Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 6 Issue 2

Cosmic vacuum energy with thermodynamic and gravodynamic action power

Hans J Fahr

Argelander Institut für Astronomie, Universität Bonn, Germany

Correspondence: Hans J Fahr, Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany,

Received: June 22, 2022 | Published: June 29, 2022

Citation: Fahr HJ. Cosmic vacuum energy with thermodynamic and gravodynamic action power. Phys Astron Int J. 2022;6(2):62-66. DOI: 10.15406/paij.2022.06.00253

Download PDF

Abstract

In this paper we investigate the suspected effect of cosmic vacuum energy on the dynamics of cosmic space, while nevertheless still now the phenomenon of vacuum energy is not yet physically settled in a rigorous form. In view of what one needs for general relativistic approaches, we start here with considerations of the specific energy-momentum tensor of cosmic vacuum energy in the standard hydrodynamical form, and derive relations between vacuum energy density and vacuum pressure.  With the help of fundamental thermodynamic relations we then find relations of the two quantities, vacuum pressure and energy density, to the scale R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfaaaa@3807@ of the universe. These, however, allow for a multitude of power exponents n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@3823@ , including the case of a constant vacuum energy density with n=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIWaaaaa@39E3@  and R n =const. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaahaa Wcbeqaaiaad6gaaaGccqGH9aqpcaWGJbGaam4Baiaad6gacaWGZbGa amiDaiaac6caaaa@3F87@  Then we argue that for spaces of cosmic dimensions not only thermodynamical relations have to be fulfilled, but also, as we call them "gravodynamical relations", meaning that vacuum pressure has to work against the inner gravitational binding of space, mostly due to the gravitating masses distributed in this cosmic space. When we include this effect in addition to the thermodynamics we find that the vacuum energy density ρ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavabajaaybe qcbawaaiabfU5ambqabKWaGfaacqaHbpGCaaaaaa@3BB0@ then can not anymore be considered as constant, but unavoidably as falling off with the scale of the universe according R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaahaa WcbeqaaiabgkHiTiaaikdaaaaaaa@39BB@ . At the end of this article we then suspect, since vacuum energy even nowadays is not yet a physically well founded and understood quantity, that the Hubble expansion of the present universe is not driven by vacuum pressure, but by the change of gravitational binding energy at the ongoing structure formation of cosmic matter during the Hubble expansion.

Introduction

  1. Formulation of the thermodynamics and gravodynamics of empty space?

The question what means "empty space" - or synonymous for that - "vacuum" - has not yet been satisfactorily answered. In fact this question appears to be a very fundamental one which has already been put by mankind since the epochs of the greek natural philosophers till the present times of modern quantum field theoreticians. The changing opinions given as answers to this fundamental question over the changing epochs have been reviewed for example by Weinberg,1 Overduin and Fahr2 or Peebles and Ratra,3 but here we do not want to repeat all of these different answers that have been given in the past, we only at the begin of this article want to emphasize a few fundamental aspects of the present-day thinking with respect to the physical constitution of empty space.

Especially challenging in this respect is the possibility that empty space could despite of its conceptual "emptiness" - nevertheless unavoidably be "energy-loaded", perhaps simply as property of physical space itself. This strange and controversial aspect we shall investigate further below in this article. In a brief and first definition we want to denote empty space as a spacetime without any topified or localized energy representations, i.e. without energy singularities in form of point masses like baryons, leptons, darkions (i.e. dark matter particles) or photons, even without point-like quantum mechanical vacuum fluctuations. The latter condition, however, as stated by modern quantum theoreticians, anyway cannot be fulfilled, since vacuum fluctuations cannot be forbidden or be suppressed as learned from the basics of quantum mechanical principles.

If then nevertheless there should be a need to discuss that such empty spaces could be still energy-loaded, then this energy of empty space has to be seen as a pure volume-energy, somehow connected with the magnitude of the volume or perhaps with a scalar quantity of spacetime metrics, like for instance the global or local curvature of this space. In a completely empty space of this virtue, of course, no specific space points can be distinguished from any others, and thus volume-energy or curvature, if existent, are numerically identical at all space coordinates.

As it was shown by Fahr4 vacuum energy conservation can be formulated as constancy of the proper energy of a co-moving cosmic proper volume. Nevertheless an invariance of this vacuum energy per co-moving proper volume, e vac, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaavabajaaybe qcbawaaiaadAhacaWGHbGaam4yaiaacYcaaeqajmaybaGaamyzaaaa aaa@3CDE@ can of course only then be expected with some physical sense, if this quantity does not do any work on the dynamics of the cosmic geometry, especially by physically or causally influencing the evolution of the scale factor R(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacaGGOa GaamiDaiaacMcaaaa@3A59@ of the universe.

If to the contrary, for example such a work in fact is done, and vacuum energy influences the dynamics of the cosmic spacetime (perhaps either by inflation or deflation), e.g. as in case of a non-vanishing energy-momentum tensor, then automatically thermodynamic requirements need to be respected and fulfilled, for example relating vacuum energy density and vacuum pressure by the standard thermodynamic relation.5

d dR ( ε v ac R 3 )= p v ac d dR R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGKbaabaGaamizaiaadkfaaaGaaiikaiabew7aL9aa daWgaaWcbaWdbiaadAhaa8aabeaak8qadaWgaaWcbaGaamyyaiaado gaaeqaaOGaamOua8aadaahaaWcbeqaa8qacaaIZaaaaOGaaiykaiab g2da9iabgkHiTiaadchapaWaaSbaaSqaa8qacaWG2baapaqabaGcpe WaaSbaaSqaaiaadggacaWGJbaabeaakmaalaaabaGaamizaaqaaiaa dsgacaWGsbaaaiaadkfapaWaaWbaaSqabeaapeGaaG4maaaaaaa@4D38@

This above thermodynamic request is shown to be fulfilled by the following expression for the vacuum pressure

p vac = 3n 3 vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaamODaiaadggacaWGJbaabeaakiabg2da9iabgkHiTmaalaaa baGaaG4maiabgkHiTiaad6gaaeaacaaIZaaaaiabgIGiopaaBaaale aacaWG2bGaamyyaiaadogaaeqaaaaa@44D8@   (A)

Hereby the vacuum energy density itself is represented by a scale-dependence of the form vac R n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabgIGioR WaaSbaaKqaGfaacaWG2bGaamyyaiaadogaaeqaaOGaeSipIOtcaaMa amOuaOWaaWbaaSqabeaacaWGUbaaaaaa@3FF6@ . Then, however, it turns out that the above thermodynamic condition, besides for the trivial case n=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIZaaaaa@39C4@  when the vacuum does not at all act as a pressure (since the latter is vanishing according to Equ.(A); p vac (n=3)=0!) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadchakm aaBaaajeaybaGaamODaiaadggacaWGJbaabeaakiaacIcacaWGUbGa eyypa0JaaG4maiaacMcacqGH9aqpcaaIWaGaaiyiaiaacMcaaaa@42F5@ , is only non-trivially fulfilled for exponents n3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWF2jYOcaaIZaaaaa@432A@  , thus allowing also for n=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIWaaaaa@39E3@ , i.e. describing a constant vacuum energy density vac =const. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabgIGioR WaaSbaaKqaGfaacaWG2bGaamyyaiaadogaaeqaaOGaeyypa0tcaaMa am4yaiaad+gacaWGUbGaam4CaiaadshacaGGUaaaaa@4344@

  1. Restricted vacuum conditions under gravitational selfbinding

A more rigorous and highly interesting restriction for exponent n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbaaaa@370A@    is, however, obtained after recognition that the above thermodynamic expression (A) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGbb Gaaiykaaaa@394F@ under large-scale cosmic conditions needs to be enlarged by a term representing the work that the expanding volume does against the internal gravitational binding of matter or vacuum energy in this volume. 

For mesoscale gas dynamics (like aerodynamics, meteorology etc.) this term does of course not play a role and can tacitly be neglected. On cosmic scales, however, there is a severe need to take into account this term. Under cosmic perspectives binding energy is an absolutely necessary quantity to be brought into the gravodynamical and thermodynamical energy balance of stellar matter, of interstellar cloud matter, or of cosmic matter. As worked out in quantitative terms by Fahr and Heyl,6 this then leads to the following more completed relation

d dR ( vac R 3 )= p vac d dR R 3 8 π 2 G 15 c 4 d dR [ ( vac +3 p vac ) 2 R 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGKbaabaGaamizaiaadkfaaaGaaiikaKaaG9aacqGH iiIZkmaaBaaajeaybaGaamODaiaadggacaWGJbaabeaajaaypeGaam OuaOWdamaaCaaajeaybeqaa8qacaaIZaaaaOWdaiaacMcacqGH9aqp cqGHsisljaaycaWGWbGcdaWgaaqcbawaaiaadAhacaWGHbGaam4yaa qabaGcpeWaaSaaaeaacaWGKbaabaGaamizaiaadkfaaaqcaaMaamOu aOWdamaaCaaajeaybeqaa8qacaaIZaaaaOWdaiabgkHiTmaalaaaba GaaGioaiabec8aWnaaCaaaleqabaGaaGOmaaaakiaadEeaaeaacaaI XaGaaGynaiaadogadaahaaWcbeqaaiaaisdaaaaaaOWaaSaaaeaaca WGKbaabaGaamizaiaadkfaaaGaai4waiaacIcajaaycqGHiiIZkmaa BaaajeaybaGaamODaiaadggacaWGJbaabeaakiabgUcaRiaaiodaja aycaWGWbGcdaWgaaqcbawaaiaadAhacaWGHbGaam4yaaqabaGccaGG PaWaaWbaaSqabeaacaaIYaaaaOGaamOuamaaCaaaleqabaGaaGynaa aakiaac2faaaa@6CA0@

where the last term on the right-hand side accounts for the internal, gravitational self-binding energy of the vacuum.

