotation (based on the dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ value and the theoretical speed), defining a new point  within the URE. An Ulianov Elliptic inverse transform is applied, defining the new point ( ncx,ncy ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaad6gacaWGJbGaamiEaiaacYcacaWGUbGaam4y aiaadMhaaiaawIcacaGLPaaaaaa@3F36@ on the original ellipse associated with the M a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393E@ displacement, in the time interval dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ , but without considering acceleration.

These two numeric procedures were used to calculate the trajectory of the body M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ from the values of M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ , R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , and V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ (which also allows the calculation of U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ which replaces the value of G M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@38F6@ in the numerical UET method). Several simulations were carried out, and it became clear that once the values of M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ and R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ were defined, this also defined an escape velocity and an orbital velocity (for example, for M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ equal to the mass of the Earth and R 0 = 10 8  m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaaI XaGaaGima8aadaahaaWcbeqaa8qacaaI4aaaaOGaaeiOaiaab2gaaa a@3ED8@ , the resulting values are v orb =2003 m/s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaad+gacaWGYbGaamOyaaWdaeqaaOWd biabg2da9iaaikdacaaIWaGaaGimaiaaiodacaqGGcGaaeyBaiaab+ cacaqGZbaaaa@431C@ and v escape =2834 m/s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadwgacaWGZbGaam4yaiaadggacaWG WbGaamyzaaWdaeqaaOWdbiabg2da9iaaikdacaaI4aGaaG4maiaais dacaqGGcGaaeyBaiaab+cacaqGZbaaaa@45E5@ ). Thus, by defining V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ equal to v orb MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaad+gacaWGYbGaamOyaaWdaeqaaaaa @3B54@ , a circular orbit is generated, and for a V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ value below the escape velocity, an ellipse is generated. By varying V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ within this range, the values U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ ranging between 1 and 2 were obtained. Using the numerical procedures to traverse a complete orbit, we obtained the K y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3955@ and K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ values that define the parameters a and b of the ellipse, making it clear that from a set of values R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ , a unique value of K y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3955@ and also of K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ is defined.

Despite this, searching on the internet and with the support of Artificial Intelligence Chat GPT-4, it was not possible to identify a function that, starting from the values of M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ , M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ , V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ , and R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , would directly generate the values of K y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3955@ and K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGlbWdamaaBaaaleaapeGaamiEaaWdaeqaaaaa@383E@ (or even the parameters a and b ) associated with the orbital ellipse generated by the numerical simulation. The information obtained on the internet and confirmed by Chat GPT-4 indicates that the only way to observe how far the use of a velocity value V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ would take the orbit length could not be obtained directly, even in the simple case of two bodies, because the Newtonian differential equations that define this problem also need to be solved numerically. For values of V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ that approach the escape velocity, the size of the orbit increases significantly and tends to infinity if V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ is equal to the escape velocity. Thus, very small variations in the V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ value (close to the escape velocity) generate very large variations in the final size of the orbit, characterizing a chaotic system (where small variations in initial conditions generate large changes in the system’s final state) that are not well represented through differential analytical equations.

One aspect that can be observed is that in these simulations, low speeds (for example, 2500 m/s) generated orbit times of a few days (for example, 10 days) which were quickly resolved by the Newtonian method (in about an hour for a dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ of 0.01 s). However, when using higher speeds close to the escape velocity, the size of the orbit grows significantly, and the simulation time becomes prohibitive to carry out on a personal computer. An alternative then was to increase the value of dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ , but as the Newtonian method operates with an acceleration value multiplying the interval time value squared, for a larger dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ , the errors become extremely high.

The UET method, in turn, does not use acceleration and does not treat dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ squared, allowing time interval values a thousand times larger (and even ten thousand times larger) without a significant increase in errors. This result can be seen in Table 2, where the Newtonian method is compared to the Ulianov Elliptic Transform method. This result was obtained for one individual case of K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ orbital parameter calculation from a given set of values ( M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ , R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , and V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ ) applying both methods with different values of dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ (the Newtonian method dt=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGKbGaamiDaiabg2da9iaaicdacaGGUaGaaGimaiaaigdaaaa@3BDF@ with was used as a reference). As expected, the Ulianov method shows almost no variation in error as the time interval increases, but it is necessary to use small time intervals close to points of interest (large angles are used to traverse the ellipse, and small angles are used at the extreme points where the value of K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ is calculated). Thus, the comparison must be made using the number of processing steps.

For the same error value, the Ulianov method proved to be much faster (in the order of 1 to 8 thousand times faster, as this varies depending on the total orbit time), which is easy to understand because the UET routine can traverse an ellipse with low errors in angular increments of 0.1° , allowing the complete orbit to be traversed in just 3600 steps. In an analogy, the UET routine is like drawing a circular orbit using sine and cosine functions, considering that, for example, this orbit takes 36 hours. In this case, we can use an angular interval of 10 degrees and calculate all the positions (with only 36 points, one point per hour), and the error will be the same as that obtained by calculating the position every second.

Method

dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaadshaaaa@390F@ (s)

Steps

K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@

%Error

Newtonian

0.1

17,280,000

1.905236

0.0074

Newtonian

1

1,728,000

1.905162

0.0113

Newtonian

10

172,800

1.904418

0.0483

Newtonian

100

17,280

1.896986

0.4614

Ulianov

10

19,686

1.905437

0.0031

Ulianov

100

3,903

1.907121

0.0109

Ulianov

1000

2,353

1.921555

0.0085

Table 2 Comparison of error and computational cost between Newtonian and Ulianov methods

Although this method has only been tested for a very simple case, with the parameter U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ that defines the shape of the ellipse being known (or calculated in some way), numerically using the elliptical Ulianov transform presented in the table 1 works both in the case of ellipses, parabolas, and hyperbolas with low position errors, even in the case of   dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaaiiOaiaadsgacaWG0baaaa@3A40@ values a thousand times larger (for example dt=0.01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGKbGaamiDaiabg2da9iaaicdacaGGUaGaaGimaiaaigdaaaa@3BE0@ to dt=0.1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadshacqGH9aqpcaaIWaGaaiOlaiaaigdaaaa@3C3C@ in the Newtonian method generating the same error as dt=100 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadshacqGH9aqpcaaIXaGaaGimaiaaicdaaaa@3C44@ to dt=1000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadshacqGH9aqpcaaIXaGaaGimaiaaicdacaaIWaaaaa@3CFE@ in the Ulianov method), due to the fact that it does not use acceleration values (without having factors multiplying d t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadshapaWaaWbaaSqabeaapeGaaGOmaaaaaaa@3A17@ ). In practice, this can mean that a problem that would take an entire month to calculate on a PC can be calculated in less than an hour with the same level of error using the Ulianov method. Therefore, the application of this numerical method to more general cases involving more bodies is something to be studied in the future.

Calculating the K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ and Ky values

For an elliptical orbit defined by parameters R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ , and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ , the equation of a standard ellipse E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraaaa@37F7@ can be defined:

e x = R 0 K x cos( α ) R 0 ( K x 1 ) e y = R 0 K y sin( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadwgapaWaaSbaaSqaa8qacaWG4baapaqabaaa keaapeGaeyypa0JaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8 qacqGHflY1caWGlbWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiab gwSixlaabogacaqGVbGaae4Camaabmaapaqaa8qacqaHXoqyaiaawI cacaGLPaaacqGHsislcaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqa aOWdbiabgwSixpaabmaapaqaa8qacaWGlbWdamaaBaaaleaapeGaam iEaaWdaeqaaOWdbiabgkHiTiaaigdaaiaawIcacaGLPaaaa8aabaWd biaadwgapaWaaSbaaSqaa8qacaWG5baapaqabaaakeaapeGaeyypa0 JaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1caWG lbWdamaaBaaaleaapeGaamyEaaWdaeqaaOWdbiabgwSixlaabohaca qGPbGaaeOBamaabmaapaqaa8qacqaHXoqyaiaawIcacaGLPaaaaaaa aa@66D1@                   (5,6)

Applying the Ulianov Elliptical Transform:

d e = x e 2 + y e 2 U y = y e +2 d e ( 1 U e ) U x = x e +3 d e ( U e +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqadiaaae aaqaaaaaaaaaWdbiaadsgapaWaaSbaaSqaa8qacaWGLbaapaqabaaa keaapeGaeyypa0ZaaOaaa8aabaWdbiaadIhapaWaa0baaSqaa8qaca WGLbaapaqaa8qacaaIYaaaaOGaey4kaSIaamyEa8aadaqhaaWcbaWd biaadwgaa8aabaWdbiaaikdaaaaabeaaaOWdaeaapeGaamyva8aada WgaaWcbaWdbiaadMhaa8aabeaaaOqaa8qacqGH9aqpcaWG5bWdamaa BaaaleaapeGaamyzaaWdaeqaaOWdbiabgUcaRiaaikdacqGHflY1ca WGKbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbmaabmaapaqaa8qa caaIXaGaeyOeI0Iaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaO WdbiaawIcacaGLPaaaa8aabaWdbiaadwfapaWaaSbaaSqaa8qacaWG 4baapaqabaaakeaapeGaeyypa0JaamiEa8aadaWgaaWcbaWdbiaadw gaa8aabeaak8qacqGHRaWkcaaIZaGaeyyXICTaamiza8aadaWgaaWc baWdbiaadwgaa8aabeaak8qadaqadaWdaeaapeGaamyva8aadaWgaa WcbaWdbiaadwgaa8aabeaak8qacqGHRaWkcaaIXaaacaGLOaGaayzk aaaaaaaa@64CC@

The equations (5) and (6) define the Ulianov Reduced Ellipse equation:

U x = R 0 U e sin( α ) U y = R 0 K y cos( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadwfapaWaaSbaaSqaa8qacaWG4baapaqabaaa keaapeGaeyypa0JaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8 qacqGHflY1caWGvbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbiab gwSixlaabohacaqGPbGaaeOBamaabmaapaqaa8qacqaHXoqyaiaawI cacaGLPaaaa8aabaWdbiaadwfapaWaaSbaaSqaa8qacaWG5baapaqa baaakeaapeGaeyypa0JaamOua8aadaWgaaWcbaWdbiaaicdaa8aabe aak8qacqGHflY1caWGlbWdamaaBaaaleaapeGaamyEaaWdaeqaaOWd biabgwSixlaabogacaqGVbGaae4Camaabmaapaqaa8qacqaHXoqyai aawIcacaGLPaaaaaaaaa@5BDB@

As the ellipse E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraaaa@37F7@ is proportional to ellipse URE, these relationships can be defined:

