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Introduction
The revolution in observational cosmology during the past two 

decades has provided sufficient evidence for late time acceleration of 
the Universe.1–8 This phenomenon can be explained in several ways 
such as by incorporation of an extra term in the right hand side of 
Einstein’s field equations or by modifying the left hand side of the 
field equations. In general relativity the concept of dark energy seems 
to be more relevant to the observed accelerated expansion of the 
Universe. In this framework, dark energy constitutes nearly 69% of 
the total energy budget of the Universe along with other components - 
dark matter (27%) and the baryonic matter (4%) (Plank 2015 results). 
However, important questions concerning the nature of dark energy, 
its interaction with other material components in the Universe, yet 
remain to be answered. A large number of candidates for dark energy 
including cosmological constant have been proposed in the recent 
years.9–16 Phenomenologically quintessence field17–20 with standard 
kinetic term and minimally coupled to gravity can be considered as 
a very good candidate for dark energy. In slow roll approximation 
(potential dominated scalar field i.e. ( )H t ), it can also act as a 
cosmological constant. The scalar field with the wrong sign in the 
kinetic term, dubbed phantom21–27 is also allowed observationally. 
There are other scalar field models relevant to dark energy namely, 
quintom,28–31 k-essense,32,33 tachyon34–39 light mass Galileons,40–45 
chameleon46–48 etc. There is plethora of field potentials that can 
describe the smooth transition from deceleration to acceleration. In 
this context, various canonical as well as non-canonical scalar field 
potentials (e.g. exponential potential, flat potential, linear potential, 
quadratic potential etc.) for different fields have been proposed that 
can lead to different theoretical and observational consequences.

On the other hand, the inclusion of one more component (dark 
energy) into the evolution equations in the form of scalar field 
adds an extra degree of freedom. And for a unique solution, one 
requires a constrain equation. This can be achieved, in particular, by 
parameterizing the deceleration parameter ( )H t , Hubble parameter

( )H t , the equation of state parameter ( )a t or the scale factor ( )a t
(for a recent review on various parametrization one can see49). An 
interesting article50 can be found in literature wherein tachyonic 
potential is reconstructed on the FRW brane. There are other 
reconstructions of scalar field potentials describing the late-time 
acceleration of the Universe e.g. reconstructions of scalar field 
potential to unify early-time and late-time Universe based on phantom 
cosmology,51,52 reconstruction of scalar field potential in light of 
supernovae data,53 reconstruction of phantom scalar potentials in two-
field cosmological models,54 holographic reconstruction of scalar field 
dark energy models55 and many more. In this paper, following the 
recommendation of,50,51 we reconstruct the scalar field potentials for 
models obtained by various parametrization of ( )q t , ( )a t orφ  in 
case of quintessence, phantom and tachyonic fields.

Scalar field potentials for quintessence and 
phantom field

We consider an action describing a general scalar field φ  as

    
2

4 1= ( ) ,
2 2

p
Matter

M
S d x g R V Lµ

µω φ φ φ
  − − ∂ ∂ − +∫  
  

	                  (1)

Where = 1ω +  or ( )V φ  for quintessence and phantom field 
respectively and ( )V φ  is the potential function for the scalar field. In 
the flat FRW background the energy density φρ  and pressure pφ  of 
the scalar field can be written as

                             
( )21= ,

2
Vφρ ωφ φ+ 	                                                                   (2)

                             
( )21= .

2
p Vφ ωφ φ− 	                                                                   (3)
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From equations (2) and (3) we may obtain

                                    
	                                                               (4)

And

 ( )
1

( )= ,where isaconstantofintegration.2 i it p dtφ φωφ ρ φ φ+ +∫ 	                     (5)

The effective energy density and pressure can be written as

     
= and = ,eff i eff ip p pφ φρ ρ ρ+ +∑ ∑ 		  	                 (6)

Where ip and ip  are the energy densities and pressures of all 
relativistic and non-relativistic components of the Universe. Using the 
perfect fluid equation of state =i i ip w ρ  ( 0 1iw  ) for the matter fields 
and substituting (6) in (4) and (5), we may obtain the expressions

  
( ) ( )1( )= 1 1

2 eff eff i iV w wφ ρ ρ − − −∑  		  	                      (7)

And

( ) ( )
1

( )= 1 1 .2eff eff i i it w w dtωφ ρ ρ φ + − + +∑∫  		                (8)