This completed equation describing the variation of the vacuum energy with the scale R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGsbaaaa@36EC@  of the universe, as one can easily show, is again solved by the expression of the afore mentioned relation (A) : p vac = 3n 3 vac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchadaWgaa WcbaGaamODaiaadggacaWGJbaabeaakiabg2da9iabgkHiTmaalaaa baGaaG4maiabgkHiTiaad6gaaeaacaaIZaaaaiabgIGiopaaBaaale aacaWG2bGaamyyaiaadogaaeqaaaaa@44D8@ , but now - different from before - leading to the following new requirement

d dR ( vac R 3 )= 3n 3 vac d dR R 3 8 π 2 G 15 c 4 d dR [ 2 vac (n2) 2 R 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaWGKbaabaGaamizaiaadkfaaaGaaiikaKaaG9aacqGH iiIZkmaaBaaajeaybaGaamODaiaadggacaWGJbaabeaajaaypeGaam OuaOWdamaaCaaajeaybeqaa8qacaaIZaaaaOWdaiaacMcacqGH9aqp daWcaaqcaawaaiaaiodacqGHsislcaWGUbaabaGaaG4maaaacqGHii IZkmaaBaaajeaybaGaamODaiaadggacaWGJbaabeaak8qadaWcaaqa aiaadsgaaeaacaWGKbGaamOuaaaajaaycaWGsbGcpaWaaWbaaKqaGf qabaWdbiaaiodaaaGcpaWaaSaaaeaacaaI4aGaeqiWda3aaWbaaSqa beaacaaIYaaaaOGaam4raaqaaiaaigdacaaI1aGaam4yamaaCaaale qabaGaaGinaaaaaaGcdaWcaaqaaiaadsgaaeaacaWGKbGaamOuaaaa caGGBbqcaaMaeyicI4ScdaahaaWcbeqaaiaaikdaaaGcdaWgaaqcba waaiaadAhacaWGHbGaam4yaaqabaGccaGGOaqcaaMaamOBaiabgkHi TiaaikdakiaacMcadaahaaWcbeqaaiaaikdaaaGccaWGsbWaaWbaaS qabeaacaaI1aaaaOGaaiyxaaaa@6C5C@  

Now, as one can see, in its above form, the upper, extended relation, however, is only fulfilled by the power exponent: n=2! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpcaaIYaGaaiyiaaaa@3A68@ , - meaning that the corresponding cosmic vacuum energy density in order to meet the above requirements must vary - and needs to vary - like

vac R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabgIGioR WaaSbaaKqaGfaacaWG2bGaamyyaiaadogaaeqaaOGaeSipIOJaamOu amaaCaaaleqabaGaeyOeI0IaaGOmaaaaaaa@4039@   (B)

This consequently furthermore means that, if it has to be consistently taken into account that vacuum energy acts upon spacetime both in a thermodynamical and gravodynamical sense, then the only reasonable assumption for the vacuum energy density is that drops off at the cosmic expansion inversely proportional to the square of the cosmic scale, i.e. vac = vac,o . ( R 0 /R) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabgIGioR WaaSbaaKqaGfaacaWG2bGaamyyaiaadogaaeqaaOGaeyypa0tcaaMa eyicI4ScdaWgaaqcbawaaiaadAhacaWGHbGaam4yaiaacYcacaWGVb aabeaakiaac6cacaGGOaGaamOuamaaBaaaleaacaaIWaaabeaakiaa c+cacaWGsbGaaiykamaaCaaaleqabaGaaGOmaaaaaaa@4AA7@ - rather than being a constant.6,7 The question then, however, arises, how under these latter, new circumstances structure formation does influence the cosmic expansion, a problem recently discussed for the first time by Fahr8 and here, under the new auspices given now by relation  above, is taken up once again.

  1. The evolution of the Hubble parameter

The above result unavoidably leads to the important question of what Hubble parameter H=H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadIeacq GH9aqpcaWGibGaaiikaiaadshacaGGPaaaaa@3C69@  and what temporal change of it, i.e. dH/dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGKbGaaeisaiaac+cacaqGKbGaaeiDaaaa@3A5A@ ,  one has to expect as prevailing at the different cosmologic evolution periods or different world times t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0baaaa@3710@ . For Friedman-Lemaı̂tre-Robertson-Walker cosmologies (FLRW) the Hubble parameter H(t)= R ˙ (t)/R(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadIeaca GGOaGaamiDaiaacMcacqGH9aqpceWGsbGbaiaacaGGOaGaamiDaiaa cMcacaGGVaGaamOuaiaacIcacaWG0bGaaiykaaaa@42AA@  generally is not a constant, but is given in form of the following differential equation (derived from the 1. Friedman equation; e.g.:3-5

H 2 = R ˙ 2 R 2 = 8πG 3 [ ρ B + ρ D + ρ v + ρ Λ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadIeakm aaCaaaleqabaGaaGOmaaaakiabg2da9maalaaabaGabmOuayaacaWa aWbaaSqabeaacaaIYaaaaaGcbaGaamOuamaaCaaaleqabaGaaGOmaa aaaaGccqGH9aqpdaWcaaqaaiaaiIdacqaHapaCcaWGhbaabaGaaG4m aaaacaGGBbGaeqyWdi3aaSbaaSqaaiaadkeaaeqaaOGaey4kaSIaeq yWdi3aaSbaaSqaaiaadseaaeqaaOGaey4kaSIaeqyWdi3aaSbaaSqa aiaadAhaaeqaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiabfU5ambqaba GccaGGDbaaaa@5350@  

where G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadEeaaa a@3843@  is Newton‘s gravitational constant, and ρ B , ρ D , ρ v , ρ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGcbaabeaakiaacYcacqaHbpGCdaWgaaWcbaGaamiraaqa baGccaGGSaGaeqyWdi3aaSbaaSqaaiaadAhaaeqaaOGaaiilaiabeg 8aYnaaBaaaleaacqqHBoataeqaaaaa@44EC@  denote the relevant equivalent cosmic mass densities of baryons, of dark matter, of photons, and of the vacuum energy.

In case that all of these quantities count at the same cosmologic period, then this complicates to find a closed solution for H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadIeaca GGOaGaamiDaiaacMcaaaa@3A96@  and R(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadkfaca GGOaGaamiDaiaacMcaaaa@3AA0@ over these cosmic times, because ρ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGcbaabeaaaaa@39C1@ may vary proportional to R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadkfakm aaCaaaleqabaGaeyOeI0IaaG4maaaaaaa@3A2F@ , ρ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGebaabeaaaaa@39C3@ most probably also according to R 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadkfakm aaCaaaleqabaGaeyOeI0IaaG4maaaaaaa@3A2F@ , but ρ v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWG2baabeaaaaa@39F5@ is generally thought to vary according to R 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbWdamaaCaaaleqabaWdbiabgkHiTiaaisdaaaaaaa@38E5@  (see Goenner, 1996, but also Fahr and Heyl, 2017, 2018).5 A solution for the Hubble parameter in this general case is shown in Figure 1 below.4  

Figure 1 The Hubble Parameter H(x) (yellow curve) and the expansion velocity  (x) (blue curve) are shown as functions of the normalized Hubble scale x = R/R0 on the basis of best-fitting values for ρm, ρd, ρv,.9

Amongst these quantities the cosmic vacuum energy density ρ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacqqHBoataeqaaaaa@3A6F@ certainly is the physically least certain quantity, but on the other hand - if described with Einstein's cosmological constant Λ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabfU5amj aacYcaaaa@399C@ then it represents a positive, constant energy density, i.e its mass equivalent ρ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacqqHBoataeqaaaaa@3A6F@ in connection with a constant and positive vacuum energy density Λ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabfU5amj aacYcaaaa@399C@ would consequently as well be a positive, constant quantity not dependend on the scale R or cosmic time t. This in fact would offer for the later phases of cosmic expansion, i.e. when at late times t t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadshacq GHLjYScaWG0bGcdaWgaaWcbaGaaGimaaqabaaaaa@3C1F@ evidently ρ Λ ρ B , ρ D , ρ v , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacqqHBoataeqaaOGaeS4AI8JaeqyWdi3aaSbaaSqaaiaadkea aeqaaOGaaiilaiabeg8aYnaaBaaaleaacaWGebaabeaakiaacYcacq aHbpGCdaWgaaWcbaGaamODaaqabaGccaGGSaaaaa@4653@ an easy and evident solution of the above equation for the late Hubble parameter H=H(t t 0 )=H( Λ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadIeacq GH9aqpcaWGibGaaiikaiaadshacqGHLjYScaWG0bGcdaWgaaWcbaGa aGimaaqabaGccaGGPaGaeyypa0JaamisaiaacIcacqqHBoatdaWgaa WcbaGaaGimaaqabaGccaGGPaaaaa@45B3@ :

