
Submit Manuscript | http://medcraveonline.com

Introduction
In celestial mechanics, the problem of two bodies interacting

gravitationally is traditionally described using Keplerian orbits or the
Newtonian approach. A Kepler orbit, named after Johannes Kepler,1
describes the motion of a body with small mass (aM) relative
to another body with a large mass (bM). Due to the difference in
masses, the movement of the body bM in space is not significantly
affected by the interaction with the body aM . Therefore, bM can often
be considered stationary or defined as the origin of the coordinate
system used to define the movement of aM . This assumption defines
the Kepler orbit problems and is valid for many cases, such as the
movement of planets around the sun, communication satellites around
the Earth, or small moons (such as the moons of Mars). However, it
is not valid for the orbit of Earth’s moon because the difference in
masses is smaller, causing the moon’s mass to make the Earth oscillate
in its trajectory. When the mass aM is much smaller than bM , the
orbit becomes an ellipse, parabola, or hyperbola. The Kepler Orbit
Model (KOM)2 requires six orbital elements to fully describe the
motion of the body aM :

•	 Eccentricity (e): The shape of the ellipse.

•	 Semi-major axis (a): Half the distance between the apoapsis
and periapsis.

•	 Inclination (i): The tilt of the orbital plane.

•	 Longitude of the ascending node (Ω): The horizontal orientation
of the ascending node.

•	 Argument of periapsis (ω): The orientation of the ellipse in the
orbital plane.

•	 True anomaly (velocity ν ,at angle θ ,) at epoch (0t): The
position of the orbiting body along the ellipse at a specific time.

Note: Although these parameters are defined as six orbital elements,
there are eight values listed, so we can also consider that the KOM
has eight individual numeric parameters.

The Newtonian model,3 which solves the problem using numerical
methods, requires a similar number of parameters. A complete
simulation can be defined by the masses of the bodies (,b aM M) and
their initial positions (), ,x y z and velocities (), ,x y zv v v and a time
reference 0t , totaling nine values. If we consider a reference system
that defines the (),x y plane over the elliptical plane, the numerical
methods can use only seven parameters: masses bM , aM , and initial
positions (),x y and velocities (),x yv v and a time reference 0t .

The Ulianov Orbital Model introduces a new approach that reduces
the complexity to only five parameters (seven numerical values)
because the ellipse shape is represented by only one parameter,
named the Ulianov Ellipse parameter (eU), while maintaining
accuracy in the ellipse representation and also defining parabolas
and hyperbolas. Additionally, it offers a methodology that facilitates
the orbit position and velocity calculation by applying two Ulianov
Elliptic trigonometric functions (cosuell(, eUα) and sinuell(, eUα
)) to calculate the UOM elliptical orbit positions and velocities. The
UOM also provides routines for determining these parameters from
data observed in the body trajectory.

The Ulianov Orbital Model
The Ulianov Orbital Model (UOM) characterizes an orbit using

the following five parameters:

1.	 Inclination (i): The vertical tilt of the ellipse with respect to the
reference plane.

2.	 Longitude of the ascending node (Ω): The horizontal orientation
of the ascending node.

3.	 Argument of periapsis (ellipse angle): The orientation of
the ellipse in the orbital plane.

4.	 Initial condition, given by the minimum orbital distance (0R)
(the minimum distance between the orbital body and the central
body), the maximum velocity (0V) (the velocity at 0R distance,
which is the maximum velocity in the orbit) at epoch (0t) (UTC
time for an angle α = 0, occurring at the point () ()0, ,0e ex y R=

Phys Astron Int J. 2024;8(4):196‒208. 196
©2024 Ulianov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and build upon your work non-commercially.

Describing Kepler Orbits with the Ulianov Orbital
Model

Volume 8 Issue 4 - 2024

Dr. Policarpo Yoshin Ulianov MSc, PhD
R&D Department, Power Opticks Tecnologia, Av. Luiz Boiteux
Piazza, Brazil
	
Correspondence: Dr. Policarpo Yoshin Ulianov MSc PhD,
R&D Department, Power Opticks Tecnologia, Av. Luiz Boiteux
Piazza, Florian´opolis, 88056-000, SC, Brazil,
Email

Received: August 21, 2024 | Published: October 28, 2024

Abstract

This paper presents the Ulianov Orbital Model (UOM), a simplified approach to two-body
orbital mechanics. The UOM provides equations to calculate the standard ellipse parameters
(a and b) and orbital trajectories and velocities from three UOM basic parameters (Ue,
R0, and V0). It introduces a new kind of elliptical trigonometric functions, which simplify
plotting orbital trajectories and their velocities over time and in elliptical angular steps. The
Ulianov Elliptic Transform (UET), generates an impressive effect of rotating and scaling
an ellipse, transferring its center from one of the foci to the geometric center of the ellipse.
The UET offers a new and easy way to create and manipulate ellipses using both numerical
and analytical methods.

Keywords: Ulianov Orbital Model, Elliptical trigonometric functions, Ulianov Elliptic
Transform, Orbital trajectories

Physics & Astronomy International Journal

Review Article Open Access

https://crossmark.crossref.org/dialog/?doi=10.15406/paij.2024.08.00349&domain=pdf

Describing Kepler Orbits with the Ulianov Orbital Model 197
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

and velocity () ()0, 0,x yv v V=).

5.	 Ulianov elliptical parameter (eU): Defines the shape and size
of the orbit.

Although these parameters are defined as five orbital elements,
there are seven values defined in this list, so we can also consider that
the UOM has seven individual numeric parameters.

Note that the UOM provides a reduction of one parameter
compared to the KOM because the parameters eccentricity (e) and
semi-major axis (a) are replaced by only one parameter, the Ulianov
Ellipse parameter (eU), with some advantages:

•	 The application of elliptic trigonometric functions (cosuell(
, eUα) and sinuell(, eUα)) to determine the orbit values and

velocities as a function of any given time or ellipse angle.

•	 The easy obtaining of the elliptic orbit range (standard ellipse
parameters a and b or eccentricity ()) and period from initial
values and or generic positions (,x ye e) and velocities (

,x yv v) defined in the ellipse orbit.

Another important aspect is that the Keplerian orbital model stores
an angular position in the orbit and a velocity for a specific time,
which can be, for example, close to a present time of interest. This
scheme is used because, normally, to move this point within the orbit,
numerical simulations based on the Newtonian method are necessary,
which must be calculated with a very small time interval dt , making
it faster to calculate the orbit from the defined time to a new time for
nearby times. In the case of the UOM, the model parameter stores the
time, position, and velocity for the angle equal to zero because the
model can very quickly calculate the position and velocity for any
desired time or angle.

The Ulianov Elliptical Parameter definition

The Ulianov Elliptical Parameter eU value is calculated by the
equation:

2
0 0

e
b

V RU
GM

= (1)

where G is the gravitational constant and bM is the mass of the
primary body.

The Ulianov elliptical parameter eliminates the need to explicitly
include bM and G in the calculations, and also defines the velocity
over the orbit and the complete elliptical orbit path, simplifying the
model. However, to understand how the parameter eU works, we
need to first observe some basic definitions.

The general solution for the elliptical orbit is given by:

() ()
() ()

2 2

2 2 1

cos
sin

e

e

x y
a b

x a
y b

+ =

α = α
α = α

where a and b are the semi-major and semi-minor axes of the
ellipse, respectively. Note that the α angle is defined in the ellipse
center, instead of being centered on the focus where the orbited
body is located, which normally defines the origin of the system
in both Cartesian and polar coordinates. In this way, these ellipse
equations, despite being very simple, do not perform well in the case
of a coordinate system centered on the orbited body. Additionally, the

values a and b need to be calculated from some observed positions
and velocities of the body in orbit. For certain initial velocities, a
and b become very large and exhibit chaotic behavior, because very
small changes in the initial orbital velocity (0V) can generate large
variations in the a and b values. This chaotic behavior difficult to
calculate a and b values using analytics solutions of differential
equations, requiring numerical simulation to obtain these parameters.
These simulations are normally based on the calculation of forces and
acceleration in a small time interval (in the order of fractions of a
second) to be precise. For larger orbits, with periods of many years or
even many centuries, a large number of processing steps are needed
to determine complete orbit positions and velocities. To use an angle
α centered in the ellipse focus, we can consider an ellipse equation
defined as:

() () ()
() ()

0 0

0

cos 1

sin
e x x

e y

x R K R K
y R K

α = α − −
α = α

where the ellipse’s foci are in the x axis direction and for a b>

, 0R is the minimum orbital radius and xK , yK are gain factors that
can be calculated by:

2 2
0

0

0

 x

y

R a a b
aK
R
bK
R

= − −

=

=

Note: These definitions consider that the angle starts at and

rotates counterclockwise. At 0α = , 0ex R= , 0ey = , 0xv = , and
0yv V= .

