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In literature, there exist numerous cosmological solutions based upon some specific

scheme of parametrization of cosmological parameters. Our present work is an attempt to
reconstruct the field potentials in case of (non)phantom fields for different models resulting
from parametrization of H(r), H(¢) and a(t) inthe framework of Friedmann Robertson
Walker (FRW) geometry. In addition we carry out similar procedure to reconstruct the field
potentials for tachyonic field for the same models. In this note, we reconstructed the field
potentials for some known models e.g. constant deceleration parameter model, linearly
varying deceleration parameter model and a model based on a specific parametrization
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of Hubble parameter. The procedure adopted here shows that in principle, the scalar field

potentials for quintessence, phantom and tachyonic fields can be reconstructed for any
scheme of parametrization of cosmological parameters a(t) , q(¢) , w(t) , w(t) , p(¢)

or p(t) .
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Introduction

The revolution in observational cosmology during the past two
decades has provided sufficient evidence for late time acceleration of
the Universe."® This phenomenon can be explained in several ways
such as by incorporation of an extra term in the right hand side of
Einstein’s field equations or by modifying the left hand side of the
field equations. In general relativity the concept of dark energy seems
to be more relevant to the observed accelerated expansion of the
Universe. In this framework, dark energy constitutes nearly 69% of
the total energy budget of the Universe along with other components -
dark matter (27%) and the baryonic matter (4%) (Plank 2015 results).
However, important questions concerning the nature of dark energy,
its interaction with other material components in the Universe, yet
remain to be answered. A large number of candidates for dark energy
including cosmological constant have been proposed in the recent
years., . Phenomenologically quintessence field'"** with standard
kinetic term and minimally coupled to gravity can be considered as
a very good candidate for dark energy. In slow roll approximation
(potential dominated scalar field i.e. F (¢) ), it can also act as a
cosmological constant. The scalar field with the wrong sign in the
kinetic term, dubbed phantom? %’ is also allowed observationally.
There are other scalar field models relevant to dark energy namely,
quintom,?3! k-essense,’>3 tachyon®3* light mass Galileons,***
chameleon**® etc. There is plethora of field potentials that can
describe the smooth transition from deceleration to acceleration. In
this context, various canonical as well as non-canonical scalar field
potentials (e.g. exponential potential, flat potential, linear potential,
quadratic potential etc.) for different fields have been proposed that
can lead to different theoretical and observational consequences.

H(t) , the equation of state parameter a(¢) or the scale factor a(t)

(for a recent review on various parametrization one can see*’). An
interesting article®® can be found in literature wherein tachyonic
potential is reconstructed on the FRW brane. There are other
reconstructions of scalar field potentials describing the late-time
acceleration of the Universe e.g. reconstructions of scalar field
potential to unify early-time and late-time Universe based on phantom
cosmology,’? reconstruction of scalar field potential in light of
supernovae data,” reconstruction of phantom scalar potentials in two-
field cosmological models,* holographic reconstruction of scalar field
dark energy models® and many more. In this paper, following the
recommendation of,**! we reconstruct the scalar field potentials for
models obtained by various parametrization of ¢(¢) , a(t) or ?® i
case of quintessence, phantom and tachyonic fields.

Scalar field potentials for quintessence and
phantom field

We consider an action describing a general scalar field ¢ as
4 M, 1 u
S=[d"x\-g TR—Ewa,,w =V (D) +Lytasier (> (€]

Where w=+1 or r@ for quintessence and phantom field
respectively and V' (¢) is the potential function for the scalar field. In
the flat FRW background the energy density p; and pressure p, of
the scalar field can be written as
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. . 1 .
On th.e other hand, the 1nclu319n of. one more component (dark Py= a)¢2 +V( ¢)’ @)
energy) into the evolution equations in the form of scalar field 2
adds an extra degree of freedom. And for a unique solution, one
requires a constrain equation. This can be achieved, in particular, by _1
.. . P¢—*w¢ _V(¢)~ 3)
parameterizing the deceleration parameter H(r), Hubble parameter 2
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From equations (2) and (3) we may obtain

F=3(ps-ps) 4
And

1
(o¢(l):j( PytDy )E dt+¢: ,wheregisaconstantofintegration. %)

The effective energy density and pressure can be written as

Py =Py tLpandp,=p;+2.p;, (6)

Where p;and p; are the energy densities and pressures of all
relativistic and non-relativistic components of the Universe. Using the
perfect fluid equation of state p,=w;p, (0<w,<1 ) for the matter fields
and substituting (6) in (4) and (5), we may obtain the expressions

1
V(¢):E[(1_We/f )Peﬂ' -3(1-w, )pi:| (7
And
1
op(O)=[[ (14w )Py 214w, )p, [2de+,. ®)
)
Where ¢/ Py 18 the effective equation of state parameter. For

flat (k=0 ) case, Friedmann equations reduce to
Py =3M H*, )

peﬂ~=—Mﬁ(3H2+2H). (10)

