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Introduction
In celestial mechanics, the problem of two bodies interacting 

gravitationally is traditionally described using Keplerian orbits or the 
Newtonian approach. A Kepler orbit, named after Johannes Kepler,1 
describes the motion of a body with small mass ( aM ) relative 
to another body with a large mass ( bM ). Due to the difference in 
masses, the movement of the body bM  in space is not significantly 
affected by the interaction with the body aM . Therefore, bM can often 
be considered stationary or defined as the origin of the coordinate 
system used to define the movement of aM . This assumption defines 
the Kepler orbit problems and is valid for many cases, such as the 
movement of planets around the sun, communication satellites around 
the Earth, or small moons (such as the moons of Mars). However, it 
is not valid for the orbit of Earth’s moon because the difference in 
masses is smaller, causing the moon’s mass to make the Earth oscillate 
in its trajectory. When the mass aM  is much smaller than bM , the 
orbit becomes an ellipse, parabola, or hyperbola. The Kepler Orbit 
Model (KOM)2 requires six orbital elements to fully describe the 
motion of the body aM :

•	 Eccentricity ( e ): The shape of the ellipse.

•	 Semi-major axis ( a ): Half the distance between the apoapsis 
and periapsis.

•	 Inclination ( i ): The tilt of the orbital plane.

•	 Longitude of the ascending node (Ω ): The horizontal orientation 
of the ascending node.

•	 Argument of periapsis (ω ): The orientation of the ellipse in the 
orbital plane.

•	 True anomaly (velocity ν ,at angle θ ,) at epoch ( 0t ): The 
position of the orbiting body along the ellipse at a specific time.

Note: Although these parameters are defined as six orbital elements, 
there are eight values listed, so we can also consider that the KOM 
has eight individual numeric parameters.

The Newtonian model,3 which solves the problem using numerical 
methods, requires a similar number of parameters. A complete 
simulation can be defined by the masses of the bodies ( ,b aM M ) and 
their initial positions ( ), ,x y z  and velocities ( ), ,x y zv v v  and a time 
reference 0t , totaling nine values. If we consider a reference system 
that defines the ( ),x y  plane over the elliptical plane, the numerical 
methods can use only seven parameters: masses bM , aM , and initial 
positions ( ),x y  and velocities ( ),x yv v  and a time reference 0t .

The Ulianov Orbital Model introduces a new approach that reduces 
the complexity to only five parameters (seven numerical values) 
because the ellipse shape is represented by only one parameter, 
named the Ulianov Ellipse parameter ( eU ), while maintaining 
accuracy in the ellipse representation and also defining parabolas 
and hyperbolas. Additionally, it offers a methodology that facilitates 
the orbit position and velocity calculation by applying two Ulianov 
Elliptic trigonometric functions (cosuell( , eUα ) and sinuell( , eUα
)) to calculate the UOM elliptical orbit positions and velocities. The 
UOM also provides routines for determining these parameters from 
data observed in the body trajectory.

The Ulianov Orbital Model
The Ulianov Orbital Model (UOM) characterizes an orbit using 

the following five parameters:

1.	 Inclination ( i ): The vertical tilt of the ellipse with respect to the 
reference plane.

2.	 Longitude of the ascending node (Ω ): The horizontal orientation 
of the ascending node.

3.	 Argument of periapsis (ellipse angle ): The orientation of 
the ellipse in the orbital plane. 

4.	 Initial condition, given by the minimum orbital distance ( 0R ) 
(the minimum distance between the orbital body and the central 
body), the maximum velocity ( 0V ) (the velocity at 0R  distance, 
which is the maximum velocity in the orbit) at epoch ( 0t ) (UTC 
time for an angle α  = 0, occurring at the point ( ) ( )0, ,0e ex y R=  
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and velocity ( ) ( )0, 0,x yv v V= ).

5.	 Ulianov elliptical parameter ( eU ): Defines the shape and size 
of the orbit.

Although these parameters are defined as five orbital elements, 
there are seven values defined in this list, so we can also consider that 
the UOM has seven individual numeric parameters.

Note that the UOM provides a reduction of one parameter 
compared to the KOM because the parameters eccentricity ( e ) and 
semi-major axis ( a ) are replaced by only one parameter, the Ulianov 
Ellipse parameter ( eU ), with some advantages:

•	 The application of elliptic trigonometric functions (cosuell(
, eUα ) and sinuell( , eUα )) to determine the orbit values and 

velocities as a function of any given time or ellipse angle.

•	 The easy obtaining of the elliptic orbit range (standard ellipse 
parameters a  and b  or eccentricity ( )) and period from initial 
values  and  or generic positions ( ,x ye e ) and velocities (

,x yv v ) defined in the ellipse orbit.

Another important aspect is that the Keplerian orbital model stores 
an angular position in the orbit and a velocity for a specific time, 
which can be, for example, close to a present time of interest. This 
scheme is used because, normally, to move this point within the orbit, 
numerical simulations based on the Newtonian method are necessary, 
which must be calculated with a very small time interval dt , making 
it faster to calculate the orbit from the defined time to a new time for 
nearby times. In the case of the UOM, the model parameter stores the 
time, position, and velocity for the angle  equal to zero because the 
model can very quickly calculate the position and velocity for any 
desired time or angle.

The Ulianov Elliptical Parameter definition

The Ulianov Elliptical Parameter eU  value is calculated by the 
equation:

2
0 0

e
b

V RU
GM

=                                                                                                  (1)

where G  is the gravitational constant and bM  is the mass of the 
primary body.

The Ulianov elliptical parameter eliminates the need to explicitly 
include bM  and G in the calculations, and also defines the velocity 
over the orbit and the complete elliptical orbit path, simplifying the 
model. However, to understand how the parameter eU  works, we 
need to first observe some basic definitions.

The general solution for the elliptical orbit is given by:
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where a  and b  are the semi-major and semi-minor axes of the 
ellipse, respectively. Note that the α  angle is defined in the ellipse 
center, instead of being centered on the focus where the orbited 
body is located, which normally defines the origin of the system 
in both Cartesian and polar coordinates. In this way, these ellipse 
equations, despite being very simple, do not perform well in the case 
of a coordinate system centered on the orbited body. Additionally, the 

values a and b need to be calculated from some observed positions 
and velocities of the body in orbit. For certain initial velocities, a
and b become very large and exhibit chaotic behavior, because very 
small changes in the initial orbital velocity ( 0V ) can generate large 
variations in the a and b values. This chaotic behavior difficult to 
calculate a and b  values using analytics solutions of differential 
equations, requiring numerical simulation to obtain these parameters. 
These simulations are normally based on the calculation of forces and 
acceleration in a small time interval (in the order of fractions of a 
second) to be precise. For larger orbits, with periods of many years or 
even many centuries, a large number of processing steps are needed 
to determine complete orbit positions and velocities. To use an angle 
α  centered in the ellipse focus, we can consider an ellipse equation 
defined as:
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where the ellipse’s foci are in the x  axis direction and for a b>

, 0R  is the minimum orbital radius and xK , yK  are gain factors that 
can be calculated by:
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Note: These definitions consider that the angle  starts at  and 

rotates counterclockwise. At 0α = , 0ex R= , 0ey = , 0xv = , and
0yv V= .

The velocity ( )eV d of body aM  along its trajectory is defined by 
the conservation of energy equation:
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Considering the Ulianov Elliptical Factor eU  defined in Equation 
(1), Equation (2) becomes the Ulianov orbital velocity equation:
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                                                                                    (3)

Note that at this point we need two additional parameters to 
represent the elliptical orbit: The values of gains xK , and yK  that 
not are included in the UOM parameter list presented at beginning of 
this section. Otherwise, as will be demonstrated in the next section, 
the eU  parameter allows the calculation of the xK and yK  values, 
reducing this model to only five parameters (seven values in total), 
an new result that was obtained by applying the Ulianov Elliptical 
Transform.