The velocity ()eV d of body aM along its trajectory is defined by
the conservation of energy equation:

()

()

2 2
0

0

2 2
0

0

1 1
2 2

2 2

b a b a
a e a

e

b b
e

e

GM M GM MM V d M V
R d

GM GMV d V
R d

= − +

= − +
 (2)

Considering the Ulianov Elliptical Factor eU defined in Equation
(1), Equation (2) becomes the Ulianov orbital velocity equation:

()

2 2

2 2 0
0

21 1

e e e

e
e e

d x y

RV d V
U d

= +

  
= − −     

 (3)

Note that at this point we need two additional parameters to
represent the elliptical orbit: The values of gains xK , and yK that
not are included in the UOM parameter list presented at beginning of
this section. Otherwise, as will be demonstrated in the next section,
the eU parameter allows the calculation of the xK and yK values,
reducing this model to only five parameters (seven values in total),
an new result that was obtained by applying the Ulianov Elliptical
Transform.

Ulianov Elliptical Parameter and orbital types

Analyzing Equation (3), we can observe that the nature of the orbit
depends on the value of eU . Considering that in this equation the ed
value is equal to 0R , the ()eV d value is equal to 0V . Considering that
the ed value tends to infinity, Equation (3) can be defined as:

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 198
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

() 0
21

e
V V

U
 

∞ = − 
 

 (4)

In Equation (4), for 0 2eU< < , we have the root of a negative
number, which indicates that in this range of values the value of ed
will be limited and will never reach infinity. Therefore, this range of

eU values defines a closed curve, which is the ellipse.

For 2eU = , the ()V ∞ value is equal to zero, marking the limit of
the ellipse range, with the xK parameter tending to infinity, which
also defines a parabola.

For 2eU > , the ()V ∞ value is greater than zero, and the eU value
defines a hyperbola.

Based on this analysis, the eU parameter can be used to define a
total of six types of orbits:

•	 0eU = : The body has a velocity 0V pointing along the radial
line, or 0 0V = . This indicates that the aM body is in a direct
collision trajectory, defined by a straight line to the body bM .

•	 1eU = : The trajectory is circular, representing that 0V is equal
to the orbital velocity.

•	 0 1eU< < : The trajectory is an ellipse, but the 0R value is the
maximum orbital radius and 0V is the minimum velocity in the
orbit.

•	 1 2eU< < : The trajectory is an ellipse, and the 0R value is the
minimum orbital radius and 0V is the maximum velocity in the
orbit.

•	 2eU = : The trajectory is a parabola, representing that 0V is
equal to the escape velocity.

•	 2eU > : The trajectory is a hyperbola.

The Ulianov Path Force
In the context of the Ulianov Gravitational Model (UGM),4 which

is aligned with the space-time distortion caused by the presence of
matter as defined in Einstein’s General Relativity Theory (GRT),5,6
there are significant parallels and novel insights provided by the
Ulianov theory.7

As shown in Figure 1-a, if the body aM starts with 0 0v = , the

gravitational force (GF) acts directly towards body bM , causing
body aM to move in a straight line until collision. In this case, the
UGM considers that the mass of body bM reduces the Higgs Ulianov
Perfect Liquid (HUPL) pressure,8 generating a buoyancy force on
body aM which directs it towards the center of bM where the HUPL
pressure is zero.

Thus, with body aM stationary, UGM generates a force that
moves the body. However, the action of this force depends on pressure
waves generated in bM that are not instantaneous but travel at the
speed of light, similar to the definition in GRT. Moreover, UGM
defines that inertia does not move a body in a straight line but along a
constant pressure path, which can be circular, elliptical, parabolic or
hyperbolic.

Based on the pressure conservation law (combining dynamic
pressure generated by body 'aM s force with a magnitude equal
to the gravitational force. In the case of a circular orbit, these two

forces cancel each other. According to UGM, this centrifugal force
arises whenever the body crosses equipressure paths. If the body’s
movement is exactly perpendicular to the spherical shell defining the
constant pressure line, the centrifugal force will be spread in a plane
around the body. This can be observed in the analogy presented in
Figure 1-b, where a sphere is placed at the top of a cylindrical surface
(with a parabolic cross-section and a straight line at the top of the
surface) that is slightly inclined, causing the ball to move in a straight
line and accelerate. In this analogy, it’s as if there are two equal
centrifugal forces pulling the ball to both sides simultaneously, but
this is an extremely unstable equilibrium because a minimal deviation
from the trajectory will cause the ball to fall off the top of the surface.

Thus, the straight-line trajectory shown in Figure 1-a is similar
to the body traveling along the top of the cylindrical surface. From
Newton’s mechanics viewpoint, this can occur because only GF
is considered, and it acts in a straight line. However, from GRT’s
perspective, this straight line can be distorted by spacetime curvature.
Therefore, UGM predicts that the ball will fall off the top of the
cylindrical surface, meaning a minimal deviation from the straight
line will cause the centrifugal force to act in a specific direction
(perpendicular to GF) with a magnitude equal to GF .

The vector sum of GF and CF creates the Ulianov Path Force (
PF), which is a force that changes the velocity vector’s direction,

attempting to make the body follow a constant pressure path
compatible with its current velocity.

Note that the use of PF eliminates GF and CF (i.e., PF
incorporates the combined effect of gravitational force interacting
with centrifugal force), aligning with GRT models where GF also
doesn’t exist, and the body is moved by inertia along geodesic lines.

Thus, in UGM, PF aligns with a concept of force that is “behind”
inertia, and in the presence of pressure variation paths in HUPL, PF
makes the body follow constant pressure lines as if it were following
a straight line, similar to how a ping-pong ball (massless and with
volume) placed inside a circular glass tube follows the water flow,
moving with the liquid in a circular trajectory, without hitting the duct
walls or being subjected to any additional force.

In summary, we can observe Figure 1-c, which shows the behavior
of a body aM with zero initial velocity, attracted straight to the lowest
pressure point in HUPL. However, as it moves, a minimal trajectory
variation (generated for example, by quantum fluctuations) causes
the centrifugal force to take a random direction perpendicular to GF ,
generating PF , which tries to make the body enter a constant pressure
trajectory.

Figure 1

Figure 1 Ulianov Path Force in the two bodies problem. a)
Newtonian model: A small body aM with initial velocity equal to zero
is attracted by the large mass of body bM in a straight line. As there is
only the action of gravitational force, the body aM collides with bM
. b) An analogy where a sphere goes in a straight line at the top of a
gently inclined cylindrical surface (with a parabolic cross-section and
a straight line at the top of the surface), pulled by gravitational force.
In the Ulianov gravitational model, passing through equipressure

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 199
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

paths generates centrifugal forces with a magnitude equal to the
gravitational force. c) Ulianov gravitational model: A minimal
random deviation is enough for the centrifugal force equilibrium to
“collapse” and act to one side, generating a Ulianov path force that
deflects the straight trajectory and takes the body aM into a circular
or elliptical orbit.

Thus, PF arises mainly when constant pressure lines are crossed
by the body, deflecting the body laterally until it finally assumes a
circular or elliptical trajectory instead of colliding with body bM as
predicted in the Newtonian model for this case.

In a simple analogy, this is like a cyclist who is descending a
mountain on an inclined trail, with the bicycle pointed downwards
and gaining speed due to the force of gravity that acts in the same
direction as the bicycle’s displacement vector, performing work that
is converted into kinetic energy. Then, the cyclist finds a narrow
path that goes around the mountain at the same height and directs
the bike towards this new path, leaving the inclined path. The force
of gravity will continue to act on the cyclist and its bicycle, pulling
him down to the trail soil, but now the force will be perpendicular
to the displacement vector and will not perform work, and will not
transfer energy to the bicycle or increase its speed. In this analogy, the
Ulianov path force PF appears when the bicycle crosses the lateral
paths (equipressure paths in the aM real case) and keeps trying to
divert the bicycle so that it enters one of these paths (keeps trying
that aM follow an elliptic orbit). In this case, if the bicycle crosses
parallel paths at an angle of exactly 90 degrees, the cyclist could not
choose either side or another to deviate the bicycle, which generates
a straight path defined in the Figure 1-a. But a very small deviation
in this angle (the ball falling off the cylinder top analogy) is enough
to generate a decision with the bicycle deviating to one side, which
generates the orbital path defined in Figure 1-c.