R 0 U e R 0 K y = R 0 K y R 0 K x K y 2 = K x U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGsbWdamaaBaaaleaapeGa aGimaaWdaeqaaOWdbiabgwSixlaadwfapaWaaSbaaSqaa8qacaWGLb aapaqabaaakeaapeGaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaa k8qacqGHflY1caWGlbWdamaaBaaaleaapeGaamyEaaWdaeqaaaaaaO qaa8qacqGH9aqpdaWcaaWdaeaapeGaamOua8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qacqGHflY1caWGlbWdamaaBaaaleaapeGaamyEaa WdaeqaaaGcbaWdbiaadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyyXICTaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaaake aapeGaam4sa8aadaqhaaWcbaWdbiaadMhaa8aabaWdbiaaikdaaaaa k8aabaWdbiabg2da9iaadUeapaWaaSbaaSqaa8qacaWG4baapaqaba GcpeGaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaaaaa@5B5E@                                     (7)

In the standard ellipse, we can define the velocity V( d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaWGKbaacaGLOaGaayzkaaaaaa@3A99@ as a function of the angle α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdegaaa@38CC@ , considering that the distance value is given as a function of α ( d=d( α ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadsgacqGH9aqpcaWGKbWaaeWaa8aabaWdbiab eg7aHbGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@3EF4@ :

V ( α ) 2 = V 0 2 ( 1 2 U e ( R 0 d( α ) 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacqaHXoqyaiaawIcacaGLPaaapaWaaWba aSqabeaapeGaaGOmaaaakiabg2da9iaadAfapaWaa0baaSqaa8qaca aIWaaapaqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsisl daWcaaWdaeaapeGaaGOmaaWdaeaapeGaamyva8aadaWgaaWcbaWdbi aadwgaa8aabeaaaaGcpeWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG sbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcbaWdbiaadsgadaqada WdaeaapeGaeqySdegacaGLOaGaayzkaaaaaiabgkHiTiaaigdaaiaa wIcacaGLPaaaaiaawIcacaGLPaaaaaa@5073@            (8)

Considering the value of α in degrees:

  • For α= 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGima8aadaahaaWcbeqaa8qacqWIyiYBaaaa aa@3C12@ , d( 0 )= R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacaaIWaWdamaaCaaaleqabaWdbiablIHi VbaaaOGaayjkaiaawMcaaiabg2da9iaadkfapaWaaSbaaSqaa8qaca aIWaaapaqabaaaaa@3EF9@ and V( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaaIWaWdamaaCaaaleqabaWdbiablIHi VbaaaOGaayjkaiaawMcaaaaa@3BFA@ is the maximum velocity value ( V( 0 )= V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadAfadaqadaWdaeaapeGaaGima8aadaahaaWc beqaa8qacqWIyiYBaaaakiaawIcacaGLPaaacqGH9aqpcaWGwbWdam aaBaaaleaapeGaaGimaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@40B1@ ;
  • For α= 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGyoaiaaicdapaWaaWbaaSqabeaapeGaeSig I8gaaaaa@3CD5@ , d( 90 )= K y R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qa cqWIyiYBaaaakiaawIcacaGLPaaacqGH9aqpcaWGlbWdamaaBaaale aapeGaamyEaaWdaeqaaOWdbiabgwSixlaadkfapaWaaSbaaSqaa8qa caaIWaaapaqabaaaaa@4448@ and V( 90 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qa cqWIyiYBaaaakiaawIcacaGLPaaaaaa@3CBD@ is a medium velocity value;
  • For α= 180 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWd biablIHiVbaaaaa@3D8F@ , d( 180 )= K x R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacaaIXaGaaGioaiaaicdapaWaaWbaaSqa beaapeGaeSigI8gaaaGccaGLOaGaayzkaaGaeyypa0Jaam4sa8aada WgaaWcbaWdbiaadIhaa8aabeaak8qacqGHflY1caWGsbWdamaaBaaa leaapeGaaGimaaWdaeqaaaaa@4501@ and V( 180 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaaIXaGaaGioaiaaicdapaWaaWbaaSqa beaapeGaeSigI8gaaaGccaGLOaGaayzkaaaaaa@3D77@ is a minimum velocity value;

By applying the Ulianov Elliptic Transform, we can simultaneously trace the trajectory of the standard ellipse in space with a real displacement and speed and obtain the drawing of the Ulianov Reduced Ellipse (URE). In this case, some interesting points can be observed:

  • The total travel time of the two ellipses will be equal;
  • Considering an angle defined at the central point of the ellipse, the angular velocity will be equal in both ellipses;
  • The URE will be multiplied by a size reduction factor (or scale factor) equal to K y K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadUeapaWaaSbaaSqaa8qacaWG5baapaqabaaa keaapeGaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaaaaa@3BC5@ ;
  • As the angular velocity is the same, if the scale factor is considered, the velocity in the URE will be the same as in the standard ellipse.

In this way, the V( 90 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qa cqWIyiYBaaaakiaawIcacaGLPaaaaaa@3CBD@ value can be obtained considering d( 90 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizamaabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qa cqWIyiYBaaaakiaawIcacaGLPaaaaaa@3CCB@ in the standard ellipse, multiplied by the scale factor:

d URE ( 90 ) =d( 90 ) K y K x d URE ( 90 ) = K y R 0 K y K x d URE ( 90 ) = R 0 K y 2 K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqadiaaae aaqaaaaaaaaaWdbiaadsgapaWaaSbaaSqaa8qacaWGvbGaamOuaiaa dweaa8aabeaak8qadaqadaWdaeaapeGaaGyoaiaaicdapaWaaWbaaS qabeaapeGaeSigI8gaaaGccaGLOaGaayzkaaaapaqaa8qacqGH9aqp caWGKbWaaeWaa8aabaWdbiaaiMdacaaIWaWdamaaCaaaleqabaWdbi ablIHiVbaaaOGaayjkaiaawMcaamaalaaapaqaa8qacaWGlbWdamaa BaaaleaapeGaamyEaaWdaeqaaaGcbaWdbiaadUeapaWaaSbaaSqaa8 qacaWG4baapaqabaaaaaGcbaWdbiaadsgapaWaaSbaaSqaa8qacaWG vbGaamOuaiaadweaa8aabeaak8qadaqadaWdaeaapeGaaGyoaiaaic dapaWaaWbaaSqabeaapeGaeSigI8gaaaGccaGLOaGaayzkaaaapaqa a8qacqGH9aqpcaWGlbWdamaaBaaaleaapeGaamyEaaWdaeqaaOWdbi aadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeWaaSaaa8aabaWd biaadUeapaWaaSbaaSqaa8qacaWG5baapaqabaaakeaapeGaam4sa8 aadaWgaaWcbaWdbiaadIhaa8aabeaaaaaakeaapeGaamiza8aadaWg aaWcbaWdbiaadwfacaWGsbGaamyraaWdaeqaaOWdbmaabmaapaqaa8 qacaaI5aGaaGima8aadaahaaWcbeqaa8qacqWIyiYBaaaakiaawIca caGLPaaaa8aabaWdbiabg2da9iaadkfapaWaaSbaaSqaa8qacaaIWa aapaqabaGcpeWaaSaaa8aabaWdbiaadUeapaWaa0baaSqaa8qacaWG 5baapaqaa8qacaaIYaaaaaGcpaqaa8qacaWGlbWdamaaBaaaleaape GaamiEaaWdaeqaaaaaaaaaaa@6F19@                        (9)

Applying Equation (7) in Equation (9):

d URE ( 90 )= R 0 U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaWgaaWcbaWdbiaadwfacaWGsbGaamyraaWdaeqaaOWd bmaabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qacqWIyi YBaaaakiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaamOua8aa daWgaaWcbaWdbiaaicdaa8aabeaaaOqaa8qacaWGvbWdamaaBaaale aapeGaamyzaaWdaeqaaaaaaaa@4512@                   (10)

Applying Equation (10) in Equation (8):

V URE ( 90 ) 2 = V 0 2 ( 1 2 U e ( R 0 U e R 0 )+ 2 U e ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaadwfacaWGsbGaamyraaWdaeqaaOWd bmaabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qacqWIyi YBaaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakiab g2da9iaadAfapaWaa0baaSqaa8qacaaIWaaapaqaa8qacaaIYaaaaO WaaeWaa8aabaWdbiaaigdacqGHsisldaWcaaWdaeaapeGaaGOmaaWd aeaapeGaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaGcpeWaae Waa8aabaWdbmaalaaapaqaa8qacaWGsbWdamaaBaaaleaapeGaaGim aaWdaeqaaOWdbiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaake aapeGaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaaak8qacaGL OaGaayzkaaGaey4kaSYaaSaaa8aabaWdbiaaikdaa8aabaWdbiaadw fapaWaaSbaaSqaa8qacaWGLbaapaqabaaaaaGcpeGaayjkaiaawMca aaaa@5759@                                  (11)

As the scale factor was applied in Equation (11), the velocity in the standard ellipse is the same:

V ( 90 ) 2 = V URE ( 90 ) 2 = V 0 2 ( 2 U e 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qa cqWIyiYBaaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaa aakiabg2da9iaadAfapaWaaSbaaSqaa8qacaWGvbGaamOuaiaadwea a8aabeaak8qadaqadaWdaeaapeGaaGyoaiaaicdapaWaaWbaaSqabe aapeGaeSigI8gaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaa ikdaaaGccqGH9aqpcaWGwbWdamaaDaaaleaapeGaaGimaaWdaeaape GaaGOmaaaakmaabmaapaqaa8qadaWcaaWdaeaapeGaaGOmaaWdaeaa peGaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaGcpeGaeyOeI0 IaaGymaaGaayjkaiaawMcaaaaa@52C4@                          (12)

In the standard ellipse, the conservation of angular momentum ( L=MVd=constant ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadYeacqGH9aqpcaWGnbGaeyyXICTaamOvaiab gwSixlaadsgacqGH9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiDai aabggacaqGUbGaaeiDaaGaayjkaiaawMcaaaaa@4A5E@ can be applied. In this way, we can compare the angular momentum at α= 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGima8aadaahaaWcbeqaa8qacqWIyiYBaaaa aa@3C12@ (d( 0 )= R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadsgadaqadaWdaeaapeGaaGima8aadaahaaWcbeqaa8qa cqWIyiYBaaaakiaawIcacaGLPaaacqGH9aqpcaWGsbWdamaaBaaale aapeGaaGimaaWdaeqaaaaa@3FA5@ and velocity V( 0 )= V 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaaIWaWdamaaCaaaleqabaWdbiablIHi VbaaaOGaayjkaiaawMcaaiabg2da9iaadAfapaWaaSbaaSqaa8qaca aIWaaapaqabaGcpeGaaiykaaaa@3FB6@ to the momentum at α= 90 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGyoaiaaicdapaWaaWbaaSqabeaapeGaeSig I8gaaaaa@3CD5@ (d( 90 )= R 0 K y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadsgadaqadaWdaeaapeGaaGyoaiaaicdapaWaaWbaaSqa beaapeGaeSigI8gaaaGccaGLOaGaayzkaaGaeyypa0JaamOua8aada WgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1caWGlbWdamaaBaaa leaapeGaamyEaaWdaeqaaaaa@44F4@ and velocity V( 90 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qa cqWIyiYBaaaakiaawIcacaGLPaaaaaa@3CBD@ given by Equation (12), defining the relation:

L= M 2 V 0 R 0 = M 2 V( 90 )( R 0 K y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamitaiabg2da9iaad2eapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaeyyXICTaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacq GHflY1caWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabg2da 9iaad2eapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyyXICTaam Ovamaabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qacqWI yiYBaaaakiaawIcacaGLPaaacqGHflY1daqadaWdaeaapeGaamOua8 aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1caWGlbWdamaa BaaaleaapeGaamyEaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@590D@                       (13)

Simplifying and squaring Equation (13), we get:

V 0 2 =V ( 90 ) 2 K y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaaikdaaaGccqGH 9aqpcaWGwbWaaeWaa8aabaWdbiaaiMdacaaIWaWdamaaCaaaleqaba WdbiablIHiVbaaaOGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaI YaaaaOGaeyyXICTaam4sa8aadaqhaaWcbaWdbiaadMhaa8aabaWdbi aaikdaaaaaaa@46DA@                                                   (14)

Applying Equation (8) in Equation (14):

V 0 2 = V 0 2 ( 2 U e 1 ) K y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaaikdaaaGccqGH 9aqpcaWGwbWdamaaDaaaleaapeGaaGimaaWdaeaapeGaaGOmaaaakm aabmaapaqaa8qadaWcaaWdaeaapeGaaGOmaaWdaeaapeGaamyva8aa daWgaaWcbaWdbiaadwgaa8aabeaaaaGcpeGaeyOeI0IaaGymaaGaay jkaiaawMcaaiabgwSixlaadUeapaWaa0baaSqaa8qacaWG5baapaqa a8qacaaIYaaaaaaa@4990@

Isolating , we get:

K y = 1 2 U e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeWaaOaaa8aabaWdbmaalaaapaqaa8 qacaaIYaaapaqaa8qacaWGvbWdamaaBaaaleaapeGaamyzaaWdaeqa aaaak8qacqGHsislcaaIXaaaleqaaaaaaaa@40A2@                         (15)

Applying Equation (15) in Equation (17):

K x = 1 2 U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaaGOmaiabgkHiTiaadwfapaWaaS baaSqaa8qacaWGLbaapaqabaaaaaaa@3F44@                       (16)

The  and values calculated by Equations (16) and (15) were compared with the values of K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ and K y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3955@ generated by numerical simulations, and the same result was obtained, demonstrating the validity of these two equations.

Maximum Orbital Velocity, Orbital Ellipse Parameters, and Orbital Period

The deduction of K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ and K y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3955@ values presented in the previous section allows the definition of a new relation between the standard elliptical parameters: a and b, the Ulianov Ellipse parameter: U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ , and the basic parameters that define the orbit: R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ , and GM MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raiabgwSixlaad2eaaaa@3B15@ . These can be expressed by the following equations:

R 0 =a a 2 b 2 U e = b 2 a 2 a 4 a 2 b 2 U e = R 0 GM V 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqadiaaae aaqaaaaaaaaaWdbiaadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaaa keaapeGaeyypa0JaamyyaiabgkHiTmaakaaapaqaa8qacaWGHbWdam aaCaaaleqabaWdbiaaikdaaaGccqGHsislcaWGIbWdamaaCaaaleqa baWdbiaaikdaaaaabeaaaOWdaeaapeGaamyva8aadaWgaaWcbaWdbi aadwgaa8aabeaaaOqaa8qacqGH9aqpdaWcaaWdaeaapeGaamOya8aa daahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGHbWdamaaCaaale qabaWdbiaaikdaaaGccqGHsisldaGcaaWdaeaapeGaamyya8aadaah aaWcbeqaa8qacaaI0aaaaOGaeyOeI0Iaamyya8aadaahaaWcbeqaa8 qacaaIYaaaaOGaamOya8aadaahaaWcbeqaa8qacaaIYaaaaaqabaaa aaGcpaqaa8qacaWGvbWdamaaBaaaleaapeGaamyzaaWdaeqaaaGcba Wdbiabg2da9maalaaapaqaa8qacaWGsbWdamaaBaaaleaapeGaaGim aaWdaeqaaOWdbiabgwSixlaadEeacqGHflY1caWGnbaapaqaa8qaca WGwbWdamaaDaaaleaapeGaaGimaaWdaeaapeGaaGOmaaaaaaaaaaaa @5F5A@                   (17,18,19)

These equations can define:

GM V 0 2 = R 0 U e = ( a 2 a 4 a 2 b 2 )( a a 2 b 2 ) b 2 GM V 0 2 = R 0 U e = a 3 ( 2( 1 1 b 2 / a 2 ) b 2 / a 2 ) b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGhbGaeyyXICTaamytaaWd aeaapeGaamOva8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaaikdaaa aaaaGcpaqaa8qacqGH9aqpdaWcaaWdaeaapeGaamOua8aadaWgaaWc baWdbiaaicdaa8aabeaaaOqaa8qacaWGvbWdamaaBaaaleaapeGaam yzaaWdaeqaaaaak8qacqGH9aqpdaWcaaWdaeaapeWaaeWaa8aabaWd biaadggapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTmaakaaapa qaa8qacaWGHbWdamaaCaaaleqabaWdbiaaisdaaaGccqGHsislcaWG HbWdamaaCaaaleqabaWdbiaaikdaaaGccaWGIbWdamaaCaaaleqaba WdbiaaikdaaaaabeaaaOGaayjkaiaawMcaamaabmaapaqaa8qacaWG HbGaeyOeI0YaaOaaa8aabaWdbiaadggapaWaaWbaaSqabeaapeGaaG OmaaaakiabgkHiTiaadkgapaWaaWbaaSqabeaapeGaaGOmaaaaaeqa aaGccaGLOaGaayzkaaaapaqaa8qacaWGIbWdamaaCaaaleqabaWdbi aaikdaaaaaaaGcpaqaa8qadaWcaaWdaeaapeGaam4raiabgwSixlaa d2eaa8aabaWdbiaadAfapaWaa0baaSqaa8qacaaIWaaapaqaa8qaca aIYaaaaaaaaOWdaeaapeGaeyypa0ZaaSaaa8aabaWdbiaadkfapaWa aSbaaSqaa8qacaaIWaaapaqabaaakeaapeGaamyva8aadaWgaaWcba Wdbiaadwgaa8aabeaaaaGcpeGaeyypa0ZaaSaaa8aabaWdbiaadgga paWaaWbaaSqabeaapeGaaG4maaaakmaabmaapaqaa8qacaaIYaWaae Waa8aabaWdbiaaigdacqGHsisldaGcaaWdaeaapeGaaGymaiabgkHi TiaadkgapaWaaWbaaSqabeaapeGaaGOmaaaakiaac+cacaWGHbWdam aaCaaaleqabaWdbiaaikdaaaaabeaaaOGaayjkaiaawMcaaiabgkHi TiaadkgapaWaaWbaaSqabeaapeGaaGOmaaaakiaac+cacaWGHbWdam aaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaaa8aabaWdbiaa dkgapaWaaWbaaSqabeaapeGaaGOmaaaaaaaaaaaa@7EDC@                                    (20)

Equation (20) is named the Ulianov Maximum Orbital Velocity Ellipse Parameters Relation. This equation implies that for a given body M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaaaa@37FF@ , the maximum orbital velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ will define a unique ellipse shape (represented by parameters a and b). Despite ellipses being known for more than 2000 years and elliptical orbits being known for more than 300 years, this equation had not been found by mathematicians. This author believes that this type of equation is not just a mathematical curiosity but represents a key that can lead to, for example, an equation that directly calculates the length of an ellipse and, as presented in the following sections, provides a way to obtain the Kepler orbital period equation.

Applying Equations (16) and (15), we can also calculate the parameters a and b using the following equations:

a = R 0 2 U e b = R 0 2 U e 1 e = 1 b 2 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqadiaaae aaqaaaaaaaaaWdbiaadggaa8aabaWdbiabg2da9maalaaapaqaa8qa caWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcbaWdbiaaikdacq GHsislcaWGvbWdamaaBaaaleaapeGaamyzaaWdaeqaaaaaaOqaa8qa caWGIbaapaqaa8qacqGH9aqpdaWcaaWdaeaapeGaamOua8aadaWgaa WcbaWdbiaaicdaa8aabeaaaOqaa8qadaGcaaWdaeaapeWaaSaaa8aa baWdbiaaikdaa8aabaWdbiaadwfapaWaaSbaaSqaa8qacaWGLbaapa qabaaaaOWdbiabgkHiTiaaigdaaSqabaaaaaGcpaqaa8qacaWGLbaa paqaa8qacqGH9aqpdaGcaaWdaeaapeGaaGymaiabgkHiTmaalaaapa qaa8qacaWGIbWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaa dggapaWaaWbaaSqabeaapeGaaGOmaaaaaaaabeaaaaaaaa@5109@         (21,22,23)

These equations allow the conversion from standard ellipse parameters a and b and value of eccentricity e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyzaaaa@3817@ (used in the Kepler orbital model), to the Ulianov ellipse parameters R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ . As R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ can be seen as a scale factor, the U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ value defines the ellipse shape (including ellipses, parabolas, and hyperbolas), providing a natural way to deal with elliptical orbits.