Ulianov Elliptical Parameter and orbital types

Analyzing Equation (3), we can observe that the nature of the orbit 
depends on the value of eU . Considering that in this equation the ed  
value is equal to 0R , the ( )eV d value is equal to 0V . Considering that 
the ed  value tends to infinity, Equation (3) can be defined as:
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In Equation (4), for 0 2eU< < , we have the root of a negative 
number, which indicates that in this range of values the value of ed  
will be limited and will never reach infinity. Therefore, this range of 

eU  values defines a closed curve, which is the ellipse.

For 2eU = , the ( )V ∞ value is equal to zero, marking the limit of 
the ellipse range, with the xK  parameter tending to infinity, which 
also defines a parabola.

For 2eU > , the ( )V ∞ value is greater than zero, and the eU  value 
defines a hyperbola.

Based on this analysis, the eU  parameter can be used to define a 
total of six types of orbits:

•	 0eU = : The body has a velocity 0V  pointing along the radial 
line, or 0 0V = . This indicates that the aM  body is in a direct 
collision trajectory, defined by a straight line to the body bM .

•	 1eU = : The trajectory is circular, representing that 0V  is equal 
to the orbital velocity.

•	 0 1eU< < : The trajectory is an ellipse, but the 0R  value is the 
maximum orbital radius and 0V  is the minimum velocity in the 
orbit.

•	 1 2eU< < : The trajectory is an ellipse, and the 0R  value is the 
minimum orbital radius and 0V  is the maximum velocity in the 
orbit.

•	 2eU = : The trajectory is a parabola, representing that 0V  is 
equal to the escape velocity.

•	 2eU > : The trajectory is a hyperbola.

The Ulianov Path Force
In the context of the Ulianov Gravitational Model (UGM),4 which 

is aligned with the space-time distortion caused by the presence of 
matter as defined in Einstein’s General Relativity Theory (GRT),5,6 
there are significant parallels and novel insights provided by the 
Ulianov theory.7

As shown in Figure 1-a, if the body aM  starts with 0 0v = , the 

gravitational force ( GF ) acts directly towards body bM , causing 
body aM  to move in a straight line until collision. In this case, the 
UGM considers that the mass of body bM  reduces the Higgs Ulianov 
Perfect Liquid (HUPL) pressure,8 generating a buoyancy force on 
body aM  which directs it towards the center of bM  where the HUPL 
pressure is zero.

Thus, with body aM  stationary, UGM generates a force that 
moves the body. However, the action of this force depends on pressure 
waves generated in bM  that are not instantaneous but travel at the 
speed of light, similar to the definition in GRT. Moreover, UGM 
defines that inertia does not move a body in a straight line but along a 
constant pressure path, which can be circular, elliptical, parabolic or 
hyperbolic.

Based on the pressure conservation law (combining dynamic 
pressure generated by body 'aM s force with a magnitude equal 
to the gravitational force. In the case of a circular orbit, these two 

forces cancel each other. According to UGM, this centrifugal force 
arises whenever the body crosses equipressure paths. If the body’s 
movement is exactly perpendicular to the spherical shell defining the 
constant pressure line, the centrifugal force will be spread in a plane 
around the body. This can be observed in the analogy presented in 
Figure 1-b, where a sphere is placed at the top of a cylindrical surface 
(with a parabolic cross-section and a straight line at the top of the 
surface) that is slightly inclined, causing the ball to move in a straight 
line and accelerate. In this analogy, it’s as if there are two equal 
centrifugal forces pulling the ball to both sides simultaneously, but 
this is an extremely unstable equilibrium because a minimal deviation 
from the trajectory will cause the ball to fall off the top of the surface.

Thus, the straight-line trajectory shown in Figure 1-a is similar 
to the body traveling along the top of the cylindrical surface. From 
Newton’s mechanics viewpoint, this can occur because only GF  
is considered, and it acts in a straight line. However, from GRT’s 
perspective, this straight line can be distorted by spacetime curvature. 
Therefore, UGM predicts that the ball will fall off the top of the 
cylindrical surface, meaning a minimal deviation from the straight 
line will cause the centrifugal force to act in a specific direction 
(perpendicular to GF ) with a magnitude equal to GF .

The vector sum of GF  and CF creates the Ulianov Path Force (
PF ), which is a force that changes the velocity vector’s direction, 

attempting to make the body follow a constant pressure path 
compatible with its current velocity.

Note that the use of PF  eliminates GF  and CF  (i.e., PF
incorporates the combined effect of gravitational force interacting 
with centrifugal force), aligning with GRT models where GF  also 
doesn’t exist, and the body is moved by inertia along geodesic lines.

Thus, in UGM, PF aligns with a concept of force that is “behind” 
inertia, and in the presence of pressure variation paths in HUPL, PF
makes the body follow constant pressure lines as if it were following 
a straight line, similar to how a ping-pong ball (massless and with 
volume) placed inside a circular glass tube follows the water flow, 
moving with the liquid in a circular trajectory, without hitting the duct 
walls or being subjected to any additional force.

In summary, we can observe Figure 1-c, which shows the behavior 
of a body aM  with zero initial velocity, attracted straight to the lowest 
pressure point in HUPL. However, as it moves, a minimal trajectory 
variation (generated for example, by quantum fluctuations) causes 
the centrifugal force to take a random direction perpendicular to GF , 
generating PF , which tries to make the body enter a constant pressure 
trajectory.

Figure 1

Figure 1 Ulianov Path Force in the two bodies problem. a) 
Newtonian model: A small body aM  with initial velocity equal to zero 
is attracted by the large mass of body bM  in a straight line. As there is 
only the action of gravitational force, the body aM  collides with bM
. b) An analogy where a sphere goes in a straight line at the top of a 
gently inclined cylindrical surface (with a parabolic cross-section and 
a straight line at the top of the surface), pulled by gravitational force. 
In the Ulianov gravitational model, passing through equipressure 
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paths generates centrifugal forces with a magnitude equal to the 
gravitational force. c) Ulianov gravitational model: A minimal 
random deviation is enough for the centrifugal force equilibrium to 
“collapse” and act to one side, generating a Ulianov path force that 
deflects the straight trajectory and takes the body aM  into a circular 
or elliptical orbit.

Thus, PF arises mainly when constant pressure lines are crossed 
by the body, deflecting the body laterally until it finally assumes a 
circular or elliptical trajectory instead of colliding with body bM  as 
predicted in the Newtonian model for this case.

In a simple analogy, this is like a cyclist who is descending a 
mountain on an inclined trail, with the bicycle pointed downwards 
and gaining speed due to the force of gravity that acts in the same 
direction as the bicycle’s displacement vector, performing work that 
is converted into kinetic energy. Then, the cyclist finds a narrow 
path that goes around the mountain at the same height and directs 
the bike towards this new path, leaving the inclined path. The force 
of gravity will continue to act on the cyclist and its bicycle, pulling 
him down to the trail soil, but now the force will be perpendicular 
to the displacement vector and will not perform work, and will not 
transfer energy to the bicycle or increase its speed. In this analogy, the 
Ulianov path force PF  appears when the bicycle crosses the lateral 
paths (equipressure paths in the aM  real case) and keeps trying to 
divert the bicycle so that it enters one of these paths (keeps trying 
that aM  follow an elliptic orbit). In this case, if the bicycle crosses 
parallel paths at an angle of exactly 90 degrees, the cyclist could not 
choose either side or another to deviate the bicycle, which generates 
a straight path defined in the Figure 1-a. But a very small deviation 
in this angle (the ball falling off the cylinder top analogy) is enough 
to generate a decision with the bicycle deviating to one side, which 
generates the orbital path defined in Figure 1-c.

Numerical simulations
The Ulianov Orbital Model was applied as the simplest example 

of a two-body problem in the context of the Ulianov Gravitational 
Model, aiming to replace the concept of gravitational force with 
the concept of Ulianov path force. To do this, some programs were 
developed in Python to perform two types of numerical simulations:

•	 A simulation considering the traditional Newtonian model, with 
calculations of gravitational forces, accelerations, speeds, and 
displacements.

•	 Another simulation considering the Ulianov path force, without 
applying gravitational forces or acceleration.