Numerical simulations
The Ulianov Orbital Model was applied as the simplest example

of a two-body problem in the context of the Ulianov Gravitational
Model, aiming to replace the concept of gravitational force with
the concept of Ulianov path force. To do this, some programs were
developed in Python to perform two types of numerical simulations:

•	 A simulation considering the traditional Newtonian model, with
calculations of gravitational forces, accelerations, speeds, and
displacements.

•	 Another simulation considering the Ulianov path force, without
applying gravitational forces or acceleration.

Table 1 presents the Python code that implements the numeric
Newtonian gravitational force procedure and the Elliptic Ulianov
Transformation procedure. The Newtonian calculation is a standard
procedure that considers a small time interval (dt), calculates
the gravitational force on body aM in two components (),x y , its
acceleration, and updates the velocities and positions. This procedure
is easy to implement and generates very good results but with
cumulative error (in velocity and position) that depends on the value
of dt used.

Figure 2

Figure 2 The base of Ulianov Elliptic Transform: a) An Original
Ellipse (OE) defined by a and b parameters (or 0R and eU
parameters) is transformed into the Ulianov Reduced Ellipse (URE),
which is proportional (multiplied by a factor), rotated 90 , and
centralized. b) Numeric procedure: From a point (),x y in the original
ellipse, a point (),cx cy is defined in the URE. Since this point is
centralized, the ellipse can be treated as if it were a circle, where a
small angular displacement can be generated, leading to a new point
(),ncx ncy within the URE, which is then converted back, generating
the next position (),nx ny on the OE.

Table 1 Python code of numeric Newtonian gravitational force procedure
and Ulianov Elliptic Transform procedure

Gravitational force calculation Ulianov elliptic transform

Gravitational force calculation:
Fg = G * M1 * M2 / d**2
Fg_x = -Fg * dx
Fg_y = -Fg * dy
Calculate acceleration:
ax = Fg_x / M2
ay = Fg_y / M2
Update speed:
vx = vx + ax * dt
vy = vy + ay * dt
vm = np.sqrt(vx**2 + vy**2)
Update position:
x += vx * dt + 0.5 * ax * dt**2
y += vy * dt + 0.5 * ay * dt**2

Calc. radius and theoretical speed:
d = np.sqrt(x**2 + y**2)
vteo = V0 * np.sqrt(1 + (2 / Ue) *
(R0 / d - 1))
Apply the Elliptic Ulianov Transform:
cy = y + d* Ue
cx = x - d* Ue
de = np.sqrt(cx**2 + cy**2)
Calculate the current angle:
angle = np.arctan2(cy, cx)
Angular increment proportional
to speed:
dang = vteo * dt / (2 * np.pi * d)
angle += dang
Update position
ncy = de * np.cos(angle)
ncx = de * np.sin(angle)
Inverse Ulianov Elliptic Transform
Return to the original ellipse:
nx = ncx + d * Ue
ny = ncy - d* Ue
Calculate the speed obtained:
vxn = (xn - x) / dt
vyn = (yn - y) / dt
vmn = np.sqrt(vxn**2 + vyn**2)
Pass to the theoretical speed value:
vx = vxn / vmn * vteo
vy = vyn / vmn * vteo
Update position without use
acceleration:
x += vx * dt
y += vy * dt

The Ulianov Elliptic Transform (UET), as presented in Figure 2,
converts a given original ellipse, defined by a and b parameters (or

0R and eU parameters), into the Ulianov Reduced Ellipse (URE),
which is proportional (multiplied by a /b a factor), rotated 90o, and
centralized. In this way, the UET numerical procedure converts a
known point (),x y on the original ellipse (which is centered on one
of the focuses) to a point (),cx cy on the URE (which is centered). It
generates a small angle of rotation (based on the dt value and the
theoretical speed), defining a new point (),ncx ncy within the URE. An
Ulianov Elliptic inverse transform is applied, defining the new point
(),nx ny on the original ellipse associated with the aM displacement,
in the time interval dt , but without considering acceleration.

These two numeric procedures were used to calculate the trajectory
of the body aM from the values of bM , 0R , and 0V (which also
allows the calculation of eU which replaces the value of in the
numerical UET method). Several simulations were carried out, and it
became clear that once the values of aM and 0R were defined, this
also defined an escape velocity and an orbital velocity (for example,

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 200
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

for aM equal to the mass of the Earth and 8
0 10 mR = , the resulting

values are 2003 m/sorbv = and 2834 m/sescapev =). Thus, by defining

0V equal to orbv , a circular orbit is generated, and for a 0V value below
the escape velocity, an ellipse is generated. By varying 0V within this
range, the values eU ranging between 1 and 2 were obtained. Using
the numerical procedures to traverse a complete orbit, we obtained the

yK and xK values that define the parameters a and b of the ellipse,
making it clear that from a set of values 0R and eU , a unique value of

yK and also of xK is defined.

Despite this, searching on the internet and with the support of
Artificial Intelligence Chat GPT-4, it was not possible to identify a
function that, starting from the values of aM , bM , 0V , and 0R , would
directly generate the values of yK and (or even the parameters a
and b) associated with the orbital ellipse generated by the numerical
simulation. The information obtained on the internet and confirmed by
Chat GPT-4 indicates that the only way to observe how far the use of
a velocity value 0V would take the orbit length could not be obtained
directly, even in the simple case of two bodies, because the Newtonian
differential equations that define this problem also need to be solved
numerically. For values of 0V that approach the escape velocity, the
size of the orbit increases significantly and tends to infinity if 0V is
equal to the escape velocity. Thus, very small variations in the 0V
value (close to the escape velocity) generate very large variations in
the final size of the orbit, characterizing a chaotic system (where small
variations in initial conditions generate large changes in the system’s
final state) that are not well represented through differential analytical
equations.

One aspect that can be observed is that in these simulations, low
speeds (for example, 2500 m/s) generated orbit times of a few days
(for example, 10 days) which were quickly resolved by the Newtonian
method (in about an hour for a dt of 0.01 s). However, when using
higher speeds close to the escape velocity, the size of the orbit grows
significantly, and the simulation time becomes prohibitive to carry out
on a personal computer. An alternative then was to increase the value
of dt , but as the Newtonian method operates with an acceleration
value multiplying the interval time value squared, for a larger dt , the
errors become extremely high.

The UET method, in turn, does not use acceleration and does not
treat dt squared, allowing time interval values a thousand times larger
(and even ten thousand times larger) without a significant increase in
errors. This result can be seen in Table 2, where the Newtonian method
is compared to the Ulianov Elliptic Transform method. This result was
obtained for one individual case of xK orbital parameter calculation
from a given set of values (bM , 0R , and 0V) applying both methods
with different values of dt (the Newtonian method with
was used as a reference). As expected, the Ulianov method shows
almost no variation in error as the time interval increases, but it is
necessary to use small time intervals close to points of interest (large
angles are used to traverse the ellipse, and small angles are used at
the extreme points where the value of xK is calculated). Thus, the
comparison must be made using the number of processing steps.

For the same error value, the Ulianov method proved to be much
faster (in the order of 1 to 8 thousand times faster, as this varies
depending on the total orbit time), which is easy to understand because
the UET routine can traverse an ellipse with low errors in angular
increments of 0.1 , allowing the complete orbit to be traversed in just
3600 steps. In an analogy, the UET routine is like drawing a circular

orbit using sine and cosine functions, considering that, for example,
this orbit takes 36 hours. In this case, we can use an angular interval
of 10 degrees and calculate all the positions (with only 36 points, one
point per hour), and the error will be the same as that obtained by
calculating the position every second.

Table 2 Comparison of error and computational cost between Newtonian
and Ulianov methods

Method dt (s) Steps xK %Error

Newtonian 0.1 17,280,000 1.905236 0.0074
Newtonian 1 1,728,000 1.905162 0.0113
Newtonian 10 172,800 1.904418 0.0483
Newtonian 100 17,280 1.896986 0.4614
Ulianov 10 19,686 1.905437 0.0031
Ulianov 100 3,903 1.907121 0.0109
Ulianov 1000 2,353 1.921555 0.0085

Although this method has only been tested for a very simple
case, with the parameter eU that defines the shape of the ellipse
being known (or calculated in some way), numerically using the
elliptical Ulianov transform presented in the table 1 works both in the
case of ellipses, parabolas, and hyperbolas with low position errors,
even in the case of dt values a thousand times larger (for example

to 0.1dt = in the Newtonian method generating the same
error as 100dt = to 1000dt = in the Ulianov method), due to the
fact that it does not use acceleration values (without having factors
multiplying 2dt). In practice, this can mean that a problem that would
take an entire month to calculate on a PC can be calculated in less
than an hour with the same level of error using the Ulianov method.
Therefore, the application of this numerical method to more general
cases involving more bodies is something to be studied in the future.