Observations suggest that the dominant constituents in the
Universe are dark energy and cold dark matter. So, considering a two
fluid Universe (dark energy and cold dark matter), equations (7) and
(8) reduce to

V@)= 5] (10 o0 an

And

1

op(O=[[ (Lwy )Py =Py |21+, (12)

Furthermore, if we assume the minimal interaction between matter
and the scalar field then from the conservation equation, we have

P +3H (14w, )p,, =0, and

pu+3H(1+w,,)p, =0, (13)

Which yields p,,=p,a™ , where p, is a constant of integration and
is generally attributed to present value of matter energy density. Here
and afterwards a suffix 0’ for any variable refers to present value of
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the concerned quantity. Hence, the potential for the scalar field can
be written as

1 -
V@)1= (1w Jog—rua” | (14)
Together with the expression of the scalar function
!
a)¢(t):j'|:(l+weff)pef/—poa’ﬂz di+¢,. (15)

From the two Friedmann equations (7) and (8), it is easy to derive

Wy =—1—g£. (16)
32
Which can also be represented as
wo— L2, 1 2ad
a3 3T e (17)

We can observe that, for any parametrization of the parameters
q(t) ,H(t) ora(r), all the quantitiesw,;, w,,,a can easily be
obtained using equations (9) and (16) (or (17)). Hence, we can obtain
scalar function ¢(z) using equation (15) and eliminating 4,from ¢(¢)
and using in (14), we can obtain the potential function ¢(¢) for any
model resulting from the parametrization of ¢(¢) , @(¢) ora(r) . Tt is
to be noted that for quintessence field (,w=+1), from equation (15)
we can have ¢(t):¢,-+j|:(l+we”»)p€” —p(,a*};dz while for phantom field
(@=-1), we can write the scalar function ¢(t)=¢,—j[(l+we,/ )P ww’ﬂzm .

Potential in 9(*) parametrized model

Equations (14) and (15) can be written as a single unknown

variable ¢(t) as
2-q)M,
s oy w)
{g0+(1+q)de}" 2ag 0+ J(Lvq ) (1%
Where g, and a, are integrating constants. The scalar function
@(t) is given by

V(g)=

(19)

2
a)¢(t)¢,+_{ 2(1+q)MI’ £0 oy {_3‘- dt

2
e | dt
i’ @ %*“”‘”dﬂ
The potential for the Berman’s parametrization®® of constant
deceleration parameter g (¢)=m—1, is then obtained as

V(¢)1{(3/8)M12’ £0 ] 20)

2
(q0+PBt) a3 (g0 "'ﬁl)i

Together with

s B
L I—— Q1)
(go+me)’ 3

of(H)=¢;+]

ay(qo+mt),,

At late times, when the dark epgrgy overtakes the matter energy
i.e. py=p,, we have wg(1)~¢,=,|—M ,In(qg,+mt) and the potential
m
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is found to an exponential potential in the form

V($)=(3- Zm)MzeXp{J_( - ¢)}

P

(22)

Similarly, the potential for Linearly Varying Deceleration
Parameter model (LVDP)*7 ¢g(¢)=—2at+ -1 (atlate times) is given as

2
V(t):(3_ﬁ+2w)Mp,

(q0+ Bt—at® )2 @

Where ¢ is to be eliminated from

(4apeer 7+

ENETY] (w¢p—@,)=tan™! L—2at ; tanh'— p2at T
” (4qna+ﬂz ): (4qoa+ﬂ2 ): (24)

Potential in “() parametrized model

Equations (14) and (15) can be written as a single unknown
variable a(t) as

L\ L2
V(¢)M;[2+"“J“—p° (25)
-2 3
a Ja- 2a
Together with the scalar function
L
2 -2 )
oP(t)=¢,+ j{zMﬁ[lZ‘z‘Jzzﬂ d. (26)
The potential for the power law cosmology®® a(¢)=pt" , is given by
V(¢):M;M—L (27)
t2 2ﬂ3l3n
Together with
L
od(ty=g+[ 2M> Lo " gy (28)
2 BP

At late times, when the dark energy overtakes the matter energy
ie. pp=p,, we have wg(t)-¢4=v2nM ,Int and the potential is
found to be again an exponential potential in the form

V($)=n(Bn-1)M, exp{—\/ng(awﬁ—@ )}.
P

Potential in Z/(*) parametrized model

29

Equations (14) and (15) can be written as a single unknown

variable H(t) as
M2 32 PO ex(—
V(@) M[{3H +H} » exp{~3JH (1)dt} (30)

Together with the expression of scalar function
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—2M§H—& exp{-3[H (1)dr} S

ao

op(1)=¢,+[

The potential for the parametrized Hubble function of the form

Hey=—L"_ * is found to be
(t +a)
) Ly TG ity | N ) SR e
[ (t”+a)2p (t”+a)p (t"+oz)p+l 2a 3ex (t"+a)p ‘e
Together with

o=

m—1 m+n—1

wp(y=g-+]| 2028 npt 20 expl 3] dt. (33)

