Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 1 Issue 6

Cosmological parametrizations and their scalar field descendants

Pacif SKJ,1 Myrzakulov K,2 Myrzakulov R2

1Centre for Theoretical Physics, Jamia Millia Islamia, India
2Department of General and Theoretical Physics, Eurasian National University, Kazakhstan

Correspondence: Shibesh Kumar Jas Pacif, Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025, India, Tel 91 8826244791

Received: September 13, 2017 | Published: December 28, 2017

Citation: Pacif SKJ, Myrzakulov K, Myrzakulov R. Cosmological parametrizations and their scalar field descendants. Phys Astron Int J. 2017;1(6):213-218. DOI: 10.15406/paij.2017.01.00038

Download PDF

Abstract

In literature, there exist numerous cosmological solutions based upon some specific scheme of parametrization of cosmological parameters. Our present work is an attempt to reconstruct the field potentials in case of (non)phantom fields for different models resulting from parametrization of a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ , H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai aaiIcacaWG0bGaaGykaaaa@39AF@  and q(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWG0bGaaGykaaaa@39D8@  in the framework of Friedmann Robertson Walker (FRW) geometry. In addition we carry out similar procedure to reconstruct the field potentials for tachyonic field for the same models. In this note, we reconstructed the field potentials for some known models e.g. constant deceleration parameter model, linearly varying deceleration parameter model and a model based on a specific parametrization of Hubble parameter. The procedure adopted here shows that in principle, the scalar field potentials for quintessence, phantom and tachyonic fields can be reconstructed for any scheme of parametrization of cosmological parameters a(t),q(t),H(t),w(t),ρ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaiaacYcacaWGXbGaaGikaiaadshacaaIPaGa aiilaiaadIeacaaIOaGaamiDaiaaiMcacaGGSaGaam4DaiaaiIcaca WG0bGaaGykaiaacYcacqaHbpGCcaaIOaGaamiDaiaaiMcaaaa@4A7F@ or p(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCai aaiIcacaWG0bGaaGykaaaa@39D7@ .

Keywords: scalar field potential; parametrization; dark energy

Introduction

The revolution in observational cosmology during the past two decades has provided sufficient evidence for late time acceleration of the Universe.1–8 This phenomenon can be explained in several ways such as by incorporation of an extra term in the right hand side of Einstein’s field equations or by modifying the left hand side of the field equations. In general relativity the concept of dark energy seems to be more relevant to the observed accelerated expansion of the Universe. In this framework, dark energy constitutes nearly 69% of the total energy budget of the Universe along with other components - dark matter (27%) and the baryonic matter (4%) (Plank 2015 results). However, important questions concerning the nature of dark energy, its interaction with other material components in the Universe, yet remain to be answered. A large number of candidates for dark energy including cosmological constant have been proposed in the recent years.9–16 Phenomenologically quintessence field17–20 with standard kinetic term and minimally coupled to gravity can be considered as a very good candidate for dark energy. In slow roll approximation (potential dominated scalar field i.e. ϕ ˙ 2 2 <<V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacuaHvpGzgaGaamaaCaaabeqaaiaaikdaaaaabaGaaGOmaaaacaaI 8aGaaGipaiaadAfacaaIOaGaeqy1dyMaaGykaaaa@3F93@ ), it can also act as a cosmological constant. The scalar field with the wrong sign in the kinetic term, dubbed phantom21–27 is also allowed observationally. There are other scalar field models relevant to dark energy namely, quintom,28–31 k-essense,32,33 tachyon34–39 light mass Galileons,40–45 chameleon46–48 etc. There is plethora of field potentials that can describe the smooth transition from deceleration to acceleration. In this context, various canonical as well as non-canonical scalar field potentials (e.g. exponential potential, flat potential, linear potential, quadratic potential etc.) for different fields have been proposed that can lead to different theoretical and observational consequences.

On the other hand, the inclusion of one more component (dark energy) into the evolution equations in the form of scalar field adds an extra degree of freedom. And for a unique solution, one requires a constrain equation. This can be achieved, in particular, by parameterizing the deceleration parameter q(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWG0bGaaGykaaaa@39D8@ , Hubble parameter H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai aaiIcacaWG0bGaaGykaaaa@39AF@ , the equation of state parameter w(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dai aaiIcacaWG0bGaaGykaaaa@39DE@ or the scale factor a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ (for a recent review on various parametrization one can see49). An interesting article50 can be found in literature wherein tachyonic potential is reconstructed on the FRW brane. There are other reconstructions of scalar field potentials describing the late-time acceleration of the Universe e.g. reconstructions of scalar field potential to unify early-time and late-time Universe based on phantom cosmology,51,52 reconstruction of scalar field potential in light of supernovae data,53 reconstruction of phantom scalar potentials in two-field cosmological models,54 holographic reconstruction of scalar field dark energy models55 and many more. In this paper, following the recommendation of,50,51 we reconstruct the scalar field potentials for models obtained by various parametrization of q(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWG0bGaaGykaaaa@39D8@ , a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ or H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai aaiIcacaWG0bGaaGykaaaa@39AF@  in case of quintessence, phantom and tachyonic fields.

Scalar field potentials for quintessence and phantom field

We consider an action describing a general scalar field ϕ as

S= d 4 x g { M p 2 2 R 1 2 ω μ ϕ μ ϕV(ϕ)+ L Matter }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai aai2dadaWdbaqabeqabeGaey4kIipacaWGKbWaaWbaaeqakeaajugW aiaaisdaaaqcfaOaamiEamaakaaabaGaeyOeI0Iaam4zaaqabaWaai WaaeaadaWcaaqaaiaad2eadaqhaaqcfasaaiaadchaaeaacaaIYaaa aaqcfayaaiaaikdaaaGaamOuaiabgkHiTmaalaaabaGaaGymaaqaai aaikdaaaGaeqyYdCNaeyOaIy7aaSbaaKqbGeaacqaH8oqBaKqbagqa aiabew9aMjabgkGi2oaaCaaabeqcfasaaiabeY7aTbaajuaGcqaHvp GzcqGHsislcaWGwbGaaGikaiabew9aMjaaiMcacqGHRaWkcaWGmbWa aSbaaKqbGeaacaWGnbGaamyyaiaadshacaWG0bGaamyzaiaadkhaaK qbagqaaaGaay5Eaiaaw2haaiaabYcaaaa@6534@   (1)

Where ω=+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypaiabgUcaRiaaigdaaaa@3AB5@  or -1 for quintessence and phantom field respectively and V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaaaaa@3A8C@  is the potential function for the scalar field. In the flat FRW background the energy density ρ ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaeaajugWaiabew9aMbqcfayabaaaaa@3BE9@  and pressure p ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaabaqcLbmacqaHvpGzaKqbagqaaaaa@3B1E@  of the scalar field can be written as

ρ ϕ = 1 2 ω ϕ ˙ 2 +V( ϕ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaKqbGeaacqaHvpGzaeqaaKqbakaai2dadaWcaaqaaiaaigda aeaacaaIYaaaaiabeM8a3jqbew9aMzaacaWaaWbaaeqajuaibaGaaG OmaaaajuaGcqGHRaWkcaWGwbWaaeWaaeaacqaHvpGzaiaawIcacaGL PaaacaqGSaaaaa@482C@   (2)

p ϕ = 1 2 ω ϕ ˙ 2 V( ϕ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaabaqcLbmacqaHvpGzaKqbagqaaiaai2dadaWcaaqaaiaaigda aeaacaaIYaaaaiabeM8a3jqbew9aMzaacaWaaWbaaeqabaqcLbmaca aIYaaaaKqbakabgkHiTiaadAfadaqadaqaaiabew9aMbGaayjkaiaa wMcaaiaab6caaaa@496E@   (3)

From equations (2) and (3) we may obtain

V(ϕ)= 1 2 ( ρ ϕ p ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaikda aaWaaeWaaeaacqaHbpGCdaWgaaqcfasaaiabew9aMbqcfayabaGaey OeI0IaamiCamaaBaaajuaibaGaeqy1dygabeaaaKqbakaawIcacaGL Paaaaaa@474F@   (4)

And

ωϕ(t)= ( ρ ϕ + p ϕ ) 1 2 dt+ ϕ i ,where ϕ i isaconstantofintegration. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaaGypamaapeaabeqabeqacqGH RiI8amaabmaabaGaeqyWdi3aaSbaaKqbGeaacqaHvpGzaKqbagqaai abgUcaRiaadchadaWgaaqcfasaaiabew9aMbqcfayabaaacaGLOaGa ayzkaaWaaWbaaeqabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaaGaam izaiaadshacqGHRaWkcqaHvpGzdaWgaaqcfasaaiaadMgaaKqbagqa aiaabYcacaqG3bGaaeiAaiaabwgacaqGYbGaaeyzaiabew9aMnaaBa aajuaibaGaamyAaaqabaqcfaOaaeyAaiaabohacaqGHbGaae4yaiaa b+gacaqGUbGaae4CaiaabshacaqGHbGaaeOBaiaabshacaqGVbGaae OzaiaabMgacaqGUbGaaeiDaiaabwgacaqGNbGaaeOCaiaabggacaqG 0bGaaeyAaiaab+gacaqGUbGaaeOlaaaa@7191@   (5)

The effective energy density and pressure can be written as

ρ eff = ρ ϕ + ρ i and p eff = p ϕ + p i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaKqbGeaacaWGLbGaamOzaiaadAgaaeqaaKqbakaai2dacqaH bpGCdaWgaaqcfasaaiabew9aMbqabaqcfaOaey4kaSYaaabqaeqabe qabiabggHiLdGaeqyWdi3aaSbaaKqbGeaacaWGPbaabeaajuaGcaqG HbGaaeOBaiaabsgacaWGWbWaaSbaaKqbGeaacaWGLbGaamOzaiaadA gaaeqaaKqbakaai2dacaWGWbWaaSbaaKqbGeaacqaHvpGzaeqaaKqb akabgUcaRmaaqaeabeqabeqacqGHris5aiaadchadaWgaaqcfasaai aadMgaaeqaaKqbakaabYcaaaa@5974@   (6)

Where ρ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaWgaaqcfayaaKqzadGaamyAaaqcfayabaaaaa@3BA8@ and ρ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaWgaaqcfayaaKqzadGaamyAaaqcfayabaaaaa@3BA8@  are the energy densities and pressures of all relativistic and non-relativistic components of the Universe. Using the perfect fluid equation of state p i = w i ρ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamyAaaqabaqcfaOaaGypaiaadEhadaWgaaqcfasa aiaadMgaaeqaaKqbakabeg8aYnaaBaaajuaibaGaamyAaaqcfayaba aaaa@405D@  ( 0 w i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimam rr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xFQqOa am4DaSWaaSbaaKqbagaajugWaiaadMgaaKqbagqaaiab=1Nkekaaig daaaa@495C@ ) for the matter fields and substituting (6) in (4) and (5), we may obtain the expressions

V(ϕ)= 1 2 [ ( 1 w eff ) ρ eff ( 1 w i ) ρ i ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaikda aaWaamWaaeaadaqadaqaaiaaigdacqGHsislcaWG3bWaaSbaaKqbGe aacaWGLbGaamOzaiaadAgaaKqbagqaaaGaayjkaiaawMcaaiabeg8a YnaaBaaajuaibaGaamyzaiaadAgacaWGMbaajuaGbeaacqGHsislda aeabqabeqabeGaeyyeIuoadaqadaqaaiaaigdacqGHsislcaWG3bWa aSbaaKqbGeaacaWGPbaajuaGbeaaaiaawIcacaGLPaaacqaHbpGCda WgaaqcfasaaiaadMgaaeqaaaqcfaOaay5waiaaw2faaaaa@5860@   (7)