H=H( Λ 0 )= 8πG 3 ρ Λ 0 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadIeacq GH9aqpkiaadIeacaGGOaGaeu4MdW0aaSbaaSqaaiaaicdaaeqaaOGa aiykaiabg2da9maakaaabaWaaSaaaeaacaaI4aGaeqiWdaNaam4raa qaaiaaiodaaaaaleqaaOGaeqyWdi3aaSbaaSqaaiabfU5amnaaBaaa meaacaaIWaaabeaaaSqabaGccqGH9aqpcaWGJbGaam4Baiaad6gaca WGZbGaamiDaaaa@4D45@

As support for this to be true already now it has been concluded from recent supernova SN1a redshift observations (Perlmutter, 2003, Riess et al., 1998, Schmidt et al., 1998)10 that in fact at the present cosmic era, most probably already sometimes ago, we were and are in a coasting, perhaps even an accelerated expansion phase of the universe.  

Now, however, when taking it further on serious that this is due to the term Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabfU5amb aa@38EC@ connected with cosmologic vacuum energy density ρ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacqqHBoataeqaaaaa@3A6F@ , - however this time, not being a constant, but falling off like R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadkfakm aaCaaaleqabaGaeyOeI0IaaGOmaaaaaaa@3A2E@ ,  as discussed above in case the vacuum is thermodynamically and gravo dynamically active -, this then expresses the complicating fact that ρ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacqqHBoataeqaaaaa@3A6F@ is not a constant anymore, but nevertheless sooner or later along the evolution of the universe at ongoing expansion must unavoidably become the dominant quantity in the universe amongst the other upper ingredients, i.e. ρ Λ ρ B , ρ D , ρ v , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacqqHBoataeqaaOGaeS4AI8JaeqyWdi3aaSbaaSqaaiaadkea aeqaaOGaaiilaiabeg8aYnaaBaaaleaacaWGebaabeaakiaacYcacq aHbpGCdaWgaaWcbaGaamODaaqabaGccaGGSaaaaa@4653@ since falling off inversely proportional with R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadkfaaa a@384E@ , however, with the smallest power of (1/R) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaacIcaca aIXaGaai4laiaadkfacaGGPaGcdaahaaWcbeqaaiaaikdaaaaaaa@3C08@ .

Then in fact one will certainly also enter a cosmologic time with ρ Λ ρ B , ρ D , ρ ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCpaWaaSbaaSqaa8qacqqHBoata8aabeaak8qacqWIRjYp cqaHbpGCpaWaaSbaaSqaa8qacaWGcbaapaqabaGcpeGaaiilaiabeg 8aY9aadaWgaaWcbaWdbiaadseaa8aabeaak8qacaGGSaGaeqyWdi3d amaaBaaaleaapeGaeqyVd4gapaqabaaaaa@4647@  when the above differential equation for the Hubble parameter H=H(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadIeacq GH9aqpkiaadIeacaGGOaGaaiiDaiaacMcaaaa@3C72@ can be written not in the earlier form given above, but nevertheless in an essentially simplified form, namely different from above, this time by:

H= R ˙ R = 8πG 3 [ ρ B + ρ D + ρ v + ρ Λ ] 8πG 3 [ ρ Λ (R)] = R 0 R 8πG 3 ρ Λ,0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadIeacq GH9aqpkmaalaaabaGabmOuayaacaaabaGaamOuaaaacqGH9aqpdaGc aaqaamaalaaabaGaaGioaiabec8aWjaadEeaaeaacaaIZaaaaiaacU facqaHbpGCdaWgaaWcbaGaamOqaaqabaGccqGHRaWkcqaHbpGCdaWg aaWcbaGaamiraaqabaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaamODaa qabaGccqGHRaWkcqaHbpGCdaWgaaWcbaGaeu4MdWeabeaakiaac2fa aSqabaGccqWIdjYodaGcaaqaamaalaaabaGaaGioaiabec8aWjaadE eaaeaacaaIZaaaaiaacUfacqaHbpGCdaWgaaWcbaGaeu4MdWeabeaa kiaacIcacaWGsbGaaiykaiaac2faaSqabaGccqGH9aqpdaWcaaqaai aadkfadaWgaaWcbaGaaGimaaqabaaakeaacaWGsbaaamaakaaabaWa aSaaaeaacaaI4aGaeqiWdaNaam4raaqaaiaaiodaaaGaeqyWdi3aaS baaSqaaiabfU5amjaacYcacaaIWaaabeaaaeqaaaaa@6A0C@

Under these new auspices of a thermodynamically reacting cosmic vacuum the expansion of the universe in this phase is then described by the above expression.

R ˙ R = R 0 R 8πG 3 ρ Λ,0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGabm OuayaacaaabaGaamOuaaaacqGH9aqpdaWcaaqaaiaadkfadaWgaaWc baGaaGimaaqabaaakeaacaWGsbaaamaakaaabaWaaSaaaeaacaaI4a GaeqiWdaNaam4raaqaaiaaiodaaaGaeqyWdi3aaSbaaSqaaiabfU5a mjaacYcacaaIWaaabeaaaeqaaaaa@457C@

with R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaaGimaaqabaaaaa@38CB@  and t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadshakm aaBaaaleaacaaIWaaabeaaaaa@3960@ denoting the present-day scale of the universe and the present cosmic time, and ρ Λ,0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCpaWaaSbaaSqaa8qacqqHBoatcaGGSaGaaGimaaWdaeqa aaaa@3B10@  denoting the equivalent vacuum mass density at this time t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadshakm aaBaaaleaacaaIWaaabeaaaaa@3960@ . This, however, expresses the astonishing fact that from that time onwards into the future of the universe for t t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadshacq GHLjYScaWG0bGcdaWgaaWcbaGaaGimaaqabaaaaa@3C1F@ the cosmic expansion will be characterized - neither by an acceleration nor by a deceleration -, but by a constant expansion velocity with R ¨ =d R ˙ /dt=0! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjqadkfaga Waaiabg2da9iaadsgaceWGsbGbaiaacaGGVaGaamizaiaadshacqGH 9aqpcaaIWaGaaiyiaaaa@4021@ , since:

R ˙ = R ˙ 0 = R 0 8πG 3 ρ Λ,0 =const. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjqadkfaga Gaaiabg2da9iqadkfagaGaaOWaaSbaaSqaaiaaicdaaeqaaOGaeyyp a0JaamOuamaaBaaaleaacaaIWaaabeaakmaakaaabaWaaSaaaeaaca aI4aGaeqiWdaNaam4raaqaaiaaiodaaaGaeqyWdi3aaSbaaSqaaiab fU5amjaacYcacaaIWaaabeaaaeqaaOGaeyypa0Jaam4yaiaad+gaca WGUbGaam4CaiaadshacaGGUaaaaa@4D79@  

This means the cosmic expansion would naturally and necessarily sooner or later enter into a so-called "coastal" phase of the universal expansion. For such a coastal phase cosmologists since long ago were hunting (see e.g. Kolb,1989, Dev et al., 2001, Gehlaut et al., 2003),11 and on the other hand were hoping for12,13 to also fit distant supernovae-SN1a redshift measurements equivalently well as with "the accelerated universe" (Perlmutter et al., 1999, Schmidt et al., 1999, Riess et al., 1999).10

For that reason we shall now describe the Hubble parameter in the period t t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadshacq GHLjYScaWG0bGcdaWgaaWcbaGaaGimaaqabaaaaa@3C1F@ at times with 1 H 0 (t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaaigdacq GHLjYScaWGibGcdaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiDaiab gkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaGGPaaaaa@40E7@ finding:

H(t t 0 )= R 0 8πG 3 ρ Λ0 R 0 + R ˙ 0 (t t 0 ) = H 0 1+ H 0 (t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadIeaki aacIcacaWG0bGaeyyzImRaamiDamaaBaaaleaacaaIWaaabeaakiaa cMcacqGH9aqpdaWcaaqaaiaadkfadaWgaaWcbaGaaGimaaqabaGcda GcaaqaamaalaaabaGaaGioaiabec8aWjaadEeaaeaacaaIZaaaaiab eg8aYnaaBaaaleaacqqHBoatcaaIWaaabeaaaeqaaaGcbaGaamOuam aaBaaaleaacaaIWaaabeaakiabgUcaRiqadkfagaGaamaaBaaaleaa caaIWaaabeaakiaacIcacaWG0bGaeyOeI0IaamiDamaaBaaaleaaca aIWaaabeaakiaacMcaaaGaeyypa0ZaaSaaaeaacaWGibWaaSbaaSqa aiaaicdaaeqaaaGcbaGaaGymaiabgUcaRiaadIeadaWgaaWcbaGaaG imaaqabaGccaGGOaGaamiDaiabgkHiTiaadshadaWgaaWcbaGaaGim aaqabaGccaGGPaaaaaaa@5E6F@  

where the Hubble parameter at time t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG0bGaeyypa0JaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaa aaa@3A23@  is denoted by H 0 = 8πG ρ Λ0 /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadIeakm aaBaaajeaybaGaaGimaaqabaGccqGH9aqpdaGcaaqaaiaaiIdacqaH apaCcaWGhbGaeqyWdi3aaSbaaSqaaiabfU5amjaaicdaaeqaaOGaai 4laiaaiodaaSqabaaaaa@439E@ . The important question then remains whether or not, even under these new perspectives, i.e of a "coastal cosmic expansion", the vacuum energy could still be understood as response to the change of negative gravitational binding energy of the universe connected with the ongoing expansion of matter in cosmic space, as demonstrated recently by Fahr?8

  1. How operates a thermo-reactive vacuum under ongoing cosmologic structure formation?

Cosmic structure formation denotes the phenomenon of growing clumpiness of the cosmic matter distribution in cosmic space during the ongoing evolution of the expanding universe, i.e. the origin of larger and larger mass structures like galaxies, clusters or super-clusters of galaxies. Usually one does start cosmology with the assumption that at the beginning of cosmic time and the evolution of the universe cosmic space has a uniform deposition with matter and energy, justifying the use of the famous Robertson-Walker geometry. The question for the evolved universe then may arise whether or not the later cosmic expansion dynamics and the scale evolution R ˙ =dR/dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjqadkfaga Gaaiabg2da9iaadsgacaWGsbGaai4laiaadsgacaWG0baaaa@3DB2@ may perhaps be influenced by the ongoing structure formation, as it has to happen in order to create out of its earlier uniformity that hierarchically structured present-day universe manifest to us today?

The question now is whether this process of a structuration perhaps influences the ongoing Hubble expansion of the universe, perhaps either accelerating or decelerating, or stagnating its expansion with respect to the solutions of the standard Friedmann universe?5 This, however, could simply be due to the fact that under the new conditions of a self structuring cosmic matter the effective mass density ρ eff = ρ eff (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabeg8aYP WaaSbaaSqaaiaadwgacaWGMbGaamOzaaqabaGccqGH9aqpjaaycqaH bpGCkmaaBaaaleaacaWGLbGaamOzaiaadAgaaeqaaOGaaiikaiaads hacaGGPaaaaa@44B8@ of the universe does not behave like it normally does in a Friedmann universe like ρ= ρ 0 . ( R 0 /R) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabeg8aYj abg2da9iabeg8aYPWaaSbaaSqaaiaaicdaaeqaaOGaaiOlaiaacIca caWGsbWaaSbaaSqaaiaaicdaaeqaaOGaai4laiaadkfacaGGPaWaaW baaSqabeaacaaIZaaaaaaa@433D@ , but rather like ρ eff = ρ eff,0 (t) ( R 0 /R) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabeg8aYP WaaSbaaSqaaiaadwgacaWGMbGaamOzaaqabaGccqGH9aqpjaaycqaH bpGCkmaaBaaaleaacaWGLbGaamOzaiaadAgacaGGSaGaaGimaaqaba GccaGGOaGaamiDaiaacMcacaGGOaGaamOuamaaBaaaleaacaaIWaaa beaakiaac+cacaWGsbGaaiykamaaCaaaleqabaGaaG4maaaaaaa@4BB6@

The manifest universe, as it is, is not a homogeneous material structure, but stellar matter is distributed in space in form of galaxies, clusters of galaxies, and superclusters, i.e. it is structured in hierarchies. This can be described up to supercluster-scales by a point-related correlation function with an observationally supported correlation index of α=1.8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabeg7aHj abg2da9iaaigdacaGGUaGaaGioaaaa@3C4B@    ( see Bahcall and Chokski, 1992). This two-point correlation structure seen in cosmic galaxy distributions can be expressed through the underlying cosmic mass distribution given by an equivalent mass density of ρ(l)= ρ 0,α . (l/l) α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabeg8aYj aacIcacaWGSbGaaiykaiabg2da9iabeg8aYPWaaSbaaSqaaiaaicda caGGSaGaeqySdegabeaakiaac6cacaGGOaGaamiBaiaac+cacaWGSb GaaiykamaaCaaaleqabaGaeyOeI0IaeqySdegaaaaa@48E9@ .14

It is then most interesting to see from recent results by Fahr8 that the gravitational binding energy in this hierarchically structured universe, and its change with time, is described by a function pot = pot (R,α) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabgIGioR WaaSbaaSqaaiaadchacaWGVbGaamiDaaqabaGccqGH9aqpjaaycqGH iiIZkmaaBaaaleaacaWGWbGaam4BaiaadshaaeqaaOGaaiikaiaadk facaGGSaGaeqySdeMaaiykaaaa@46B1@ not only dependend on the outer scale R=R(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadkfacq GH9aqpcaWGsbGaaiikaiaadshacaGGPaaaaa@3C7D@ , but also on the correlation coefficient α=α(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabeg7aHj abg2da9iabeg7aHjaacIcacaWG0bGaaiykaaaa@3E0D@ of the structured cosmic matter in this cosmic system, namely given in the form:

pot (R,α)= (4π) 2 (3α) 9(52α) G ρ ¯ 2 R 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabgIGioR WaaSbaaSqaaiaadchacaWGVbGaamiDaaqabaGccaGGOaGaamOuaiaa cYcacqaHXoqycaGGPaGaeyypa0ZaaSaaaeaacaGGOaGaaGinaiabec 8aWjaacMcadaahaaWcbeqaaiaaikdaaaGccaGGOaGaaG4maiabgkHi Tiabeg7aHjaacMcaaeaacaaI5aGaaiikaiaaiwdacqGHsislcaaIYa GaeqySdeMaaiykaaaacaWGhbGafqyWdiNbaebadaahaaWcbeqaaiaa ikdaaaGccaWGsbWaaWbaaSqabeaacaaI1aaaaaaa@5698@

where obviously the permitted range of the structure coefficient is given by values α2.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabeg7aHj abgsMiJkaaikdacaGGUaGaaGynaaaa@3CF8@ . Here G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaadEeaaa a@3843@ is Newton‘s gravitational constant, and ρ ¯ = ρ ¯ (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg8aYzaara Gaeyypa0JafqyWdiNbaebacaGGOaGaamOuaiaacMcaaaa@3DF4@ denotes the average mass density in the associated, re-homogenized universe. It is interesting to recognize that for α=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabeg7aHj abg2da9iaaicdaaaa@3AD6@  (i.e. homogeneous matter distribution) in fact the potential energy of a homogeneously matter-filled sphere with radius R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfaaaa@3807@ is found, which does not vanish, but has a finite value, namely6,7

pot (α=0)= (4π) 2 15 G ρ ¯ 2 R 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjabgIGioR WaaSbaaSqaaiaadchacaWGVbGaamiDaaqabaGccaGGOaGaeqySdeMa eyypa0JaaGimaiaacMcacqGH9aqpdaWcaaqaaiaacIcacaaI0aGaeq iWdaNaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaaigdacaaI1aaa aiaadEeacuaHbpGCgaqeamaaCaaaleqabaGaaGOmaaaakiaadkfada ahaaWcbeqaaiaaiwdaaaaaaa@4D86@  

This latter binding energy, however, is fully incorporated by the Friedmann-Lemaı̂tre cosmology as the one normally reponsible for the deceleration of the "normal" Hubble expansion of the universe without the action the vacuum via .