' +a " +a ' +a

For a speciﬁc model with m=0, n=1, P:% (Model-VI of*), we
have Yo, . At late times, when the dark energy overtakes the
e u
matter effergy 1@ Py =Py > WE have w¢(t)-4=4M pﬁ(t+a)4 and the
potential is obtained as

§(M, ) (34)

i,

3
256M,3,BJ
(@h=4) {

V(g)= 3p

Potential for tachyonic field

We consider an action describing a general tachyon field ¢ as
S=—[d*xV (¢) /—det(gw+8#¢6”¢),

Where V' (¢) is the potential function for the tachyon field. In the
flat FRW background the energy density p, and pressure p, of the
tachyon field can be written as

(33)

oL (36)
1-¢*
py=V(sW1-4>. (37)

Here also, we consider two fluid (tachyons and matter) models. If
we assume the minimal interaction between matter field and tachyon
field and making use of the Friedmann equations (9) and (10) along
with the perfect fluid equation of state, we obtain the tachyonic
potential as

LS (38)
And
1w, ) por—poa”
#(t)-¢,=[ Mdt,¢iisanintegratingconstant. (39

(Peff—/’oaa)
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As in the case of quintessence and phantom fields, we can obtain
the tachyon potential V' (¢) and the tachyon field ¢(¢) using the relation
(38) and (39) for any parametrization of any cosmological parameter
q(t) ,q(t) , H(r) where the quantities p,, 5 2o casily be
obtained using equations (9) and (16) (or (17)).

Tachyonic potential for power law cosmology®® a(#)=pt", is
obtained as

2_ 3n°M?2
V(¢)M»J(3" 22")( e ]
t t g

(40)

Together with
L
_ 2}1M27 2 3y12M27 P 2
sora[25 Yoz _s T
At 1 i h = h - |2 d th
t. ate times, when p,,=p,, we have ¢—¢= gt and the
potential

V($)=2M, /nz—EnL.
3 (¢-4)

Tachyonic potential for Berman’s model of constant deceleration
parameter® g(¢1)=m—1, is given by

(41)

(42)

V(¢)7x/372mMp 3M; 24 @)
+mt 2 3
(a2 \j(%ﬂm) ay(go+mt),,
Together with

2mM? 3m? 2
PO |l a di(44)
(q0+mt)2 ag(qOert)}/m (q0+mt)2 ag(q0+mt)3/m

At.lat.e t%mes, when p,,=p,, we have ¢—¢= Z?mt and the
potential is given as
JBG-2m)M?
pp-—LCZM (45)

foor 2 0-0]

Similarly, the potential for LVDP model” ¢(¢)=—2at+£-1, is
given by

3+2(2at—
o= 2] (46)
qo+ ,Bt—atz)
? . .. _ JE 3/2
Where , is to be eliminated from ¢(t)—¢i—9—( B-2at)"".
a
Tachyonic  potential ~ for  the H(¢) parametrized — model®
H (t)=——=— (Model-VI in*) is obtained as
t+a
I(3ﬂ\/t+a71)( 35°M2 2o A7)
V(¢)=Mp\/ﬁ 3 k +a 3 6 \/_
\/ (t+a); ap exp(6ft+a)
Together with
(43)

2 2402 N
HO-4=[ M, Ao / 3BM, Ao dr.
(t+a)”* aexp(6pt+a o Gexp(6ftra
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At late times, when p,;=p, , we have G—g= 4 (t+a)3/4 and

the potential is given as > he
1

811 94" 923 ,
2 913 glis ;|:(¢_¢.)8/3 (¢_¢_)1o/3} '

Following the same procedure, scalar field potentials can be
constructed either explicitly or implicitly for any cosmological
parametrization.

49)

Conclusion

In this paper, we considered models based upon a specific scheme
of parametrization. We have constructed the scalar field potentials in
H(t),H(t)and H (¢) parametrized models for quintessence, phantom
and tachyonic fields in the FRW framework. In case of constant
deceleration parameter or power law cosmology, the scalar field
potential reduces to exponential form as expected. In case of tachyon
field, the potential corresponding to scaling solution is provided by
inverse power law, V (¢#)~¢ > as noted earlier. For a specific model
(model-VI in®) resulting from a parametrization of H , the potential
V(~V ()7 ()] where V;(9)~¢ ™ and Vi (#)~g > for  (non)
phantom  case  and V' (§)~[V5(#)+V,(#)] where V;($)~¢*” and
V,(#)~¢~'"" in case of tachyon. Similarly, we can also constructed
the scalar field potentials for all other H(¢) parametrized models
obtained in [49]. The potentials for the linearly varying deceleration
parameter model have also been obtained for both (non) phantom
and tachyonic fields as implicit functions of ¢ and .. In principle, for
any scheme of parametrization of a(¢) , q(¢) , w(t) , w(t) , p(t) , the
scalar field potentials for quintessence, phantom and tachyonic fields
can be constructed.
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