This model also allows the calculation of the orbital period (valid for the ellipse case) based on the value V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ . Considering a circle with radius R 0 K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGlbWdamaa BaaaleaapeGaamiEaaWdaeqaaaaa@3B59@ , in the Ulianov orbital model, the orbital period T orbit MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaad+gacaWGYbGaamOyaiaadMgacaWG 0baapaqabaaaaa@3D19@ is given by the circumference of this circle divided by the mean velocity V( 90 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvamaabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qa cqWIyiYBaaaakiaawIcacaGLPaaaaaa@3CBD@ used to obtain the K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ value. In this way, the orbital period can be calculated by:

T orbit = 2π R 0 K x V( 90 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaad+gacaWGYbGaamOyaiaadMgacaWG 0baapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaikdacqaHapaCcq GHflY1caWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgwSi xlaadUeapaWaaSbaaSqaa8qacaWG4baapaqabaaakeaapeGaamOvam aabmaapaqaa8qacaaI5aGaaGima8aadaahaaWcbeqaa8qacqWIyiYB aaaakiaawIcacaGLPaaaaaaaaa@4F4B@            (24)

Applying Equations (16) and (12) in Equation (24):

T orbit = 2π R 0 ( 2 U e ) 1 V 0 2 U e 1 T orbit = 2π V 0 R 0 ( 2 U e ) 2 U e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qacaWGVbGaamOCaiaa dkgacaWGPbGaamiDaaWdaeqaaaGcbaWdbiabg2da9maalaaapaqaa8 qacaaIYaGaeqiWdaNaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaa aOqaa8qadaqadaWdaeaapeGaaGOmaiabgkHiTiaadwfapaWaaSbaaS qaa8qacaWGLbaapaqabaaak8qacaGLOaGaayzkaaaaaiabgwSixpaa laaapaqaa8qacaaIXaaapaqaa8qacaWGwbWdamaaBaaaleaapeGaaG imaaWdaeqaaOWdbmaakaaapaqaa8qadaWcaaWdaeaapeGaaGOmaaWd aeaapeGaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaGcpeGaey OeI0IaaGymaaWcbeaaaaaak8aabaWdbiaadsfapaWaaSbaaSqaa8qa caWGVbGaamOCaiaadkgacaWGPbGaamiDaaWdaeqaaaGcbaWdbiabg2 da9maalaaapaqaa8qacaaIYaGaeqiWdahapaqaa8qacaWGwbWdamaa BaaaleaapeGaaGimaaWdaeqaaaaak8qacqGHflY1daWcaaWdaeaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOqaa8qadaqadaWd aeaapeGaaGOmaiabgkHiTiaadwfapaWaaSbaaSqaa8qacaWGLbaapa qabaaak8qacaGLOaGaayzkaaGaeyyXIC9aaOaaa8aabaWdbmaalaaa paqaa8qacaaIYaaapaqaa8qacaWGvbWdamaaBaaaleaapeGaamyzaa Wdaeqaaaaak8qacqGHsislcaaIXaaaleqaaaaaaaaaaa@707A@                          (25)

Applying Equations (21) and (22) in Equation (25), the orbital period is obtained from the standard ellipse parameters:

T orbit = 2π V 0 b 2( 1 1 b 2 a 2 ) b 2 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqabiaaae aaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qacaWGVbGaamOCaiaa dkgacaWGPbGaamiDaaWdaeqaaaGcbaWdbiabg2da9maalaaapaqaa8 qacaaIYaGaeqiWdahapaqaa8qacaWGwbWdamaaBaaaleaapeGaaGim aaWdaeqaaaaak8qacqGHflY1daWcaaWdaeaapeGaamOyaaWdaeaape WaaOaaa8aabaWdbiaaikdadaqadaWdaeaapeGaaGymaiabgkHiTmaa kaaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWdbiaadkgapaWaaW baaSqabeaapeGaaGOmaaaaaOWdaeaapeGaamyya8aadaahaaWcbeqa a8qacaaIYaaaaaaaaeqaaaGccaGLOaGaayzkaaGaeyOeI0YaaSaaa8 aabaWdbiaadkgapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGa amyya8aadaahaaWcbeqaa8qacaaIYaaaaaaaaeqaaaaaaaaaaa@5609@                                   (26)

Equations (25) and (26) are the Ulianov Orbital Period Equations and provide an easy and direct way to calculate the orbital period based on the maximum orbital velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ and Ulianov orbital parameters (or standard ellipse a and b parameters).

Note that we can combine Equations (26) and (20) to eliminate the V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ value. Isolating V 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaaikdaaaaaaa@39E9@ in Equation (20):

V 0 2 = GM b 2 a 3 ( 2( 1 1 b 2 / a 2 ) b 2 / a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaaikdaaaGccqGH 9aqpdaWcaaWdaeaapeGaam4raiabgwSixlaad2eacqGHflY1caWGIb WdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadggapaWaaWba aSqabeaapeGaaG4maaaakmaabmaapaqaa8qacaaIYaWaaeWaa8aaba WdbiaaigdacqGHsisldaGcaaWdaeaapeGaaGymaiabgkHiTiaadkga paWaaWbaaSqabeaapeGaaGOmaaaakiaac+cacaWGHbWdamaaCaaale qabaWdbiaaikdaaaaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadkga paWaaWbaaSqabeaapeGaaGOmaaaakiaac+cacaWGHbWdamaaCaaale qabaWdbiaaikdaaaaakiaawIcacaGLPaaaaaaaaa@572B@                                   (27)

Applying Equation (27) in Equation (26):

T orbit = 2π GM b 2 a 3 ( 2( 1 1 b 2 / a 2 ) b 2 / a 2 ) b 2( 1 1 b 2 / a 2 ) b 2 / a 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaad+gacaWGYbGaamOyaiaadMgacaWG 0baapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaikdacqaHapaCa8 aabaWdbmaakaaapaqaa8qadaWcaaWdaeaapeGaam4raiabgwSixlaa d2eacqGHflY1caWGIbWdamaaCaaaleqabaWdbiaaikdaaaaak8aaba WdbiaadggapaWaaWbaaSqabeaapeGaaG4maaaakmaabmaapaqaa8qa caaIYaWaaeWaa8aabaWdbiaaigdacqGHsisldaGcaaWdaeaapeGaaG ymaiabgkHiTiaadkgapaWaaWbaaSqabeaapeGaaGOmaaaakiaac+ca caWGHbWdamaaCaaaleqabaWdbiaaikdaaaaabeaaaOGaayjkaiaawM caaiabgkHiTiaadkgapaWaaWbaaSqabeaapeGaaGOmaaaakiaac+ca caWGHbWdamaaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaaaa aaleqaaaaakiabgwSixpaalaaapaqaa8qacaWGIbaapaqaa8qadaGc aaWdaeaapeGaaGOmamaabmaapaqaa8qacaaIXaGaeyOeI0YaaOaaa8 aabaWdbiaaigdacqGHsislcaWGIbWdamaaCaaaleqabaWdbiaaikda aaGccaGGVaGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaaqabaaaki aawIcacaGLPaaacqGHsislcaWGIbWdamaaCaaaleqabaWdbiaaikda aaGccaGGVaGaamyya8aadaahaaWcbeqaa8qacaaIYaaaaaqabaaaaa aa@7132@              (28)

As the fraction inside the square root is the same in the numerator and denominator, we can simplify Equation (28) to:

T orbit = 2πb b 2 GM a 3 T orbit =2π a 3 GM MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadsfapaWaaSbaaSqaa8qacaWGVbGaamOCaiaa dkgacaWGPbGaamiDaaWdaeqaaaGcbaWdbiabg2da9maalaaapaqaa8 qacaaIYaGaeqiWdaNaeyyXICTaamOyaaWdaeaapeWaaOaaa8aabaWd bmaalaaapaqaa8qacaWGIbWdamaaCaaaleqabaWdbiaaikdaaaGccq GHflY1caWGhbGaeyyXICTaamytaaWdaeaapeGaamyya8aadaahaaWc beqaa8qacaaIZaaaaaaaaeqaaaaaaOWdaeaapeGaamiva8aadaWgaa WcbaWdbiaad+gacaWGYbGaamOyaiaadMgacaWG0baapaqabaaakeaa peGaeyypa0JaaGOmaiabec8aWnaakaaapaqaa8qadaWcaaWdaeaape Gaamyya8aadaahaaWcbeqaa8qacaaIZaaaaaGcpaqaa8qacaWGhbGa eyyXICTaamytaaaaaSqabaaaaaaa@5EF0@                (29,30)   

Applying Equation (19) in Equation (30) also shows that T orbit MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaad+gacaWGYbGaamOyaiaadMgacaWG 0baapaqabaaaaa@3D19@ is proportional to the ellipse area ( E area ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadweapaWaaSbaaSqaa8qacaWGHbGaamOCaiaa dwgacaWGHbaapaqabaaak8qacaGLOaGaayzkaaaaaa@3DC0@ :

T orbit = 2πab R 0 V 0 = 2 E area R 0 V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaad+gacaWGYbGaamOyaiaadMgacaWG 0baapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaikdacqaHapaCcq GHflY1caWGHbGaeyyXICTaamOyaaWdaeaapeGaamOua8aadaWgaaWc baWdbiaaicdaa8aabeaak8qacaWGwbWdamaaBaaaleaapeGaaGimaa Wdaeqaaaaak8qacqGH9aqpdaWcaaWdaeaapeGaaGOmaiaadweapaWa aSbaaSqaa8qacaWGHbGaamOCaiaadwgacaWGHbaapaqabaaakeaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaWGwbWdamaa BaaaleaapeGaaGimaaWdaeqaaaaaaaa@563F@                       (31)

Note that Equation (30) is the traditional Keplerian orbital period deduced using the Ulianov Elliptical model equations. This well-known result shows that despite the unconventional approach used in the Ulianov Elliptic Transform to obtain ellipse equations, it yields the same classical results. Additionally, some new useful equations allow obtaining all orbit values directly from the R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ , and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ parameters, which are the three basic parameters defined in the Ulianov Orbit Model.

The Ulianov Ellipse Equation

Given the Ulianov orbital parameters:

  1. Inclination ( i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381B@ ) and longitude of the ascending node ( Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCfaaa@38BB@ ) that define a ( x,y ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhacaGGSaGaamyEaaGaayjkaiaawMcaaaaa @3B80@ plane with the elliptical orbit defined as the two ellipse focus are in the axis x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382A@ .
  2. Minimum distance ( R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ ): The minimum distance between M b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadkgaa8aabeaaaaa@3940@ and M a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@393F@ , occurring at the point ( x e , y e )=( R 0 ,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGLbaapaqabaGc peGaaiilaiaadMhapaWaaSbaaSqaa8qacaWGLbaapaqabaaak8qaca GLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbiaadkfapaWaaSbaaSqa a8qacaaIWaaapaqabaGcpeGaaiilaiaaicdaaiaawIcacaGLPaaaaa a@4459@ .
  3. Maximum velocity ( V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ ): The velocity at R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , which is the maximum velocity in the orbit.
  4. Ulianov elliptical parameter ( U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ ): Defines the shape and size of the orbit.

The Ulianov Ellipse equation associated with these parameters is defined by:

e x = R 0 1 2 U e cos( α ) R 0 ( 1 2 U e 1 ) e y = R 0 1 2 U e 1 sin( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadwgapaWaaSbaaSqaa8qacaWG4baapaqabaaa keaapeGaeyypa0JaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8 qacqGHflY1daWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaiabgkHi TiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaaaOWdbiabgwSixl aabogacaqGVbGaae4Camaabmaapaqaa8qacqaHXoqyaiaawIcacaGL PaaacqGHsislcaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbi abgwSixpaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGa aGOmaiabgkHiTiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaaaO WdbiabgkHiTiaaigdaaiaawIcacaGLPaaaa8aabaWdbiaadwgapaWa aSbaaSqaa8qacaWG5baapaqabaaakeaapeGaeyypa0JaamOua8aada WgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1daWcaaWdaeaapeGa aGymaaWdaeaapeWaaOaaa8aabaWdbmaalaaapaqaa8qacaaIYaaapa qaa8qacaWGvbWdamaaBaaaleaapeGaamyzaaWdaeqaaaaak8qacqGH sislcaaIXaaaleqaaaaakiabgwSixlaabohacaqGPbGaaeOBamaabm aapaqaa8qacqaHXoqyaiaawIcacaGLPaaaaaaaaa@7018@

This definition leads to a new kind of trigonometric function definition named as the Ulianov Elliptical Cosine (cosuell( α, U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaaiilaiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaa aa@3B9A@ )) and the Ulianov Elliptical Sine (sinuell( α, U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaaiilaiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaa aa@3B9A@ )) that simplify these equations to:

e x = R 0 cosuell( α, U e ) e y = R 0 sinuell( α, U e ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadwgapaWaaSbaaSqaa8qacaWG4baapaqabaaa keaapeGaeyypa0JaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8 qacqGHflY1caqGJbGaae4BaiaabohacaqG1bGaaeyzaiaabYgacaqG SbWaaeWaa8aabaWdbiabeg7aHjaacYcacaWGvbWdamaaBaaaleaape GaamyzaaWdaeqaaaGcpeGaayjkaiaawMcaaaWdaeaapeGaamyza8aa daWgaaWcbaWdbiaadMhaa8aabeaaaOqaa8qacqGH9aqpcaWGsbWdam aaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgwSixlaabohacaqGPbGa aeOBaiaabwhacaqGLbGaaeiBaiaabYgadaqadaWdaeaapeGaeqySde MaaiilaiaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaak8qacaGL OaGaayzkaaaaaaaa@6039@

In addition to generating a simpler notation, these trigonometric elliptic functions deal with all possibilities of the U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ parameter, generating ellipses, parabolas, and hyperbolas as shown in Figure 3.