And

ωϕ(t)= [ ( 1+ w eff ) ρ eff ( 1+ w i ) ρ i ] 1 2 dt+ ϕ i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaaGypamaapeaabeqabeqacqGH RiI8amaadmaabaWaaeWaaeaacaaIXaGaey4kaSIaam4DamaaBaaaba qcLbmacaWGLbGaamOzaiaadAgaaKqbagqaaaGaayjkaiaawMcaaiab eg8aYnaaBaaabaqcLbmacaWGLbGaamOzaiaadAgaaKqbagqaaiabgk HiTmaaqaeabeqabeqacqGHris5amaabmaabaGaaGymaiabgUcaRiaa dEhadaWgaaqaaKqzadGaamyAaaqcfayabaaacaGLOaGaayzkaaGaeq yWdi3aaSbaaeaajugWaiaadMgaaKqbagqaaaGaay5waiaaw2faamaa CaaabeqaamaalaaabaGaaGymaaqaaiaaikdaaaaaaiaadsgacaWG0b Gaey4kaSIaeqy1dy2cdaWgaaqcfayaaKqzadGaamyAaaqcfayabaGa aeOlaaaa@68DC@   (8)

Where w eff = p eff ρ eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4DaS WaaSbaaKqbagaajugWaiaadwgacaWGMbGaamOzaaqcfayabaGaaGyp amaalaaabaGaamiCaSWaaSbaaKqbagaajugWaiaadwgacaWGMbGaam OzaaqcfayabaaabaGaeqyWdi3cdaWgaaqcfayaaKqzadGaamyzaiaa dAgacaWGMbaajuaGbeaaaaaaaa@4AAE@  is the effective equation of state parameter. For flat ( k=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Aai aai2dacaaIWaaaaa@38F5@ ) case, Friedmann equations reduce to

ρ eff =3 M p 2 H 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaKqbGeaacaWGLbGaamOzaiaadAgaaeqaaKqbakaai2dacaaI ZaGaamytamaaDaaajuaibaGaamiCaaqaaiaaikdaaaqcfaOaamisam aaCaaajuaibeqaaiaaikdaaaqcfaOaaeilaaaa@43DC@   (9)

p eff = M p 2 ( 3 H 2 +2 H ˙ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamyzaiaadAgacaWGMbaabeaajuaGcaaI9aGaeyOe I0IaamytamaaDaaajuaibaGaamiCaaqaaiaaikdaaaqcfa4aaeWaae aacaaIZaGaamisamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSIa aGOmaiqadIeagaGaaaGaayjkaiaawMcaaiaab6caaaa@47FD@   (10)

Observations suggest that the dominant constituents in the Universe are dark energy and cold dark matter. So, considering a two fluid Universe (dark energy and cold dark matter), equations (7) and (8) reduce to

V(ϕ)= 1 2 [ ( 1 w eff ) ρ eff ρ m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaikda aaWaamWaaeaadaqadaqaaiaaigdacqGHsislcaWG3bWaaSbaaKqbGe aacaWGLbGaamOzaiaadAgaaeqaaaqcfaOaayjkaiaawMcaaiabeg8a YnaaBaaajuaibaGaamyzaiaadAgacaWGMbaajuaGbeaacqGHsislcq aHbpGCdaWgaaqcfasaaiaad2gaaKqbagqaaaGaay5waiaaw2faaaaa @506F@   (11)

And

ωϕ(t)= [ ( 1+ w eff ) ρ eff ρ m ] 1 2 dt+ ϕ i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaaGypamaapeaabeqabeqacqGH RiI8amaadmaabaWaaeWaaeaacaaIXaGaey4kaSIaam4DamaaBaaaju aibaGaamyzaiaadAgacaWGMbaajuaGbeaaaiaawIcacaGLPaaacqaH bpGCdaWgaaqcfasaaiaadwgacaWGMbGaamOzaaqabaqcfaOaeyOeI0 IaeqyWdi3aaSbaaKqbGeaacaWGTbaabeaaaKqbakaawUfacaGLDbaa daahaaqabeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaacaWGKbGaam iDaiabgUcaRiabew9aMnaaBaaajuaibaGaamyAaaqcfayabaGaaeOl aaaa@5B5D@   (12)

Furthermore, if we assume the minimal interaction between matter and the scalar field then from the conservation equation, we have ρ ˙ ϕ +3H( 1+ w ϕ ) ρ ϕ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGjbVl qbeg8aYzaacaWcdaWgaaqcfayaaKqzadGaeqy1dygajuaGbeaacqGH RaWkcaaIZaGaamisamaabmaabaGaaGymaiabgUcaRiaadEhadaWgaa qcfasaaiabew9aMbqabaaajuaGcaGLOaGaayzkaaGaeqyWdi3aaSba aKqbGeaacqaHvpGzaeqaaKqbakaai2dacaaIWaaaaa@4D31@  and

ρ ˙ m +3H( 1+ w m ) ρ m =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqyWdi NbaiaadaWgaaqcfasaaiaad2gaaeqaaKqbakabgUcaRiaaiodacaWG ibWaaeWaaeaacaaIXaGaey4kaSIaam4DamaaBaaajuaibaGaamyBaa qcfayabaaacaGLOaGaayzkaaGaeqyWdi3aaSbaaKqbGeaacaWGTbaa juaGbeaacaaI9aGaaGimaiaabYcaaaa@4838@   (13)

Which yields ρ m = ρ 0 a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaKqbGeaacaWGTbaabeaajuaGcaaI9aGaeqyWdi3aaSbaaKqb GeaacaaIWaaajuaGbeaacaWGHbWaaWbaaKqbGeqabaGaeyOeI0IaaG 4maaaaaaa@4111@ , where ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaWgaaqcfayaaKqzadGaaGimaaqcfayabaaaaa@3B74@  is a constant of integration and is generally attributed to present value of matter energy density. Here and afterwards a suffix ‘0’ for any variable refers to present value of the concerned quantity. Hence, the potential for the scalar field can be written as

V(ϕ)= 1 2 [ ( 1 w eff ) ρ eff ρ 0 a 3 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaikda aaWaamWaaeaadaqadaqaaiaaigdacqGHsislcaWG3bWaaSbaaKqbGe aacaWGLbGaamOzaiaadAgaaKqbagqaaaGaayjkaiaawMcaaiabeg8a YnaaBaaajuaibaGaamyzaiaadAgacaWGMbaabeaajuaGcqGHsislcq aHbpGCdaWgaaqcfasaaiaaicdaaKqbagqaaiaadggadaahaaqcfasa beaacqGHsislcaaIZaaaaaqcfaOaay5waiaaw2faaiaabYcaaaa@5454@   (14)

Together with the expression of the scalar function

ωϕ(t)= [ ( 1+ w eff ) ρ eff ρ 0 a 3 ] 1 2 dt+ ϕ i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaaGypamaapeaabeqabeqacqGH RiI8amaadmaabaWaaeWaaeaacaaIXaGaey4kaSIaam4DamaaBaaaju aibaGaamyzaiaadAgacaWGMbaabeaaaKqbakaawIcacaGLPaaacqaH bpGCdaWgaaqcfasaaiaadwgacaWGMbGaamOzaaqabaqcfaOaeyOeI0 IaeqyWdi3aaSbaaKqbGeaacaaIWaaajuaGbeaacaWGHbWaaWbaaeqa juaibaGaeyOeI0IaaG4maaaaaKqbakaawUfacaGLDbaadaahaaqcfa sabeaajuaGdaWcaaqcfasaaiaaigdaaeaacaaIYaaaaaaajuaGcaWG KbGaamiDaiabgUcaRiabew9aMnaaBaaajuaibaGaamyAaaqabaqcfa OaaeOlaaaa@600B@   (15)

From the two Friedmann equations (7) and (8), it is easy to derive

w eff =1 2 3 H ˙ H 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dam aaBaaajuaibaGaamyzaiaadAgacaWGMbaabeaajuaGcaaI9aGaeyOe I0IaaGymaiabgkHiTmaalaaabaGaaGOmaaqaaiaaiodaaaWaaSaaae aaceWGibGbaiaaaeaacaWGibWaaWbaaKqbGeqabaGaaGOmaaaaaaqc faOaaeOlaaaa@4400@   (16)

Which can also be represented as

w eff = 1 3 + 2 3 q= 1 3 2 3 a a ¨ a ˙ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dam aaBaaajuaibaGaamyzaiaadAgacaWGMbaabeaajuaGcaaI9aGaeyOe I0YaaSaaaeaacaaIXaaabaGaaG4maaaacqGHRaWkdaWcaaqaaiaaik daaeaacaaIZaaaaiaadghacaaI9aGaeyOeI0YaaSaaaeaacaaIXaaa baGaaG4maaaacqGHsisldaWcaaqaaiaaikdaaeaacaaIZaaaamaala aabaGaamyyaiqadggagaWaaaqaaiqadggagaGaamaaCaaajuaibeqa aiaaikdaaaaaaKqbakaab6caaaa@4C8C@   (17)

We can observe that, for any parametrization of the parameters q(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWG0bGaaGykaaaa@39D8@ , H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai aaiIcacaWG0bGaaGykaaaa@39AF@ or a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ , all the quantities ρ eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaWgaaqcfayaaKqzadGaamyzaiaadAgacaWGMbaajuaGbeaaaaa@3D7A@ , w eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Dam aaBaaabaqcLbmacaWGLbGaamOzaiaadAgaaKqbagqaaaaa@3C1D@ , a can easily be obtained using equations (9) and (16) (or (17)). Hence, we can obtain scalar function ϕ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaaaaa@3AAA@ using equation (15) and eliminating t from ϕ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaaaaa@3AAA@ and using in (14), we can obtain the potential function V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaaaaa@3A8C@ for any model resulting from the parametrization of q(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWG0bGaaGykaaaa@39D8@ , H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai aaiIcacaWG0bGaaGykaaaa@39AF@ or a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaaaa@39C8@ . It is to be noted that for quintessence field ( ω=+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypaiabgUcaRiaaigdaaaa@3AB5@ ), from equation (15) we can have ϕ(t)= ϕ i + [ ( 1+ w eff ) ρ eff ρ 0 a 3 ] 1 2 dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaGaaGypaiabew9aMnaaBaaajuaibaGaamyA aaqabaqcfaOaey4kaSYaa8qaaeqabeqabiabgUIiYdWaamWaaeaada qadaqaaiaaigdacqGHRaWkcaWG3bWaaSbaaKqbGeaacaWGLbGaamOz aiaadAgaaKqbagqaaaGaayjkaiaawMcaaiabeg8aYnaaBaaajuaiba GaamyzaiaadAgacaWGMbaajuaGbeaacqGHsislcqaHbpGCdaWgaaqc fasaaiaaicdaaKqbagqaaiaadggalmaaCaaajuaibeqaaKqzadGaey OeI0IaaG4maaaaaKqbakaawUfacaGLDbaadaahaaqabKqbGeaajuaG daWcaaqcfasaaiaaigdaaeaacaaIYaaaaaaajuaGcaWGKbGaamiDaa aa@5EC6@  while for phantom field ( ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypaiabgkHiTiaaigdaaaa@3AC0@ ), we can write the scalar function ϕ(t)= ϕ i [ ( 1+ w eff ) ρ eff ρ 0 a 3 ] 1 2 dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaGaaGypaiabew9aMnaaBaaajuaibaGaamyA aaqcfayabaGaeyOeI0Yaa8qaaeqabeqabiabgUIiYdWaamWaaeaada qadaqaaiaaigdacqGHRaWkcaWG3bWaaSbaaKqbGeaacaWGLbGaamOz aiaadAgaaeqaaaqcfaOaayjkaiaawMcaaiabeg8aYnaaBaaajuaiba GaamyzaiaadAgacaWGMbaabeaajuaGcqGHsislcqaHbpGCdaWgaaqc fasaaiaaicdaaeqaaKqbakaadggadaahaaqcfasabeaacqGHsislca aIZaaaaaqcfaOaay5waiaaw2faamaaCaaajuaibeqaaKqbaoaalaaa juaibaGaaGymaaqaaiaaikdaaaaaaKqbakaadsgacaWG0baaaa@5D98@ .