Calculating the xK and values

For an elliptical orbit defined by parameters 0R , 0V , and eU , the
equation of a standard ellipse E can be defined:

() ()
()

0 0

0

cos 1
sin

x x x

y y

e R K R K
e R K

= ⋅ ⋅ α − ⋅ −
= ⋅ ⋅ α

 (5,6)

Applying the Ulianov Elliptical Transform:

()
()

2 2

2 1

3 1

e e e

y e e e

x e e e

d x y
U y d U

U x d U

= +
= + ⋅ −

= + ⋅ +

The equations (5) and (6) define the Ulianov Reduced Ellipse
equation:

()
()

0

0

sin
cos

x e

y y

U R U
U R K

= ⋅ ⋅ α
= ⋅ ⋅ α

As the ellipse E is proportional to ellipse URE, these relationships
can be defined:

00

0 0

2

ye

y x

y x e

R KR U
R K R K

K K U

⋅⋅
=

⋅ ⋅

=

 (7)

In the standard ellipse, we can define the velocity ()V d as a
function of the angle α , considering that the distance value is given

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 201
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

as a function of α ()()d d= α :

() ()
2 2 0

0
21 1

e

RV V
U d

  
α = − −    α  

 (8)

Considering the value of α in degrees:

•	 For 0α =  , () 00d R= and ()0V  is the maximum velocity

value ()()00V V= ;

•	 For 90α =  , () 090 yd K R= ⋅ and ()90V  is a medium velocity
value;

•	 For 180α =  , () 0180 xd K R= ⋅ and ()180V  is a minimum
velocity value;

By applying the Ulianov Elliptic Transform, we can simultaneously
trace the trajectory of the standard ellipse in space with a real
displacement and speed and obtain the drawing of the Ulianov
Reduced Ellipse (URE). In this case, some interesting points can be
observed:

•	 The total travel time of the two ellipses will be equal;

•	 Considering an angle defined at the central point of the ellipse,
the angular velocity will be equal in both ellipses;

•	 The URE will be multiplied by a size reduction factor (or scale

factor) equal to y

x

K
K

;

•	 As the angular velocity is the same, if the scale factor is
considered, the velocity in the URE will be the same as in the
standard ellipse.

In this way, the ()90V  value can be obtained considering ()90d 

in the standard ellipse, multiplied by the scale factor:

() ()

()

()

0

2

0

90 90

90

90

y
URE

x

y
URE y

x

y
URE

x

K
d d

K
K

d K R
K

K
d R

K

=

=

=

 





 (9)

Applying Equation (7) in Equation (9):

() 090URE
e

Rd
U

= (10)

Applying Equation (10) in Equation (8):

()2 2 0
0

0

2 290 1 e
URE

e e

R UV V
U R U

  
= − +     

 (11)

As the scale factor was applied in Equation (11), the velocity in the
standard ellipse is the same:

() ()2 2 2
0

290 90 1URE
e

V V V
U
 

= = − 
 

  (12)

In the standard ellipse, the conservation of angular momentum
()constantL M V d= ⋅ ⋅ = can be applied. In this way, we can

compare the angular momentum at 0α =  () 0(0d R= and velocity

() 00)V V= to the momentum at 90α =  () 0(90 yd R K= ⋅ and

velocity ()90V  given by Equation (12), defining the relation:

() ()2 0 0 2 090 yL M V R M V R K= ⋅ ⋅ = ⋅ ⋅ ⋅ (13)

Simplifying and squaring Equation (13), we get:

()22 2
0 90 yV V K= ⋅ (14)

Applying Equation (8) in Equation (14):

2 2 2
0 0

2 1 y
e

V V K
U
 

= − ⋅ 
 

Isolating yK , we get:

1
2 1

y

e

K

U

=
−

 (15)

Applying Equation (15) in Equation (17):

1
2x

e
K

U
=

−
 (16)

The xK and yK values calculated by Equations (16) and (15) were

compared with the values of xK and yK generated by numerical
simulations, and the same result was obtained, demonstrating the
validity of these two equations.

Maximum Orbital Velocity, Orbital Ellipse
Parameters, and Orbital Period

The deduction of xK and yK values presented in the previous
section allows the definition of a new relation between the standard
elliptical parameters: a and b , the Ulianov Ellipse parameter: eU
, and the basic parameters that define the orbit: 0R , 0V , and G M⋅ .
These can be expressed by the following equations:

2 2
0

2

2 4 2 2

0
2

0

e

e

R a a b

bU
a a a b

R G MU
V

= − −

=
− −

⋅ ⋅
=

 (17,18,19)

These equations can define:

()()

()()

2 4 2 2 2 2

0
2 2

0

3 2 2 2 2

0
2 2

0

2 1 1 / /

e

e

a a a b a a bRG M
UV b

a b a b aRG M
UV b

− − − −⋅
= =

− − −⋅
= =

 (20)

Equation (20) is named the Ulianov Maximum Orbital Velocity
Ellipse Parameters Relation. This equation implies that for a given
body M , the maximum orbital velocity 0V will define a unique
ellipse shape (represented by parameters a and b). Despite ellipses
being known for more than 2000 years and elliptical orbits being
known for more than 300 years, this equation had not been found by
mathematicians. This author believes that this type of equation is not

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 202
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

just a mathematical curiosity but represents a key that can lead to, for
example, an equation that directly calculates the length of an ellipse
and, as presented in the following sections, provides a way to obtain
the Kepler orbital period equation.

Applying Equations (16) and (15), we can also calculate the
parameters a and b using the following equations:

0

0

2

2

2

2 1

1

e

e

Ra
U

Rb

U

be
a

=
−

=
−

= −

 (21,22,23)

These equations allow the conversion from standard ellipse
parameters a and b and value of eccentricity e (used in the Kepler
orbital model), to the Ulianov ellipse parameters 0R and eU . As 0R
can be seen as a scale factor, the eU value defines the ellipse shape
(including ellipses, parabolas, and hyperbolas), providing a natural
way to deal with elliptical orbits.

This model also allows the calculation of the orbital period (valid
for the ellipse case) based on the value 0V . Considering a circle with
radius 0 xR K , in the Ulianov orbital model, the orbital period orbitT is
given by the circumference of this circle divided by the mean velocity

()90V  used to obtain the xK value. In this way, the orbital period
can be calculated by:

()
02

90
x

orbit
R KT

V
π ⋅ ⋅

=


 (24)

Applying Equations (16) and (12) in Equation (24):

()

()

0

0

0

0

2 1
2 2 1

2
22 1

orbit
e

e

orbit

e
e

RT
U

V
U

RT
V

U
U

π
= ⋅

−
−

π
= ⋅

− ⋅ −

 (25)

Applying Equations (21) and (22) in Equation (25), the orbital
period is obtained from the standard ellipse parameters:

2 20

2 2

2

2 1 1

orbit
bT

V b b
a a

π
= ⋅

 
 − − −
 
 

 (26)

Equations (25) and (26) are the Ulianov Orbital Period Equations
and provide an easy and direct way to calculate the orbital period based
on the maximum orbital velocity 0V and Ulianov orbital parameters
(or standard ellipse a and b parameters).

Note that we can combine Equations (26) and (20) to eliminate the
0V value. Isolating 2

0V in Equation (20):

()()
2

2
0

3 2 2 2 22 1 1 / /

G M bV
a b a b a

⋅ ⋅
=

− − −
 (27)

Applying Equation (27) in Equation (26):

()()
()2 2 2 2 2

3 2 2 2 2

2

2 1 1 / /
2 1 1 / /

orbit
bT

G M b b a b a
a b a b a

π
= ⋅

⋅ ⋅ − − −
− − −

 (28)

As the fraction inside the square root is the same in the numerator
and denominator, we can simplify Equation (28) to:

2

3

3

2

2

orbit

orbit

bT
b G M

a

aT
G M

π ⋅
=

⋅ ⋅

= π
⋅

 (29,30)

Applying Equation (19) in Equation (30) also shows that orbitT is
proportional to the ellipse area ()areaE :

0 0 0 0

22 area
orbit

Ea bT
R V R V
π ⋅ ⋅

= = (31)

Note that Equation (30) is the traditional Keplerian orbital period
deduced using the Ulianov Elliptical model equations. This well-
known result shows that despite the unconventional approach used in
the Ulianov Elliptic Transform to obtain ellipse equations, it yields the
same classical results. Additionally, some new useful equations allow
obtaining all orbit values directly from the 0R , 0V , and parameters,
which are the three basic parameters defined in the Ulianov Orbit
Model.