Where = eff
eff

eff

p
w

ρ  is the effective equation of state parameter. For 
flat ( =0k ) case, Friedmann equations reduce to

                          
2 2=3 ,eff pM Hρ 		                                                     (9)

                 
( )2 2= 3 2 .eff pp M H H− +  		                                                 (10)

Observations suggest that the dominant constituents in the 
Universe are dark energy and cold dark matter. So, considering a two 
fluid Universe (dark energy and cold dark matter), equations (7) and 
(8) reduce to

( )1
( ) = 1

2 eff eff mV wφ ρ ρ − −  		   	                (11)

And

( )
1

( )= 1 .2eff eff m it w dtωφ ρ ρ φ + − +∫  		   	  (12)

Furthermore, if we assume the minimal interaction between matter 
and the scalar field then from the conservation equation, we have 

( )3 1 =0,m m mH wρ ρ+ +

 and 

                   ( )3 1 =0,m m mH wρ ρ+ + 		                                                     (13)

Which yields 3
0=m aρ ρ − , where 0ρ  is a constant of integration and 

is generally attributed to present value of matter energy density. Here 
and afterwards a suffix ‘ 0 ’ for any variable refers to present value of 

the concerned quantity. Hence, the potential for the scalar field can 
be written as

( ) 3
0

1( )= 1 ,
2 eff effV w aφ ρ ρ − − −  

		                                         (14)

Together with the expression of the scalar function

( )
1

3 20( )= 1 .eff eff it w a dtωφ ρ ρ φ− + − +∫  
		                     (15)

From the two Friedmann equations (7) and (8), it is easy to derive 

                 
2

2= 1 .
3eff

Hw
H

− −


	  	                                                    (16)

Which can also be represented as

		   	                                                                   (17)

 

We can observe that, for any parametrization of the parameters
( )q t , ( )H t or ( )a t , all the quantities effw , effw , a  can easily be 

obtained using equations (9) and (16) (or (17)). Hence, we can obtain 
scalar function ( )tφ using equation (15) and eliminating ( )tφ from ( )tφ
and using in (14), we can obtain the potential function ( )q t for any 
model resulting from the parametrization of ( )q t , ( )a t or ( )a t . It is 
to be noted that for quintessence field ( = 1ω + ), from equation (15) 
we can have ( )

1

3 20( )= 1i eff efft w a dtφ φ ρ ρ − + + −∫  
 while for phantom field 

( = 1ω − ), we can write the scalar function ( )
1

3 20( )= 1i eff efft w a dtφ φ ρ ρ − − + −∫  
.

Potential in ( )q t  parametrized model

Equations (14) and (15) can be written as a single unknown 
variable ( )q t  as

		                                                                                        (18)

Where 0q  and 0a  are integrating constants. The scalar function 
( )tφ  is given by 

		                                                                                   (19)

The potential for the Berman’s parametrization56 of constant 
deceleration parameter ( )= 1q t m− , is then obtained as

			 

                                                                                                            (20)

Together with

		

                                                                                                         (21)

At late times, when the dark energy overtakes the matter energy 
i.e. =eff φρ ρ , we have ( )0

2( ) = lni pt M q mt
m

ωφ φ− +  and the potential

2

1 2 1 2= = .
3 3 3 3eff

aaw q
a

− + − −




( )1( )=
2

V pφ φφ ρ −

( )
( ){ } ( )

2
0

2 3 000

2
( )= exp 3 ,

121

pq M dtV
q q dtaq q dt

ρφ
 −  − − ∫ + +∫  + +∫

( )
( ){ } ( )

1

2 2
0

2 3 000

2 1
( )= exp 3 .

11

p
i

q M dtt dt
q q dtaq q dt

ρωφ φ
  +   + − −∫ ∫  + +∫  + +∫  

( )
( ) ( )

2

2 3
30
0 0

31 0( )=
2

pM
V

q t a q t β

β ρφ
β β

 
 −

− 
 +

+  

( ) ( )

1

22
0

2 3
30
0 0

2
( )= .p

i

m

mM
t dt

q mt a q mt

ρωφ φ

 
 

+ −∫ 
 + 

+  
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is found to an exponential potential in the form

     
( ) ( )2 2( )= 3 2 exp .p i

p

mV m M
M

φ ωφ φ
  − − − 
  

		                 (22)