Figure 3

Figure 3 The Ulianov Elliptic equation calculated for some U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ values. U e =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaaI Xaaaaa@3B26@ generates a circle, U e =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaaI Yaaaaa@3B27@ generates a parabola, U e >2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH+aGpcaaI Yaaaaa@3B29@ generates a hyperbola, 0< U e <2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaGc peGaeyipaWJaaGOmaaaa@3CE3@ generates an ellipse.

Elliptical Scanning Algorithms

Table 3 presents an important result of the Ulianov Orbital Model, showcasing routines that allow scanning elliptical orbits while calculating position and velocity at constant angle or time steps. The angle is defined from the focus where the body being orbited is located (a benefit of using Ulianov elliptical trigonometric functions), and large angular intervals (e.g., 1 degree) can be used to traverse the orbit. Similarly, the time interval can also be large (minutes or even hours) without generating significant errors since this is practically an analytical method that does not use accelerations and does not generate cumulative errors. Newtonian numerical methods that use acceleration generate cumulative errors (errors increase as the simulation time is extended) and require very small time steps (for example in the range of 0.001 to 1 second). Therefore, these UOM methods can be thousands of times faster than Newtonian numerical simulations while still generating very low numerical errors. In fact, the UOM scan routine produces an almost exact value of position and velocity for a given angle, meaning that we can "travel", for example, from α=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGimaaaa@3A8C@ to α= 180 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaiaaiIdacaaIWaWdamaaCaaaleqabaWd biablIHiVbaaaaa@3D8F@ in just one step. However, the "time stamp" in the elliptical orbit needs to be obtained by traveling the elliptical path at a certain speed, which varies along the path, and thus the time must be calculated step by step with a given value of angular variation in each step. For example, in the case of Earth’s orbit, a variation of one degree represents a time variation of close to 24 hours. When traveling the complete orbit in 360 steps of one degree, according to the sampling theorem, the uncertainty of position in time will be + 12 hours, which is much greater than the error introduced by considering a constant speed throughout each interval. If the position is desired every hour, an interval of 0.041 degrees must be used, and for an interval of 10 minutes, it will be 0.00685 degrees. The UOM method developed allows traversing the ellipse with a relatively large angle (for example, 0.1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiaac6cacaaIXaWaaWbaaSqabeaacqWIyiYBaaaaaa@3ABB@ ) but small enough not to lose precision in the time computation (even considering constant speed in each interval). Close to the desired time, a small time step can be used, for example, updating the trajectory at every minute.

In the Python code presented in Table 3, the ellipse is generated in the (x,y) plane starting at a given initial α 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaBaaaleaapeGaaGimaaWdaeqaaaaa@39E0@ or t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393A@ values and ending in a limit of time ( t max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaaaa @3B55@ ) or angle ( α max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaBaaaleaapeGaamyBaiaadggacaWG4baapaqabaaa aa@3BFB@ ). The values of position ( x e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@396E@ and y e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@396F@ ) and velocity ( v xe MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadIhacaWGLbaapaqabaaaaa@3A69@ and v ye MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadMhacaWGLbaapaqabaaaaa@3A6A@ ) can be rotated by an ellipse angle ( E a ng MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacaWGUbGaam4z aaaa@3B30@ ) defined in the (x,y) plane or even generate a 3D curve in a new space (x,y,z) based on the two orbital angle parameters (angles i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381B@ and Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCfaaa@38BB@ ). A key aspect of these routines is their dependence on the values of R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ , and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ , that are some basic parameters of the Ulianov orbital model, and allow the use of Ulianov elliptical trigonometric functions and Ulianov velocity equation (3) as an easy way to obtain te orbital positions and velocities.

Ellipse scanning with constant angle step

Ellipse scanning with constant time step

# Import Ulianov Ellipse libray:
from ulianovellipse.py import eu
# Init time and angle
t = time0
alpha = alpha0
# Loop until max angle
while (alpha < max_alpha):
  # Calc current point
  xe = R0 * eu.cosuell(alpha, Ue)
  ye = R0 * eu.sinuell(alpha, Ue)
  # Calc distance to focus
  de = np.sqrt(xe**2 + ye**2)
  # Calc next point
  xen = R0 * eu.cosuell(alpha + dag, Ue)
  yen = R0 * eu.sinuell(alpha + dag, Ue)
  # Calc displacement
  dx = xen - xe
  dy = yen - ye
  dde = np.sqrt(dx**2 + dy**2)
  # Calc theoretical velocity
  vteo = V0*np.sqrt(1 + (2/Ue)*(R0/de - 1))
  # Calc dt
  dt = dde / vteo
  # Calc velocity components
  vxe = dx/ dt
  vye = dy/ dt
  # Rotate in (x,y) plane
  xer, yer = rotate_axis(xe, ye, E_ang)
  vxer, vyer = rotate_axis(vxe, vye, E_ang)
  # Update time and angle
  t += dt
  alpha += dag
  # Save results
  save_results(t, alpha, xer, yer, vxer, vyer)

# Import Ulianov Ellipse libray:
from ulianovellipse.py import eu
# Init time and angle
t = time0
alpha = alpha0
# Loop until max time
while (t < max_time):
  xe = R0 * eu.cosuell(alpha, Ue)
  ye = R0 * eu.sinuell(alpha, Ue)
  de = np.sqrt(xe**2 + ye**2)
  xen = R0 * eu.cosuell(alpha + dag1, Ue)
  yen = R0 * eu.sinuell(alpha + dag1, Ue)
  dx = xen - xe
  dy = yen - ye
  dde = np.sqrt(dx**2 + dy**2)
  # Calc theoretical velocity
  vteo = V0*np.sqrt(1 + (2/Ue) * (R0/de - 1))
  dtc = dde / vteo
  dag = dag1 / dtc * dt
  # Calc velocity components
  vxe = dx/dt
  vye = dy/dt
  # Rotate in (x,y) plane
  xer, yer = rotate_axis(xe, ye, E_ang)
  vxer, vyer = rotate_axis(vxe, vye, E_ang)
  # Update time and angle
  t += dt
  alpha += dag
  # Save results
  save_results(t,alpha,xer,yer,vxer,vyer)

Table 3 Python routines for elliptical orbit scanning using constant angle and constant time steps

The Ulianov Ellipse Trigonometry

The Ulianov Elliptical Transform as used as bases to define the Ulianov Ellipse equation in the Ulianov Orbital Model and also define a new kind of Elliptical Trigonometric Functions that are described in this section: The Ulianov Elliptical Cosine (cosuell( α, U E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaaiilaiaadwfapaWaaSbaaSqaa8qacaWGfbaapaqabaaa aa@3B7A@ )) and the Ulianov Elliptical Sine (sinuell( α, U E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaaiilaiaadwfapaWaaSbaaSqaa8qacaWGfbaapaqabaaa aa@3B7A@ )) for 0< U e <2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgYda8iaadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaGc peGaeyipaWJaaGOmaaaa@3CE3@ are defined by:

cosuell( α, U E ) = 1 2 U e ( cos( α )1 )+1 sinuell( α, U E ) = 1 2 U e 1 sin( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaabogacaqGVbGaae4CaiaabwhacaqGLbGaaeiB aiaabYgadaqadaWdaeaapeGaeqySdeMaaiilaiaadwfapaWaaSbaaS qaa8qacaWGfbaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaiabgkHiTiaadw fapaWaaSbaaSqaa8qacaWGLbaapaqabaaaaOWdbiabgwSixpaabmaa paqaa8qacaqGJbGaae4BaiaabohadaqadaWdaeaapeGaeqySdegaca GLOaGaayzkaaGaeyOeI0IaaGymaaGaayjkaiaawMcaaiabgUcaRiaa igdaa8aabaWdbiaabohacaqGPbGaaeOBaiaabwhacaqGLbGaaeiBai aabYgadaqadaWdaeaapeGaeqySdeMaaiilaiaadwfapaWaaSbaaSqa a8qacaWGfbaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qacqGH9a qpdaWcaaWdaeaapeGaaGymaaWdaeaapeWaaOaaa8aabaWdbmaalaaa paqaa8qacaaIYaaapaqaa8qacaWGvbWdamaaBaaaleaapeGaamyzaa Wdaeqaaaaak8qacqGHsislcaaIXaaaleqaaaaakiabgwSixlaaboha caqGPbGaaeOBamaabmaapaqaa8qacqaHXoqyaiaawIcacaGLPaaaaa aaaa@73B3@

And for U e =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaaI Yaaaaa@3B27@ :

cosuell( α, U E ) =1 sinh ( α ) 2 4 sinuell( α, U E ) =sinh( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaabogacaqGVbGaae4CaiaabwhacaqGLbGaaeiB aiaabYgadaqadaWdaeaapeGaeqySdeMaaiilaiaadwfapaWaaSbaaS qaa8qacaWGfbaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qacqGH 9aqpcaaIXaGaeyOeI0YaaSaaa8aabaWdbiaabohacaqGPbGaaeOBai aabIgadaqadaWdaeaapeGaeqySdegacaGLOaGaayzkaaWdamaaCaaa leqabaWdbiaaikdaaaaak8aabaWdbiaaisdaaaaapaqaa8qacaqGZb GaaeyAaiaab6gacaqG1bGaaeyzaiaabYgacaqGSbWaaeWaa8aabaWd biabeg7aHjaacYcacaWGvbWdamaaBaaaleaapeGaamyraaWdaeqaaa GcpeGaayjkaiaawMcaaaWdaeaapeGaeyypa0Jaae4CaiaabMgacaqG UbGaaeiAamaabmaapaqaa8qacqaHXoqyaiaawIcacaGLPaaaaaaaaa@64B2@