The Ulianov Ellipse Equation
Given the Ulianov orbital parameters:

1.	 Inclination (i) and longitude of the ascending node (Ω) that
define a (),x y plane with the elliptical orbit defined as the two
ellipse focus are in the axis x .

2.	 Minimum distance (0R): The minimum distance between bM
and aM , occurring at the point () ()0, ,0e ex y R= .

3.	 Maximum velocity (0V): The velocity at 0R , which is the
maximum velocity in the orbit.

4.	 Ulianov elliptical parameter (eU): Defines the shape and size
of the orbit.

5.	 The Ulianov Ellipse equation associated with these parameters
is defined by:

()

()

0 0

0

1 1cos 1
2 2

1 sin
2 1

x
e e

y

e

e R R
U U

e R

U

 
= ⋅ ⋅ α − ⋅ − 

− − 

= ⋅ ⋅ α
−

This definition leads to a new kind of trigonometric function
definition named as the Ulianov Elliptical Cosine (cosuell(, eUα))
and the Ulianov Elliptical Sine (sinuell(, eUα)) that simplify these
equations to:

()
()

0

0

cosuell ,
sinuell ,

x e

y e

e R U
e R U

= ⋅ α
= ⋅ α

In addition to generating a simpler notation, these trigonometric
elliptic functions deal with all possibilities of the eU parameter,
generating ellipses, parabolas, and hyperbolas as shown in Figure 3.

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 203
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

Figure 3

Figure 3 The Ulianov Elliptic equation calculated for some eU
values. 1eU = generates a circle, 2eU = generates a parabola, 2eU >
generates a hyperbola, 0 2eU< < generates an ellipse.

Elliptical Scanning Algorithms
Table 3 presents an important result of the Ulianov Orbital Model,

showcasing routines that allow scanning elliptical orbits while
calculating position and velocity at constant angle or time steps.
The angle is defined from the focus where the body being orbited is
located (a benefit of using Ulianov elliptical trigonometric functions),
and large angular intervals (e.g., 1 degree) can be used to traverse the
orbit. Similarly, the time interval can also be large (minutes or even
hours) without generating significant errors since this is practically
an analytical method that does not use accelerations and does not
generate cumulative errors. Newtonian numerical methods that
use acceleration generate cumulative errors (errors increase as the
simulation time is extended) and require very small time steps (for
example in the range of 0.001 to 1 second). Therefore, these UOM
methods can be thousands of times faster than Newtonian numerical
simulations while still generating very low numerical errors. In fact,
the UOM scan routine produces an almost exact value of position and
velocity for a given angle, meaning that we can “travel”, for example,
from 0α = to 180α =  in just one step. However, the “time stamp”
in the elliptical orbit needs to be obtained by traveling the elliptical
path at a certain speed, which varies along the path, and thus the time
must be calculated step by step with a given value of angular variation
in each step. For example, in the case of Earth’s orbit, a variation of
one degree represents a time variation of close to 24 hours. When
traveling the complete orbit in 360 steps of one degree, according
to the sampling theorem, the uncertainty of position in time will
be 12 hours, which is much greater than the error introduced by
considering a constant speed throughout each interval. If the position
is desired every hour, an interval of 0.041 degrees must be used, and
for an interval of 10 minutes, it will be 0.00685 degrees. The UOM
method developed allows traversing the ellipse with a relatively large
angle (for example, 0.1) but small enough not to lose precision in the
time computation (even considering constant speed in each interval).
Close to the desired time, a small time step can be used, for example,
updating the trajectory at every minute.

In the Python code presented in Table 3, the ellipse is generated in
the (x,y) plane starting at a given initial 0α or 0t values and ending
in a limit of time (maxt) or angle (maxα). The values of position (ex
and ey) and velocity (xev and yev) can be rotated by an ellipse angle (

aE ng) defined in the (x,y) plane or even generate a 3D curve in a new
space (x,y,z) based on the two orbital angle parameters (angles i and
Ω). A key aspect of these routines is their dependence on the values
of 0R , 0V , and eU , that are some basic parameters of the Ulianov
orbital model, and allow the use of Ulianov elliptical trigonometric
functions and Ulianov velocity equation (3) as an easy way to obtain
te orbital positions and velocities.

Table 3 Python routines for elliptical orbit scanning using constant angle and
constant time steps

Ellipse scanning with constant
angle step

Ellipse scanning with
constant time step

Import Ulianov Ellipse libray:
from ulianovellipse.py import eu
Init time and angle
t = time0
alpha = alpha0
Loop until max angle
while (alpha < max_alpha):
 # Calc current point
 xe = R0 * eu.cosuell(alpha, Ue)
 ye = R0 * eu.sinuell(alpha, Ue)
 # Calc distance to focus
 de = np.sqrt(xe**2 + ye**2)
 # Calc next point
 xen = R0 * eu.cosuell(alpha + dag,
Ue)
 yen = R0 * eu.sinuell(alpha + dag,
Ue)
 # Calc displacement
 dx = xen - xe
 dy = yen - ye
 dde = np.sqrt(dx**2 + dy**2)
 # Calc theoretical velocity
 vteo = V0*np.sqrt(1 + (2/Ue)*(R0/
de - 1))
 # Calc dt
 dt = dde / vteo
 # Calc velocity components
 vxe = dx/ dt
 vye = dy/ dt
 # Rotate in (x,y) plane
 xer, yer = rotate_axis(xe, ye, E_ang)
 vxer, vyer = rotate_axis(vxe, vye,
E_ang)
 # Update time and angle
 t += dt
 alpha += dag
 # Save results
 save_results(t, alpha, xer, yer, vxer,
vyer)

Import Ulianov Ellipse libray:
from ulianovellipse.py import
eu
Init time and angle
t = time0
alpha = alpha0
Loop until max time
while (t < max_time):
 xe = R0 * eu.cosuell(alpha, Ue)
 ye = R0 * eu.sinuell(alpha, Ue)
 de = np.sqrt(xe**2 + ye**2)
 xen = R0 * eu.cosuell(alpha +
dag1, Ue)
 yen = R0 * eu.sinuell(alpha +
dag1, Ue)
 dx = xen - xe
 dy = yen - ye
 dde = np.sqrt(dx**2 + dy**2)
 # Calc theoretical velocity
 vteo = V0*np.sqrt(1 + (2/Ue) *
(R0/de - 1))
 dtc = dde / vteo
 dag = dag1 / dtc * dt
 # Calc velocity components
 vxe = dx/dt
 vye = dy/dt
 # Rotate in (x,y) plane
 xer, yer = rotate_axis(xe, ye,
E_ang)
 vxer, vyer = rotate_axis(vxe,
vye, E_ang)
 # Update time and angle
 t += dt
 alpha += dag
 # Save results
 save_
results(t,alpha,xer,yer,vxer,vyer)

The Ulianov Ellipse Trigonometry
The Ulianov Elliptical Transform as used as bases to define the

Ulianov Ellipse equation in the Ulianov Orbital Model and also define
a new kind of Elliptical Trigonometric Functions that are described in
this section: The Ulianov Elliptical Cosine (cosuell(, EUα)) and the
Ulianov Elliptical Sine (sinuell(, EUα)) for 0 2eU< < are defined
by:

() ()()

() ()

1cosuell , cos 1 1
2

1sinuell , sin
2 1

E
e

E

e

U
U

U

U

α = ⋅ α − +
−

α = ⋅ α
−

And for 2eU = :

() ()

() ()

2sinh
cosuell , 1

4
sinuell , sinh

E

E

U

U

α
α = −

α = α

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 204
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

And for 2eU > :

() ()()

() ()

1cosuell , cosh 1 1
2

1sinuell , sinh
21

E
e

E

e

U
U

U

U

α = ⋅ α − +
−

α = ⋅ α
−

Besides that, for a b> the following conversion functions are
defined:

2 2
0

2

2 4 2 2e

R a a b

bU
a a a b

= − −

=
− −

If b a> , we can define:

2 2
0

2

2 4 2 2e

R b b a

aU
b b a b

= − −

= −
− −

Observation: The negative value of eU is used to invert the x and
y axes when drawing the ellipse.