Potential in q(t)  parametrized model

Equations (14) and (15) can be written as a single unknown variable q(t)  as

V(ϕ)= ( 2q ) M p 2 { q 0 + ( 1+q )dt } 2 ρ 0 2 a 0 3 exp{ 3 dt q 0 + ( 1+q )dt }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaalaaabaWaaeWaaeaacaaIYaGa eyOeI0IaamyCaaGaayjkaiaawMcaaiaad2eadaqhaaqcfasaaiaadc haaeaacaaIYaaaaaqcfayaamaacmaabaGaamyCamaaBaaajuaibaGa aGimaaqcfayabaGaey4kaSYaa8qaaeqabeqabiabgUIiYdWaaeWaae aacaaIXaGaey4kaSIaamyCaaGaayjkaiaawMcaaiaadsgacaWG0baa caGL7bGaayzFaaWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0 YaaSaaaeaacqaHbpGCdaWgaaqcfasaaiaaicdaaeqaaaqcfayaaiaa ikdacaWGHbWaa0baaKqbGeaacaaIWaaabaGaaG4maaaaaaqcfaOaci yzaiaacIhacaGGWbWaaiWaaeaacqGHsislcaaIZaWaa8qaaeqabeqa biabgUIiYdWaaSaaaeaacaWGKbGaamiDaaqaaiaadghadaWgaaqcfa saaiaaicdaaKqbagqaaiabgUcaRmaapeaabeqabeqacqGHRiI8amaa bmaabaGaaGymaiabgUcaRiaadghaaiaawIcacaGLPaaacaWGKbGaam iDaaaaaiaawUhacaGL9baacaqGSaaaaa@70DF@   (18)

Where q 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCam aaBaaabaqcLbmacaaIWaaajuaGbeaaaaa@3A11@  and a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyaS WaaSbaaKqbagaajugWaiaaicdaaKqbagqaaaaa@3A9A@  are integrating constants. The scalar function ϕ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaaaaa@3AAA@  is given by

ωϕ(t)= ϕ i + [ 2( 1+q ) M p 2 { q 0 + ( 1+q )dt } 2 ρ 0 a 0 3 exp{ 3 dt q 0 + ( 1+q )dt } ] 1 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaaGypaiabew9aMnaaBaaabaqc LbmacaWGPbaajuaGbeaacqGHRaWkdaWdbaqabeqabeGaey4kIipada WadaqaamaalaaabaGaaGOmamaabmaabaGaaGymaiabgUcaRiaadgha aiaawIcacaGLPaaacaWGnbWaa0baaKqbGeaacaWGWbaabaGaaGOmaa aaaKqbagaadaGadaqaaiaadghadaWgaaqcfasaaiaaicdaaKqbagqa aiabgUcaRmaapeaabeqabeqacqGHRiI8amaabmaabaGaaGymaiabgU caRiaadghaaiaawIcacaGLPaaacaWGKbGaamiDaaGaay5Eaiaaw2ha amaaCaaabeqcfasaaiaaikdaaaaaaKqbakabgkHiTmaalaaabaGaeq yWdi3aaSbaaKqbGeaacaaIWaaajuaGbeaaaeaacaWGHbWaa0baaKqb GeaacaaIWaaabaGaaG4maaaaaaqcfaOaciyzaiaacIhacaGGWbWaai WaaeaacqGHsislcaaIZaWaa8qaaeqabeqabiabgUIiYdWaaSaaaeaa caWGKbGaamiDaaqaaiaadghadaWgaaqcfasaaiaaicdaaeqaaKqbak abgUcaRmaapeaabeqabeqacqGHRiI8amaabmaabaGaaGymaiabgUca RiaadghaaiaawIcacaGLPaaacaWGKbGaamiDaaaaaiaawUhacaGL9b aaaiaawUfacaGLDbaadaahaaqcfasabeaajuaGdaWcaaqcfasaaiaa igdaaeaacaaIYaaaaaaajuaGcaWGKbGaamiDaiaab6caaaa@810E@   (19)

The potential for the Berman’s parametrization56 of constant deceleration parameter q(t)=m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWG0bGaaGykaiaai2dacaWGTbGaeyOeI0IaaGymaaaa@3D39@ , is then obtained as

V(ϕ)= 1 2 [ ( 3β ) M p 2 ( q 0 +βt ) 2 ρ 0 a 0 3 ( q 0 +βt ) 3 β ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaalaaabaGaaGymaaqaaiaaikda aaWaamWaaeaadaWcaaqaamaabmaabaGaaG4maiabgkHiTiabek7aIb GaayjkaiaawMcaaiaad2eadaqhaaqcfasaaiaadchaaeaacaaIYaaa aaqcfayaamaabmaabaGaamyCamaaBaaajuaibaGaaGimaaqabaqcfa Oaey4kaSIaeqOSdiMaamiDaaGaayjkaiaawMcaamaaCaaabeqcfasa aiaaikdaaaaaaKqbakabgkHiTmaalaaabaGaeqyWdi3aaSbaaeaaca aIWaaabeaaaeaacaWGHbWaa0baaKqbGeaacaaIWaaabaGaaG4maaaa juaGdaqadaqaaiaadghadaWgaaqcfasaaiaaicdaaeqaaKqbakabgU caRiabek7aIjaadshaaiaawIcacaGLPaaadaahaaqabKqbGeaajuaG daWcaaqcfasaaiaaiodaaeaacqaHYoGyaaaaaaaaaKqbakaawUfaca GLDbaaaaa@62AA@   (20)

Together with

ωϕ(t)= ϕ i + [ 2m M p 2 ( q 0 +mt ) 2 ρ 0 a 0 3 ( q 0 +mt ) 3 m ] 1 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaaGypaiabew9aMTWaaSbaaKqb agaajugWaiaadMgaaKqbagqaaiabgUcaRmaapeaabeqabeqacqGHRi I8amaadmaabaWaaSaaaeaacaaIYaGaamyBaiaad2ealmaaDaaajuaG baqcLbmacaWGWbaajuaGbaqcLbmacaaIYaaaaaqcfayaamaabmaaba GaamyCamaaBaaajuaibaGaaGimaaqcfayabaGaey4kaSIaamyBaiaa dshaaiaawIcacaGLPaaadaahaaqabKqbGeaacaaIYaaaaaaajuaGcq GHsisldaWcaaqaaiabeg8aYnaaBaaajuaibaGaaGimaaqabaaajuaG baGaamyyamaaDaaajuaibaGaaGimaaqaaiaaiodaaaqcfa4aaeWaae aacaWGXbWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGHRaWkcaWGTbGa amiDaaGaayjkaiaawMcaamaaCaaabeqcfasaaKqbaoaalaaajuaiba GaaG4maaqaaiaad2gaaaaaaaaaaKqbakaawUfacaGLDbaadaahaaqa bKqbGeaajuaGdaWcaaqcfasaaiaaigdaaeaacaaIYaaaaaaajuaGca WGKbGaamiDaiaab6caaaa@6F92@   (21)

At late times, when the dark energy overtakes the matter energy i.e. ρ eff = ρ ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaWgaaqcfayaaKqzadGaamyzaiaadAgacaWGMbaajuaGbeaacaaI 9aGaeqyWdi3aaSbaaeaajugWaiabew9aMbqcfayabaaaaa@43A6@ , we have ωϕ(t) ϕ i = 2 m M p ln( q 0 +mt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaeyOeI0Iaeqy1dy2cdaWgaaqc fayaaKqzadGaamyAaaqcfayabaGaaGypamaakaaabaWaaSaaaeaaca aIYaaabaGaamyBaaaaaeqaaiaad2ealmaaBaaajuaGbaqcLbmacaWG WbaajuaGbeaaciGGSbGaaiOBamaabmaabaGaamyCamaaBaaabaqcLb macaaIWaaajuaGbeaacqGHRaWkcaWGTbGaamiDaaGaayjkaiaawMca aaaa@5329@  and the potential is found to an exponential potential in the form

V(ϕ)=( 32m ) M p 2 exp{ 2m M p ( ωϕ ϕ i ) }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaabmaabaGaaG4maiabgkHiTiaa ikdacaWGTbaacaGLOaGaayzkaaGaamytaSWaa0baaKqbGeaajugWai aadchaaKqbGeaajugWaiaaikdaaaqcfaOaciyzaiaacIhacaGGWbWa aiWaaeaacqGHsisldaWcaaqaamaakaaabaGaaGOmaiaad2gaaeqaaa qaaiaad2eadaWgaaqcfasaaiaadchaaKqbagqaaaaadaqadaqaaiab eM8a3jabew9aMjabgkHiTiabew9aMnaaBaaajuaibaGaamyAaaqcfa yabaaacaGLOaGaayzkaaaacaGL7bGaayzFaaGaaeOlaaaa@5AE4@   (22)

Similarly, the potential for Linearly Varying Deceleration Parameter model (LVDP)57 q(t)=2αt+β1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWG0bGaaGykaiaai2dacqGHsislcaaIYaGaeqySdeMaamiD aiabgUcaRiabek7aIjabgkHiTiaaigdaaaa@430B@  (at late times) is given as

V(t)= ( 3β+2αt ) M p 2 ( q 0 +βtα t 2 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacaWG0bGaaGykaiaai2dadaWcaaqaamaabmaabaGaaG4maiab gkHiTiabek7aIjabgUcaRiaaikdacqaHXoqycaWG0baacaGLOaGaay zkaaGaamytamaaDaaajuaibaGaamiCaaqaaiaaikdaaaaajuaGbaWa aeWaaeaacaWGXbWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGHRaWkcq aHYoGycaWG0bGaeyOeI0IaeqySdeMaamiDamaaCaaabeqcfasaaiaa ikdaaaaajuaGcaGLOaGaayzkaaWcdaahaaqcfasabeaajugWaiaaik daaaaaaKqbakaaiYcaaaa@5739@   (23)