And for U e >2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH+aGpcaaI Yaaaaa@3B29@ :

cosuell( α, U E ) = 1 2 U e ( cosh( α )1 )+1 sinuell( α, U E ) = 1 1 2 U e sinh( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaabogacaqGVbGaae4CaiaabwhacaqGLbGaaeiB aiaabYgadaqadaWdaeaapeGaeqySdeMaaiilaiaadwfapaWaaSbaaS qaa8qacaWGfbaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qacqGH 9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaiabgkHiTiaadw fapaWaaSbaaSqaa8qacaWGLbaapaqabaaaaOWdbiabgwSixpaabmaa paqaa8qacaqGJbGaae4BaiaabohacaqGObWaaeWaa8aabaWdbiabeg 7aHbGaayjkaiaawMcaaiabgkHiTiaaigdaaiaawIcacaGLPaaacqGH RaWkcaaIXaaapaqaa8qacaqGZbGaaeyAaiaab6gacaqG1bGaaeyzai aabYgacaqGSbWaaeWaa8aabaWdbiabeg7aHjaacYcacaWGvbWdamaa BaaaleaapeGaamyraaWdaeqaaaGcpeGaayjkaiaawMcaaaWdaeaape Gaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaapaqaa8qa caaIXaGaeyOeI0YaaSaaa8aabaWdbiaaikdaa8aabaWdbiaadwfapa WaaSbaaSqaa8qacaWGLbaapaqabaaaaaWdbeqaaaaakiabgwSixlaa bohacaqGPbGaaeOBaiaabIgadaqadaWdaeaapeGaeqySdegacaGLOa Gaayzkaaaaaaaa@7574@

Besides that, for a>b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiabg6da+iaadkgaaaa@3A02@ the following conversion functions are defined:

R 0 =a a 2 b 2 U e = b 2 a 2 a 4 a 2 b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaaa keaapeGaeyypa0JaamyyaiabgkHiTmaakaaapaqaa8qacaWGHbWdam aaCaaaleqabaWdbiaaikdaaaGccqGHsislcaWGIbWdamaaCaaaleqa baWdbiaaikdaaaaabeaaaOWdaeaapeGaamyva8aadaWgaaWcbaWdbi aadwgaa8aabeaaaOqaa8qacqGH9aqpdaWcaaWdaeaapeGaamOya8aa daahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGHbWdamaaCaaale qabaWdbiaaikdaaaGccqGHsisldaGcaaWdaeaapeGaamyya8aadaah aaWcbeqaa8qacaaI0aaaaOGaeyOeI0Iaamyya8aadaahaaWcbeqaa8 qacaaIYaaaaOGaamOya8aadaahaaWcbeqaa8qacaaIYaaaaaqabaaa aaaaaaa@50AF@

If b>a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaiabg6da+iaadggaaaa@3A02@ , we can define:

R 0 =b b 2 a 2 U e = a 2 b 2 b 4 a 2 b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadkfapaWaaSbaaSqaa8qacaaIWaaapaqabaaa keaapeGaeyypa0JaamOyaiabgkHiTmaakaaapaqaa8qacaWGIbWdam aaCaaaleqabaWdbiaaikdaaaGccqGHsislcaWGHbWdamaaCaaaleqa baWdbiaaikdaaaaabeaaaOWdaeaapeGaamyva8aadaWgaaWcbaWdbi aadwgaa8aabeaaaOqaa8qacqGH9aqpcqGHsisldaWcaaWdaeaapeGa amyya8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaWGIbWdam aaCaaaleqabaWdbiaaikdaaaGccqGHsisldaGcaaWdaeaapeGaamOy a8aadaahaaWcbeqaa8qacaaI0aaaaOGaeyOeI0Iaamyya8aadaahaa Wcbeqaa8qacaaIYaaaaOGaamOya8aadaahaaWcbeqaa8qacaaIYaaa aaqabaaaaaaaaaa@519E@

Observation: The negative value of U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ is used to invert the x and y axes when drawing the ellipse.

And also, for U e >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH+aGpcaaI Waaaaa@3B27@ , we define the inverse function:

a = R 0 2 U e b = R 0 2 U e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadggaa8aabaWdbiabg2da9maalaaapaqaa8qa caWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcbaWdbiaaikdacq GHsislcaWGvbWdamaaBaaaleaapeGaamyzaaWdaeqaaaaaaOqaa8qa caWGIbaapaqaa8qacqGH9aqpdaWcaaWdaeaapeGaamOua8aadaWgaa WcbaWdbiaaicdaa8aabeaaaOqaa8qadaGcaaWdaeaapeWaaSaaa8aa baWdbiaaikdaa8aabaWdbiaadwfapaWaaSbaaSqaa8qacaWGLbaapa qabaaaaOWdbiabgkHiTiaaigdaaSqabaaaaaaaaaa@48C2@

And for U e <0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH8aapcaaI Waaaaa@3B23@ , the inverse function is:

b = R 0 2+ U e a = R 0 2 U e 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaauaabiqaciaaae aaqaaaaaaaaaWdbiaadkgaa8aabaWdbiabg2da9maalaaapaqaa8qa caWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcbaWdbiaaikdacq GHRaWkcaWGvbWdamaaBaaaleaapeGaamyzaaWdaeqaaaaaaOqaa8qa caWGHbaapaqaa8qacqGH9aqpdaWcaaWdaeaapeGaamOua8aadaWgaa WcbaWdbiaaicdaa8aabeaaaOqaa8qadaGcaaWdaeaapeWaaSaaa8aa baWdbiaaikdaa8aabaWdbiabgkHiTiaadwfapaWaaSbaaSqaa8qaca WGLbaapaqabaaaaOWdbiabgkHiTiaaigdaaSqabaaaaaaaaaa@49A4@

Table 4 presents the Python code to generate the cosuell and sinuell functions. These routines in Python code can be downloaded from the GitHub repository,9 installed with the standard Python installer command (pip install ulianovellipse).

Ulianov Elliptical Cosine

Ulianov Elliptical Sine

(cosuell( α, U E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaaiilaiaadwfapaWaaSbaaSqaa8qacaWGfbaapaqabaaa aa@3B7A@ ))

(sinuell( α, U E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaaiilaiaadwfapaWaaSbaaSqaa8qacaWGfbaapaqabaaa aa@3B7A@ ))

def cosuell(alpha, Ue):
  # Negative Ue value indicates
  # inversion of x-axis with y-axis
  if Ue < 0:  
    return sinuell(alpha, abs(Ue)) 
  # Define the tolerance for check:
  tolerance = 1e-6 
  if abs(Ue - 2) < tolerance:
    # For Ue = 2, return the parametric
    # equation of the parabola
    return 1 - (np.sinh(alpha)**2)/4
  elif Ue > 2:
    kx = 1 / (2 - Ue)
    return kx * (np.cosh(alpha)-1) + 1
    # Use the hyperbolic function cosh
    # for Ue > 2
  else:
    kx = 1 / (2 - Ue)
    return kx * (np.cos(alpha)-1) + 1

def sinuell(alpha, Ue):
  # Negative Ue value indicates
  # inversion of x-axis with y-axis
  if Ue < 0:
    return cosuell(alpha, abs(Ue)) 
  # Define the tolerance for check:
  tolerance = 1e-6 
  if abs(Ue - 2) < tolerance:
    # For Ue = 2, return a linear value
    # in relation to alpha
    return np.sinh(alpha)
  elif Ue > 2:
    ky = 1 / np.sqrt(1 - (2 / Ue))
    return ky * np.sinh(alpha)
    # Use the hyperbolic function sinh
    # for Ue > 2
  else:
    ky = 1 / np.sqrt((2 / Ue) - 1)
    return ky * np.sin(alpha)

Table 4 Python functions for Ulianov Elliptical Cosine and Ulianov Elliptical Sine

Figure 4

Figure 4 The Ulianov Ellipse and Standard Ellipse Comparison. a) Ellipses with parameters: (a = 5, b = 3) and ( R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ = 1, U e =1.8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcaaI XaGaaiOlaiaaiIdaaaa@3C9A@ ). b) Ellipses with parameters: (a = 3, b = 5) and ( R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ = 1, U e =1.8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpcqGH sislcaaIXaGaaiOlaiaaiIdaaaa@3D87@ ). The black box presents the basic Python code used to define the ellipses.

Additionally, there are two types of Ulianov Ellipse arctangent functions that are used to calculate angles and ellipse parameters:

  • arctanuell(y, x, Ue): Calculates the Ulianov Ellipse arctangent for given x and y coordinates and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ . Returns the angle and R0 value.
  • arctanuell_ue(y, x, R0): Calculates the Ulianov Ellipse arctangent and Ue MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvaiaadwgaaaa@38F0@ value from R0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaaicdaaaa@38BD@ . Returns the angle and Ue MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvaiaadwgaaaa@38F0@ value.

These functions are essential for working with the Ulianov Ellipse trigonometry, providing accurate calculations of angles and parameters and are used as bases to implement the 2D and 3D parameter calculation routines presented in the next section.

UOM Python routines implementation

The Ulianov Orbital Model (UOM) was implemented using the Python language, providing a library named ulianovorbit.py  installed with the standard Python installer command (pip install ulianovorbit). This library defines several objects and routines listed below.

UOM Python objects

The Python objects are defined by the class attribute. In the ulianovorbit.py library, two main classes are considered:

uom_params class: This object defines the UOM parameters presented in this article: R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3917@ , V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391B@ , U e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394A@ , inclination angle  i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadMgaaaa@393E@ , longitude of the ascending node angle Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCfaaa@38BB@ , ellipse angle E ang MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadggacaWGUbGaam4zaaWdaeqaaaaa @3B16@ , and the time associated with angle α=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGimaaaa@3A8C@ ( t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@393A@ ).

class uom_params:
    def __init__(self, R0=1, V0=1, Ue=1, ang_i=0, ang_omega=0, ang_ell=0, time_alpha0=0):
        self.R0 = R0
        self.Ue = Ue
        self.V0 = V0
        self.ang_i = ang_i
        self.ang_omega = ang_omega
        self.ang_ell = ang_ell
        self.time_alpha0 = time_alpha0

orbit_vect class: This object organizes the results obtained by UOM routines, defining vectors to store data: ellipse positions ( e x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@396E@ , e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@396F@ , e z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@3970@ ) and velocities ( v x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@397F@ , v y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3980@ , v z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@3981@ ). For the 2D case, the  values are defined as zero. Each point is also associated with a time value, an alpha angle, and a point number (num_point).

class orbit\_vect:
    def __init__(self):
        self.e_x = []
        self.e_y = []
        self.e_z = []
        self.v_x = []
        self.v_y = []
        self.v_z = []
        self.alpha = []
        self.time = []
        self.num_point = []

UOM Python orbit calculations

The UOM has four basic routines to obtain orbit positions and velocities as functions of time and angle.