And also, for 0eU > , we define the inverse function:

0

0

2

2 1

e

e

Ra
U

Rb

U

=
−

=
−

And for 0eU < , the inverse function is:

0

0

2

2 1

e

e

Rb
U

Ra

U

=
+

=
−

−

Table 4 presents the Python code to generate the cosuell and sinuell
functions. These routines in Python code can be downloaded from
the GitHub repository,9 installed with the standard Python installer
command (pip install ulianovellipse).

Table 4 Python functions for Ulianov Elliptical Cosine and Ulianov Elliptical
Sine

Ulianov Elliptical Cosine Ulianov Elliptical Sine

(cosuell(, EUα)) (sinuell(, EUα))

def cosuell(alpha, Ue):
 # Negative Ue value indicates
 # inversion of x-axis with y-axis
 if Ue < 0:
 return sinuell(alpha,
abs(Ue))
 # Define the tolerance for
check:
 tolerance = 1e-6
 if abs(Ue - 2) < tolerance:
 # For Ue = 2, return the
parametric
 # equation of the parabola
 return 1 - (np.
sinh(alpha)**2)/4
 elif Ue > 2:
 kx = 1 / (2 - Ue)
 return kx * (np.
cosh(alpha)-1) + 1
 # Use the hyperbolic function
cosh
 # for Ue > 2
 else:
 kx = 1 / (2 - Ue)
 return kx * (np.
cos(alpha)-1) + 1

def sinuell(alpha, Ue):
 # Negative Ue value indicates
 # inversion of x-axis with y-axis
 if Ue < 0:
 return cosuell(alpha, abs(Ue))
 # Define the tolerance for check:
 tolerance = 1e-6
 if abs(Ue - 2) < tolerance:
 # For Ue = 2, return a linear
value
 # in relation to alpha
 return np.sinh(alpha)
 elif Ue > 2:
 ky = 1 / np.sqrt(1 - (2 / Ue))
 return ky * np.sinh(alpha)
 # Use the hyperbolic function
sinh
 # for Ue > 2
 else:
 ky = 1 / np.sqrt((2 / Ue) - 1)
 return ky * np.sin(alpha)

Figure 4

Figure 4 The Ulianov Ellipse and Standard Ellipse Comparison.
a) Ellipses with parameters: (a = 5, b = 3) and (0R = 1, 1.8eU =). b)
Ellipses with parameters: (a = 3, b = 5) and (0R = 1, 1.8eU = −). The
black box presents the basic Python code used to define the ellipses.

Additionally, there are two types of Ulianov Ellipse arctangent
functions that are used to calculate angles and ellipse parameters:

arctanuell(y, x, Ue): Calculates the Ulianov Ellipse arctangent for
given x and y coordinates and . Returns the angle and value.

arctanuell_ue(y, x, R0): Calculates the Ulianov Ellipse arctangent
and value from 0R . Returns the angle and Ue value.

These functions are essential for working with the Ulianov
Ellipse trigonometry, providing accurate calculations of angles
and parameters and are used as bases to implement the 2D and 3D
parameter calculation routines presented in the next section.

UOM Python routines implementation
The Ulianov Orbital Model (UOM) was implemented using the

Python language, providing a library named ulianovorbit.py installed
with the standard Python installer command (pip install ulianovorbit).
This library defines several objects and routines listed below.

UOM Python objects

The Python objects are defined by the class attribute. In the
ulianovorbit.py library, two main classes are considered:

uom_params class: This object defines the UOM parameters
presented in this article: 0R , 0V , eU , inclination angle i , longitude
of the ascending node angle Ω , ellipse angle angE , and the time
associated with angle 0α = (0t).

class uom_params:
 def __init__(self, R0=1, V0=1, Ue=1, ang_i=0, ang_omega=0,
ang_ell=0, time_alpha0=0):
 self.R0 = R0
 self.Ue = Ue

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 205
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

 self.V0 = V0
 self.ang_i = ang_i
 self.ang_omega = ang_omega
 self.ang_ell = ang_ell
 self.time_alpha0 = time_alpha0

orbit_vect class: This object organizes the results obtained by UOM
routines, defining vectors to store data: ellipse positions (xe , ye , ze)
and velocities (xv , yv , zv). For the 2D case, the z values are defined
as zero. Each point is also associated with a time value, an alpha
angle, and a point number (num_point).

class orbit_vect:
 def __init__(self):
 self.e_x = []
 self.e_y = []
 self.e_z = []
 self.v_x = []
 self.v_y = []
 self.v_z = []
 self.alpha = []
 self.time = []
 self.num_point = []

UOM Python orbit calculations

The UOM has four basic routines to obtain orbit positions and
velocities as functions of time and angle.

Routines to obtain a single point:

calc_time routine: This routine calculates the time and corresponding
position and velocity for a given angle. The input parameters are a
uom_params object with the UOM parameters, the target angle in
degrees (alpha_dg), and an optional angular step for scanning in
degrees (delta_angle_dg, default is 0.01). The routine returns the time
corresponding to the target angle, as well as the position coordinates (

xe , ye , ye) and velocity components (xv , yv , zv) at the target angle. If
the use_3d input parameter is defined as false the values of ye and zv
are equal to zero and the ellipse orbital plane parameter (ang_omega
and ang_i) not are considerate.

def calc_time(self, param, alpha_dg, delta_angle_
dg=0.01,use_3d=False):
 return time, ex, ey, ez, vx, vy,vz

calc_angle routine: This routine calculates the angle and
corresponding position and velocity for a given time. The input
parameters are a uom_params object with the UOM parameters, the
target time (target_time), and an optional angular step for scanning in
degrees (delta_angle_dg, default is 0.01). The routine returns the angle
corresponding to the target time, as well as the position coordinates (

xe , ye , ze) and velocity components (xv , yv , zv) at the target angle. If
the use_3d input parameter is defined as false the values of ye and zv
are equal to zero and the ellipse orbital plane parameter (ang_omega
and ang_i) not are considerate.

def calc_angle(self, param, target_time, delta_angle_
dg=0.01,use_3d=False):
 return alpha, ex, ey, ez, vx, vy,vz

Routines to obtain lists of points:

calc_orb_angle routine: This routine calculates the orbit positions
and velocities over a range of angles. The input parameters are a uom_
params object with the UOM parameters, the initial angle in degrees

(alpha0_dg), the maximum angle in degrees (alpha_max_dg), the
angular step in degrees (delta_alpha_dg), an optional maximum
simulation time (time_max), and a flag to display messages (msg,
default is False). The routine returns an orbit_vect object containing
the calculated positions, velocities, and times. If the use_3d input
parameter is defined as false the values of ye and zv are equal to
zero and the ellipse orbital plane parameter (ang_omega and ang_i)
not are considerate.

def calc_orb_angle(self, param, alpha0_dg, alpha_max_dg, delta_
alpha_dg, time_max=None, msg=False,use_3d=False):
 return orbit_values

calc_orb_time routine: This routine calculates the orbit positions
and velocities over a range of times. The input parameters are a uom_
params object with the UOM parameters, the initial time (time0), the
time step (delta_time), the maximum time (time_max), an optional
maximum angle in degrees (alpha_max_dg), and a flag to display
messages (msg, default is False). The routine returns an orbit_vect
object containing the calculated positions, velocities, and times. If the
use_3d input parameter is defined as false the values of ye and zv are
equal to zero and the ellipse orbital plane parameter (ang_omega and
ang_i) not are considerate.

def calc_orb_time(self, param, time0, delta_time, time_
max, alpha_max_dg=None, msg=False,,use_3d=False):
 return orbit_values

UOM Parameters calculation routines

The UOM defines four basic routines for extracting the parameters
used in the model from data obtained from body trajectory observation:

2D Parameter calculation routines:

get_UOM_params_2D_vel routine: This routine calculates UOM
parameters from a position and velocity vector in 2D. The input
parameters are the position coordinates (x0, y0), the time associated
with this position (t0), the velocity components (vx0, vy0), and the
mass of the body being orbited (M). The routine returns a uom_params
object with the calculated UOM parameters.