Where t is to be eliminated from

( 4 q 0 α+ β 2 ) 1 4 2 2 M p (ωϕ ϕ i )= tan 1 β2αt ( 4 q 0 α+ β 2 ) 1 4 tanh 1 β2αt ( 4 q 0 α+ β 2 ) 1 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aadaqadaqaaiaaisdacaWGXbWaaSbaaeaajugWaiaaicdaaKqbagqa aiabeg7aHjabgUcaRiabek7aInaaCaaajuaibeqaaiaaikdaaaaaju aGcaGLOaGaayzkaaWaaWbaaKqbGeqabaqcfa4aaSaaaKqbGeaacaaI XaaabaGaaGinaaaaaaaajuaGbaGaaGOmamaakaaabaGaaGOmaaqaba GaamytamaaBaaajuaibaGaamiCaaqcfayabaaaaiaaiIcacqaHjpWD cqaHvpGzcqGHsislcqaHvpGzdaWgaaqcfasaaiaadMgaaeqaaKqbak aaiMcacaaI9aWaaubiaeqabeqcfasaaiabgkHiTiaaigdaaKqbagaa ciGG0bGaaiyyaiaac6gaaaWaaSaaaeaadaGcaaqaaiabek7aIjabgk HiTiaaikdacqaHXoqycaWG0baabeaaaeaadaqadaqaaiaaisdacaWG XbWaaSbaaKqbGeaacaaIWaaabeaajuaGcqaHXoqycqGHRaWkcqaHYo GydaahaaqcfasabeaacaaIYaaaaaqcfaOaayjkaiaawMcaamaaCaaa beqcfasaaKqbaoaalaaajuaibaGaaGymaaqaaiaaisdaaaaaaaaaju aGcqGHsisldaqfGaqabeqajuaibaGaeyOeI0IaaGymaaqcfayaaiGa cshacaGGHbGaaiOBaiaacIgaaaWaaSaaaeaadaGcaaqaaiabek7aIj abgkHiTiaaikdacqaHXoqycaWG0baabeaaaeaadaqadaqaaiaaisda caWGXbWaaSbaaKqbGeaacaaIWaaajuaGbeaacqaHXoqycqGHRaWkcq aHYoGydaahaaqabKqbGeaacaaIYaaaaaqcfaOaayjkaiaawMcaamaa CaaabeqcfasaaKqbaoaalaaajuaibaGaaGymaaqaaiaaisdaaaaaaa aajuaGcaaIUaaaaa@8895@   (24)

Potential in a(t)  parametrized model

Equations (14) and (15) can be written as a single unknown variable a(t) as

V(ϕ)= M p 2 ( 2+ a a ¨ a ˙ 2 ) a ˙ 2 a 2 ρ 0 2 a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypaiaad2eadaqhaaqcfasaaiaadcha aeaacaaIYaaaaKqbaoaabmaabaGaaGOmaiabgUcaRmaalaaabaGaam yyaiqadggagaWaaaqaaiqadggagaGaamaaCaaajuaibeqaaiaaikda aaaaaaqcfaOaayjkaiaawMcaamaalaaabaGabmyyayaacaWaaWbaaK qbGeqabaGaaGOmaaaaaKqbagaacaWGHbWaaWbaaKqbGeqabaGaaGOm aaaaaaqcfaOaeyOeI0YaaSaaaeaacqaHbpGCdaWgaaqcfasaaiaaic daaKqbagqaaaqaaiaaikdacaWGHbWaaWbaaKqbGeqabaGaaG4maaaa aaaaaa@5266@   (25)

Together with the scalar function

ωϕ(t)= ϕ i + [ 2 M p 2 ( 1 a a ¨ a ˙ 2 ) a ˙ 2 a 2 ρ 0 a 3 ] 1 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaaGypaiabew9aMTWaaSbaaKqb GeaajugWaiaadMgaaKqbGeqaaKqbakabgUcaRmaapeaabeqabeqacq GHRiI8amaadmaabaGaaGOmaiaad2eadaqhaaqcfasaaiaadchaaeaa caaIYaaaaKqbaoaabmaabaGaaGymaiabgkHiTmaalaaabaGaamyyai qadggagaWaaaqaaiqadggagaGaamaaCaaabeqcfasaaiaaikdaaaaa aaqcfaOaayjkaiaawMcaamaalaaabaGabmyyayaacaWaaWbaaeqaju aibaGaaGOmaaaaaKqbagaacaWGHbWaaWbaaeqajuaibaGaaGOmaaaa aaqcfaOaeyOeI0YaaSaaaeaacqaHbpGCdaWgaaqcfasaaiaaicdaae qaaaqcfayaaiaadggadaahaaqcfasabeaacaaIZaaaaaaaaKqbakaa wUfacaGLDbaadaahaaqcfasabeaajuaGdaWcaaqcfasaaiaaigdaae aacaaIYaaaaaaajuaGcaWGKbGaamiDaiaab6caaaa@644F@   (26)

The potential for the power law cosmology58 a(t)=β t n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaiaai2dacqaHYoGycaWG0bWcdaahaaqcfaya beaajugWaiaad6gaaaaaaa@4005@ , is given by

V(ϕ)= M p 2 n(3n1) t 2 ρ 0 2 β 3 t 3n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypaiaad2eadaqhaaqcfasaaiaadcha aeaacaaIYaaaaKqbaoaalaaabaGaamOBaiaaiIcacaaIZaGaamOBai abgkHiTiaaigdacaaIPaaabaGaamiDamaaCaaabeqcfasaaiaaikda aaaaaKqbakabgkHiTmaalaaabaGaeqyWdi3aaSbaaKqbGeaacaaIWa aajuaGbeaaaeaacaaIYaGaeqOSdi2aaWbaaeqajuaibaGaaG4maaaa juaGcaWG0bWaaWbaaKqbGeqabaGaaG4maiaad6gaaaaaaaaa@524C@   (27)

Together with

ωϕ(t)= ϕ i + [ 2 M p 2 n t 2 ρ 0 β 3 t 3n ] 1 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaaGypaiabew9aMnaaBaaajuai baGaamyAaaqabaqcfaOaey4kaSYaa8qaaeqabeqabiabgUIiYdWaam WaaeaacaaIYaGaamytamaaDaaajuaibaGaamiCaaqaaiaaikdaaaqc fa4aaSaaaeaacaWGUbaabaGaamiDamaaCaaabeqcfasaaiaaikdaaa aaaKqbakabgkHiTmaalaaabaGaeqyWdi3aaSbaaKqbGeaacaaIWaaa juaGbeaaaeaacqaHYoGydaahaaqabKqbGeaacaaIZaaaaKqbakaads hadaahaaqabKqbGeaacaaIZaGaamOBaaaaaaaajuaGcaGLBbGaayzx aaWaaWbaaKqbGeqabaqcfa4aaSaaaKqbGeaacaaIXaaabaGaaGOmaa aaaaqcfaOaamizaiaadshacaqGUaaaaa@5E07@   (28)

At late times, when the dark energy overtakes the matter energy i.e. ρ eff = ρ ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaWgaaqcfayaaKqzadGaamyzaiaadAgacaWGMbaajuaGbeaacaaI 9aGaeqyWdi3cdaWgaaqcfayaaKqzadGaeqy1dygajuaGbeaaaaa@443F@ , we have ωϕ(t) ϕ i = 2n M p lnt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaeyOeI0Iaeqy1dy2cdaWgaaqc fayaaKqzadGaamyAaaqcfayabaGaaGypamaakaaabaGaaGOmaiaad6 gaaeqaaiaad2ealmaaBaaajuaGbaqcLbmacaWGWbaajuaGbeaaciGG SbGaaiOBaiaadshaaaa@4C30@  and the potential is found to be again an exponential potential in the form

V(ϕ)=n(3n1) M p 2 exp{ 2 n 1 M p ( ωϕ ϕ i ) }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypaiaad6gacaaIOaGaaG4maiaad6ga cqGHsislcaaIXaGaaGykaiaad2ealmaaDaaajuaGbaqcLbmacaWGWb aajuaGbaqcLbmacaaIYaaaaKqbakGacwgacaGG4bGaaiiCamaacmaa baGaeyOeI0YaaOaaaeaadaWcaaqaaiaaikdaaeaacaWGUbaaaaqaba WaaSaaaeaacaaIXaaabaGaamytaSWaaSbaaKqbagaajugWaiaadcha aKqbagqaaaaadaqadaqaaiabeM8a3jabew9aMjabgkHiTiabew9aMn aaBaaabaqcLbmacaWGPbaajuaGbeaaaiaawIcacaGLPaaaaiaawUha caGL9baacaqGUaaaaa@5FD8@   (29)

Potential in h(t)  parametrized model

Equations (14) and (15) can be written as a single unknown variable h(t) as

V(ϕ)= M p 2 [ 3 H 2 + H ˙ ] ρ 0 2 a 0 3 exp{ 3 H(t)dt } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypaiaad2eadaqhaaqcfasaaiaadcha aeaacaaIYaaaaKqbaoaadmaabaGaaG4maiaadIeadaahaaqabKqbGe aacaaIYaaaaKqbakabgUcaRiqadIeagaGaaaGaay5waiaaw2faaiab gkHiTmaalaaabaGaeqyWdi3aaSbaaKqbGeaacaaIWaaajuaGbeaaae aacaaIYaGaamyyamaaDaaajuaibaGaaGimaaqaaiaaiodaaaaaaKqb akGacwgacaGG4bGaaiiCamaacmaabaGaeyOeI0IaaG4mamaapeaabe qabeqacqGHRiI8aiaadIeacaaIOaGaamiDaiaaiMcacaWGKbGaamiD aaGaay5Eaiaaw2haaaaa@5B74@   (30)

Together with the expression of scalar function

ωϕ(t)= ϕ i + [ 2 M p 2 H ˙ ρ 0 a 0 3 exp{ 3 H(t)dt } ] 1 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaaGypaiabew9aMTWaaSbaaKqb agaajugWaiaadMgaaKqbagqaaiabgUcaRmaapeaabeqabeqacqGHRi I8amaadmaabaGaeyOeI0IaaGOmaiaad2ealmaaDaaajuaGbaqcLbma caWGWbaajuaGbaqcLbmacaaIYaaaaKqbakqadIeagaGaaiabgkHiTm aalaaabaGaeqyWdi3aaSbaaeaajugWaiaaicdaaKqbagqaaaqaaiaa dggalmaaDaaajuaGbaqcLbmacaaIWaaajuaGbaqcLbmacaaIZaaaaa aajuaGciGGLbGaaiiEaiaacchadaGadaqaaiabgkHiTiaaiodadaWd baqabeqabeGaey4kIipacaWGibGaaGikaiaadshacaaIPaGaamizai aadshaaiaawUhacaGL9baaaiaawUfacaGLDbaadaahaaqabeaalmaa laaajuaGbaqcLbmacaaIXaaajuaGbaqcLbmacaaIYaaaaaaajuaGca WGKbGaamiDaiaab6caaaa@722F@   (31)

The potential for the parametrized Hubble function of the form H(t)= β t m ( t n +α ) p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai aaiIcacaWG0bGaaGykaiaai2dadaWcaaqaaiabek7aIjaadshalmaa CaaajuaGbeqaaKqzadGaamyBaaaaaKqbagaadaqadaqaaiaadshada ahaaqabeaajugWaiaad6gaaaqcfaOaey4kaSIaeqySdegacaGLOaGa ayzkaaWaaWbaaeqabaqcLbmacaWGWbaaaaaaaaa@4AA2@ ,49 is found to be