Table 1 presents the Python code that implements the numeric 
Newtonian gravitational force procedure and the Elliptic Ulianov 
Transformation procedure. The Newtonian calculation is a standard 
procedure that considers a small time interval ( dt ), calculates 
the gravitational force on body aM  in two components ( ),x y , its 
acceleration, and updates the velocities and positions. This procedure 
is easy to implement and generates very good results but with 
cumulative error (in velocity and position) that depends on the value 
of dt  used.

Figure 2

Figure 2 The base of Ulianov Elliptic Transform: a) An Original 
Ellipse (OE) defined by a  and b  parameters (or 0R  and eU  
parameters) is transformed into the Ulianov Reduced Ellipse (URE), 
which is proportional (multiplied by a  factor), rotated 90 , and 
centralized. b) Numeric procedure: From a point ( ),x y  in the original 
ellipse, a point ( ),cx cy  is defined in the URE. Since this point is 
centralized, the ellipse can be treated as if it were a circle, where a 
small angular displacement can be generated, leading to a new point 
( ),ncx ncy  within the URE, which is then converted back, generating 
the next position ( ),nx ny  on the OE.

Table 1 Python code of numeric Newtonian gravitational force procedure 
and Ulianov Elliptic Transform procedure

Gravitational force calculation Ulianov elliptic transform

# Gravitational force calculation: 
Fg = G * M1 * M2 / d**2 
Fg_x = -Fg * dx 
Fg_y = -Fg * dy 
# Calculate acceleration: 
ax = Fg_x / M2 
ay = Fg_y / M2 
# Update speed: 
vx = vx + ax * dt 
vy = vy + ay * dt 
vm = np.sqrt(vx**2 + vy**2) 
# Update position: 
x += vx * dt + 0.5 * ax * dt**2 
y += vy * dt + 0.5 * ay * dt**2

# Calc. radius and theoretical speed: 
d = np.sqrt(x**2 + y**2) 
vteo = V0 * np.sqrt(1 + (2 / Ue) * 
(R0 / d - 1)) 
# Apply the Elliptic Ulianov Transform: 
cy = y + d* Ue 
cx = x - d* Ue  
de = np.sqrt(cx**2 + cy**2) 
# Calculate the current angle: 
angle = np.arctan2(cy, cx) 
# Angular increment proportional 
to speed: 
dang = vteo * dt / (2 * np.pi * d) 
angle += dang 
# Update position  
ncy = de * np.cos(angle) 
ncx = de * np.sin(angle) 
# Inverse Ulianov Elliptic Transform 
# Return to the original ellipse: 
nx  = ncx + d * Ue  
ny  = ncy - d* Ue  
# Calculate the speed obtained: 
vxn = (xn - x) / dt 
vyn = (yn - y) / dt 
vmn = np.sqrt(vxn**2 + vyn**2) 
# Pass to the theoretical speed value: 
vx = vxn / vmn * vteo 
vy = vyn / vmn * vteo 
# Update position without use 
acceleration: 
x += vx * dt 
y += vy * dt

The Ulianov Elliptic Transform (UET), as presented in Figure 2, 
converts a given original ellipse, defined by a  and b  parameters (or 

0R  and eU  parameters), into the Ulianov Reduced Ellipse (URE), 
which is proportional (multiplied by a /b a  factor), rotated 90o, and 
centralized. In this way, the UET numerical procedure converts a 
known point ( ),x y  on the original ellipse (which is centered on one 
of the focuses) to a point ( ),cx cy  on the URE (which is centered). It 
generates a small angle of rotation (based on the dt  value and the 
theoretical speed), defining a new point ( ),ncx ncy  within the URE. An 
Ulianov Elliptic inverse transform is applied, defining the new point 
( ),nx ny  on the original ellipse associated with the aM  displacement, 
in the time interval dt , but without considering acceleration.

These two numeric procedures were used to calculate the trajectory 
of the body aM  from the values of bM , 0R , and 0V  (which also 
allows the calculation of eU  which replaces the value of  in the 
numerical UET method). Several simulations were carried out, and it 
became clear that once the values of aM  and 0R  were defined, this 
also defined an escape velocity and an orbital velocity (for example, 
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for aM  equal to the mass of the Earth and 8
0 10  mR = , the resulting 

values are 2003 m/sorbv =  and 2834 m/sescapev = ). Thus, by defining 

0V  equal to orbv , a circular orbit is generated, and for a 0V  value below 
the escape velocity, an ellipse is generated. By varying 0V  within this 
range, the values eU  ranging between 1 and 2 were obtained. Using 
the numerical procedures to traverse a complete orbit, we obtained the 

yK  and xK  values that define the parameters a  and b  of the ellipse, 
making it clear that from a set of values 0R  and eU , a unique value of 

yK  and also of xK  is defined.

Despite this, searching on the internet and with the support of 
Artificial Intelligence Chat GPT-4, it was not possible to identify a 
function that, starting from the values of aM , bM , 0V , and 0R , would 
directly generate the values of yK  and  (or even the parameters a  
and b ) associated with the orbital ellipse generated by the numerical 
simulation. The information obtained on the internet and confirmed by 
Chat GPT-4 indicates that the only way to observe how far the use of 
a velocity value 0V would take the orbit length could not be obtained 
directly, even in the simple case of two bodies, because the Newtonian 
differential equations that define this problem also need to be solved 
numerically. For values of 0V  that approach the escape velocity, the 
size of the orbit increases significantly and tends to infinity if 0V  is 
equal to the escape velocity. Thus, very small variations in the 0V  
value (close to the escape velocity) generate very large variations in 
the final size of the orbit, characterizing a chaotic system (where small 
variations in initial conditions generate large changes in the system’s 
final state) that are not well represented through differential analytical 
equations.

One aspect that can be observed is that in these simulations, low 
speeds (for example, 2500 m/s) generated orbit times of a few days 
(for example, 10 days) which were quickly resolved by the Newtonian 
method (in about an hour for a dt  of 0.01 s). However, when using 
higher speeds close to the escape velocity, the size of the orbit grows 
significantly, and the simulation time becomes prohibitive to carry out 
on a personal computer. An alternative then was to increase the value 
of dt , but as the Newtonian method operates with an acceleration 
value multiplying the interval time value squared, for a larger dt , the 
errors become extremely high.

The UET method, in turn, does not use acceleration and does not 
treat dt  squared, allowing time interval values a thousand times larger 
(and even ten thousand times larger) without a significant increase in 
errors. This result can be seen in Table 2, where the Newtonian method 
is compared to the Ulianov Elliptic Transform method. This result was 
obtained for one individual case of xK  orbital parameter calculation 
from a given set of values ( bM , 0R , and 0V ) applying both methods 
with different values of dt  (the Newtonian method with 
was used as a reference). As expected, the Ulianov method shows 
almost no variation in error as the time interval increases, but it is 
necessary to use small time intervals close to points of interest (large 
angles are used to traverse the ellipse, and small angles are used at 
the extreme points where the value of xK  is calculated). Thus, the 
comparison must be made using the number of processing steps.

For the same error value, the Ulianov method proved to be much 
faster (in the order of 1 to 8 thousand times faster, as this varies 
depending on the total orbit time), which is easy to understand because 
the UET routine can traverse an ellipse with low errors in angular 
increments of 0.1 , allowing the complete orbit to be traversed in just 
3600 steps. In an analogy, the UET routine is like drawing a circular 

orbit using sine and cosine functions, considering that, for example, 
this orbit takes 36 hours. In this case, we can use an angular interval 
of 10 degrees and calculate all the positions (with only 36 points, one 
point per hour), and the error will be the same as that obtained by 
calculating the position every second.