Similarly, the potential for Linearly Varying Deceleration 
Parameter model (LVDP)57 ( )= 2 1q t tα β− + −  (at late times) is given as 

  

( )

( )
2

2
2

0

3 2
( )= ,pt M

V t
q t t

β α

β α

− +

+ −
			   	  (23)

Where t  is to be eliminated from

			                                                                 (24)

Potential in ( )a t  parametrized model

Equations (14) and (15) can be written as a single unknown 
variable ( )a t  as

           

2
2 0

2 2 3
( )= 2

2
p

aa aV M
a a a

ρφ
 
+ − 

 

 



			                   (25)

Together with the scalar function 

1

2 22 0
2 2 3

( )= 2 1 .i p
aa at M dt
a a a

ρωφ φ
  
 + − − ∫
   

 



		   	                   (26)

The potential for the power law cosmology58 ( )= na t tβ , is given by

          

2 0
2 3 3

(3 1)( )=
2

p n

n nV M
t t

ρφ
β

−
− 			  (27)

Together with

			                                                                     (28)

At late times, when the dark energy overtakes the matter energy 
i.e. =eff φρ ρ , we have ( ) = 2 lni pt nM tωφ φ−  and the potential is 
found to be again an exponential potential in the form

		   	                                                                     (29)

Potential in ( )H t  parametrized model

Equations (14) and (15) can be written as a single unknown 
variable ( )H t  as

{ }2 2 0
3
0

( )= 3 exp 3 ( )
2

pV M H H H t dt
a

ρφ  + − − ∫  


			              (30)

Together with the expression of scalar function 

		   	

                                                                                                           (31)

The potential for the parametrized Hubble function of the form

( )
( )=

m

p
n

tH t
t

β

α+

,49 is found to be

		   	                                                                          (32)

Together with

                   

                                                                                                           

 (33)

For a specific model with =0,m =1,n 1=
2

p  (Model-VI of49), we 
have =eff φρ ρ . At late times, when the dark energy overtakes the 
matter energy i.e. =eff φρ ρ , we have ( )

1

4( ) =4i pt M tωφ φ β α− +
 
and the 

potential is obtained as

			    	                                             (34)

Potential for tachyonic field
We consider an action describing a general tachyon field φ  as

			                                                                    (35)

Where ( )V φ is the potential function for the tachyon field. In the 
flat FRW background the energy density φρ and pressure pφ  of the 
tachyon field can be written as

( )
2

= ,
1

V
φ

φ
ρ

φ− 
		   	                                               (36)

 

( ) 2= 1 .p Vφ φ φ− −  		   	                                  (37)

Here also, we consider two fluid (tachyons and matter) models. If 
we assume the minimal interaction between matter field and tachyon 
field and making use of the Friedmann equations (9) and (10) along 
with the perfect fluid equation of state, we obtain the tachyonic 
potential as 

     
( )3

0( )= eff eff effV w aφ ρ ρ ρ −− − 		  	                   (38)

And

                                                                                                    

 (39)

 

( )
( ) ( )

1

2 40
1 1

1 1

2 24 40 0

4 2 2( )= .tan tanh
2 2

4 4

i
p

q t t
M

q q

α β β α β αωφ φ

α β α β

− −
+ − −

− −

+ +

1

22 0
2 3 3

( )= 2 .i p n

nt M dt
t t

ρωφ φ
β

 
+ − ∫
  

( )2 2 1( )= (3 1) exp .p i
p

V n n M
n M

φ ωφ φ
  − − − 
  

{ }

1

22 0
3
0

( )= 2 exp 3 ( ) .i pt M H H t dt dt
a

ρωφ φ
 
 + − − −∫ ∫
  



( ) ( ) ( ) ( )
2 2 1 1

2 0
2 1 3

0

3( )= exp 3
2

m m m n m

p p p p p
n n n n

t mt npt tV M dt
at t t t

β ρφ β β
α α α α

− + −

+

    
       + − − − ∫     + + + +        

( ) ( ) ( )

1

2
1 1

2 0
1 3

0

( )= 2 exp 3 .
m m n m

i p p p p
n n n

mt npt tt M dt dt
at t t

ρωφ φ β β
α α α

− + −

+

    
       + − − − −∫ ∫     + + +       

( )
( )

13
3 22 8256

( )= 3 .
pp

i i

MM
V

ββ
φ β

ωφ φ ωφ φ

 
 