V(ϕ)= M p 2 [ 3 β 2 t 2m ( t n +α ) 2p +β( m t m1 ( t n +α ) p np t m+n1 ( t n +α ) p+1 ) ] ρ 0 2 a 0 3 exp{ 3β t m ( t n +α ) p dt } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypaiaad2eadaqhaaqcfasaaiaadcha aeaacaaIYaaaaKqbaoaadmaabaWaaSaaaeaacaaIZaGaeqOSdi2aaW baaKqbGeqabaGaaGOmaaaajuaGcaWG0bWaaWbaaKqbGeqabaGaaGOm aiaad2gaaaaajuaGbaWaaeWaaeaacaWG0bWaaWbaaKqbGeqabaGaam OBaaaajuaGcqGHRaWkcqaHXoqyaiaawIcacaGLPaaadaahaaqcfasa beaacaaIYaGaamiCaaaaaaqcfaOaey4kaSIaeqOSdi2aaeWaaeaada Wcaaqaaiaad2gacaWG0bWaaWbaaeqajuaibaGaamyBaiabgkHiTiaa igdaaaaajuaGbaWaaeWaaeaacaWG0bWaaWbaaKqbGeqabaGaamOBaa aajuaGcqGHRaWkcqaHXoqyaiaawIcacaGLPaaadaahaaqabKqbGeaa caWGWbaaaaaajuaGcqGHsisldaWcaaqaaiaad6gacaWGWbGaamiDam aaCaaabeqcfasaaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGymaaaa aKqbagaadaqadaqaaiaadshadaahaaqabKqbGeaacaWGUbaaaKqbak abgUcaRiabeg7aHbGaayjkaiaawMcaamaaCaaabeqcfasaaiaadcha cqGHRaWkcaaIXaaaaaaaaKqbakaawIcacaGLPaaaaiaawUfacaGLDb aacqGHsisldaWcaaqaaiabeg8aYnaaBaaajuaibaGaaGimaaqcfaya baaabaGaaGOmaiaadggadaqhaaqcfasaaiaaicdaaeaacaaIZaaaaa aajuaGciGGLbGaaiiEaiaacchadaGadaqaaiabgkHiTiaaiodacqaH YoGydaWdbaqabeqabeGaey4kIipadaWcaaqaaiaadshadaahaaqcfa sabeaacaWGTbaaaaqcfayaamaabmaabaGaamiDamaaCaaabeqcfasa aiaad6gaaaqcfaOaey4kaSIaeqySdegacaGLOaGaayzkaaWaaWbaaK qbGeqabaGaamiCaaaaaaqcfaOaamizaiaadshaaiaawUhacaGL9baa aaa@9713@   (32)

Together with

ωϕ(t)= ϕ i + [ 2 M p 2 β( m t m1 ( t n +α ) p np t m+n1 ( t n +α ) p+1 ) ρ 0 a 0 3 exp{ 3β t m ( t n +α ) p dt } ] 1 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaaGypaiabew9aMnaaBaaabaqc LbmacaWGPbaajuaGbeaacqGHRaWkdaWdbaqabeqabeGaey4kIipada WadaqaaiabgkHiTiaaikdacaWGnbWaa0baaKqbGeaacaWGWbaabaGa aGOmaaaajuaGcqaHYoGydaqadaqaamaalaaabaGaamyBaiaadshada ahaaqcfasabeaacaWGTbGaeyOeI0IaaGymaaaaaKqbagaadaqadaqa aiaadshadaahaaqcfasabeaacaWGUbaaaKqbakabgUcaRiabeg7aHb GaayjkaiaawMcaamaaCaaajuaibeqaaiaadchaaaaaaKqbakabgkHi TmaalaaabaGaamOBaiaadchacaWG0bWaaWbaaKqbGeqabaGaamyBai abgUcaRiaad6gacqGHsislcaaIXaaaaaqcfayaamaabmaabaGaamiD amaaCaaabeqcfasaaiaad6gaaaqcfaOaey4kaSIaeqySdegacaGLOa GaayzkaaWaaWbaaeqajuaibaGaamiCaiabgUcaRiaaigdaaaaaaaqc faOaayjkaiaawMcaaiabgkHiTmaalaaabaGaeqyWdi3aaSbaaKqbGe aacaaIWaaajuaGbeaaaeaacaWGHbWaa0baaKqbGeaacaaIWaaabaGa aG4maaaaaaqcfaOaciyzaiaacIhacaGGWbWaaiWaaeaacqGHsislca aIZaGaeqOSdi2aa8qaaeqabeqabiabgUIiYdWaaSaaaeaacaWG0bWa aWbaaeqajuaibaGaamyBaaaaaKqbagaadaqadaqaaiaadshadaahaa qabKqbGeaacaWGUbaaaKqbakabgUcaRiabeg7aHbGaayjkaiaawMca amaaCaaabeqcfasaaiaadchaaaaaaKqbakaadsgacaWG0baacaGL7b GaayzFaaaacaGLBbGaayzxaaWaaWbaaKqbGeqabaqcfa4aaSaaaKqb GeaacaaIXaaabaGaaGOmaaaaaaqcfaOaamizaiaadshacaaIUaaaaa@952D@   (33)

For a specific model with m=0,n=1,p= 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyBai aai2dacaaIWaGaaGilaiaad6gacaaI9aGaaGymaiaaiYcacaWGWbGa aGypamaalaaabaGaaGymaaqaaiaaikdaaaaaaa@401B@  (Model-VI of49), we have H(t)= β t+α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai aaiIcacaWG0bGaaGykaiaai2dadaWcaaqaaiabek7aIbqaamaakaaa baGaamiDaiabgUcaRiabeg7aHbqabaaaaaaa@3FB1@ . At late times, when the dark energy overtakes the matter energy i.e. ρ eff = ρ ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaWgaaqcfayaaKqzadGaamyzaiaadAgacaWGMbaajuaGbeaacaaI 9aGaeqyWdi3cdaWgaaqcfayaaKqzadGaeqy1dygajuaGbeaaaaa@443F@ , we have ωϕ(t) ϕ i =4 M p β ( t+α ) 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC Naeqy1dyMaaGikaiaadshacaaIPaGaeyOeI0Iaeqy1dy2aaSbaaKqb GeaacaWGPbaabeaajuaGcaaI9aGaaGinaiaad2eadaWgaaqcfasaai aadchaaKqbagqaamaakaaabaGaeqOSdigabeaadaqadaqaaiaadsha cqGHRaWkcqaHXoqyaiaawIcacaGLPaaadaahaaqcfasabeaajuaGda WcaaqcfasaaiaaigdaaeaacaaI0aaaaaaaaaa@4E69@ and the potential is obtained as

V(ϕ)= 256 M p 3 β 3 2 ( ωϕ ϕ i ) [ 3β 8 ( M p β ) 1 2 ωϕ ϕ i ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaalaaabaGaaGOmaiaaiwdacaaI 2aGaamytamaaDaaajuaibaGaamiCaaqaaiaaiodaaaqcfaOaeqOSdi 2aaWbaaeqajuaibaqcfa4aaSaaaKqbGeaacaaIZaaabaGaaGOmaaaa aaaajuaGbaWaaeWaaeaacqaHjpWDcqaHvpGzcqGHsislcqaHvpGzda WgaaqcfasaaiaadMgaaeqaaaqcfaOaayjkaiaawMcaaaaadaWadaqa aiaaiodacqaHYoGycqGHsisldaWcaaqaaiaaiIdadaqadaqaaiaad2 eadaWgaaqcfasaaiaadchaaeqaaKqbaoaakaaabaGaeqOSdigabeaa aiaawIcacaGLPaaadaahaaqabKqbGeaajuaGdaWcaaqcfasaaiaaig daaeaacaaIYaaaaaaaaKqbagaadaGcaaqaaiabeM8a3jabew9aMjab gkHiTiabew9aMnaaBaaajuaibaGaamyAaaqcfayabaaabeaaaaaaca GLBbGaayzxaaGaaGOlaaaa@674D@   (34)

Potential for tachyonic field

We consider an action describing a general tachyon field ϕ as

S= d 4 xV(ϕ) det( g μν + μ ϕ μ ϕ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai aai2dacqGHsisldaWdbaqabeqabeGaey4kIipacaWGKbWaaWbaaeqa baqcLbmacaaI0aaaaKqbakaadIhacaWGwbGaaGikaiabew9aMjaaiM cadaGcaaqaaiabgkHiTiGacsgacaGGLbGaaiiDamaabmaabaGaam4z aSWaaSbaaKqbagaajugWaiabeY7aTjabe27aUbqcfayabaGaey4kaS IaeyOaIy7aaSbaaeaajugWaiabeY7aTbqcfayabaGaeqy1dyMaeyOa Iy7aaWbaaeqabaqcLbmacqaH8oqBaaqcfaOaeqy1dygacaGLOaGaay zkaaaabeaacaqGSaaaaa@5EB3@   (35)

Where V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaaaaa@3A8C@ is the potential function for the tachyon field. In the flat FRW background the energy density ρ ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaWgaaqcfayaaKqzadGaeqy1dygajuaGbeaaaaa@3C82@ and pressure p ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaabaqcLbmacqaHvpGzaKqbagqaaaaa@3B1E@  of the tachyon field can be written as

ρ ϕ = V( ϕ ) 1 ϕ ˙ 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaeaajugWaiabew9aMbqcfayabaGaaGypamaalaaabaGaamOv amaabmaabaGaeqy1dygacaGLOaGaayzkaaaabaWaaOaaaeaacaaIXa GaeyOeI0Iafqy1dyMbaiaadaahaaqabeaajugWaiaaikdaaaaajuaG beaaaaGaaGilaaaa@47C5@   (36)

p ϕ =V( ϕ ) 1 ϕ ˙ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCaS WaaSbaaKqbagaajugWaiabew9aMbqcfayabaGaaGypaiabgkHiTiaa dAfadaqadaqaaiabew9aMbGaayjkaiaawMcaamaakaaabaGaaGymai abgkHiTiqbew9aMzaacaWcdaahaaqcfayabeaajugWaiaaikdaaaaa juaGbeaacaqGUaaaaa@4904@   (37)

Here also, we consider two fluid (tachyons and matter) models. If we assume the minimal interaction between matter field and tachyon field and making use of the Friedmann equations (9) and (10) along with the perfect fluid equation of state, we obtain the tachyonic potential as

V(ϕ)= w eff ρ eff ( ρ eff ρ 0 a 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaakaaabaGaeyOeI0Iaam4DaSWa aSbaaKqbagaajugWaiaadwgacaWGMbGaamOzaaqcfayabaGaeqyWdi 3aaSbaaeaajugWaiaadwgacaWGMbGaamOzaaqcfayabaWaaeWaaeaa cqaHbpGClmaaBaaajuaGbaqcLbmacaWGLbGaamOzaiaadAgaaKqbag qaaiabgkHiTiabeg8aYnaaBaaabaqcLbmacaaIWaaajuaGbeaacaWG HbWcdaahaaqcfayabeaajugWaiabgkHiTiaaiodaaaaajuaGcaGLOa Gaayzkaaaabeaaaaa@5BA9@   (38)

And

ϕ(t) ϕ i = ( 1+ w eff ) ρ eff ρ 0 a 3 ( ρ eff ρ 0 a 3 ) dt, ϕ i isanintegratingconstant. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaGaeyOeI0Iaeqy1dy2aaSbaaKqbGeaacaWG PbaabeaajuaGcaaI9aWaa8qaaeqabeqabiabgUIiYdWaaOaaaeaada WcaaqaamaabmaabaGaaGymaiabgUcaRiaadEhadaWgaaqcfasaaiaa dwgacaWGMbGaamOzaaqabaaajuaGcaGLOaGaayzkaaGaeqyWdi3aaS baaKqbGeaacaWGLbGaamOzaiaadAgaaeqaaKqbakabgkHiTiabeg8a YnaaBaaajuaibaGaaGimaaqabaqcfaOaamyyamaaCaaajuaibeqaai abgkHiTiaaiodaaaaajuaGbaWaaeWaaeaacqaHbpGCdaWgaaqcfasa aiaadwgacaWGMbGaamOzaaqcfayabaGaeyOeI0IaeqyWdi3aaSbaaK qbGeaacaaIWaaabeaajuaGcaWGHbWaaWbaaKqbGeqabaGaeyOeI0Ia aG4maaaaaKqbakaawIcacaGLPaaaaaaabeaacaWGKbGaamiDaiaabY cacqaHvpGzdaWgaaqcfasaaiaadMgaaKqbagqaaiaabMgacaqGZbGa aeyyaiaab6gacaqGPbGaaeOBaiaabshacaqGLbGaae4zaiaabkhaca qGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabogacaqGVbGaaeOBaiaa bohacaqG0bGaaeyyaiaab6gacaqG0bGaaeOlaaaa@81A6@   (39)

As in the case of quintessence and phantom fields, we can obtain the tachyon potential V(ϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaaaaa@3A8C@ and the tachyon field ϕ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaaaaa@3AAA@ using the relation (38) and (39) for any parametrization of any cosmological parameter a(t),q(t),H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaiaacYcacaWGXbGaaGikaiaadshacaaIPaGa aiilaiaadIeacaaIOaGaamiDaiaaiMcaaaa@41A7@  where the quantities ρ eff , w eff ,a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaWgaaqcfayaaKqzadGaamyzaiaadAgacaWGMbaajuaGbeaaliaa cYcajuaGcaWG3bWcdaWgaaqcfayaaKqzadGaamyzaiaadAgacaWGMb aajuaGbeaaliaacYcacaWGHbaaaa@4696@ can easily be obtained using equations (9) and (16) (or (17)).