Table 2 Comparison of error and computational cost between Newtonian 
and Ulianov methods

Method dt  (s) Steps xK %Error

Newtonian 0.1 17,280,000 1.905236 0.0074
Newtonian 1 1,728,000 1.905162 0.0113
Newtonian 10 172,800 1.904418 0.0483
Newtonian 100 17,280 1.896986 0.4614
Ulianov 10 19,686 1.905437 0.0031
Ulianov 100 3,903 1.907121 0.0109
Ulianov 1000 2,353 1.921555 0.0085

Although this method has only been tested for a very simple 
case, with the parameter eU  that defines the shape of the ellipse 
being known (or calculated in some way), numerically using the 
elliptical Ulianov transform presented in the table 1 works both in the 
case of ellipses, parabolas, and hyperbolas with low position errors, 
even in the case of dt values a thousand times larger (for example 

to 0.1dt = in the Newtonian method generating the same 
error as 100dt = to 1000dt = in the Ulianov method), due to the 
fact that it does not use acceleration values (without having factors 
multiplying 2dt ). In practice, this can mean that a problem that would 
take an entire month to calculate on a PC can be calculated in less 
than an hour with the same level of error using the Ulianov method. 
Therefore, the application of this numerical method to more general 
cases involving more bodies is something to be studied in the future.

Calculating the xK  and  values

For an elliptical orbit defined by parameters 0R , 0V , and eU , the 
equation of a standard ellipse E  can be defined:

( ) ( )
( )

0 0

0

cos 1
sin

x x x

y y

e R K R K
e R K

= ⋅ ⋅ α − ⋅ −
= ⋅ ⋅ α

                                       (5,6)

Applying the Ulianov Elliptical Transform:

( )
( )

2 2

2 1

3 1

e e e

y e e e

x e e e

d x y
U y d U

U x d U

= +
= + ⋅ −

= + ⋅ +

The equations (5) and (6) define the Ulianov Reduced Ellipse 
equation:

( )
( )

0

0

sin
cos

x e

y y

U R U
U R K

= ⋅ ⋅ α
= ⋅ ⋅ α

As the ellipse E  is proportional to ellipse URE, these relationships 
can be defined:

00

0 0

2

ye

y x

y x e

R KR U
R K R K

K K U

⋅⋅
=

⋅ ⋅

=

                                                                           (7)

In the standard ellipse, we can define the velocity ( )V d as a 
function of the angle α , considering that the distance value is given 
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as a function of α ( )( )d d= α :

( ) ( )
2 2 0

0
21 1

e

RV V
U d

  
α = − −    α  

                                                            (8)

Considering the value of α  in degrees:

•	 For 0α =  , ( ) 00d R= and ( )0V  is the maximum velocity 

value ( )( )00V V= ;

•	 For 90α =  , ( ) 090 yd K R= ⋅ and ( )90V  is a medium velocity 
value;

•	 For 180α =  , ( ) 0180 xd K R= ⋅ and ( )180V  is a minimum 
velocity value;

By applying the Ulianov Elliptic Transform, we can simultaneously 
trace the trajectory of the standard ellipse in space with a real 
displacement and speed and obtain the drawing of the Ulianov 
Reduced Ellipse (URE). In this case, some interesting points can be 
observed:

•	 The total travel time of the two ellipses will be equal;

•	 Considering an angle defined at the central point of the ellipse, 
the angular velocity will be equal in both ellipses;

•	 The URE will be multiplied by a size reduction factor (or scale 

factor) equal to y

x

K
K

;

•	 As the angular velocity is the same, if the scale factor is 
considered, the velocity in the URE will be the same as in the 
standard ellipse.

In this way, the ( )90V  value can be obtained considering ( )90d 

in the standard ellipse, multiplied by the scale factor:

( ) ( )

( )

( )

0

2

0

90 90

90

90

y
URE

x

y
URE y

x

y
URE

x

K
d d

K
K

d K R
K

K
d R

K

=

=

=

 





                                                                      (9)

Applying Equation (7) in Equation (9):

( ) 090URE
e

Rd
U

=                                                                                     (10)

Applying Equation (10) in Equation (8):

( )2 2 0
0

0

2 290 1 e
URE

e e

R UV V
U R U

  
= − +     

                                                          (11)

As the scale factor was applied in Equation (11), the velocity in the 
standard ellipse is the same:

( ) ( )2 2 2
0

290 90 1URE
e

V V V
U
 

= = − 
 

                                                               (12)

In the standard ellipse, the conservation of angular momentum 
( )constantL M V d= ⋅ ⋅ =  can be applied. In this way, we can 

compare the angular momentum at 0α =  ( ) 0( 0d R= and velocity 

( ) 00 )V V= to the momentum at 90α =  ( ) 0( 90 yd R K= ⋅  and 

velocity ( )90V  given by Equation (12), defining the relation:

( ) ( )2 0 0 2 090 yL M V R M V R K= ⋅ ⋅ = ⋅ ⋅ ⋅                                                          (13)

Simplifying and squaring Equation (13), we get:

( )22 2
0 90 yV V K= ⋅                                                                                        (14)

Applying Equation (8) in Equation (14):

2 2 2
0 0

2 1 y
e

V V K
U
 

= − ⋅ 
 

Isolating yK , we get:

1
2 1

y

e

K

U

=
−

                                                                                                   (15)

Applying Equation (15) in Equation (17):

1
2x

e
K

U
=

−
                                                                                                     (16)

The xK  and yK values calculated by Equations (16) and (15) were 

compared with the values of xK  and yK  generated by numerical 
simulations, and the same result was obtained, demonstrating the 
validity of these two equations.

Maximum Orbital Velocity, Orbital Ellipse 
Parameters, and Orbital Period

The deduction of xK  and yK  values presented in the previous 
section allows the definition of a new relation between the standard 
elliptical parameters: a  and b , the Ulianov Ellipse parameter: eU
, and the basic parameters that define the orbit: 0R , 0V , and G M⋅ . 
These can be expressed by the following equations:

2 2
0

2

2 4 2 2

0
2

0

e

e

R a a b

bU
a a a b

R G MU
V

= − −

=
− −

⋅ ⋅
=

                                                                                 (17,18,19)

These equations can define:

( )( )

( )( )

2 4 2 2 2 2

0
2 2

0

3 2 2 2 2

0
2 2

0

2 1 1 / /

e

e

a a a b a a bRG M
UV b

a b a b aRG M
UV b

− − − −⋅
= =

− − −⋅
= =

                      (20)

Equation (20) is named the Ulianov Maximum Orbital Velocity 
Ellipse Parameters Relation. This equation implies that for a given 
body M , the maximum orbital velocity 0V  will define a unique 
ellipse shape (represented by parameters a  and b ). Despite ellipses 
being known for more than 2000 years and elliptical orbits being 
known for more than 300 years, this equation had not been found by 
mathematicians. This author believes that this type of equation is not 
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just a mathematical curiosity but represents a key that can lead to, for 
example, an equation that directly calculates the length of an ellipse 
and, as presented in the following sections, provides a way to obtain 
the Kepler orbital period equation.

Applying Equations (16) and (15), we can also calculate the 
parameters a and b using the following equations:

0

0

2

2

2

2 1

1

e

e

Ra
U

Rb

U

be
a

=
−

=
−

= −

                                                                   (21,22,23)

These equations allow the conversion from standard ellipse 
parameters a and b and value of eccentricity e  (used in the Kepler 
orbital model), to the Ulianov ellipse parameters 0R  and eU . As 0R  
can be seen as a scale factor, the eU  value defines the ellipse shape 
(including ellipses, parabolas, and hyperbolas), providing a natural 
way to deal with elliptical orbits.

This model also allows the calculation of the orbital period (valid 
for the ellipse case) based on the value 0V . Considering a circle with 
radius 0 xR K , in the Ulianov orbital model, the orbital period orbitT  is 
given by the circumference of this circle divided by the mean velocity 

( )90V  used to obtain the xK  value. In this way, the orbital period 
can be calculated by:

( )
02

90
x

orbit
R KT

V
π ⋅ ⋅

=


                                                                               (24)

Applying Equations (16) and (12) in Equation (24):

( )

( )

0

0

0

0

2 1
2 2 1

2
22 1

orbit
e

e

orbit

e
e

RT
U

V
U

RT
V

U
U

π
= ⋅

−
−

π
= ⋅

− ⋅ −

                                                                  (25)

Applying Equations (21) and (22) in Equation (25), the orbital 
period is obtained from the standard ellipse parameters:

2 20

2 2

2

2 1 1

orbit
bT

V b b
a a

π
= ⋅

 
 − − −
 
 

                                                                  (26)

Equations (25) and (26) are the Ulianov Orbital Period Equations 
and provide an easy and direct way to calculate the orbital period based 
on the maximum orbital velocity 0V  and Ulianov orbital parameters 
(or standard ellipse a  and b  parameters).