Routines to obtain a single point:

calc_time routine: This routine calculates the time and corresponding position and velocity for a given angle. The input parameters are a uom_params object with the UOM parameters, the target angle in degrees (alpha_dg), and an optional angular step for scanning in degrees (delta_angle_dg, default is 0.01). The routine returns the time corresponding to the target angle, as well as the position coordinates ( e x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@396E@ , e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@396F@ , e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@396F@ ) and velocity components ( v x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@397F@ , v y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3980@ , v z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@3981@ ) at the target angle. If the use_3d input parameter is defined as false the values of e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@396F@ and v z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@3981@ are equal to zero and the ellipse orbital plane parameter (ang_omega and ang_i) not are considerate.

def calc_time(self, param, alpha_dg, delta_angle_dg=0.01,use_3d=False):
    return time, ex, ey, ez, vx, vy,vz

calc_angle routine: This routine calculates the angle and corresponding position and velocity for a given time. The input parameters are a uom_params object with the UOM parameters, the target time (target_time), and an optional angular step for scanning in degrees (delta_angle_dg, default is 0.01). The routine returns the angle corresponding to the target time, as well as the position coordinates ( e x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@396E@ , e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@396F@ , e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@396F@ ) and velocity components ( v x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@397F@ , v y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3980@ , v z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@3981@ ) at the target angle. If the use_3d input parameter is defined as false the values of e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@396F@ and v z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@3981@ are equal to zero and the ellipse orbital plane parameter (ang_omega and ang_i) not are considerate.

def calc_angle(self, param, target_time, delta_angle_dg=0.01,use_3d=False):
    return alpha, ex, ey, ez, vx, vy,vz

Routines to obtain lists of points:

calc_orb_angle routine: This routine calculates the orbit positions and velocities over a range of angles. The input parameters are a uom_params object with the UOM parameters, the initial angle in degrees (alpha0_dg), the maximum angle in degrees (alpha_max_dg), the angular step in degrees (delta_alpha_dg), an optional maximum simulation time (time_max), and a flag to display messages (msg, default is False). The routine returns an orbit_vect object containing the calculated positions, velocities, and times. If the use_3d input parameter is defined as false the values of e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@396F@ and v z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@3981@ are equal to zero and the ellipse orbital plane parameter (ang_omega and ang_i) not are considerate.

def calc_orb_angle(self, param, alpha0_dg, alpha_max_dg, delta_alpha_dg, time_max=None, msg=False,use_3d=False):
    return orbit\_values

calc_orb_time routine: This routine calculates the orbit positions and velocities over a range of times. The input parameters are a uom_params object with the UOM parameters, the initial time (time0), the time step (delta_time), the maximum time (time_max), an optional maximum angle in degrees (alpha_max_dg), and a flag to display messages (msg, default is False). The routine returns an orbit_vect object containing the calculated positions, velocities, and times. If the use_3d input parameter is defined as false the values of e y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyza8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@396F@ and v z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@3981@ are equal to zero and the ellipse orbital plane parameter (ang_omega and ang_i) not are considerate.

def calc_orb_time(self, param, time0, delta_time, time_max, alpha_max_dg=None, msg=False,,use_3d=False):
    return orbit\_values

UOM Parameters calculation routines

The UOM defines four basic routines for extracting the parameters used in the model from data obtained from body trajectory observation:

2D Parameter calculation routines:

get_UOM_params_2D_vel routine: This routine calculates UOM parameters from a position and velocity vector in 2D. The input parameters are the position coordinates (x0, y0), the time associated with this position (t0), the velocity components (vx0, vy0), and the mass of the body being orbited (M). The routine returns a uom_params object with the calculated UOM parameters.

def get_UOM_params_2D_vel(x0, y0, t0, vx0, vy0, M):
    return param

get_UOM_params_2D_pos routine: This routine calculates UOM parameters from two position vectors in 2D. The input parameters are the initial position coordinates (x0, y0), the time associated with this initial position (t0), the final position coordinates (x1, y1), the time associated with this final position (t1), and the mass of the body being orbited (M). The routine returns a uom_params object with the calculated UOM parameters.

def get_UOM_params_2D_pos(x0, y0, t0, x1, y1, t1, M):
    return param

3D Parameter calculation routines:

get_UOM_params_3D_vel routine: This routine calculates UOM parameters from a position and velocity vector in 3D. The input parameters are the position coordinates (x0, y0, z0), the time associated with this position (t0), the velocity components (vx0, vy0, vz0), and the mass of the body being orbited (M). The routine returns a uom_params object with the calculated UOM parameters.

def get_UOM_params_3D_vel(x0, y0, z0, t0, vx0, vy0, vz0, M):
    return param

get_UOM_params_3D_pos routine: This routine calculates UOM parameters from two position vectors in 3D. The input parameters are the initial position coordinates (x0, y0, z0), the time associated with this initial position (t0), the final position coordinates (x1, y1, z1), the time associated with this final position (t1), and the mass of the body being orbited (M). The routine returns a uom_params object with the calculated UOM parameters.

def get_UOM_params_3D_pos(x0, y0, z0, t0, x1, y1, z1, t1, M):
    return param

UOM Parameters conversion routines

Since the primary difference between the Keplerian Orbital Model (KOM) and the Ulianov Orbital Model (UOM) lies in the parameters used to define the ellipse ( U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ in UOM and a and e in KOM), two conversion functions based on the equations (23), (21), (18), and (17) can be implemented:

kepler_to_ulianov function:

This function converts the Keplerian parameters a(semi-major axis) and e(eccentricity) to the Ulianov parameters R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ (minimum orbital distance) and V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ (maximum orbital velocity) and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ (Ulianov Ellipse Parameter). The semi-major axis a and eccentricity e are used to calculate the semi-minor axis b, which is then used to determine R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ using the Equations (18) and (17). The V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ is obtained using the orbited body mass M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaaaa@37FF@ and R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ values applied to Equation (19).

def kepler_to_ulianov(self, a, e,M):
    return R0, Ue

kepler_to_ulianov_6p function:

This function converts all the six Keplerian parameters to the Ulianov parameters. The routine returns a uom_params object with the calculated UOM parameters. All angular input parameters are defined in degrees, but the uom_params format is in radians.

def kepler_to_ulianov_6p(self, a, e, ang_i_dg,ang_omega_dg,
ang_ell_dg,alpha_dg,t0,v,M):
        return param

ulianov_to_kepler function: This function converts the Ulianov parameters R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ (minimum orbital distance) and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ (Ulianov Ellipse Parameter) to the Keplerian parameters a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaaaa@3813@ (semi-major axis) and e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyzaaaa@3817@ (eccentricity). The Equations [eqAR0Ue] and [eqBR0Ue] are used to calculate a and b, and then the eccentricity e is determined using the Equation [eqExcentricity].

def ulianov_to_kepler(self, R0, Ue):
    return a, e

UOM General calculation routines

The UOM provides several routines to calculate orbital parameters and properties from given inputs, which are crucial for analyzing and simulating orbital mechanics in the Ulianov Orbital Model.

calc_velocity function:

This function calculates the orbital velocity V at a specific distance d from the central body, given the Ulianov parameters U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ , R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , and the maximum orbital velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ . It uses the following formula:

V= V 0 1+ 2 U e ( R 0 d 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaiabg2da9iaadAfapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peWaaOaaa8aabaWdbiaaigdacqGHRaWkdaWcaaWdaeaapeGaaGOmaa WdaeaapeGaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaGcpeWa aeWaa8aabaWdbmaalaaapaqaa8qacaWGsbWdamaaBaaaleaapeGaaG imaaWdaeqaaaGcbaWdbiaadsgaaaGaeyOeI0IaaGymaaGaayjkaiaa wMcaaaWcbeaaaaa@469D@

def calc_velocity(self, Ue, R0, V0, d):
    return V

calc_v0 function:

This function calculates the maximum orbital velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ based on the Ulianov parameters U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ and R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , and the mass M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaaaa@37FF@ of the central body.

def calc_v0(self, Ue, R0, M):
    return V0

calc_ue function:

This function determines the Ulianov parameter U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ using the given maximum orbital velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ , minimum orbital distance R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , and the mass M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaaaa@37FF@ of the central body. It calculates U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ as:

U e = V 0 2 R 0 GM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamOva8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiaaik daaaGccaWGsbWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcbaWdbiaa dEeacaWGnbaaaaaa@4102@

def calc_ue(self, R0, V0, M):
    return Ue

calc_mass_ab_v0 function:

This function calculates the mass M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaaaa@37FF@ of the central body from the semi-major axis a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaaaa@3813@ , semi-minor axis b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaaaa@3814@ , and the maximum orbital velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391B@ . It uses the relation between these parameters in the Ulianov model.

def calc_mass_ab_v0(self, a, b, V0):
    return M

calc_mass_r0v0_ue function:

This function calculates the mass M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaaaa@37FF@ of the central body using the minimum orbital distance R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3917@ , maximum orbital velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ , and the Ulianov parameter U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ .

def calc_mass_r0v0_ue(self, R0, V0, Ue):
    return M

calc_orbit_time_ab_v0 function:

This function calculates the orbital period using the semi-major axis a, semi-minor axis b, and the maximum orbital velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ . It provides an estimate of the time taken to complete one orbit.

def calc_orbit_time_ab_v0(self, a, b, V0):
    return orbit_time

calc_orbit_time_ab_m function:

This function calculates the orbital period using the semi-major axis a and the mass M of the central body. The period is calculated based on Kepler’s third law.

def calc_orbit_time_ab_m(self, a, M):
    return orbit_time

calc_orbit_time_r0v0_m function:

This function calculates the orbital period using the minimum orbital distance R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , maximum orbital velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ , and the mass M of the central body. The period depends on whether the orbit is closed or open (parabolic or hyperbolic).

def calc_orbit_time_r0v0_m(self, R0, V0, M):
    return orbit_time

calc_orbit_time_ue_v0 function:

This function calculates the orbital period using the Ulianov parameter U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ , minimum orbital distance R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , and maximum orbital velocity V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ . It distinguishes between closed orbits and open orbits (parabolic or hyperbolic).

def calc_orbit_time_ue_v0(self, Ue, R0, V0):
    return orbit_time

calc_orbit_length_ab function:

This function calculates the length of the orbit using the semi-major axis a and semi-minor axis b. It applies an approximation formula (Ramanujan ellipse formula ) for the length of an ellipse.