Tachyonic potential for power law cosmology58 a(t)=β t n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaiaai2dacqaHYoGycaWG0bWaaWbaaeqabaqc LbmacaWGUbaaaaaa@3F6C@ , is obtained as

V(ϕ)= M p (3 n 2 2n) t 2 ( 3 n 2 M p 2 t 2 ρ 0 β 3 t 3n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypaiaad2eadaWgaaqcfasaaiaadcha aeqaaKqbaoaakaaabaWaaSaaaeaacaaIOaGaaG4maiaad6gadaahaa qcfasabeaacaaIYaaaaKqbakabgkHiTiaaikdacaWGUbGaaGykaaqa aiaadshadaahaaqabKqbGeaacaaIYaaaaaaajuaGdaqadaqaamaala aabaGaaG4maiaad6gadaahaaqcfasabeaacaaIYaaaaKqbakaad2ea daqhaaqcfasaaiaadchaaeaacaaIYaaaaaqcfayaaiaadshadaahaa qcfasabeaacaaIYaaaaaaajuaGcqGHsisldaWcaaqaaiabeg8aYnaa BaaajuaibaGaaGimaaqabaaajuaGbaGaeqOSdi2aaWbaaeqajuaiba GaaG4maaaajuaGcaWG0bWaaWbaaKqbGeqabaGaaG4maiaad6gaaaaa aaqcfaOaayjkaiaawMcaaaqabaaaaa@5DE3@   (40)

Together with

ϕ(t) ϕ i = [ ( 2n M p 2 t 2 ρ 0 β 3 t 3n )/( 3 n 2 M p 2 t 2 ρ 0 β 3 t 3n ) ] 1 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaGaeyOeI0Iaeqy1dy2aaSbaaKqbGeaacaWG PbaabeaajuaGcaaI9aWaa8qaaeqabeqabiabgUIiYdWaamWaaeaada qadaqaamaalaaabaGaaGOmaiaad6gacaWGnbWaa0baaKqbGeaacaWG WbaabaGaaGOmaaaaaKqbagaacaWG0bWaaWbaaKqbGeqabaGaaGOmaa aaaaqcfaOaeyOeI0YaaSaaaeaacqaHbpGCdaWgaaqcfasaaiaaicda aKqbagqaaaqaaiabek7aInaaCaaajuaibeqaaiaaiodaaaqcfaOaam iDamaaCaaajuaibeqaaiaaiodacaWGUbaaaaaaaKqbakaawIcacaGL PaaacaaIVaWaaeWaaeaadaWcaaqaaiaaiodacaWGUbWaaWbaaeqaju aibaGaaGOmaaaajuaGcaWGnbWaa0baaKqbGeaacaWGWbaabaGaaGOm aaaaaKqbagaacaWG0bWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaey OeI0YaaSaaaeaacqaHbpGCdaWgaaqcfasaaiaaicdaaKqbagqaaaqa aiabek7aInaaCaaajuaibeqaaiaaiodaaaqcfaOaamiDamaaCaaaju aibeqaaiaaiodacaWGUbaaaaaaaKqbakaawIcacaGLPaaaaiaawUfa caGLDbaadaahaaqcfasabeaajuaGdaWcaaqcfasaaiaaigdaaeaaca aIYaaaaaaajuaGcaWGKbGaamiDaiaab6caaaa@7475@   (41)

At late times, when ρ eff = ρ ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3cdaWgaaqcfayaaKqzadGaamyzaiaadAgacaWGMbaajuaGbeaacaaI 9aGaeqyWdi3aaSbaaeaajugWaiabew9aMbqcfayabaaaaa@43A6@ , we have ϕ ϕ i = 2 3n t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaeyOeI0Iaeqy1dy2cdaWgaaqcfayaaKqzadGaamyAaaqcfayabaGa aGypamaakaaabaWaaSaaaeaacaaIYaaabaGaaG4maiaad6gaaaaabe aacaWG0baaaa@42B1@  and the potential

V(ϕ)=2 M p 2 n 2 2 3 n 1 ( ϕ ϕ i ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypaiaaikdacaWGnbWcdaqhaaqcfaya aKqzadGaamiCaaqcfayaaKqzadGaaGOmaaaajuaGdaGcaaqaaiaad6 galmaaCaaajuaGbeqaaKqzadGaaGOmaaaajuaGcqGHsisldaWcaaqa aiaaikdaaeaacaaIZaaaaiaad6gaaeqaamaalaaabaGaaGymaaqaam aabmaabaGaeqy1dyMaeyOeI0Iaeqy1dy2aaSbaaeaajugWaiaadMga aKqbagqaaaGaayjkaiaawMcaamaaCaaabeqaaKqzadGaaGOmaaaaaa qcfaOaaeOlaaaa@574B@   (42)

Tachyonic potential for Berman’s model of constant deceleration parameter56 q(t)=m1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWG0bGaaGykaiaai2dacaWGTbGaeyOeI0IaaGymaaaa@3D39@ , is given by

V(ϕ)= 32m M p ( q 0 +mt ) 3 M p 2 ( q 0 +mt ) 2 ρ 0 a 0 3 ( q 0 +mt ) 3 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaalaaabaWaaOaaaeaacaaIZaGa eyOeI0IaaGOmaiaad2gaaeqaaiaad2eadaWgaaqcfasaaiaadchaaK qbagqaaaqaamaabmaabaGaamyCamaaBaaajuaibaGaaGimaaqabaqc faOaey4kaSIaamyBaiaadshaaiaawIcacaGLPaaaaaWaaOaaaeaada WcaaqaaiaaiodacaWGnbWaa0baaKqbGeaacaWGWbaabaGaaGOmaaaa aKqbagaadaqadaqaaiaadghadaWgaaqcfasaaiaaicdaaKqbagqaai abgUcaRiaad2gacaWG0baacaGLOaGaayzkaaWaaWbaaKqbGeqabaGa aGOmaaaaaaqcfaOaeyOeI0YaaSaaaeaacqaHbpGCdaWgaaqcfasaai aaicdaaeqaaaqcfayaaiaadggadaqhaaqcfasaaiaaicdaaeaacaaI ZaaaaKqbaoaabmaabaGaamyCamaaBaaajuaibaGaaGimaaqcfayaba Gaey4kaSIaamyBaiaadshaaiaawIcacaGLPaaadaahaaqcfasabeaa juaGdaWcaaqcfasaaiaaiodaaeaacaWGTbaaaaaaaaaajuaGbeaaaa a@66D8@   (43)

Together with

ϕ(t) ϕ i = [ ( 2m M p 2 ( q 0 +mt ) 2 ρ 0 a 0 3 ( q 0 +mt ) 3/m )/( 3 M p 2 ( q 0 +mt ) 2 ρ 0 a 0 3 ( q 0 +mt ) 3/m ) ] 1 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaGaeyOeI0Iaeqy1dy2aaSbaaeaajugWaiaa dMgaaKqbagqaaiaai2dadaWdbaqabeqabeGaey4kIipadaWadaqaam aabmaabaWaaSaaaeaacaaIYaGaamyBaiaad2ealmaaDaaajuaGbaqc LbmacaWGWbaajuaGbaqcLbmacaaIYaaaaaqcfayaamaabmaabaGaam yCamaaBaaabaqcLbmacaaIWaaajuaGbeaacqGHRaWkcaWGTbGaamiD aaGaayjkaiaawMcaaSWaaWbaaKqbagqabaqcLbmacaaIYaaaaaaaju aGcqGHsisldaWcaaqaaiabeg8aYTWaaSbaaKqbagaajugWaiaaicda aKqbagqaaaqaaiaadggalmaaDaaajuaGbaqcLbmacaaIWaaajuaGba qcLbmacaaIZaaaaKqbaoaabmaabaGaamyCamaaBaaabaqcLbmacaaI WaaajuaGbeaacqGHRaWkcaWGTbGaamiDaaGaayjkaiaawMcaaSWaaW baaKqbagqabaqcLbmacaaIZaGaaG4laiaad2gaaaaaaaqcfaOaayjk aiaawMcaaiaai+cadaqadaqaamaalaaabaGaaG4maiaad2ealmaaDa aajuaGbaqcLbmacaWGWbaajuaGbaqcLbmacaaIYaaaaaqcfayaamaa bmaabaGaamyCamaaBaaabaqcLbmacaaIWaaajuaGbeaacqGHRaWkca WGTbGaamiDaaGaayjkaiaawMcaaSWaaWbaaKqbagqabaqcLbmacaaI YaaaaaaajuaGcqGHsisldaWcaaqaaiabeg8aYnaaBaaabaqcLbmaca aIWaaajuaGbeaaaeaacaWGHbWcdaqhaaqcfayaaKqzadGaaGimaaqc fayaaKqzadGaaG4maaaajuaGdaqadaqaaiaadghadaWgaaqaaKqzad GaaGimaaqcfayabaGaey4kaSIaamyBaiaadshaaiaawIcacaGLPaaa lmaaCaaajuaGbeqaaKqzadGaaG4maiaai+cacaWGTbaaaaaaaKqbak aawIcacaGLPaaaaiaawUfacaGLDbaadaahaaqabeaalmaalaaajuaG baqcLbmacaaIXaaajuaGbaqcLbmacaaIYaaaaaaajuaGcaWGKbGaam iDaiaai6caaaa@A8EE@   (44)

At late times, when ρ eff = ρ ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaeaajugWaiaadwgacaWGMbGaamOzaaqcfayabaGaaGypaiab eg8aYTWaaSbaaKqbagaajugWaiabew9aMbqcfayabaaaaa@43A6@ , we have ϕ ϕ i = 2m 3 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaeyOeI0Iaeqy1dy2cdaWgaaqcfayaaKqzadGaamyAaaqcfayabaGa aGypamaakaaabaWaaSaaaeaacaaIYaGaamyBaaqaaiaaiodaaaaabe aacaWG0baaaa@42B0@  and the potential is given as