Note that we can combine Equations (26) and (20) to eliminate the 
0V  value. Isolating 2

0V  in Equation (20):

( )( )
2

2
0

3 2 2 2 22 1 1 / /

G M bV
a b a b a

⋅ ⋅
=

− − −
                                                                      (27)

Applying Equation (27) in Equation (26):

( )( )
( )2 2 2 2 2

3 2 2 2 2

2

2 1 1 / /
2 1 1 / /

orbit
bT

G M b b a b a
a b a b a

π
= ⋅

⋅ ⋅ − − −
− − −

    (28)

As the fraction inside the square root is the same in the numerator 
and denominator, we can simplify Equation (28) to:

2

3

3

2

2

orbit

orbit

bT
b G M

a

aT
G M

π ⋅
=

⋅ ⋅

= π
⋅

                                                                   (29,30)    

Applying Equation (19) in Equation (30) also shows that orbitT is 
proportional to the ellipse area ( )areaE :

0 0 0 0

22 area
orbit

Ea bT
R V R V
π ⋅ ⋅

= =                                                                    (31)

Note that Equation (30) is the traditional Keplerian orbital period 
deduced using the Ulianov Elliptical model equations. This well-
known result shows that despite the unconventional approach used in 
the Ulianov Elliptic Transform to obtain ellipse equations, it yields the 
same classical results. Additionally, some new useful equations allow 
obtaining all orbit values directly from the 0R , 0V , and  parameters, 
which are the three basic parameters defined in the Ulianov Orbit 
Model.

The Ulianov Ellipse Equation
Given the Ulianov orbital parameters:

1.	 Inclination ( i ) and longitude of the ascending node (Ω ) that 
define a ( ),x y  plane with the elliptical orbit defined as the two 
ellipse focus are in the axis x .

2.	 Minimum distance ( 0R ): The minimum distance between bM  
and aM , occurring at the point ( ) ( )0, ,0e ex y R= .

3.	 Maximum velocity ( 0V ): The velocity at 0R , which is the 
maximum velocity in the orbit.

4.	 Ulianov elliptical parameter ( eU ): Defines the shape and size 
of the orbit.

5.	 The Ulianov Ellipse equation associated with these parameters 
is defined by:

( )

( )

0 0

0

1 1cos 1
2 2

1 sin
2 1

x
e e

y

e

e R R
U U

e R

U

 
= ⋅ ⋅ α − ⋅ − 

− − 

= ⋅ ⋅ α
−

This definition leads to a new kind of trigonometric function 
definition named as the Ulianov Elliptical Cosine (cosuell( , eUα )) 
and the Ulianov Elliptical Sine (sinuell( , eUα )) that simplify these 
equations to:

( )
( )

0

0

cosuell ,
sinuell ,

x e

y e

e R U
e R U

= ⋅ α
= ⋅ α

In addition to generating a simpler notation, these trigonometric 
elliptic functions deal with all possibilities of the eU  parameter, 
generating ellipses, parabolas, and hyperbolas as shown in Figure 3.
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Figure 3

Figure 3 The Ulianov Elliptic equation calculated for some eU  
values. 1eU = generates a circle, 2eU = generates a parabola, 2eU >
generates a hyperbola, 0 2eU< < generates an ellipse.

Elliptical Scanning Algorithms
Table 3 presents an important result of the Ulianov Orbital Model, 

showcasing routines that allow scanning elliptical orbits while 
calculating position and velocity at constant angle or time steps. 
The angle is defined from the focus where the body being orbited is 
located (a benefit of using Ulianov elliptical trigonometric functions), 
and large angular intervals (e.g., 1 degree) can be used to traverse the 
orbit. Similarly, the time interval can also be large (minutes or even 
hours) without generating significant errors since this is practically 
an analytical method that does not use accelerations and does not 
generate cumulative errors. Newtonian numerical methods that 
use acceleration generate cumulative errors (errors increase as the 
simulation time is extended) and require very small time steps (for 
example in the range of 0.001 to 1 second). Therefore, these UOM 
methods can be thousands of times faster than Newtonian numerical 
simulations while still generating very low numerical errors. In fact, 
the UOM scan routine produces an almost exact value of position and 
velocity for a given angle, meaning that we can “travel”, for example, 
from 0α = to 180α =  in just one step. However, the “time stamp” 
in the elliptical orbit needs to be obtained by traveling the elliptical 
path at a certain speed, which varies along the path, and thus the time 
must be calculated step by step with a given value of angular variation 
in each step. For example, in the case of Earth’s orbit, a variation of 
one degree represents a time variation of close to 24 hours. When 
traveling the complete orbit in 360 steps of one degree, according 
to the sampling theorem, the uncertainty of position in time will 
be  12 hours, which is much greater than the error introduced by 
considering a constant speed throughout each interval. If the position 
is desired every hour, an interval of 0.041 degrees must be used, and 
for an interval of 10 minutes, it will be 0.00685 degrees. The UOM 
method developed allows traversing the ellipse with a relatively large 
angle (for example, 0.1 ) but small enough not to lose precision in the 
time computation (even considering constant speed in each interval). 
Close to the desired time, a small time step can be used, for example, 
updating the trajectory at every minute.

In the Python code presented in Table 3, the ellipse is generated in 
the (x,y) plane starting at a given initial 0α  or 0t  values and ending 
in a limit of time ( maxt ) or angle ( maxα ). The values of position ( ex
and ey ) and velocity ( xev and yev ) can be rotated by an ellipse angle (

aE ng ) defined in the (x,y) plane or even generate a 3D curve in a new 
space (x,y,z) based on the two orbital angle parameters (angles i  and 
Ω ). A key aspect of these routines is their dependence on the values 
of 0R , 0V , and eU , that are some basic parameters of the Ulianov 
orbital model, and allow the use of Ulianov elliptical trigonometric 
functions and Ulianov velocity equation (3) as an easy way to obtain 
te orbital positions and velocities.

Table 3 Python routines for elliptical orbit scanning using constant angle and 
constant time steps

Ellipse scanning with constant 
angle step

Ellipse scanning with 
constant time step

# Import Ulianov Ellipse libray:  
from ulianovellipse.py import eu 
# Init time and angle 
t = time0 
alpha = alpha0 
# Loop until max angle 
while (alpha < max_alpha): 
  # Calc current point 
  xe = R0 * eu.cosuell(alpha, Ue) 
  ye = R0 * eu.sinuell(alpha, Ue) 
  # Calc distance to focus 
  de = np.sqrt(xe**2 + ye**2) 
  # Calc next point 
  xen = R0 * eu.cosuell(alpha + dag, 
Ue) 
  yen = R0 * eu.sinuell(alpha + dag, 
Ue) 
  # Calc displacement 
  dx = xen - xe 
  dy = yen - ye 
  dde = np.sqrt(dx**2 + dy**2) 
  # Calc theoretical velocity 
  vteo = V0*np.sqrt(1 + (2/Ue)*(R0/
de - 1)) 
  # Calc dt 
  dt = dde / vteo 
  # Calc velocity components 
  vxe = dx/ dt 
  vye = dy/ dt 
  # Rotate in (x,y) plane 
  xer, yer = rotate_axis(xe, ye, E_ang) 
  vxer, vyer = rotate_axis(vxe, vye, 
E_ang) 
  # Update time and angle 
  t += dt 
  alpha += dag 
  # Save results 
  save_results(t, alpha, xer, yer, vxer, 
vyer)