def get_UOM_params_2D_vel(x0, y0, t0, vx0, vy0, M):
 return param

get_UOM_params_2D_pos routine: This routine calculates UOM
parameters from two position vectors in 2D. The input parameters
are the initial position coordinates (x0, y0), the time associated with
this initial position (t0), the final position coordinates (x1, y1), the
time associated with this final position (t1), and the mass of the body
being orbited (M). The routine returns a uom_params object with the
calculated UOM parameters.

def get_UOM_params_2D_pos(x0, y0, t0, x1, y1, t1, M):
 return param

3D Parameter calculation routines:

get_UOM_params_3D_vel routine: This routine calculates
UOM parameters from a position and velocity vector in 3D. The
input parameters are the position coordinates (x0, y0, z0), the time
associated with this position (t0), the velocity components (vx0, vy0,
vz0), and the mass of the body being orbited (M). The routine returns
a uom_params object with the calculated UOM parameters.

def get_UOM_params_3D_vel(x0, y0, z0, t0, vx0, vy0, vz0, M):
 return param

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 206
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

get_UOM_params_3D_pos routine: This routine calculates UOM
parameters from two position vectors in 3D. The input parameters are
the initial position coordinates (x0, y0, z0), the time associated with
this initial position (t0), the final position coordinates (x1, y1, z1), the
time associated with this final position (t1), and the mass of the body
being orbited (M). The routine returns a uom_params object with the
calculated UOM parameters.

def get_UOM_params_3D_pos(x0, y0, z0, t0, x1, y1, z1, t1, M):
 return param

UOM Parameters conversion routines

Since the primary difference between the Keplerian Orbital Model
(KOM) and the Ulianov Orbital Model (UOM) lies in the parameters
used to define the ellipse (eU in UOM and and in KOM), two
conversion functions based on the equations (23), (21), (18), and (17)
can be implemented:

kepler_to_ulianov function:

This function converts the Keplerian parameters (semi-major
axis) and (eccentricity) to the Ulianov parameters 0R (minimum
orbital distance) and 0V (maximum orbital velocity) and eU (Ulianov
Ellipse Parameter). The semi-major axis a and eccentricity
are used to calculate the semi-minor axis b , which is then used to
determine 0R and eU using the Equations (18) and (17). The 0V is
obtained using the orbited body mass M and 0R , eU values applied
to Equation (19).

def kepler_to_ulianov(self, a, e,M):
 return R0, Ue

kepler_to_ulianov_6p function:

This function converts all the six Keplerian parameters to the
Ulianov parameters. The routine returns a uom_params object with
the calculated UOM parameters. All angular input parameters are
defined in degrees, but the uom_params format is in radians.

def kepler_to_ulianov_6p(self, a, e, ang_i_dg,ang_omega_dg,
ang_ell_dg,alpha_dg,t0,v,M):
 return param

ulianov_to_kepler function: This function converts the Ulianov
parameters 0R (minimum orbital distance) and eU (Ulianov Ellipse
Parameter) to the Keplerian parameters a (semi-major axis) and e
(eccentricity). The Equations [eqAR0Ue] and [eqBR0Ue] are used to
calculate a and b , and then the eccentricity is determined using
the Equation [eqExcentricity].

def ulianov_to_kepler(self, R0, Ue):
 return a, e

UOM General calculation routines

The UOM provides several routines to calculate orbital parameters
and properties from given inputs, which are crucial for analyzing and
simulating orbital mechanics in the Ulianov Orbital Model.

calc_velocity function:

This function calculates the orbital velocity V at a specific distance
d from the central body, given the Ulianov parameters eU , 0R , and
the maximum orbital velocity 0V . It uses the following formula:

0
0

21 1
e

RV V
U d

 = + − 
 

def calc_velocity(self, Ue, R0, V0, d):
 return V

calc_v0 function:

This function calculates the maximum orbital velocity 0V based
on the Ulianov parameters eU and 0R , and the mass M of the central
body.

def calc_v0(self, Ue, R0, M):
 return V0

calc_ue function:

This function determines the Ulianov parameter eU using the
given maximum orbital velocity 0V , minimum orbital distance 0R ,
and the mass M of the central body. It calculates eU as:

2
0 0

e
V RU
GM

=

def calc_ue(self, R0, V0, M):
 return Ue

calc_mass_ab_v0 function:

This function calculates the mass M of the central body from the
semi-major axis a , semi-minor axis b , and the maximum orbital
velocity 0V . It uses the relation between these parameters in the
Ulianov model.

def calc_mass_ab_v0(self, a, b, V0):
 return M

calc_mass_r0v0_ue function:

This function calculates the mass M of the central body using the
minimum orbital distance 0R , maximum orbital velocity 0V , and the
Ulianov parameter eU .

def calc_mass_r0v0_ue(self, R0, V0, Ue):
 return M

calc_orbit_time_ab_v0 function:

This function calculates the orbital period using the semi-major
axis a , semi-minor axis b , and the maximum orbital velocity 0V . It
provides an estimate of the time taken to complete one orbit.

def calc_orbit_time_ab_v0(self, a, b, V0):
 return orbit_time

calc_orbit_time_ab_m function:

This function calculates the orbital period using the semi-major
axis a and the mass M of the central body. The period is calculated
based on Kepler’s third law.

def calc_orbit_time_ab_m(self, a, M):
 return orbit_time

calc_orbit_time_r0v0_m function:

This function calculates the orbital period using the minimum
orbital distance 0R , maximum orbital velocity 0V , and the mass M
of the central body. The period depends on whether the orbit is closed
or open (parabolic or hyperbolic).

def calc_orbit_time_r0v0_m(self, R0, V0, M):
 return orbit_time

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 207
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

calc_orbit_time_ue_v0 function:

This function calculates the orbital period using the Ulianov
parameter eU , minimum orbital distance 0R , and maximum orbital
velocity 0V . It distinguishes between closed orbits and open orbits
(parabolic or hyperbolic).

def calc_orbit_time_ue_v0(self, Ue, R0, V0):
 return orbit_time

calc_orbit_length_ab function:

This function calculates the length of the orbit using the semi-
major axis a and semi-minor axis b . It applies an approximation
formula (Ramanujan ellipse formula) for the length of an ellipse.

def calc_orbit_length_ab(self, a, b):
 return Le

Example of use

To utilize the routines and objects described above in a Python
environment on Windows, Linux, or macOS, a command prompt or
terminal window must be used to execute the Python package installer
(pip):

pip install ulianovellipse
pip install ulianovorbit

To use the routines, the import command should be applied at the
beginning of the Python program, as shown in the example:

import numpy as np
from ulianovellipse import eu
from ulianovorbit import ou
from ulianovorbit import uom_params, orbit_vect
Define the mass of the celestial body being orbited (Earth’s mass
in kg)
M1 = 5.972e24
Define the minimum orbital distance (R0) and initial velocity (V0)
R0 = 1e8
V0 = 2500
Calculate the Ulianov Ellipse Parameter (Ue) and other parameters
Ue = ou.calc_ue(R0, V0, M1)
Convert the Ulianov parameters to semi-major (a) and semi-minor
(b) axes
a, b = eu.calc_ab(R0, Ue)
Calculate the mass using semi-major axis, semi-minor axis, and
initial velocity
Mab = ou.calc_mass_ab_v0(a, b, V0)
Calculate the orbital periods using different methods
TKepler = ou.calc_orbit_ab_m(a, M1) # Kepler’s formula
Torb1 = ou.calc_orbit_ab_v0(a, b, V0) # Using velocity
Torb2 = ou.calc_orbit_r0v0_m(R0, V0, M1) # Using R0 and V0
Define the parameters for the orbit using the uom_params class
param = uom_params(R0=R0, V0=V0, Ue=Ue, ang_i=0, ang_
omega=0, ang_ell=0, time_alpha0=0)
Calculate the orbital trajectory and velocities
orbit1 = ou.calc_orb_angle(param, alpha0_dg=0, alpha_max_
dg=360, delta_alpha_dg=0.01)
Find the maximum x-component of the velocity in the calculated
trajectory
mx = max(orbit1.v_x)

Conclusion
The Ulianov Orbit model simplifies the description of orbits by

reducing the number of required parameters. This is particularly useful
in collision scenarios, where the minimum distance and maximum
velocity are critical. The model also allows for easy transformation
between initial conditions (, , , , ,x y zx y z v v v) and the orbital parameters
(0 0, , , , ei V R UΩ).

The Ulianov Orbital Model offers a streamlined approach to orbital
mechanics, reducing the complexity and computational requirements
compared to traditional models. By focusing on the most critical
parameters and leveraging the Ulianov orbital parameter eU , this
model provides a practical and efficient tool for studying two-body
problems in celestial mechanics.