V(ϕ)= 3( 32m ) M p 2 { q 0 + 3m 2 ( ϕ ϕ i ) } 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaalaaabaWaaOaaaeaacaaIZaWa aeWaaeaacaaIZaGaeyOeI0IaaGOmaiaad2gaaiaawIcacaGLPaaaae qaaiaad2ealmaaDaaajuaGbaqcLbmacaWGWbaajuaGbaqcLbmacaaI YaaaaaqcfayaamaacmaabaGaamyCamaaBaaabaqcLbmacaaIWaaaju aGbeaacqGHRaWkdaGcaaqaamaalaaabaGaaG4maiaad2gaaeaacaaI YaaaaaqabaWaaeWaaeaacqaHvpGzcqGHsislcqaHvpGzlmaaBaaaju aGbaqcLbmacaWGPbaajuaGbeaaaiaawIcacaGLPaaaaiaawUhacaGL 9baalmaaCaaajuaGbeqaaKqzadGaaGOmaaaaaaqcfaOaaGOlaaaa@5E47@   (45)

Similarly, the potential for LVDP model57 q(t)=2αt+β1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWG0bGaaGykaiaai2dacqGHsislcaaIYaGaeqySdeMaamiD aiabgUcaRiabek7aIjabgkHiTiaaigdaaaa@430B@ , is given by

V(t)= 3 M p 2 3+2( 2αtβ ) ( q 0 +βtα t 2 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacaWG0bGaaGykaiaai2dadaGcaaqaaiaaiodaaeqaaiaad2ea daqhaaqcfasaaiaadchaaeaacaaIYaaaaKqbaoaalaaabaWaaOaaae aacaaIZaGaey4kaSIaaGOmamaabmaabaGaaGOmaiabeg7aHjaadsha cqGHsislcqaHYoGyaiaawIcacaGLPaaaaeqaaaqaamaabmaabaGaam yCamaaBaaajuaibaGaaGimaaqabaqcfaOaey4kaSIaeqOSdiMaamiD aiabgkHiTiabeg7aHjaadshadaahaaqcfasabeaacaaIYaaaaaqcfa OaayjkaiaawMcaamaaCaaabeqcfasaaiaaikdaaaaaaKqbakaaiYca aaa@5799@   (46)

Where t is to be eliminated from ϕ(t)= ϕ i 6 9α ( β2αt ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaGaaGypaiabew9aMTWaaSbaaKqbagaajugW aiaadMgaaKqbagqaaiabgkHiTmaalaaabaWaaOaaaeaacaaI2aaabe aaaeaacaaI5aGaeqySdegaamaabmaabaGaeqOSdiMaeyOeI0IaaGOm aiabeg7aHjaadshaaiaawIcacaGLPaaalmaaCaaajuaGbeqaaKqzad GaaG4maiaai+cacaaIYaaaaaaa@5052@ .

Tachyonic potential for the H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai aaiIcacaWG0bGaaGykaaaa@39AF@ parametrized model49 H(t)= β t+α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai aaiIcacaWG0bGaaGykaiaai2dadaWcaaqaaiabek7aIbqaamaakaaa baGaamiDaiabgUcaRiabeg7aHbqabaaaaaaa@3FB1@ (Model-VI in49) is obtained as

V(ϕ)= M p β ( 3β t+α 1 ) ( t+α ) 3 2 ( 3 β 2 M p 2 t+α ρ 0 a 0 3 exp(6β t+α ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypaiaad2eadaWgaaqcfasaaiaadcha aKqbagqaamaakaaabaGaeqOSdigabeaadaGcaaqaamaalaaabaWaae WaaeaacaaIZaGaeqOSdi2aaOaaaeaacaWG0bGaey4kaSIaeqySdega beaacqGHsislcaaIXaaacaGLOaGaayzkaaaabaWaaeWaaeaacaWG0b Gaey4kaSIaeqySdegacaGLOaGaayzkaaWaaWbaaKqbGeqabaqcfa4a aSaaaKqbGeaacaaIZaaabaGaaGOmaaaaaaaaaKqbaoaabmaabaWaaS aaaeaacaaIZaGaeqOSdi2aaWbaaKqbGeqabaGaaGOmaaaajuaGcaWG nbWaa0baaKqbGeaacaWGWbaabaGaaGOmaaaaaKqbagaacaWG0bGaey 4kaSIaeqySdegaaiabgkHiTmaalaaabaGaeqyWdi3aaSbaaKqbGeaa caaIWaaajuaGbeaaaeaacaWGHbWaa0baaKqbGeaacaaIWaaabaGaaG 4maaaajuaGciGGLbGaaiiEaiaacchacaaIOaGaaGOnaiabek7aInaa kaaabaGaamiDaiabgUcaRiabeg7aHbqabaGaaGykaaaaaiaawIcaca GLPaaaaeqaaaaa@6F2D@   (47)

Together with

ϕ(t) ϕ i = [ ( β M p 2 ( t+α ) 3/2 ρ 0 a 0 3 exp(6β t+α )/( 3 β 2 M p 2 t+α ρ 0 a 0 3 exp(6β t+α ) ] 1 2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaGaeyOeI0Iaeqy1dy2aaSbaaeaajugWaiaa dMgaaKqbagqaaiaai2dadaWdbaqabeqabeGaey4kIipadaWadaqaam aabmaabaWaaSaaaeaacqaHYoGycaWGnbWcdaqhaaqcfayaaKqzadGa amiCaaqcfayaaKqzadGaaGOmaaaaaKqbagaadaqadaqaaiaadshacq GHRaWkcqaHXoqyaiaawIcacaGLPaaalmaaCaaajuaGbeqaaKqzadGa aG4maiaai+cacaaIYaaaaaaajuaGcqGHsisldaWcaaqaaiabeg8aYn aaBaaabaqcLbmacaaIWaaajuaGbeaaaeaacaWGHbWcdaqhaaqcfaya aKqzadGaaGimaaqcfayaaKqzadGaaG4maaaajuaGciGGLbGaaiiEai aacchacaaIOaGaaGOnaiabek7aInaakaaabaGaamiDaiabgUcaRiab eg7aHbqabaaaaaGaayjkaiaawMcaaiaai+cadaqadaqaamaalaaaba GaaG4maiabek7aITWaaWbaaKqbagqabaqcLbmacaaIYaaaaKqbakaa d2ealmaaDaaajuaGbaqcLbmacaWGWbaajuaGbaqcLbmacaaIYaaaaa qcfayaaiaadshacqGHRaWkcqaHXoqyaaGaeyOeI0YaaSaaaeaacqaH bpGClmaaBaaajuaGbaqcLbmacaaIWaaajuaGbeaaaeaacaWGHbWcda qhaaqcfayaaKqzadGaaGimaaqcfayaaKqzadGaaG4maaaajuaGciGG LbGaaiiEaiaacchacaaIOaGaaGOnaiabek7aInaakaaabaGaamiDai abgUcaRiabeg7aHbqabaaaaaGaayjkaiaawMcaaaGaay5waiaaw2fa amaaCaaabeqaaSWaaSaaaKqbagaajugWaiaaigdaaKqbagaajugWai aaikdaaaaaaKqbakaadsgacaWG0bGaaGOlaaaa@9E1B@   (48)

At late times, when ρ eff = ρ ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi 3aaSbaaeaajugWaiaadwgacaWGMbGaamOzaaqcfayabaGaaGypaiab eg8aYnaaBaaabaqcLbmacqaHvpGzaKqbagqaaaaa@430D@ , we have ϕ ϕ i = 4 3 3β ( t+α ) 3/4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaeyOeI0Iaeqy1dy2aaSbaaKqbGeaacaWGPbaabeaajuaGcaaI9aWa aSaaaeaacaaI0aaabaGaaG4mamaakaaabaGaaG4maiabek7aIbqaba aaamaabmaabaGaamiDaiabgUcaRiabeg7aHbGaayjkaiaawMcaamaa CaaajuaibeqaaiaaiodacaaIVaGaaGinaaaaaaa@4913@  and the potential is given as

V(ϕ)= 8 9 1 2 1/3 1 β 1/6 M p 2 [ 9 β 4/3 ( ϕ ϕ i ) 8/3 2 2/3 ( ϕ ϕ i ) 10/3 ] 1 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaGaaGypamaalaaabaGaaGioaaqaaiaaiMda aaWaaSaaaeaacaaIXaaabaGaaGOmamaaCaaabeqcfasaaiaaigdaca aIVaGaaG4maaaaaaqcfa4aaSaaaeaacaaIXaaabaGaeqOSdi2aaWba aKqbGeqabaGaaGymaiaai+cacaaI2aaaaaaajuaGcaWGnbWaa0baaK qbGeaacaWGWbaabaGaaGOmaaaajuaGdaWadaqaamaalaaabaGaaGyo aiabek7aInaaCaaajuaibeqaaiaaisdacaaIVaGaaG4maaaaaKqbag aadaqadaqaaiabew9aMjabgkHiTiabew9aMnaaBaaajuaibaGaamyA aaqcfayabaaacaGLOaGaayzkaaWaaWbaaKqbGeqabaGaaGioaiaai+ cacaaIZaaaaaaajuaGcqGHsisldaWcaaqaaiaaikdadaahaaqcfasa beaacaaIYaGaaG4laiaaiodaaaaajuaGbaWaaeWaaeaacqaHvpGzcq GHsislcqaHvpGzdaWgaaqcfasaaiaadMgaaKqbagqaaaGaayjkaiaa wMcaamaaCaaajuaibeqaaiaaigdacaaIWaGaaG4laiaaiodaaaaaaa qcfaOaay5waiaaw2faamaaCaaabeqcfasaaKqbaoaalaaajuaibaGa aGymaaqaaiaaikdaaaaaaKqbakaai6caaaa@70F8@   (49)

Following the same procedure, scalar field potentials can be constructed either explicitly or implicitly for any cosmological parametrization.