ρ Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacqqHBoataeqaaaaa@3A6F@  

If in contrast the cosmic deceleration turns out to be smaller than the "normal" Hubble deceleration or it even indicates an acceleration which normally is ascribed to the action of vacuum energy, then in our view this must be ascribed to the increased production of binding energy due to the upcome of structure formation with cosmic time. That means what really counts is the difference Δ pot = pot (α) pot (α=0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWGWbGaam4BaiaadshaaeqaaOGaeyypa0Jaeyic I48aaSbaaSqaaiaadchacaWGVbGaamiDaaqabaGccaGGOaGaeqySde MaaiykaiabgkHiTiabgIGiopaaBaaaleaacaWGWbGaam4Baiaadsha aeqaaOGaaiikaiabeg7aHjabg2da9iaaicdacaGGPaaaaa@4FEB@ between a structured and an unstructured universe. The value pot (α=0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaacaWGWbGaam4BaiaadshaaeqaaOGaaiikaiabeg7aHjabg2da 9iaaicdacaGGPaaaaa@4062@ hereby serves as reference value for that potential energy in the associated, re-homogenized universe. What really counts in terms of binding energy of a structured universe causing a deviation from the Friedmann-Lemaitre expansion of the universe is the difference Δ pot MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWGWbGaam4Baiaadshaaeqaaaaa@3D06@ between the structured and the unstructured universe, since evidently the unstructured universe has its own, but nonvanishing amount of binding energy. For general cases one therefore obtains:

Δ pot (α,R)= (4π) 2 (3α) 9(52α) G ρ ¯ 2 R 5 (4π) 2 15 G ρ ¯ 2 R 5 = (4π) 2 3 ·[ (3α) 3(52α) 1 5 ]·G ρ ¯ 2 R 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWGWbGaam4BaiaadshaaeqaaOGaaiikaiabeg7a HjaacYcacaWGsbGaaiykaiabg2da9maalaaabaGaaiikaiaaisdacq aHapaCcaGGPaWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaaiodacqGH sislcqaHXoqycaGGPaaabaGaaGyoaiaacIcacaaI1aGaeyOeI0IaaG Omaiabeg7aHjaacMcaaaGaam4raiqbeg8aYzaaraWaaWbaaSqabeaa caaIYaaaaOGaamOuamaaCaaaleqabaGaaGynaaaakiabgkHiTmaala aabaGaaiikaiaaisdacqaHapaCcaGGPaWaaWbaaSqabeaacaaIYaaa aaGcbaGaaGymaiaaiwdaaaGaam4raiqbeg8aYzaaraWaaWbaaSqabe aacaaIYaaaaOGaamOuamaaCaaaleqabaGaaGynaaaakiabg2da9maa laaabaGaaiikaiaaisdacqaHapaCcaGGPaWaaWbaaSqabeaacaaIYa aaaaGcbaGaaG4maaaacqWIpM+zcaGGBbWaaSaaaeaacaGGOaGaaG4m aiabgkHiTiabeg7aHjaacMcaaeaacaaIZaGaaiikaiaaiwdacqGHsi slcaaIYaGaeqySdeMaaiykaaaacqGHsisldaWcaaqaaiaaigdaaeaa caaI1aaaaiaac2facqWIpM+zcaWGhbGafqyWdiNbaebadaahaaWcbe qaaiaaikdaaaGccaWGsbWaaWbaaSqabeaacaaI1aaaaaaa@8411@

The question now poses itself: Is the change of binding energy Δ pot (α,R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWGWbGaam4BaiaadshaaeqaaOGaaiikaiabeg7a HjaacYcacaWGsbGaaiykaaaa@418F@ per cosmic time t or scale increment dR balanced by a corresponding unphysical change in thermal energy Δ therm (α,R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWG0bGaamiAaiaadwgacaWGYbGaamyBaaqabaGc caGGOaGaeqySdeMaaiilaiaadkfacaGGPaaaaa@4366@ of normal cosmic matter?  This we shall investigate in the next section down here.

  1. The thermal energy of cosmic matter in the expanding universe

Starting from the assumption that the cosmic dynamics can be represented by a Hubble expansion with a Hubble parameter H= R ˙ /R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacqGH9a qpceWGsbGbaiaacaGGVaGaamOuaaaa@3B4B@ it can be shown4,8,15,16 that cosmic gases subject to such an expansion undergo a so-called Hubble drift in velocity space while moving with their own velocities  from place to place. This unavoidable Hubble drift v = H vH MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgba WcbaGaamisaaqabaGccqGH9aqpcqGHsislcaWG2bGaeyyXICTaamis aaaa@3F12@ will enforce the change per time of the velocity distribution function f(v,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamODaiaacYcacaWG0bGaaiykaaaa@3BF6@ of the cosmic gas atoms which is described by the following kinetic transport equation:

f t =vH·( f v )H·f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamOzaaqaaiabgkGi2kaadshaaaGaeyypa0JaamODaiaadIea cqWIpM+zcaGGOaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaam ODaaaacaGGPaGaeyOeI0Iaaiisaiabl+y6NjaadAgaaaa@4C3B@   (40)

This above partial differential equation allows to derive the resulting distribution function f(v,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamODaiaacYcacaWG0bGaaiykaaaa@3BF6@ as function of the velocityand of the cosmic time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaaaa@3807@ , and as well its velocity moments, like e.g. the density n(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacaGGOa GaamiDaiaacMcaaaa@3A53@ and the temperature T(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacaGGOa GaamiDaiaacMcaaaa@3A39@ of the cosmic gas.

As it was shown already by Fahr,15,16 the above kinetic transport equation does not allow for a solution in the form of a separation of variables, i.e. putting f(v,t)= f t (t) f v (v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamODaiaacYcacaWG0bGaaiykaiabg2da9iaadAgadaWgaaWcbaGa amiDaaqabaGccaGGOaGaamiDaiaacMcacqGHflY1caWGMbWaaSbaaS qaaiaadAhaaeqaaOGaaiikaiaadAhacaGGPaaaaa@4822@ , but one rather needs a different, non-straight forward ad-hoc method of finding a kinetic solution of this above transport equation Equ.(40). It turns out that under the assumptions a): that at time t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWG0bWaaSbaaSqaaiaaicdaaeqaaaaa@3AEC@ a Maxwellian distribution f(v,t ) 0 =Max(v, T 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamODaiaacYcacaWG0bWaaSraaSqaaiaaicdaaeqaaOGaaiykaiab g2da9iaad2eacaWGHbGaamiEaiaacIcacaWG2bGaaiilaiaacsfada WgaaWcbaGaaGimaaqabaGccaGGPaaaaa@456E@ is valid, and b): that since that time a Hubble parameter H(t)= H 0 (1(t t 0 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaGGOa GaamiDaiaacMcacqGH9aqpcaWGibWaaSbaaSqaaiaaicdaaeqaaOGa eyyXICTaaiikaiaaigdacqGHsislcaGGOaGaamiDaiabgkHiTiaads hadaWgaaWcbaGaaGimaaqabaGccaGGPaGaaiykaaaa@4763@ prevails like it was derived in the section before given by:

H(t t 0 )= H 0 1+ H 0 (t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaGGOa GaamiDaiabgwMiZkaadshadaWgaaWcbaGaaGimaaqabaGccaGGPaGa eyypa0ZaaSaaaeaacaWGibWaaSbaaSqaaiaaicdaaeqaaaGcbaGaaG ymaiabgUcaRiaadIeadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiD aiabgkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaGGPaaaaaaa@4931@  

with H 0 = 8πG ρ Λ0 /3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaGcaaqaaiaaiIdacqaHapaCcaWG hbGaeqyWdi3aaSbaaSqaaiabfU5amjaaicdaaeqaaOGaai4laiaaio dacaGGSaaaleqaaaaa@437C@ ρ Λ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacqqHBoatcaaIWaaabeaaaaa@3B29@ denoting the equivalent mass energy density of the cosmic vacuum at the time t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWG0bWaaSbaaSqaaiaaicdaaeqaaaaa@3AEC@ , one can then write the actual distribution function at times t t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGHLj YScaWG0bWaaSbaaSqaaiaaicdaaeqaaaaa@3BAC@ , derived on the basis of the above partial differential kinetic equation, in the following form (see Fahr, 2021):

f(v,t)= n 0 exp[3 H 0 (t t 0 ) (1 H 0 (t t 0 )) 3 π 3/2 v 0 3 exp[ x 2 (1 H 0 (t t 0 )) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamODaiaacYcacaWG0bGaaiykaiabg2da9iaad6gadaWgaaWcbaGa aGimaaqabaGcciGGLbGaaiiEaiaacchacaGGBbGaeyOeI0IaaG4mai aadIeadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiDaiabgkHiTiaa dshadaWgaaWcbaGaaGimaaqabaGccaGGPaGaeyyXIC9aaSaaaeaaca GGOaGaaGymaiabgkHiTiaadIeadaWgaaWcbaGaaGimaaqabaGccaGG OaGaamiDaiabgkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaGGPa GaaiykamaaCaaaleqabaGaaG4maaaaaOqaaiabec8aWnaaCaaaleqa baGaaG4maiaac+cacaaIYaaaaOGaamODamaaDaaaleaacaaIWaaaba GaaG4maaaaaaGcciGGLbGaaiiEaiaacchacaGGBbGaeyOeI0IaamiE amaaCaaaleqabaGaaGOmaaaakiabgwSixlaacIcacaaIXaGaeyOeI0 IaamisamaaBaaaleaacaaIWaaabeaakiaacIcacaWG0bGaeyOeI0Ia amiDamaaBaaaleaacaaIWaaabeaakiaacMcacaGGPaWaaWbaaSqabe aacaaIYaaaaOGaaiyxaaaa@73C0@

where v 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaaGimaaqabaaaaa@38EF@ denotes the thermal velocity by v 0 2 =k T 0 /m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaqhaa WcbaGaaGimaaqaaiaaikdaaaGccqGH9aqpcaWGRbGaamivamaaBaaa leaacaaIWaaabeaakiaac+cacaWGTbaaaa@3F1A@ at the time t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaaGimaaqabaaaaa@38ED@ , when a temperature T( t 0 )= T 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacaGGOa GaamiDamaaBaaaleaacaaIWaaabeaakiaacMcacqGH9aqpcaWGubWa aSbaaSqaaiaaicdaaeqaaaaa@3DEE@ prevails. Hereby the normalized velocity coordinate x was introduced by x=v/ v 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaWG2bGaai4laiaadAhadaWgaaWcbaGaaGimaaqabaaaaa@3CA0@ . Furthermore it turns out that one can interprete the actually prevailing distribution function f(v,t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamODaiaacYcacaWG0bGaaiykaaaa@3BF6@ as an actual Maxwellian with the time-dependent temperature T(t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacaGGOa GaamiDaiabgwMiZkaadshadaWgaaWcbaGaaGimaaqabaGccaGGPaaa aa@3DE8@ given by:

T(t)= T 0 (1 H 0 (t t 0 )) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacaGGOa GaamiDaiaacMcacqGH9aqpdaWcaaqaaiaadsfadaWgaaWcbaGaaGim aaqabaaakeaacaGGOaGaaGymaiabgkHiTiaadIeadaWgaaWcbaGaaG imaaqabaGccaGGOaGaamiDaiabgkHiTiaadshadaWgaaWcbaGaaGim aaqabaGccaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaaaaaaaa@47E7@

and a time-dependent density

n(t)= n 0 exp[3 H 0 (t t 0 )]= n 0 ( R(t) R 0 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacaGGOa GaamiDaiaacMcacqGH9aqpcaWGUbWaaSbaaSqaaiaaicdaaeqaaOGa ciyzaiaacIhacaGGWbGaai4waiabgkHiTiaaiodacaWGibWaaSbaaS qaaiaaicdaaeqaaOGaaiikaiaadshacqGHsislcaWG0bWaaSbaaSqa aiaaicdaaeqaaOGaaiykaiaac2facqGH9aqpcaWGUbWaaSbaaSqaai aaicdaaeqaaOGaeyyXICTaaiikamaalaaabaGaamOuaiaacIcacaWG 0bGaaiykaaqaaiaadkfadaWgaaWcbaGaaGimaaqabaaaaOGaaiykam aaCaaaleqabaGaeyOeI0IaaG4maaaaaaa@57C9@

One therefore finds that under the given cosmologic prerequisites of a Hubble expansion with the Hubble parameter H(t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIeacaGGOa GaamiDaiabgwMiZkaadshadaWgaaWcbaGaaGimaaqabaGccaGGPaaa aa@3DDB@ the thermal energy therm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaacaWG0bGaamiAaiaadwgacaWGYbGaamyBaaqabaaaaa@3D77@ of matter in this universe thus increases with time t like:

therm = 4π 3 R 3 n(t).( 3 2 kT(t))= 4π 3 (3/2) n 0 k T 0 R 0 3 (1 H 0 (t t 0 )) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaacaWG0bGaamiAaiaadwgacaWGYbGaamyBaaqabaGccqGH9aqp daWcaaqaaiaaisdacqaHapaCaeaacaaIZaaaaiaadkfadaahaaWcbe qaaiaaiodaaaGccqGHflY1caWGUbGaaiikaiaadshacaGGPaGaaiOl aiaacIcadaWcaaqaaiaaiodaaeaacaaIYaaaaiaadUgacaWGubGaai ikaiaadshacaGGPaGaaiykaiabg2da9maalaaabaGaaGinaiabec8a WbqaaiaaiodaaaWaaSaaaeaacaGGOaGaaG4maiaac+cacaaIYaGaai ykaiaad6gadaWgaaWcbaGaaGimaaqabaGccaWGRbGaamivamaaBaaa leaacaaIWaaabeaakiaadkfadaqhaaWcbaGaaGimaaqaaiaaiodaaa aakeaacaGGOaGaaGymaiabgkHiTiaadIeadaWgaaWcbaGaaGimaaqa baGccaGGOaGaamiDaiabgkHiTiaadshadaWgaaWcbaGaaGimaaqaba GccaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaaaaaaaa@6AAB@

meaning that the total thermal energy of the matter in this whole Hubble universe apparently increases with the expansion - obviously violating standard thermodynamical principles according to which the temperature of matter decreases with the increase of cosmic space volume.

At this point of the argumentation Fahr4,8 had recently developed a new idea to explain this mysterious, unphysical increase of the thermal energy on a physical basis: Namely he suspected that this increase in thermal energy of cosmic matter in this expanding universe is just compensated by the increase in negative-valued, cosmic binding energy Δ pot (α, l m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWGWbGaam4BaiaadshaaeqaaOGaaiikaiabeg7a HjaacYcacaWGSbWaaSbaaSqaaiaad2gaaeqaaOGaaiykaaaa@42D1@ in case of a specific level of structure formation, measurable as a specific level of the correlation coefficient α(t)= α 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaacI cacaWG0bGaaiykaiabg2da9iabeg7aHnaaBaaaleaacaaIWaaabeaa aaa@3E8A@ . The hope was that this negative binding energy is the genuine physical reason for the action of a so-called "vacuum pressure", corresponding to an equivalent mass density ρ Λ = Λ 0 c 2 /8πG MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacqqHBoataeqaaOGaeyypa0Jaeu4MdW0aaSbaaSqaaiaaicda aeqaaOGaam4yamaaCaaaleqabaGaaGOmaaaakiaac+cacaaI4aGaeq iWdaNaam4raaaa@43BD@ . Since we now have a new request derived in section 4 of how vacuum energy density should behave with the scale R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0=Mr0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfaaaa@3807@ , this idea needs to be re-checked here putting the question whether or not this argumentation can still stand.

To pursue a little more this idea, we again start from the two competing quantities, i.e. the potential binding energy difference between the structured and the unstructured universe on one hand:

Δ pot (α,R)= (4π) 2 3 [ (3/α) 3(52α) 1 5 ]G ρ ¯ 2 R 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWGWbGaam4BaiaadshaaeqaaOGaaiikaiabeg7a HjaacYcacaWGsbGaaiykaiabg2da9maalaaabaGaaiikaiaaisdacq aHapaCcaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG4maaaacaGG BbWaaSaaaeaacaGGOaGaaG4maiaac+cacqaHXoqycaGGPaaabaGaaG 4maiaacIcacaaI1aGaeyOeI0IaaGOmaiabeg7aHjaacMcaaaGaeyOe I0YaaSaaaeaacaaIXaaabaGaaGynaaaacaGGDbGaam4raiqbeg8aYz aaraWaaWbaaSqabeaacaaIYaaaaOGaamOuamaaCaaaleqabaGaaGyn aaaaaaa@5C4F@

and the thermal energy difference between the non-thermodynamical and the thermodynamical universe of cosmic matter on the other hand:

therm = 4π 3 R 3 n(t)( 3 2 kT(t))= 4π 3 (3/2) n 0 k T 0 R 0 3 [ 1 (1 H 0 (t t 0 )) 2 1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaacaWG0bGaamiAaiaadwgacaWGYbGaamyBaaqabaGccqGH9aqp daWcaaqaaiaaisdacqaHapaCaeaacaaIZaaaaiaadkfadaahaaWcbe qaaiaaiodaaaGccqGHflY1caWGUbGaaiikaiaadshacaGGPaGaeyyX ICTaaiikamaalaaabaGaaG4maaqaaiaaikdaaaGaam4Aaiaadsfaca GGOaGaamiDaiaacMcacaGGPaGaeyypa0ZaaSaaaeaacaaI0aGaeqiW dahabaGaaG4maaaacaGGOaGaaG4maiaac+cacaaIYaGaaiykaiaad6 gadaWgaaWcbaGaaGimaaqabaGccaWGRbGaamivamaaBaaaleaacaaI WaaabeaakiaadkfadaqhaaWcbaGaaGimaaqaaiaaiodaaaGccaGGBb WaaSaaaeaacaaIXaaabaGaaiikaiaaigdacqGHsislcaWGibWaaSba aSqaaiaaicdaaeqaaOGaaiikaiaadshacqGHsislcaWG0bWaaSbaaS qaaiaaicdaaeqaaOGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaaa aOGaeyOeI0IaaGymaiaac2faaaa@7070@

Now, in order to guarantee energy conservation, we shall require that the change with cosmic time  of the first quantity Δ pot (α, l m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWGWbGaam4BaiaadshaaeqaaOGaaiikaiabeg7a HjaacYcacaWGSbWaaSbaaSqaaiaad2gaaeqaaOGaaiykaaaa@42D1@ is equal to the negative change of the second quantity Δ therm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWG0bGaamiAaiaadwgacaWGYbGaamyBaaqabaaa aa@3EDD@ - a question that advices to specifically study the following quantity:

Δ= therm Δ pot (α)= 4π 3 (3/2) n 0 k T 0 R 0 3 [ 1 (1 H 0 (t t 0 )) 2 1] (4π) 2 3 [ (3/α) 3(52α) 1 5 ]G ρ ¯ 2 R 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI Giolabg2da9iabgIGiopaaBaaaleaacaWG0bGaamiAaiaadwgacaWG YbGaamyBaaqabaGccqGHsislcqqHuoarcqGHiiIZdaWgaaWcbaGaam iCaiaad+gacaWG0baabeaakiaacIcacqaHXoqycaGGPaGaeyypa0Za aSaaaeaacaaI0aGaeqiWdahabaGaaG4maaaacaGGOaGaaG4maiaac+ cacaaIYaGaaiykaiaad6gadaWgaaWcbaGaaGimaaqabaGccaWGRbGa amivamaaBaaaleaacaaIWaaabeaakiaadkfadaqhaaWcbaGaaGimaa qaaiaaiodaaaGccaGGBbWaaSaaaeaacaaIXaaabaGaaiikaiaaigda cqGHsislcaWGibWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiaadshacq GHsislcaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaacMcadaah aaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaaGymaiaac2facqGHsislda WcaaqaaiaacIcacaaI0aGaeqiWdaNaaiykamaaCaaaleqabaGaaGOm aaaaaOqaaiaaiodaaaGaai4wamaalaaabaGaaiikaiaaiodacaGGVa GaeqySdeMaaiykaaqaaiaaiodacaGGOaGaaGynaiabgkHiTiaaikda cqaHXoqycaGGPaaaaiabgkHiTmaalaaabaGaaGymaaqaaiaaiwdaaa GaaiyxaiaadEeacuaHbpGCgaqeamaaCaaaleqabaGaaGOmaaaakiaa dkfadaahaaWcbeqaaiaaiwdaaaaaaa@83FF@  

In the following part we consider the times with 1 H Λ (t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacqWIRj YpcaWGibWaaSbaaSqaaiabfU5ambqabaGccaGGOaGaamiDaiabgkHi TiaadshadaWgaaWcbaGaaGimaaqabaGccaGGPaaaaa@40C6@ and describe the temporal evolution of the structure index α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ by: α(t)= α 0 exp[ ε α H 0 (t t 0 )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaacI cacaWG0bGaaiykaiabg2da9iabeg7aHnaaBaaaleaacaaIWaaabeaa kiGacwgacaGG4bGaaiiCaiaacUfacqaH1oqzdaWgaaWcbaGaeqySde gabeaakiaadIeadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiDaiab gkHiTiaadshadaWgaaWcbaGaaGimaaqabaGccaGGPaGaaiyxaaaa@4D90@ with ε α 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacqaHXoqyaeqaaOGaeyizImQaaGymaaaa@3CFA@ . Then one can simplify the above expression into the form:

Δ(t) 4π 3 (3/2) n 0 k T 0 R 0 3 [2 H 0 (t t 0 )] (4π) 2 3 [ (3/ α 0 [1+ ε α H 0 (t t 0 )]) 3(52 α 0 [1+ ε α H 0 (t t 0 )]) 1 5 ]G ρ ¯ 2 R 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiolaacIcacaWG0bGaaiykaiabloKi7maalaaabaGaaGinaiabec8a WbqaaiaaiodaaaGaaiikaiaaiodacaGGVaGaaGOmaiaacMcacaWGUb WaaSbaaSqaaiaaicdaaeqaaOGaam4AaiaadsfadaWgaaWcbaGaaGim aaqabaGccaWGsbWaa0baaSqaaiaaicdaaeaacaaIZaaaaOGaai4wai aaikdacaWGibWaaSbaaSqaaiaaicdaaeqaaOGaaiikaiaadshacqGH sislcaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaiaac2facqGHsi sldaWcaaqaaiaacIcacaaI0aGaeqiWdaNaaiykamaaCaaaleqabaGa aGOmaaaaaOqaaiaaiodaaaGaai4wamaalaaabaGaaiikaiaaiodaca GGVaGaeqySde2aaSbaaSqaaiaaicdaaeqaaOGaai4waiaaigdacqGH RaWkcqaH1oqzdaWgaaWcbaGaeqySdegabeaakiaadIeadaWgaaWcba GaaGimaaqabaGccaGGOaGaamiDaiabgkHiTiaadshadaWgaaWcbaGa aGimaaqabaGccaGGPaGaaiyxaiaacMcaaeaacaaIZaGaaiikaiaaiw dacqGHsislcaaIYaGaeqySde2aaSbaaSqaaiaaicdaaeqaaOGaai4w aiaaigdacqGHRaWkcqaH1oqzdaWgaaWcbaGaeqySdegabeaakiaadI eadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamiDaiabgkHiTiaadsha daWgaaWcbaGaaGimaaqabaGccaGGPaGaaiyxaiaacMcaaaGaeyOeI0 YaaSaaaeaacaaIXaaabaGaaGynaaaacaGGDbGaam4raiqbeg8aYzaa raWaaWbaaSqabeaacaaIYaaaaOGaamOuamaaCaaaleqabaGaaGynaa aaaaa@8CCD@

or furthermore - when identifying: 4π 3 (3/2) n 0 k T 0 R 0 3 = therm,0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG inaiabec8aWbqaaiaaiodaaaGaaiikaiaaiodacaGGVaGaaGOmaiaa cMcacaWGUbWaaSbaaSqaaiaaicdaaeqaaOGaam4AaiaadsfadaWgaa WcbaGaaGimaaqabaGccaWGsbWaa0baaSqaaiaaicdaaeaacaaIZaaa aOGaeyypa0JaeyicI48aaSbaaSqaaiaadshacaWGObGaamyzaiaadk hacaWGTbGaaiilaiaaicdaaeqaaaaa@4DD5@ as the total thermal energy at time t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWG0bWaaSbaaSqaaiaaicdaaeqaaaaa@3AEC@ , and:

(4π/3) 2 G ρ ¯ 2 R 5 =G M 0 2 / R 0 = tot,0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaaI0a GaeqiWdaNaai4laiaaiodacaGGPaWaaWbaaSqabeaacaaIYaaaaOGa am4raiqbeg8aYzaaraWaaWbaaSqabeaacaaIYaaaaOGaamOuamaaCa aaleqabaGaaGynaaaakiabg2da9iaadEeacaWGnbWaa0baaSqaaiaa icdaaeaacaaIYaaaaOGaai4laiaadkfadaWgaaWcbaGaaGimaaqaba GccqGH9aqpcqGHiiIZdaWgaaWcbaGaamiDaiaad+gacaWG0bGaaiil aiaaicdaaeqaaaaa@507A@ as the total binding energy at t= t 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWG0bWaaSbaaSqaaiaaicdaaeqaaaaa@3AEC@ , one obtains:

Δ(t) therm,0 [2 H 0 (t t 0 )] tot,0 [ (3/ α 0 [1+ ε α H 0 (t t 0 )]) (52 α 0 [1+ ε α H 0 (t t 0 )]) 3 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiolaacIcacaWG0bGaaiykaiabloKi7iabgIGiopaaBaaaleaacaWG 0bGaamiAaiaadwgacaWGYbGaamyBaiaacYcacaaIWaaabeaakiaacU facaaIYaGaamisamaaBaaaleaacaaIWaaabeaakiaacIcacaWG0bGa eyOeI0IaamiDamaaBaaaleaacaaIWaaabeaakiaacMcacaGGDbGaey OeI0IaeyicI48aaSbaaSqaaiaadshacaWGVbGaamiDaiaacYcacaaI WaaabeaakiaacUfadaWcaaqaaiaacIcacaaIZaGaai4laiabeg7aHn aaBaaaleaacaaIWaaabeaakiaacUfacaaIXaGaey4kaSIaeqyTdu2a aSbaaSqaaiabeg7aHbqabaGccaWGibWaaSbaaSqaaiaaicdaaeqaaO GaaiikaiaadshacqGHsislcaWG0bWaaSbaaSqaaiaaicdaaeqaaOGa aiykaiaac2facaGGPaaabaGaaiikaiaaiwdacqGHsislcaaIYaGaeq ySde2aaSbaaSqaaiaaicdaaeqaaOGaai4waiaaigdacqGHRaWkcqaH 1oqzdaWgaaWcbaGaeqySdegabeaakiaadIeadaWgaaWcbaGaaGimaa qabaGccaGGOaGaamiDaiabgkHiTiaadshadaWgaaWcbaGaaGimaaqa baGccaGGPaGaaiyxaiaacMcaaaGaeyOeI0YaaSaaaeaacaaIZaaaba GaaGynaaaacaGGDbaaaa@811D@