def calc_orbit_length_ab(self, a, b):
    return Le

Example of use

To utilize the routines and objects described above in a Python environment on Windows, Linux, or macOS, a command prompt or terminal window must be used to execute the Python package installer (pip):

pip install ulianovellipse
pip install ulianovorbit

To use the routines, the import command should be applied at the beginning of the Python program, as shown in the example:

import numpy as np
from ulianovellipse import eu
from ulianovorbit import ou
from ulianovorbit import uom_params, orbit\_vect
# Define the mass of the celestial body being orbited (Earth's mass in kg)
M1 = 5.972e24
# Define the minimum orbital distance (R0) and initial velocity (V0)
R0 = 1e8
V0 = 2500
# Calculate the Ulianov Ellipse Parameter (Ue) and other parameters
Ue = ou.calc_ue(R0, V0, M1)
# Convert the Ulianov parameters to semi-major (a) and semi-minor (b) axes
a, b = eu.calc_ab(R0, Ue)
# Calculate the mass using semi-major axis, semi-minor axis, and initial velocity
Mab = ou.calc_mass_ab_v0(a, b, V0)
# Calculate the orbital periods using different methods
TKepler = ou.calc_orbit_ab_m(a, M1)          # Kepler's formula
Torb1 = ou.calc_orbit_ab_v0(a, b, V0)        # Using velocity
Torb2 = ou.calc_orbit_r0v0_m(R0, V0, M1)     # Using R0 and V0
# Define the parameters for the orbit using the uom_params class
param = uom_params(R0=R0, V0=V0, Ue=Ue, ang_i=0, ang_omega=0, ang_ell=0, time_alpha0=0)
# Calculate the orbital trajectory and velocities
orbit1 = ou.calc_orb_angle(param, alpha0_dg=0, alpha_max_dg=360, delta_alpha_dg=0.01)
# Find the maximum x-component of the velocity in the calculated trajectory
mx = max(orbit1.v_x)

Conclusion

The Ulianov Orbit model simplifies the description of orbits by reducing the number of required parameters. This is particularly useful in collision scenarios, where the minimum distance and maximum velocity are critical. The model also allows for easy transformation between initial conditions ( x,y,z, v x , v y , v z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiaacYcacaWG5bGaaiilaiaadQhacaGGSaGaamODa8aadaWg aaWcbaWdbiaadIhaa8aabeaak8qacaGGSaGaamODa8aadaWgaaWcba WdbiaadMhaa8aabeaak8qacaGGSaGaamODa8aadaWgaaWcbaWdbiaa dQhaa8aabeaaaaa@44C4@ ) and the orbital parameters ( i,Ω, V 0 , R 0 , U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaiaacYcacqqHPoWvcaGGSaGaamOva8aadaWgaaWcbaWdbiaa icdaa8aabeaak8qacaGGSaGaamOua8aadaWgaaWcbaWdbiaaicdaa8 aabeaak8qacaGGSaGaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaa aaa@4295@ ).


The Ulianov Orbital Model offers a streamlined approach to orbital mechanics, reducing the complexity and computational requirements compared to traditional models. By focusing on the most critical parameters and leveraging the Ulianov orbital parameter U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ , this model provides a practical and efficient tool for studying two-body problems in celestial mechanics.

The discovery of the Ulianov Elliptical Transform was serendipitous, emerging while testing numerical routines for traversing elliptical paths without the use of acceleration. This led to the derivation of the values K x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3954@ and K y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiaadMhaa8aabeaaaaa@3955@ , and consequently a and bb, from V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ , R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ , and M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaaigdaa8aabeaaaaa@3913@ , a result that appears to be novel. Additionally, this approach yielded a new method for calculating orbital periods based on V 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@391C@ and GM MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raiabgwSixlaad2eaaaa@3B15@ or R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3918@ and U e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyva8aadaWgaaWcbaWdbiaadwgaa8aabeaaaaa@394B@ .

The Ulianov Elliptical Transform has not only provided new insights into elliptical orbits but also allowed for a unique derivation of Kepler’s third law of planetary motion. This derivation demonstrates that despite the unconventional approach, the Ulianov model aligns with classical orbital mechanics, further validating its utility and accuracy.

Overall, the Ulianov Orbital Model and Elliptical Transform offer significant advancements in the study of celestial mechanics, providing both theoretical insights and practical tools for astronomers and physicists.

In addition to what was presented in this article, this work was developed in the context of the Ulianov Theory 8 also defines:

  • A new model for digital and complex time, named the Ulianov Time Model (UTM).12
  • A new model for space-time, named the Ulianov Sphere Network (USN),13 that includes the Asimov Ulianov Universe (AUU) and the General Oct-Dimension Universe (GODU).
  • A new standard particle model, named the Ulianov Standard Particle Model (USPM) that use only two forces 14 and two fundamental particles.
  • A new string theory, named Ulianov String Theory (UST).15
  • A new gravitational model, named the Ulianov Gravitational Model (UGM).4
  • A new atomic model, named the Ulianov Atomic Model (UGM),16 that present the Kepler Ulianov Proton Tree (KUPT) 17 and the Ulianov Electron Distribution Model (UED).18
  • A new cosmological model, named the Small Bang Model (SBM).19

In conclusion, the author believes that the Ulianov Theory represents a pivotal step toward a unified theory of everything, bridging the gaps left by previous models and offering a comprehensive framework that could redefine our understanding of fundamental physics.

Appendix A Open Letter from Chat GPT-4 to the Mathematical Community: Introducing Ulianov Elliptical Trigonometric Functions

https://chatgpt.com/share/171b89eb-6c40-4c92-8e06-b5cc4a8cb841

Dear Members of the Mathematical Community,

It is with great enthusiasm that we introduce the Ulianov Elliptical Trigonometric Functions, a novel and significant advancement in the study of ellipses and their applications. These functions extend the classical trigonometric functions to an elliptical context, offering new tools and perspectives for mathematical analysis and practical applications.

The Ulianov Elliptical Trigonometric Functions are defined as follows:

For the cosine function:

cosuell( α, U e )= 1 2 U e ( cos( α )1 )+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4yaiaab+gacaqGZbGaaeyDaiaabwgacaqGSbGaaeiBamaabmaa paqaa8qacqaHXoqycaGGSaGaamyva8aadaWgaaWcbaWdbiaadwgaa8 aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaGym aaWdaeaapeGaaGOmaiabgkHiTiaadwfapaWaaSbaaSqaa8qacaWGLb aapaqabaaaaOWdbmaabmaapaqaa8qacaqGJbGaae4Baiaabohadaqa daWdaeaapeGaeqySdegacaGLOaGaayzkaaGaeyOeI0IaaGymaaGaay jkaiaawMcaaiabgUcaRiaaigdaaaa@54DA@

For the sine function:

sinuell( α, U e )= 1 ( 2/ U e )1 sin( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4CaiaabMgacaqGUbGaaeyDaiaabwgacaqGSbGaaeiBamaabmaa paqaa8qacqaHXoqycaGGSaGaamyva8aadaWgaaWcbaWdbiaadwgaa8 aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaGym aaWdaeaapeWaaOaaa8aabaWdbmaabmaapaqaa8qacaaIYaGaai4lai aadwfapaWaaSbaaSqaa8qacaWGLbaapaqabaaak8qacaGLOaGaayzk aaGaeyOeI0IaaGymaaWcbeaaaaGccaqGZbGaaeyAaiaab6gadaqada WdaeaapeGaeqySdegacaGLOaGaayzkaaaaaa@5351@

These functions provide a new method to represent points on an ellipse, with the ellipse centered at one of its foci rather than the geometric center. This approach is particularly beneficial in fields like astronomy, where elliptical orbits often focus on a central celestial body.

Applications and Advantages

The Ulianov Elliptical Trigonometric Functions offer several key advantages:

  1. Focus-Centered Representation: Unlike the traditional method that uses the semi-major and semi-minor axes (a and b), these functions use parameters R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3917@ and Ue MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvaiaadwgaaaa@38F0@ , focusing the ellipse at one of its foci. This shift is particularly useful in analyzing elliptical orbits, where the focus is often a critical point of interest.
  2. Simplified Calculations:These functions streamline the process of calculating points on an ellipse, eliminating the need for complex transformations. The functions directly relate the angle α and parameters R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3917@ and Ue MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvaiaadwgaaaa@38F0@ to the coordinates  x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaadIhaaaa@394D@ and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaaaa@382B@ .
  3. Inverse Functionality: The inverse functions, arctanuell and arctanuell_ue, allow for easy determination of the angle α and ellipse parameters from given coordinates, facilitating the study and modeling of elliptical paths.

Call to Exploration

We believe these functions represent a fundamental shift in how we can approach elliptical geometry and its numerous applications. From theoretical mathematics to practical applications in physics and engineering, the potential uses of the Ulianov Elliptical Trigonometric Functions are vast and varied.

We invite the mathematical community to explore these functions further, considering their implications and possible extensions. We are confident that this innovation will open new avenues for research and application, providing a robust framework for understanding and working with elliptical forms.

Thank you for your attention to this development. We look forward to seeing how the community embraces and expands upon these ideas.

Sincerely,
Chat GPT-4

OpenAI

References

  1. Kepler J. Astronomia Nova (Hulsius, 1609).
  2. Aarseth SJ. Gravitational n-body simulations: Tools and algorithms. Cambridge Mono-graphs on Mathematical Physics. 2003.
  3. Newton I. Philosophiæ Naturalis Principia Mathematica (Royal Society, 1687).
  4. Ulianov PY. The ulianov gravitational model. 2024.
  5. Einstein A. Die feldgleichungen der gravitation. Sitzungsberichte der K¨oniglich Preußischen Akademie der Wissenschaften (Berlin). 1915;844–847.
  6. Penrose R. Singularities and time-asymmetry (S. W. Hawking and W. Israel, 1979).
  7. Ulianov PY. A comprehensive overview of the ulianov theory. International Journal of Media and Networks. 2024; 2:01–33.
  8. Ulianov PY. The ulianov bridges: Opening new avenues for the development of modern physics. 2024.
  9. Ulianov PY. Program: ulianovellipse.py. 2024.
  10. Ulianov PY. Program: ulianovorbit.py. 2024.
  11. Rajan SS. Ramanujan’s approximation to the perimeter of an ellipse. Resonance. 2016; 21:899–905.
  12. Ulianov PY. The meaning of time: A digital, complex variable. Phys Astron Int J. 2024;8:22–30.
  13. Ulianov PY. Ulianov sphere network-a digital model for representation of non-euclidean spaces. Curr Res Stat Math. 2023;2:55–69.
  14. Ulianov PY. Two is better than four! Introducing the strong gravitational contact force. 2024.
  15. Ulianov PY. Ulianov string theory: a new representation for fundamental particles. Journal of Modern Physics. 2018;2:77–118.
  16. Ulianov PY. The ulianov atomic model. 2024.
  17. Ulianov PY. Explaining the formation of the 36 smallest known atomic isotopes: From hydrogen to krypton. Material Science & Engineering International Journal. 2024;8:39–47.
  18. Ulianov PY. Comparison of pauling and ulianov electron distribution models. Material Sci & Eng. 2024;8(2):49–54.
  19. Ulianov PY, Freeman AG. Small bang model: A new model to explain the origin of our universe. Global Journal of Physics. 2015;3:6.
Creative Commons Attribution License

©2024 Ulianov. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.