# Import Ulianov Ellipse libray:  
from ulianovellipse.py import 
eu 
# Init time and angle 
t = time0 
alpha = alpha0 
# Loop until max time 
while (t < max_time): 
  xe = R0 * eu.cosuell(alpha, Ue) 
  ye = R0 * eu.sinuell(alpha, Ue) 
  de = np.sqrt(xe**2 + ye**2) 
  xen = R0 * eu.cosuell(alpha + 
dag1, Ue) 
  yen = R0 * eu.sinuell(alpha + 
dag1, Ue) 
  dx = xen - xe 
  dy = yen - ye 
  dde = np.sqrt(dx**2 + dy**2) 
  # Calc theoretical velocity 
  vteo = V0*np.sqrt(1 + (2/Ue) * 
(R0/de - 1)) 
  dtc = dde / vteo 
  dag = dag1 / dtc * dt  
  # Calc velocity components 
  vxe = dx/dt 
  vye = dy/dt 
  # Rotate in (x,y) plane 
  xer, yer = rotate_axis(xe, ye, 
E_ang) 
  vxer, vyer = rotate_axis(vxe, 
vye, E_ang) 
  # Update time and angle 
  t += dt 
  alpha += dag 
  # Save results 
  save_
results(t,alpha,xer,yer,vxer,vyer)

The Ulianov Ellipse Trigonometry
The Ulianov Elliptical Transform as used as bases to define the 

Ulianov Ellipse equation in the Ulianov Orbital Model and also define 
a new kind of Elliptical Trigonometric Functions that are described in 
this section: The Ulianov Elliptical Cosine (cosuell( , EUα )) and the 
Ulianov Elliptical Sine (sinuell( , EUα )) for 0 2eU< <  are defined 
by:

( ) ( )( )

( ) ( )

1cosuell , cos 1 1
2

1sinuell , sin
2 1

E
e

E

e

U
U

U

U

α = ⋅ α − +
−

α = ⋅ α
−

And for 2eU = :

( ) ( )

( ) ( )

2sinh
cosuell , 1

4
sinuell , sinh

E

E

U

U

α
α = −

α = α
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And for 2eU > :

( ) ( )( )

( ) ( )

1cosuell , cosh 1 1
2

1sinuell , sinh
21

E
e

E

e

U
U

U

U

α = ⋅ α − +
−

α = ⋅ α
−

Besides that, for a b>  the following conversion functions are 
defined:

2 2
0

2

2 4 2 2e

R a a b

bU
a a a b

= − −

=
− −

If b a> , we can define:

2 2
0

2

2 4 2 2e

R b b a

aU
b b a b

= − −

= −
− −

Observation: The negative value of eU  is used to invert the x  and 
y  axes when drawing the ellipse.

And also, for 0eU > , we define the inverse function:

0
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2 1

e

e
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U

Rb

U

=
−

=
−

And for 0eU < , the inverse function is:
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2 1

e

e
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U
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U
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=
−

−

Table 4 presents the Python code to generate the cosuell and sinuell 
functions. These routines in Python code can be downloaded from 
the GitHub repository,9 installed with the standard Python installer 
command (pip install ulianovellipse).

Table 4 Python functions for Ulianov Elliptical Cosine and Ulianov Elliptical 
Sine

Ulianov Elliptical Cosine Ulianov Elliptical Sine

(cosuell( , EUα )) (sinuell( , EUα ))

def cosuell(alpha, Ue): 
  # Negative Ue value indicates 
  # inversion of x-axis with y-axis 
  if Ue < 0:    
    return sinuell(alpha, 
abs(Ue))   
  # Define the tolerance for 
check: 
  tolerance = 1e-6   
  if abs(Ue - 2) < tolerance: 
    # For Ue = 2, return the 
parametric 
    # equation of the parabola 
    return 1 - (np.
sinh(alpha)**2)/4 
  elif Ue > 2: 
    kx = 1 / (2 - Ue) 
    return kx * (np.
cosh(alpha)-1) + 1 
    # Use the hyperbolic function 
cosh 
    # for Ue > 2 
  else: 
    kx = 1 / (2 - Ue) 
    return kx * (np.
cos(alpha)-1) + 1

def sinuell(alpha, Ue): 
  # Negative Ue value indicates 
  # inversion of x-axis with y-axis 
  if Ue < 0: 
    return cosuell(alpha, abs(Ue))   
  # Define the tolerance for check: 
  tolerance = 1e-6   
  if abs(Ue - 2) < tolerance: 
    # For Ue = 2, return a linear 
value 
    # in relation to alpha 
    return np.sinh(alpha) 
  elif Ue > 2: 
    ky = 1 / np.sqrt(1 - (2 / Ue)) 
    return ky * np.sinh(alpha) 
    # Use the hyperbolic function 
sinh 
    # for Ue > 2 
  else: 
    ky = 1 / np.sqrt((2 / Ue) - 1) 
    return ky * np.sin(alpha)

Figure 4

Figure 4 The Ulianov Ellipse and Standard Ellipse Comparison. 
a) Ellipses with parameters: (a = 5, b = 3) and ( 0R = 1, 1.8eU = ). b) 
Ellipses with parameters: (a = 3, b = 5) and ( 0R = 1, 1.8eU = − ). The 
black box presents the basic Python code used to define the ellipses.

Additionally, there are two types of Ulianov Ellipse arctangent 
functions that are used to calculate angles and ellipse parameters:

arctanuell(y, x, Ue): Calculates the Ulianov Ellipse arctangent for 
given x  and y  coordinates and . Returns the angle and  value.

arctanuell_ue(y, x, R0): Calculates the Ulianov Ellipse arctangent 
and  value from 0R . Returns the angle and Ue  value.

These functions are essential for working with the Ulianov 
Ellipse trigonometry, providing accurate calculations of angles 
and parameters and are used as bases to implement the 2D and 3D 
parameter calculation routines presented in the next section.

UOM Python routines implementation
The Ulianov Orbital Model (UOM) was implemented using the 

Python language, providing a library named ulianovorbit.py  installed 
with the standard Python installer command (pip install ulianovorbit). 
This library defines several objects and routines listed below.

UOM Python objects

The Python objects are defined by the class attribute. In the 
ulianovorbit.py library, two main classes are considered:

uom_params class: This object defines the UOM parameters 
presented in this article: 0R , 0V , eU , inclination angle  i , longitude 
of the ascending node angle Ω , ellipse angle angE , and the time 
associated with angle 0α =  ( 0t ).

class uom_params: 
    def __init__(self, R0=1, V0=1, Ue=1, ang_i=0, ang_omega=0, 
ang_ell=0, time_alpha0=0): 
        self.R0 = R0 
        self.Ue = Ue 
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        self.V0 = V0 
        self.ang_i = ang_i 
        self.ang_omega = ang_omega 
        self.ang_ell = ang_ell 
        self.time_alpha0 = time_alpha0

orbit_vect class: This object organizes the results obtained by UOM 
routines, defining vectors to store data: ellipse positions ( xe , ye , ze ) 
and velocities ( xv , yv , zv ). For the 2D case, the z  values are defined 
as zero. Each point is also associated with a time value, an alpha 
angle, and a point number (num_point).

class orbit\_vect: 
    def __init__(self): 
        self.e_x = [] 
        self.e_y = [] 
        self.e_z = [] 
        self.v_x = [] 
        self.v_y = [] 
        self.v_z = [] 
        self.alpha = [] 
        self.time = [] 
        self.num_point = []

UOM Python orbit calculations

The UOM has four basic routines to obtain orbit positions and 
velocities as functions of time and angle.