Conclusion

First of all, the condition that the non-thermodynamical increase of the thermal energy therm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaacaWG0bGaamiAaiaadwgacaWGYbGaamyBaaqabaaaaa@3D77@ in a universe with Hubble expansion is compensated just by the negative binding energy Δ pot (α,R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWGWbGaam4BaiaadshaaeqaaOGaaiikaiabeg7a HjaacYcacaWGsbGaaiykaaaa@418F@ of the structured mass in the universe can only be fulfilled, if this gravitational binding energy difference between the structured and the unstructured universe becomes negative. The required condition can in fact be fulfilled, if at the time t=t_0  the gravitational binding energy of the cosmic masses, i.e. tot,0 = (4π/3) 2 G ρ ¯ 2 R 5 =G M 0 2 / R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaacaWG0bGaam4BaiaadshacaGGSaGaaGimaaqabaGccqGH9aqp caGGOaGaaGinaiabec8aWjaac+cacaaIZaGaaiykamaaCaaaleqaba GaaGOmaaaakiaadEeacuaHbpGCgaqeamaaCaaaleqabaGaaGOmaaaa kiaadkfadaahaaWcbeqaaiaaiwdaaaGccqGH9aqpcaWGhbGaamytam aaDaaaleaacaaIWaaabaGaaGOmaaaakiaac+cacaWGsbWaaSbaaSqa aiaaicdaaeqaaaaa@507A@ equals the actual thermal energy therm,0 = 4π 3 (3/2) n 0 k T 0 R 0 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaacaWG0bGaamiAaiaadwgacaWGYbGaamyBaiaacYcacaaIWaaa beaakiabg2da9maalaaabaGaaGinaiabec8aWbqaaiaaiodaaaGaai ikaiaaiodacaGGVaGaaGOmaiaacMcacaWGUbWaaSbaaSqaaiaaicda aeqaaOGaam4AaiaadsfadaWgaaWcbaGaaGimaaqabaGccaWGsbWaa0 baaSqaaiaaicdaaeaacaaIZaaaaaaa@4DD5@ of the particles. This then leads to the following request:

Δ(t)/ 0 [2 H 0 (t t 0 )][ (3/ α 0 [1+ ε α H 0 (t t 0 )]) (52 α 0 [1+ ε α H 0 (t t 0 )]) 3 5 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiolaacIcacaWG0bGaaiykaiaac+cacqGHiiIZdaWgaaWcbaGaaGim aaqabaGccqWIdjYocaGGBbGaaGOmaiaadIeadaWgaaWcbaGaaGimaa qabaGccaGGOaGaamiDaiabgkHiTiaadshadaWgaaWcbaGaaGimaaqa baGccaGGPaGaaiyxaiabgkHiTiaacUfadaWcaaqaaiaacIcacaaIZa Gaai4laiabeg7aHnaaBaaaleaacaaIWaaabeaakiaacUfacaaIXaGa ey4kaSIaeqyTdu2aaSbaaSqaaiabeg7aHbqabaGccaWGibWaaSbaaS qaaiaaicdaaeqaaOGaaiikaiaadshacqGHsislcaWG0bWaaSbaaSqa aiaaicdaaeqaaOGaaiykaiaac2facaGGPaaabaGaaiikaiaaiwdacq GHsislcaaIYaGaeqySde2aaSbaaSqaaiaaicdaaeqaaOGaai4waiaa igdacqGHRaWkcqaH1oqzdaWgaaWcbaGaeqySdegabeaakiaadIeada WgaaWcbaGaaGimaaqabaGccaGGOaGaamiDaiabgkHiTiaadshadaWg aaWcbaGaaGimaaqabaGccaGGPaGaaiyxaiaacMcaaaGaeyOeI0YaaS aaaeaacaaIZaaabaGaaGynaaaacaGGDbaaaa@765D@

 What concerns the needed and necessary correlation coefficient α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@38AD@ , one finds, however, as further restriction that only when this coefficient has attained a value of α α c =1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabgw MiZkabeg7aHnaaBaaaleaacaWGJbaabeaakiabg2da9iaaigdacaGG UaGaaGynaaaa@4062@ , then the resulting mathematical sign of therm,0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgIGiopaaBa aaleaacaWG0bGaamiAaiaadwgacaWGYbGaamyBaiaacYcacaaIWaaa beaaaaa@3EE1@ allows a physical solution in the expected form (see our Figure 2 below).  This means that only when the structure formation process in the universe has progressed far enough, then the above required equality can in fact be achieved. But then, at times after that, when an accelerated expansion of the universe with a Hubble parameter H= H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacqGH9a qpcaWGibWaaSbaaSqaaiaaicdaaeqaaaaa@3A94@ prevails, then in fact the increase in negative potential energy of cosmic matter Δ pot (α,R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWGWbGaam4BaiaadshaaeqaaOGaaiikaiabeg7a HjaacYcacaWGsbGaaiykaaaa@418F@ is exactly balanced by the increase of thermal cosmic energy Δ therm (R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiopaaBaaaleaacaWG0bGaamiAaiaadwgacaWGYbGaamyBaaqabaGc caGGOaGaamOuaiaacMcaaaa@4117@ . During this phase of the expansion of the universe one is obviously justified to assume that the creation of negative binding energy is the reason for the accelerated expansion of the universe, a phenomenon which in present-day cosmology is confidently always ascribed to the action of vacuum energy.

Figure 2 The quantity ϵpot(α) as a function of the correlation coefficient α.

In Figures 3 and 4 we show how the normalized total energy Δ(t)/ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabgI GiolaacIcacaWG0bGaaiykaiaac+cacqGHiiIZdaWgbaWcbaGaaGim aaqabaaaaa@3F68@ varies with cosmic time t before and after the time t=t_0 demonstrating clearly how the actual correlation index α=α( t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabeg7aHjaacIcacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiyk aaaa@3E94@ influences the situation. Though this clearly shows the importance of the actual correlation index, we at this point of the paper can not hide the fact that we actually do not have a clear description of the evolution of α and of the cosmic matter structure with world time t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaaaa@3807@ . This is clearly appears as a point that remains to be theoretically derived in the upcoming time of cosmologic theory.

Figure 3 The quantity ϵ(t)/ϵ0 is shown as function of x = H0(t t0) from x=-0.5 to x=+0.5 for different correlation coefficients (from top to bottom):
α1 = 2. 1; α2 = 1. 8; α3 = 1. 3

Figure 4 The loarithm Log (10, ϵ(t)/ϵ0) is shown as function of x = H0(t t0) from x=-0.5 to x=+0.5 for different correlation coefficients (from top to bottom):
α1 = 2. 1; α2 = 1. 8; α3 = 1. 3

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Weinberg S. The cosmological constant problem. Rev Mod Phys. 1989;61:1.
  2. Overduin J, Fahr H J. Matter, spacetime and the vacuum. Naturwissenschaften. 2001;88:491–503.
  3. Peebles PJE, Ratra B. The cosmological constant and dark energy. Rev Modern Physcs. 2003;75:559–599.
  4. Fahr HJ. Determining the thermodynamics of cosmic gases at world times after the matter recombination, in: Research Trends and Challenges in Physical Sciences, B P International, Ed. S. Tüzemen, 2022a;8(8):83–100.
  5. Goenner H. Einführung in die Spezielle und Allgemeine Relativitätstheorie, Spektrum Akademischer Verlag, Heidelberg–Berlin–Oxford, 1996.
  6. Fahr HJ, Heyl M. Cosmic vacuum energy decay and creation of cosmic matter. Naturwissenschaften. 2007a.94:709–724.
  7. Fahr HJ, Heyl M. Astron Nachr. 2007b;328(2):192–199.
  8. Fahr HJ. How much could gravitational binding energy act as hidden cosmic vacuum energy. Adv Theo Comp Phy. 2022b;5(2):449–457.
  9. Bennet CI, Halpern M, Hinshaw G, et al. First year of Wilkinson Anisotropy Probe (WMAP) observations. Astrophys Journal. 2003;Supplements:148(1):97–117.
  10. Perlmutter S, Aldering G, Goldhabe G. The supernova cosmology project: Measurement of Omega and Lambda from 42 high–redshift supernovae. Astrophys J. 1999;517:565–586.
  11. Kolb EW. A coasting cosmology. Astrophys J. 1989;344:543.
  12. Cassado J, Jou D. Steady flow cosmological models. Astrophys Space Sci. 2013;344(2):513.
  13. Cassado J. Linear expansion models versus standard cosmologies; a critical and historical overview. Astrophys Space Sci. 2020;365:16.
  14. Fahr HJ, Heyl M. Stellar matter distribution with scale–invariant hierarchical structuring. Phys Astron Int J. 2019;3(4):146–150.
  15. Fahr HJ. The thermodynamics of cosmic gases in expanding universes based on Vlasow–theoretical grounds. Adv Theo Comp Phy. 2021a;4(2):129–133.
  16. Fahr H J. The baryon distribution function in the expanding universe after the recombination era. Phys Astron Int J. 2021b;5(2):37–41.
Creative Commons Attribution License

©2022 Fahr. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.