Conclusion

In this paper, we considered models based upon a specific scheme of parametrization. We have constructed the scalar field potentials in q(t),a(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyCai aaiIcacaWG0bGaaGykaiaacYcacaWGHbGaaGikaiaadshacaaIPaaa aa@3DCC@ , and H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai aaiIcacaWG0bGaaGykaaaa@39AF@  parametrized models for quintessence, phantom and tachyonic fields in the FRW framework. In case of constant deceleration parameter or power law cosmology, the scalar field potential reduces to exponential form as expected. In case of tachyon field, the potential corresponding to scaling solution is provided by inverse power law, V(ϕ) ϕ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOJa eqy1dy2cdaahaaqcfayabeaajugWaiabgkHiTiaaikdaaaaaaa@459F@ as noted earlier. For a specific model (model-VI in49) resulting from a parametrization of H, the potential V(ϕ)[ V 1 (ϕ)+ V 1 (ϕ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOZa amWaaeaacaWGwbWaaSbaaKqbGeaacaaIXaaabeaajuaGcaaIOaGaeq y1dyMaaGykaiabgUcaRiaadAfadaWgaaqcfasaaiaaigdaaKqbagqa aiaaiIcacqaHvpGzcaaIPaaacaGLBbGaayzxaaaaaa@4E59@ where V 1 (ϕ) ϕ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaiaaiIcacqaHvpGzcaaI PaqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOJaeqy1dy2cdaahaaqcfa yabeaajugWaiabgkHiTiaaigdaaaaaaa@48CF@ and V 1 (ϕ) ϕ 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaiaaiIcacqaHvpGzcaaI PaqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOJaeqy1dy2cdaahaaqcfa yabeaajugWaiabgkHiTiaaiodacaaIVaGaaGOmaaaaaaa@4A46@ for (non)phantom case and V(ϕ)[ V 3 (ϕ)+ V 4 (ϕ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvai aaiIcacqaHvpGzcaaIPaqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOZa amWaaeaacaWGwbWaaSbaaeaajugWaiaaiodaaKqbagqaaiaaiIcacq aHvpGzcaaIPaGaey4kaSIaamOvamaaBaaabaqcLbmacaaI0aaajuaG beaacaaIOaGaeqy1dyMaaGykaaGaay5waiaaw2faaaaa@505E@ where V 3 (ϕ) ϕ 8/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaS WaaSbaaKqbagaajugWaiaaiodaaKqbagqaaiaaiIcacqaHvpGzcaaI PaqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOJaeqy1dy2cdaahaaqcfa yabeaajugWaiabgkHiTiaaiIdacaaIVaGaaG4maaaaaaa@4A4E@ and V 1 (ϕ) ϕ 10/3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOvaS WaaSbaaKqbagaajugWaiaaigdaaKqbagqaaiaaiIcacqaHvpGzcaaI PaqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOJaeqy1dy2aaWbaaeqaba qcLbmacqGHsislcaaIXaGaaGimaiaai+cacaaIZaaaaaaa@4A66@ in case of tachyon. Similarly, we can also constructed the scalar field potentials for all other parametrized models obtained in [49]. The potentials for the linearly varying deceleration parameter model have also been obtained for both (non) phantom and tachyonic fields as implicit functions of ϕ and t. In principle, for any scheme of parametrization of a(t),q(t),H(t),w(t),ρ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyyai aaiIcacaWG0bGaaGykaiaacYcacaWGXbGaaGikaiaadshacaaIPaGa aiilaiaadIeacaaIOaGaamiDaiaaiMcacaGGSaGaam4DaiaaiIcaca WG0bGaaGykaiaacYcacqaHbpGCcaaIOaGaamiDaiaaiMcaaaa@4A7F@ the scalar field potentials for quintessence, phantom and tachyonic fields can be constructed.

Acknowledgments

The authors wish to thank M. Sami for his useful comments and suggestions throughout the work. The authors also thank to S. D. Odintsov for his valuable comments. Author SKJP wishes to thank National Board of Higher Mathematics (NBHM), Department of Atomic Energy (DAE), Government of India for financial support through post doctoral research fellowship.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Perlmutter S, Aldering G, Goldhaber G, et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. The Astronomical Journal. 1999;517:565–586.
  2. Riess G, Filippenko AV, Challis P, et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal. 1998;116(3):1009–1038.
  3. Riess G, Filippenko AV, Liu MC, et al. Tests of the Accelerating Universe with Near-Infrared Observations of a High-Redshift Type Ia Supernova. The Astronomical Journal. 2000;536(1):62–67.
  4. Riess G, Strolger LG, Casertano S, et al. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z>1: Narrowing Constraints on the Early Behavior of Dark Energy. The Astrophysical Journal. 2007;659(1):98–121.
  5. Weinberg DH, Mortonson MJ, Eisenstein DJ, et al. Observational probes of cosmic acceleration. Physics Reports. 2013;530(2):87–225.
  6. Astier P, Guy J, Regnault N, et al. The Supernova Legacy Survey: measurement of ΩM, ΩΛ and w from the first year data set. Astronomy and Astrophysics. 2006;447(1):31–48.
  7. Amanullah R, Lidman C, Rubin D, et al. Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511<z<1.12 and the Union2 Compilation. The Astrophysical Journal. 2010;716(1):712–738.
  8. Rubin D, Knop RA, Rykoff E, et al. Precision Measurement of The Most Distant Spectroscopically Confirmed Supernova Ia with the Hubble Space Telescope. The Astrophysical Journal. 2013;763(1):1–10.
  9. Copeland EJ, Sami M, Tsujikawa S. Dynamics of Dark Energy. International Journal of Modern Physics D. 2006;15(11):1753–1935.
  10. Sami M. Dark energy and possible alternatives. Cornell University Library, USA, 2009. p. 1–12.
  11. Sami M. A primer on problems and prospects of dark energy. Cornell University Library, USA, 2009. p. 1–23.
  12. Sami M. Why is Universe so dark? Cornell University Library, USA. 2014.
  13. Hossain W, Myrzakulov R, Sami M, et al. Unification of inflation and dark energy à la quintessential inflation. International Journal of Modern Physics D. 2015;24(5):1–53.
  14. Sami M, Myrzakulov R. Late-time cosmic acceleration: ABCD of dark energy and modified theories of gravity. International Journal of Modern Physics D. 2016;25(12):1–49.
  15. Yoo J, Watanabe Y. Theoretical Models of Dark Energy. International Journal of Modern Physics D. 2012;21(2):1–53.
  16. Bamba K, Capozziello S, Nojiri S, et al. Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophysics and Space Science. 2012;342(1):155–228.
  17. Ratra B, Peebles PJE. Cosmological consequences of a rolling homogeneous scalar field. Physical Review D. 1988;37(12).
  18. Caldwell RR, Dave R, Steinhardt PJ. Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters. 1998;80(8):1582–1585.
  19. Sahni V, Sami M, Souradeep T. Relic gravity waves from braneworld inflation. Physical Review D. 2002;65(2).
  20. Sami M, Padmanabhan T. Viable cosmology with a scalar field coupled to the trace of the stress tensor. Physical Review D. 3013;67(8).
  21. Parker L, Raval A. Nonperturbative effects of vacuum energy on the recent expansion of the universe. Physical Review D. 1999;60(6).
  22. Sahni V, Starobinsky A. The Case for a Positive Cosmological Λ–Term. International Journal of Modern Physics D. 2000;9(4): 373–443.
  23. Nojiri S, Odintsov SD. Quantum de Sitter cosmology and phantom matter. Physics Letters B. 2003;562(3–4):147–152.
  24. Singh P, Sami M, Dadhich N. Cosmological dynamics of a phantom field. Physical Review D. 2003;68(2).
  25. Sami M, Toporensky A. Phantom Field and the Fate of the Universe. Modern Physics Letters A. 2004;19(20):1509–1517.
  26. Astashenok V, Nojiri S, Odintsov SD, et al. Phantom cosmology without Big Rip singularity. Physics Letters B. 2012;709(4–5):396–403.
  27. Elizalde E, Nojiri S, Odintsov SD. Late-time cosmology in a (phantom) scalar-tensor theory: Dark energy and the cosmic speed–up. Physical Review D. 2004;70(4).
  28. Feng B, Wang XL, Zhang XM. Dark energy constraints from the cosmic age and supernova. Physics Letters B. 2005;607(1–2):35–41.
  29. Guo ZK, Pio YS, Zhang YZ, et al. Cosmological evolution of a quintom model of dark energy. Physics Letters B. 2005;608(3–4):177–182.
  30. Setare MR, Sadeghi J, Amani AR. Shape invariance method for quintom model in the bent brane background. Physics Letters B. 2008;660(4):299–306.
  31. Setare MR, Saridakis EN, Cosmol J. The quintom model with O(N) symmetry. Journal of Cosmology and Astroparticle Physics. 2008;9.
  32. Armendariz-Picon C, Damour T, Mukhanov V. k-Inflation. Physics Letters B. 1999;58(2–3):209–218.
  33. Chiba T, Okabe T, Yamaguchi M. Kinetically driven quintessence. Physical Review D. 2000;62(2).
  34. Sen A. Tachyon Matter. Journal of High Energy Physics. 2002;65:1–13.
  35. Padmanabhan T. Accelerated expansion of the universe driven by tachyonic matter. Physical Review D. 2002;66(2).
  36. Copeland J, Garousi MR, Sami M, et al. What is needed of a tachyon if it is to be the dark energy? Physical Review D. 2005;71(4).
  37. Garousi MR, Sami M, Tsujikawa S. Constraints on Dirac-Born-Infeld type dark energy models from varying alpha. Physical Review D. 2005;71(8).
  38. Panda S, Sami M, Tsujikawa S. Inflation and dark energy arising from geometrical tachyons. Physical Review D. 2006;73(2).
  39. Ali A, Sami M, Sen AA. Transient and late time attractor tachyon dark energy: Can we distinguish it from quintessence? Physical Review D. 2009;79(12).
  40. Nicolis A, Rattazzi R, Trincherini E. Galileon as a local modification of gravity. Physical Review D. 2009;79(6).
  41. Jamil M, Momeni D, Myrzakulov R. Observational constraints on non-minimally coupled Galileon model. The European Physical Journal C. 2013;73:2347.
  42. De Felice A, Tsujikawa S. Cosmological constraints on extended Galileon models. Journal of Cosmology and Astroparticle. 2012;03:025.
  43. Ali A, Gannouji R, Sami M. Modified gravity à la Galileon: Late time cosmic acceleration and observational constraints. Physical Review D. 2010;82(10).
  44. Shahalam M, Pacif SKJ, Myrzakulov R. Galileons, phantom fields, and the fate of the Universe. The European Physical Journal C. 2016;76:410.
  45. Myrzakulov R, Shahalam M. Light mass galileon and late time acceleration of the Universe. General Relativity and Gravitation. 2015;47:81.
  46. Khoury J, Weltman A. Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space. Physical Review Letters. 2014;93(17).
  47. Brax P, Van de Bruck C, Davis AC, et al. Detecting Dark Energy in Orbit: the Cosmological Chameleon. Physical Review D. 2004;70(12).
  48. Sttar A, Prajapati SR. An Exact Chameleon Cosmological Model Unifying Phantom Inflation with Late-Time Acceleration. International Journal of Theoretical Physics. 2011;50(8):2355–2365.
  49. Pacif SKJ, Myrzakulov R, Myrzakul S. Reconstruction of cosmic history from a simple parametrization of H. International Journal of Geometric Methods in Modern Physics. 2017;14(7).
  50. Sami M. Implementing Power Law Inflation with Tachyon Rolling On the Brane. Modern Physics Letters A. 2003;18(10):691–697.
  51. Nojiri S, Odintsov SD. Unifying phantom inflation with late-time acceleration: scalar phantom–non-phantom transition model and generalized holographic dark energy. General Relativity and Gravitation. 2006;38(8):1285–1304.
  52. Capozziello S, Nojiri S, Odintsov SD. Unified phantom cosmology: Inflation, dark energy and dark matter under the same standard. Physics Letters B. 2006;632(5–6):597–604.
  53. Li C, Holz DE, Cooray A. Direct reconstruction of the dark energy scalar-field potential. Physical Review D. 2007;75(10).
  54. Andrianov AA, Cannata F, Kamenschchik AY, et al. Reconstruction of scalar potentials in two-field cosmological models. Journal of Cosmology and Astroparticle Physics. 2007;02.
  55. Chattopadhyay S, Pasqua A, Khurshudyan M. New holographic reconstruction of scalar-field dark-energy models in the framework of chameleon Brans-Dicke cosmology. The European Physical Journal C. 2014;74(9):3080.
  56. Berman MS, Gomide FM. Cosmological models with constant deceleration parameter. General Relativity and Gravitation. 1998;20(2):191–198.
  57. Akarsu O, Dereli T. Cosmological Models with Linearly Varying Deceleration Parameter. International Journal of Theoretical Physics. 2012;51(2): 612–621.
  58. Lohiya D, Sethi M. A programme for a problem-free cosmology within the framework of a rich class of scalar-tensor theories. Classical and Quantum Gravity. 199;16(5).
Creative Commons Attribution License

©2017 Pacif, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.