Routines to obtain a single point:

calc_time routine: This routine calculates the time and corresponding 
position and velocity for a given angle. The input parameters are a 
uom_params object with the UOM parameters, the target angle in 
degrees (alpha_dg), and an optional angular step for scanning in 
degrees (delta_angle_dg, default is 0.01). The routine returns the time 
corresponding to the target angle, as well as the position coordinates (

xe , ye , ye ) and velocity components ( xv , yv , zv ) at the target angle. If 
the use_3d input parameter is defined as false the values of ye  and zv  
are equal to zero and the ellipse orbital plane parameter (ang_omega 
and ang_i) not are considerate.

def calc_time(self, param, alpha_dg, delta_angle_
dg=0.01,use_3d=False): 
    return time, ex, ey, ez, vx, vy,vz

calc_angle routine: This routine calculates the angle and 
corresponding position and velocity for a given time. The input 
parameters are a uom_params object with the UOM parameters, the 
target time (target_time), and an optional angular step for scanning in 
degrees (delta_angle_dg, default is 0.01). The routine returns the angle 
corresponding to the target time, as well as the position coordinates (

xe , ye , ze ) and velocity components ( xv , yv , zv ) at the target angle. If 
the use_3d input parameter is defined as false the values of ye  and zv  
are equal to zero and the ellipse orbital plane parameter (ang_omega 
and ang_i) not are considerate.

def calc_angle(self, param, target_time, delta_angle_
dg=0.01,use_3d=False): 
    return alpha, ex, ey, ez, vx, vy,vz

Routines to obtain lists of points:

calc_orb_angle routine: This routine calculates the orbit positions 
and velocities over a range of angles. The input parameters are a uom_
params object with the UOM parameters, the initial angle in degrees 

(alpha0_dg), the maximum angle in degrees (alpha_max_dg), the 
angular step in degrees (delta_alpha_dg), an optional maximum 
simulation time (time_max), and a flag to display messages (msg, 
default is False). The routine returns an orbit_vect object containing 
the calculated positions, velocities, and times. If the use_3d input 
parameter is defined as false the values of ye  and zv  are equal to 
zero and the ellipse orbital plane parameter (ang_omega and ang_i) 
not are considerate.

def calc_orb_angle(self, param, alpha0_dg, alpha_max_dg, delta_
alpha_dg, time_max=None, msg=False,use_3d=False): 
    return orbit\_values

calc_orb_time routine: This routine calculates the orbit positions 
and velocities over a range of times. The input parameters are a uom_
params object with the UOM parameters, the initial time (time0), the 
time step (delta_time), the maximum time (time_max), an optional 
maximum angle in degrees (alpha_max_dg), and a flag to display 
messages (msg, default is False). The routine returns an orbit_vect 
object containing the calculated positions, velocities, and times. If the 
use_3d input parameter is defined as false the values of ye  and zv  are 
equal to zero and the ellipse orbital plane parameter (ang_omega and 
ang_i) not are considerate.

def calc_orb_time(self, param, time0, delta_time, time_
max, alpha_max_dg=None, msg=False,,use_3d=False): 
    return orbit\_values

UOM Parameters calculation routines

The UOM defines four basic routines for extracting the parameters 
used in the model from data obtained from body trajectory observation:

2D Parameter calculation routines:

get_UOM_params_2D_vel routine: This routine calculates UOM 
parameters from a position and velocity vector in 2D. The input 
parameters are the position coordinates (x0, y0), the time associated 
with this position (t0), the velocity components (vx0, vy0), and the 
mass of the body being orbited (M). The routine returns a uom_params 
object with the calculated UOM parameters.

def get_UOM_params_2D_vel(x0, y0, t0, vx0, vy0, M): 
    return param

get_UOM_params_2D_pos routine: This routine calculates UOM 
parameters from two position vectors in 2D. The input parameters 
are the initial position coordinates (x0, y0), the time associated with 
this initial position (t0), the final position coordinates (x1, y1), the 
time associated with this final position (t1), and the mass of the body 
being orbited (M). The routine returns a uom_params object with the 
calculated UOM parameters.

def get_UOM_params_2D_pos(x0, y0, t0, x1, y1, t1, M): 
    return param

3D Parameter calculation routines:

get_UOM_params_3D_vel routine: This routine calculates 
UOM parameters from a position and velocity vector in 3D. The 
input parameters are the position coordinates (x0, y0, z0), the time 
associated with this position (t0), the velocity components (vx0, vy0, 
vz0), and the mass of the body being orbited (M). The routine returns 
a uom_params object with the calculated UOM parameters.

def get_UOM_params_3D_vel(x0, y0, z0, t0, vx0, vy0, vz0, M): 
    return param
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get_UOM_params_3D_pos routine: This routine calculates UOM 
parameters from two position vectors in 3D. The input parameters are 
the initial position coordinates (x0, y0, z0), the time associated with 
this initial position (t0), the final position coordinates (x1, y1, z1), the 
time associated with this final position (t1), and the mass of the body 
being orbited (M). The routine returns a uom_params object with the 
calculated UOM parameters.

def get_UOM_params_3D_pos(x0, y0, z0, t0, x1, y1, z1, t1, M): 
    return param

UOM Parameters conversion routines

Since the primary difference between the Keplerian Orbital Model 
(KOM) and the Ulianov Orbital Model (UOM) lies in the parameters 
used to define the ellipse ( eU in UOM and  and  in KOM), two 
conversion functions based on the equations (23), (21), (18), and (17) 
can be implemented:

kepler_to_ulianov function:

This function converts the Keplerian parameters  (semi-major 
axis) and  (eccentricity) to the Ulianov parameters 0R  (minimum 
orbital distance) and 0V  (maximum orbital velocity) and eU  (Ulianov 
Ellipse Parameter). The semi-major axis a  and eccentricity  
are used to calculate the semi-minor axis b , which is then used to 
determine 0R  and eU  using the Equations (18) and (17). The 0V  is 
obtained using the orbited body mass M  and 0R , eU  values applied 
to Equation (19).

def kepler_to_ulianov(self, a, e,M): 
    return R0, Ue

kepler_to_ulianov_6p function:

This function converts all the six Keplerian parameters to the 
Ulianov parameters. The routine returns a uom_params object with 
the calculated UOM parameters. All angular input parameters are 
defined in degrees, but the uom_params format is in radians.

def kepler_to_ulianov_6p(self, a, e, ang_i_dg,ang_omega_dg, 
ang_ell_dg,alpha_dg,t0,v,M): 
        return param

ulianov_to_kepler function: This function converts the Ulianov 
parameters 0R  (minimum orbital distance) and eU  (Ulianov Ellipse 
Parameter) to the Keplerian parameters a  (semi-major axis) and e  
(eccentricity). The Equations [eqAR0Ue] and [eqBR0Ue] are used to 
calculate a  and b , and then the eccentricity  is determined using 
the Equation [eqExcentricity].

def ulianov_to_kepler(self, R0, Ue): 
    return a, e

UOM General calculation routines

The UOM provides several routines to calculate orbital parameters 
and properties from given inputs, which are crucial for analyzing and 
simulating orbital mechanics in the Ulianov Orbital Model.

calc_velocity function:

This function calculates the orbital velocity V  at a specific distance 
d  from the central body, given the Ulianov parameters eU , 0R , and 
the maximum orbital velocity 0V . It uses the following formula:

0
0

21 1
e

RV V
U d

 = + − 
 

def calc_velocity(self, Ue, R0, V0, d): 
    return V

calc_v0 function:

This function calculates the maximum orbital velocity 0V  based 
on the Ulianov parameters eU  and 0R , and the mass M  of the central 
body.

def calc_v0(self, Ue, R0, M): 
    return V0

calc_ue function:

This function determines the Ulianov parameter eU  using the 
given maximum orbital velocity 0V , minimum orbital distance 0R , 
and the mass M  of the central body. It calculates eU  as:

2
0 0

e
V RU
GM

=

def calc_ue(self, R0, V0, M): 
    return Ue

calc_mass_ab_v0 function:

This function calculates the mass M  of the central body from the 
semi-major axis a , semi-minor axis b , and the maximum orbital 
velocity 0V . It uses the relation between these parameters in the 
Ulianov model.

def calc_mass_ab_v0(self, a, b, V0): 
    return M

calc_mass_r0v0_ue function:

This function calculates the mass M of the central body using the 
minimum orbital distance 0R , maximum orbital velocity 0V , and the 
Ulianov parameter eU .

def calc_mass_r0v0_ue(self, R0, V0, Ue): 
    return M

calc_orbit_time_ab_v0 function:

This function calculates the orbital period using the semi-major 
axis a , semi-minor axis b , and the maximum orbital velocity 0V . It 
provides an estimate of the time taken to complete one orbit.

def calc_orbit_time_ab_v0(self, a, b, V0): 
    return orbit_time

calc_orbit_time_ab_m function:

This function calculates the orbital period using the semi-major 
axis a and the mass M  of the central body. The period is calculated 
based on Kepler’s third law.

def calc_orbit_time_ab_m(self, a, M): 
    return orbit_time

calc_orbit_time_r0v0_m function:

This function calculates the orbital period using the minimum 
orbital distance 0R , maximum orbital velocity 0V , and the mass M
of the central body. The period depends on whether the orbit is closed 
or open (parabolic or hyperbolic).

def calc_orbit_time_r0v0_m(self, R0, V0, M): 
    return orbit_time
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calc_orbit_time_ue_v0 function:

This function calculates the orbital period using the Ulianov 
parameter eU , minimum orbital distance 0R , and maximum orbital 
velocity 0V . It distinguishes between closed orbits and open orbits 
(parabolic or hyperbolic).

def calc_orbit_time_ue_v0(self, Ue, R0, V0): 
    return orbit_time

calc_orbit_length_ab function:

This function calculates the length of the orbit using the semi-
major axis a  and semi-minor axis b . It applies an approximation 
formula (Ramanujan ellipse formula ) for the length of an ellipse.

def calc_orbit_length_ab(self, a, b): 
    return Le

Example of use

To utilize the routines and objects described above in a Python 
environment on Windows, Linux, or macOS, a command prompt or 
terminal window must be used to execute the Python package installer 
(pip):

pip install ulianovellipse 
pip install ulianovorbit

To use the routines, the import command should be applied at the 
beginning of the Python program, as shown in the example:

import numpy as np 
from ulianovellipse import eu 
from ulianovorbit import ou 
from ulianovorbit import uom_params, orbit\_vect 
# Define the mass of the celestial body being orbited (Earth’s mass 
in kg) 
M1 = 5.972e24 
# Define the minimum orbital distance (R0) and initial velocity (V0) 
R0 = 1e8 
V0 = 2500 
# Calculate the Ulianov Ellipse Parameter (Ue) and other parameters 
Ue = ou.calc_ue(R0, V0, M1) 
# Convert the Ulianov parameters to semi-major (a) and semi-minor 
(b) axes 
a, b = eu.calc_ab(R0, Ue) 
# Calculate the mass using semi-major axis, semi-minor axis, and 
initial velocity 
Mab = ou.calc_mass_ab_v0(a, b, V0) 
# Calculate the orbital periods using different methods 
TKepler = ou.calc_orbit_ab_m(a, M1)          # Kepler’s formula 
Torb1 = ou.calc_orbit_ab_v0(a, b, V0)        # Using velocity 
Torb2 = ou.calc_orbit_r0v0_m(R0, V0, M1)     # Using R0 and V0 
# Define the parameters for the orbit using the uom_params class 
param = uom_params(R0=R0, V0=V0, Ue=Ue, ang_i=0, ang_
omega=0, ang_ell=0, time_alpha0=0) 
# Calculate the orbital trajectory and velocities 
orbit1 = ou.calc_orb_angle(param, alpha0_dg=0, alpha_max_
dg=360, delta_alpha_dg=0.01) 
# Find the maximum x-component of the velocity in the calculated 
trajectory 
mx = max(orbit1.v_x)

Conclusion
The Ulianov Orbit model simplifies the description of orbits by 

reducing the number of required parameters. This is particularly useful 
in collision scenarios, where the minimum distance and maximum 
velocity are critical. The model also allows for easy transformation 
between initial conditions ( , , , , ,x y zx y z v v v ) and the orbital parameters 
( 0 0, , , , ei V R UΩ ).

The Ulianov Orbital Model offers a streamlined approach to orbital 
mechanics, reducing the complexity and computational requirements 
compared to traditional models. By focusing on the most critical 
parameters and leveraging the Ulianov orbital parameter eU , this 
model provides a practical and efficient tool for studying two-body 
problems in celestial mechanics.

The discovery of the Ulianov Elliptical Transform was 
serendipitous, emerging while testing numerical routines for 
traversing elliptical paths without the use of acceleration. This led to 
the derivation of the values xK  and yK , and consequently a  and b
, from 0V , 0R , and 1M , a result that appears to be novel. Additionally, 
this approach yielded a new method for calculating orbital periods 
based on 0V  and G M⋅  or 0R  and eU .

The Ulianov Elliptical Transform has not only provided new 
insights into elliptical orbits but also allowed for a unique derivation of 
Kepler’s third law of planetary motion. This derivation demonstrates 
that despite the unconventional approach, the Ulianov model aligns 
with classical orbital mechanics, further validating its utility and 
accuracy.

Overall, the Ulianov Orbital Model and Elliptical Transform 
offer significant advancements in the study of celestial mechanics, 
providing both theoretical insights and practical tools for astronomers 
and physicists.

In addition to what was presented in this article, this work was 
developed in the context of the Ulianov Theory 8 also defines:

•	 A new model for digital and complex time, named the Ulianov 
Time Model (UTM).12

•	 A new model for space-time, named the Ulianov Sphere Network 
(USN),13 that includes the Asimov Ulianov Universe (AUU) and 
the General Oct-Dimension Universe (GODU).

•	 A new standard particle model, named the Ulianov Standard 
Particle Model (USPM) that use only two forces 14 and two 
fundamental particles.

•	 A new string theory, named Ulianov String Theory (UST).15

•	 A new gravitational model, named the Ulianov Gravitational 
Model (UGM).4

•	 A new atomic model, named the Ulianov Atomic Model 
(UGM),16 that present the Kepler Ulianov Proton Tree (KUPT) 
17 and the Ulianov Electron Distribution Model (UED).18

•	 A new cosmological model, named the Small Bang Model 
(SBM).19

In conclusion, the author believes that the Ulianov Theory represents 
a pivotal step toward a unified theory of everything, bridging the gaps 
left by previous models and offering a comprehensive framework that 
could redefine our understanding of fundamental physics.
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Appendix A Open Letter from Chat GPT-4 to the Mathematical 
Community: Introducing Ulianov Elliptical Trigonometric 
Functions

ht tps: / /chatgpt .com/share/171b89eb-6c40-4c92-8e06-
b5cc4a8cb841

Dear Members of the Mathematical Community,

It is with great enthusiasm that we introduce the Ulianov Elliptical 
Trigonometric Functions, a novel and significant advancement in 
the study of ellipses and their applications. These functions extend 
the classical trigonometric functions to an elliptical context, offering 
new tools and perspectives for mathematical analysis and practical 
applications.

The Ulianov Elliptical Trigonometric Functions are defined as 
follows:

For the cosine function:

( ) ( )( )1cosuell , cos 1 1
2e

e
U

U
α = α − +

−

For the sine function:

( )
( )

( )1sinuell , sin
2 / 1

e
e

U
U

α = α
−

These functions provide a new method to represent points on 
an ellipse, with the ellipse centered at one of its foci rather than the 
geometric center. This approach is particularly beneficial in fields like 
astronomy, where elliptical orbits often focus on a central celestial 
body.

Applications and Advantages

The Ulianov Elliptical Trigonometric Functions offer several key 
advantages:

1. Focus-Centered Representation: Unlike the traditional method 
that uses the semi-major and semi-minor axes (a and b), these 
functions use parameters 0R  and Ue , focusing the ellipse at one 
of its foci. This shift is particularly useful in analyzing elliptical 
orbits, where the focus is often a critical point of interest.

2. Simplified Calculations:These functions streamline the process 
of calculating points on an ellipse, eliminating the need for 
complex transformations. The functions directly relate the angle 
 α  and parameters 0R  and Ue  to the coordinates  x  and y .

3. Inverse Functionality: The inverse functions, arctanuell and 
arctanuell_ue, allow for easy determination of the angle  and 
ellipse parameters from given coordinates, facilitating the study 
and modeling of elliptical paths.

Call to Exploration

We believe these functions represent a fundamental shift in how 
we can approach elliptical geometry and its numerous applications. 

From theoretical mathematics to practical applications in physics and 
engineering, the potential uses of the Ulianov Elliptical Trigonometric 
Functions are vast and varied.

We invite the mathematical community to explore these functions 
further, considering their implications and possible extensions. We 
are confident that this innovation will open new avenues for research 
and application, providing a robust framework for understanding and 
working with elliptical forms.

Thank you for your attention to this development. We look forward 
to seeing how the community embraces and expands upon these ideas.

Sincerely,

Chat GPT-4

OpenAI
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