 −
 − −
 
 

( )4= ( ) det ,S d xV g µ
µν µφ φ φ− − +∂ ∂∫

( )
( )

3
0

3
0

1
( ) = , isanintegratingconstant.eff eff

i i

eff

w a
t dt

a

ρ ρ
φ φ φ

ρ ρ

−

−

+ −
− ∫

−
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As in the case of quintessence and phantom fields, we can obtain 
the tachyon potential ( )V φ and the tachyon field ( )tφ using the relation 
(38) and (39) for any parametrization of any cosmological parameter

( )q t , ( )q t , ( )H t  where the quantities effρ ,
( )= na t tβ

,
( )= na t tβ

can easily be 
obtained using equations (9) and (16) (or (17)).

Tachyonic potential for power law cosmology58 ( )= na t tβ , is 
obtained as

2 22
0

2 2 3 3

3(3 2 )( )= p
p n

n Mn nV M
t t t

ρφ
β

 −  −
 
 

		   (40)

Together with

1

2 2 2 2
0 0

2 3 3 2 3 3

2 3
( ) = / .p p

i n n

nM n M
t dt

t t t t

ρ ρφ φ
β β

    
    − − −∫    
    

	  (41)

At late times, when =eff φρ ρ , we have 2=
3i t

n
φ φ−  and the 

potential

       ( )
2 2

2

2 1( )=2 .
3p

i

V M n nφ
φ φ

−
−

		  	          (42)

Tachyonic potential for Berman’s model of constant deceleration 
parameter56 ( )= 1q t m− , is given by

( ) ( ) ( )

2
0

2 30 30
0 0

3 2 3
( )= p p

m

mM M
V

q mt q mt a q mt

ρφ
−

−
+ +

+
	                                         (43)

Together with

                                                                                                          

 

                                                                                                       (44)

At late times, when =eff φρ ρ , we have 2=
3i
mtφ φ−  and the 

potential is given as

  

( )

( )

2

2

0

3 3 2
( )= .

3
2

p

i

m M
V

mq

φ

φ φ

−

  + − 
  

		   	                                      (45)

Similarly, the potential for LVDP model57 ( )= 2 1q t tα β− + − , is 
given by

,   

( )

( )
2

2
2

0

3 2 2
( )= 3 ,p

t
V t M

q t t

α β

β α

+ −

+ −

		   	             (46)

Where ( )H t is to be eliminated from ( )3/26( )= 2
9it tφ φ β α
α

− − .

Tachyonic potential for the ( )H t parametrized model49 
( )=H t

t
β
α+

(Model-VI in49) is obtained as

		   	                                                                    (47)

Together with

		   	                                                                (48)

At late times, when =eff φρ ρ , we have ( )3/44=
3 3i tφ φ α

β
− +  and 

the potential is given as

		   	                                                               (49)

Following the same procedure, scalar field potentials can be 
constructed either explicitly or implicitly for any cosmological 
parametrization.

Conclusion
In this paper, we considered models based upon a specific scheme 

of parametrization. We have constructed the scalar field potentials in
( )H t , ( )H t and ( )H t  parametrized models for quintessence, phantom 

and tachyonic fields in the FRW framework. In case of constant 
deceleration parameter or power law cosmology, the scalar field 
potential reduces to exponential form as expected. In case of tachyon 
field, the potential corresponding to scaling solution is provided by 
inverse power law, 2( )V φ φ−

 as noted earlier. For a specific model 
(model-VI in49) resulting from a parametrization of H , the potential

[ ]1 1( ) ( ) ( )V V Vφ φ φ+
where 1

1( )V φ φ−
 and 3/2

1( )V φ φ−
 for (non)

phantom case and [ ]3 4( ) ( ) ( )V V Vφ φ φ+
where 8/3

3 ( )V φ φ−
 and 

10/3
1( )V φ φ−

  in case of tachyon. Similarly, we can also constructed 
the scalar field potentials for all other ( )H t parametrized models 
obtained in [49]. The potentials for the linearly varying deceleration 
parameter model have also been obtained for both (non) phantom 
and tachyonic fields as implicit functions ofφ and ( )a t. In principle, for 
any scheme of parametrization of ( )a t , ( )q t , ( )w t , ( )w t , ( )tρ , the 
scalar field potentials for quintessence, phantom and tachyonic fields 
can be constructed.
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