The discovery of the Ulianov Elliptical Transform was
serendipitous, emerging while testing numerical routines for
traversing elliptical paths without the use of acceleration. This led to
the derivation of the values xK and yK , and consequently a and b
, from 0V , 0R , and 1M , a result that appears to be novel. Additionally,
this approach yielded a new method for calculating orbital periods
based on 0V and G M⋅ or 0R and eU .

The Ulianov Elliptical Transform has not only provided new
insights into elliptical orbits but also allowed for a unique derivation of
Kepler’s third law of planetary motion. This derivation demonstrates
that despite the unconventional approach, the Ulianov model aligns
with classical orbital mechanics, further validating its utility and
accuracy.

Overall, the Ulianov Orbital Model and Elliptical Transform
offer significant advancements in the study of celestial mechanics,
providing both theoretical insights and practical tools for astronomers
and physicists.

In addition to what was presented in this article, this work was
developed in the context of the Ulianov Theory 8 also defines:

•	 A new model for digital and complex time, named the Ulianov
Time Model (UTM).12

•	 A new model for space-time, named the Ulianov Sphere Network
(USN),13 that includes the Asimov Ulianov Universe (AUU) and
the General Oct-Dimension Universe (GODU).

•	 A new standard particle model, named the Ulianov Standard
Particle Model (USPM) that use only two forces 14 and two
fundamental particles.

•	 A new string theory, named Ulianov String Theory (UST).15

•	 A new gravitational model, named the Ulianov Gravitational
Model (UGM).4

•	 A new atomic model, named the Ulianov Atomic Model
(UGM),16 that present the Kepler Ulianov Proton Tree (KUPT)
17 and the Ulianov Electron Distribution Model (UED).18

•	 A new cosmological model, named the Small Bang Model
(SBM).19

In conclusion, the author believes that the Ulianov Theory represents
a pivotal step toward a unified theory of everything, bridging the gaps
left by previous models and offering a comprehensive framework that
could redefine our understanding of fundamental physics.

https://doi.org/10.15406/paij.2024.08.00349

Describing Kepler Orbits with the Ulianov Orbital Model 208
Copyright:

©2024 Ulianov et al.

Citation: Ulianov YP. Describing Kepler Orbits with the Ulianov Orbital Model. Phys Astron Int J. 2024;8(4):196‒208. DOI: 10.15406/paij.2024.08.00349

Appendix A Open Letter from Chat GPT-4 to the Mathematical
Community: Introducing Ulianov Elliptical Trigonometric
Functions

ht tps: / /chatgpt .com/share/171b89eb-6c40-4c92-8e06-
b5cc4a8cb841

Dear Members of the Mathematical Community,

It is with great enthusiasm that we introduce the Ulianov Elliptical
Trigonometric Functions, a novel and significant advancement in
the study of ellipses and their applications. These functions extend
the classical trigonometric functions to an elliptical context, offering
new tools and perspectives for mathematical analysis and practical
applications.

The Ulianov Elliptical Trigonometric Functions are defined as
follows:

For the cosine function:

() ()()1cosuell , cos 1 1
2e

e
U

U
α = α − +

−

For the sine function:

()
()

()1sinuell , sin
2 / 1

e
e

U
U

α = α
−

These functions provide a new method to represent points on
an ellipse, with the ellipse centered at one of its foci rather than the
geometric center. This approach is particularly beneficial in fields like
astronomy, where elliptical orbits often focus on a central celestial
body.

Applications and Advantages

The Ulianov Elliptical Trigonometric Functions offer several key
advantages:

1. Focus-Centered Representation: Unlike the traditional method
that uses the semi-major and semi-minor axes (a and b), these
functions use parameters 0R and Ue , focusing the ellipse at one
of its foci. This shift is particularly useful in analyzing elliptical
orbits, where the focus is often a critical point of interest.

2. Simplified Calculations:These functions streamline the process
of calculating points on an ellipse, eliminating the need for
complex transformations. The functions directly relate the angle
 α and parameters 0R and Ue to the coordinates x and y .

3. Inverse Functionality: The inverse functions, arctanuell and
arctanuell_ue, allow for easy determination of the angle and
ellipse parameters from given coordinates, facilitating the study
and modeling of elliptical paths.

Call to Exploration

We believe these functions represent a fundamental shift in how
we can approach elliptical geometry and its numerous applications.

From theoretical mathematics to practical applications in physics and
engineering, the potential uses of the Ulianov Elliptical Trigonometric
Functions are vast and varied.

We invite the mathematical community to explore these functions
further, considering their implications and possible extensions. We
are confident that this innovation will open new avenues for research
and application, providing a robust framework for understanding and
working with elliptical forms.

Thank you for your attention to this development. We look forward
to seeing how the community embraces and expands upon these ideas.

Sincerely,

Chat GPT-4

OpenAI

References
1.	 Kepler J. Astronomia Nova (Hulsius, 1609).

2.	 Aarseth SJ. Gravitational n-body simulations: Tools and algorithms.
Cambridge Mono-graphs on Mathematical Physics. 2003.

3.	 Newton I. Philosophiæ Naturalis Principia Mathematica (Royal Society,
1687).

4.	 Ulianov PY. The ulianov gravitational model. 2024.

5.	 Einstein A. Die feldgleichungen der gravitation. Sitzungsberichte
der K¨oniglich Preußischen Akademie der Wissenschaften (Berlin).
1915;844–847.

6.	 Penrose R. Singularities and time-asymmetry (S. W. Hawking and W.
Israel, 1979).

7.	 Ulianov PY. A comprehensive overview of the ulianov theory.
International Journal of Media and Networks. 2024; 2:01–33.

8.	 Ulianov PY. The ulianov bridges: Opening new avenues for the
development of modern physics. 2024.

9.	 Ulianov PY. Program: ulianovellipse.py. 2024.

10.	 Ulianov PY. Program: ulianovorbit.py. 2024.

11.	 Rajan SS. Ramanujan’s approximation to the perimeter of an ellipse.
Resonance. 2016; 21:899–905.

12.	 Ulianov PY. The meaning of time: A digital, complex variable. Phys
Astron Int J. 2024;8:22–30.

13.	 Ulianov PY. Ulianov sphere network-a digital model for representation
of non-euclidean spaces. Curr Res Stat Math. 2023;2:55–69.

14.	 Ulianov PY. Two is better than four! Introducing the strong gravitational
contact force. 2024.

15.	 Ulianov PY. Ulianov string theory: a new representation for fundamental
particles. Journal of Modern Physics. 2018;2:77–118.

16.	 Ulianov PY. The ulianov atomic model. 2024.

17.	 Ulianov PY. Explaining the formation of the 36 smallest known atomic
isotopes: From hydrogen to krypton. Material Science & Engineering
International Journal. 2024;8:39–47.

18.	 Ulianov PY. Comparison of pauling and ulianov electron distribution
models. Material Sci & Eng. 2024;8(2):49–54.

19.	 Ulianov PY, Freeman AG. Small bang model: A new model to explain
the origin of our universe. Global Journal of Physics. 2015;3:6.

https://doi.org/10.15406/paij.2024.08.00349
https://chatgpt.com/share/171b89eb-6c40-4c92-8e06-b5cc4a8cb841
https://chatgpt.com/share/171b89eb-6c40-4c92-8e06-b5cc4a8cb841
https://github.com/PolicarpoYU/ue/
https://github.com/PolicarpoYU/uo/
https://medcraveonline.com/MSEIJ/comparison-of-pauling-and-ulianov-electron-distribution-models.html
https://medcraveonline.com/MSEIJ/comparison-of-pauling-and-ulianov-electron-distribution-models.html

	Title
	Abstract
	Keywords
	Introduction
	The Ulianov Orbital Model
	The Ulianov Elliptical Parameter definition
	Ulianov Elliptical Parameter and orbital types

	The Ulianov Path Force
	Numerical simulations
	Maximum Orbital Velocity, Orbital Ellipse Parameters, and Orbital Period
	The Ulianov Ellipse Equation
	Elliptical Scanning Algorithms
	The Ulianov Ellipse Trigonometry
	UOM Python routines implementation
	UOM Python orbit calculations
	UOM Parameters calculation routines
	UOM Parameters conversion routines
	UOM General calculation routines
	Example of use

	Conclusion
	Dear Members of the Mathematical Community,
	Applications and Advantages
	Call to Exploration

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4

