Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 3 Issue 5

Carriers disappear from conduction band edge with oscillations for certain values of electric and parallel magnetic fields

Paritosh Chakraborty,1 BN Mondal,2 G Sardar3

1Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, India
2Department of Central Scientific Services, Indian Association for the Cultivation of Science, India
3Department of Zoology, Baruipur College, India

Correspondence: Paritosh Chakraborty, Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur-721302, India, Tel +91 9474620332, Fax +91 3324732905

Received: July 03, 2019 | Published: October 23, 2019

Citation: Chakraborty P, Mondal BN, Sardar G. Carriers disappear from conduction band edge with oscillations for certain values of electric and parallel magnetic fields. Phys Astron Int J. 2019;3(5):214-218. DOI: 10.15406/paij.2019.03.00186

Download PDF

Abstract

An attempt has been made to study the energy-spectrum of conduction electrons and the corresponding density-of-states (DOS) functions in semiconductors with the presence of electric and parallel magnetic fields. It is found for n-GaAs that the isotropic parabolic un-perturbed energy spectrum exhibits anisotropic dispersion with energy dependent mass anisotropy in the presence of an external electric field. This anisotropic dispersion relation transforms to an isotropic one under the approximation: k x 2 1/3 k 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaamiEaaqaaiaaikdaaaGccqGHijYUcaaIXaGaai4laiaaioda caWGRbWaaWbaaSqabeaacaaIYaaaaOGaai4oaaaa@4189@ where k x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamiEaaqabaaaaa@3A44@ also, the band-gap of semiconductor increases with both of electric and parallel magnetic fields. Is the x-component of wave-vector k ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadUgagaqeaa aa@3933@ . Furthermore, the carriers are disappeared from the conduction band-edge without oscillations in the case of only electric field. However, carriers vanish with oscillations with the presence of both the electric and magnetic fields. The well-known result of the DOS functions for parabolic band has been retrieved, under certain limiting conditions, from our generalized expressions. Our theoretical observations of band-gap enhancement and the DOS functions are correlated with the nature of the experimental findings.

Keywords: semiconductor, density of states, electric and parallel magnetic field, conduction band-age, parabolic band

Abbreviations

DOS, density-of-states; VB, valence band; CB, conduction band; H, Hamiltonian

Introduction

It was demonstrated that applying an external electric field, as a perturbation to a semiconductor, the bands are perturbed by the interaction of the electric field with the valence band (VB) and the conduction band (CB).1 Therefore, the energy-spectrum of an electron in (CB) and hole in (VB) was modified with respect to un-perturbed bands. Accordingly, the basic characteristics of semiconductors such as density-of- state (DOS) functions, transport properties, etc. are influenced significantly2 under different physical conditions. The importance of DOS has already been revealed by Landsberg.3The analytical formulations of various quantum processes of semiconductor, having different energy-band spectrum, are based on the DOS functions. Although, DOS functions have already been investigated extensively,1,4 nevertheless it appears from the literatures survey that the electron energy-spectrum and the corresponding DOS have yet to be studied in semiconductors in the presence of an external electric and parallel magnetic fields.

In the present study, we describe a theoretical analysis on the electron energy-spectrum and corresponding DOS functions of a parabolic band semiconductor, in the presence of an externally applied electric field, F( =ef ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaqadaqaa8qacqGH9aqpcaqGLbGaaeOzaaWdaiaawIca caGLPaaapeGaaiilaaaa@3E64@ and a parallel magnetic fields, B(in Tesla). The present results are obtained by simply extending the same in the case of an electric field alone4 to the case of magnetic field, when the transverse component of the electron energy in the E k ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGHsi slceWGRbGbaebaaaa@3AEA@  dispersion relation is substituted by the quantizing energy5 due to Landau quantization. The present manuscript is arranged as the followings: in section 2, the theoretical back-ground followed by an electric field, applied along x-axis; in section 2B, the same energy–spectrum is extended to the cases of electric and a parallel magnetic fields, In section 2C, the DOS functions are derived for the above cases. In section 3, results are critically discussed based on our theoretical observations. Finally, in section 4, important conclusions are drawn based on our analyses.

Theoretical background

Derivation of energy spectrum in presence of an external electric field

For an external electric field (f) applied along the x-axis, the perturbed Hamiltonian (H'), can be forwarded as  

H'=F.x...... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisaiaacEcacqGH9aqpcaWGgbGaaiOlaiaadIhacaGGUaGaaiOl aiaac6cacaGGUaGaaiOlaiaac6caaaa@416F@   (1)

Where, F=ef MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiabg2da9iaabwgacaqGMbaaaa@3BED@ and e is the electron charge. The second order energy Eigen-value, E n ( 2 ) ( k ¯ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaqhaaWcbaWdbiaad6gaa8aabaWdbmaabmaapaqaa8qa caaIYaaacaGLOaGaayzkaaaaaOWdamaabmaabaGabm4Aayaaraaaca GLOaGaayzkaaGaaiilaaaa@4032@ under perturbation condition, Eqn (1) is given as6

E n ( 2 ) ( k ¯ )= E n ( k ¯ )+ n k ¯ | H |n k ¯ +{ | n k ¯ | H |m k ¯ | 2 E n ( k ¯ ) E m ( k ¯ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaiaa=veadaqhaaWcbaGaa8NBaaqaamaabmaabaGaa8Nm aaGaayjkaiaawMcaaaaakmaabmaabaWaa0aaaeaacaWFRbaaaaGaay jkaiaawMcaaiabg2da9iaa=veadaWgaaWcbaGaa8NBaaqabaGcdaqa daqaamaanaaabaGaa83AaaaaaiaawIcacaGLPaaacqGHRaWkdaaada qaaiaa=5gadaqdaaqaaiaa=TgaaaGaaGPaVpaaemaabaGaaGPaVlqa =HeagaqbaiaaykW7aiaawEa7caGLiWoacaaMc8Uaa8NBamaanaaaba Gaa83AaaaaaiaawMYicaGLQmcacqGHRaWkdaGadaqaamaaemaabaWa aaWaaeaacaWGUbWaa0aaaeaacaWGRbaaaiaaykW7daabdaqaaiaayk W7ceWGibGbauaacaaMc8oacaGLhWUaayjcSdGaaGPaVlaad2gadaqd aaqaaiaadUgaaaaacaGLPmIaayPkJaaacaGLhWUaayjcSdWaaWbaaS qabeaajugWaiaaikdaaaGcdaWccaqaaaqaaiaadweadaWgaaWcbaGa amOBaaqabaGcdaqadaqaamaanaaabaGaam4AaaaaaiaawIcacaGLPa aacqGHsislcaWGfbWaaSbaaSqaaiaad2gaaeqaaOWaaeWaaeaadaqd aaqaaiaadUgaaaaacaGLOaGaayzkaaaaaaGaay5Eaiaaw2haaaaa@798A@   (2)

where, 

H ψ n ( k ¯ , r ¯ )=E. ψ n ( k ¯ , r ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqzGeGaa8hsaiaa=H8akmaaBaaaleaajugibiaa=5ga aSqabaGcdaqadaqaamaanaaabaqcLbsacaWFRbaaaiaa=XcacaaMc8 UcdaqdaaqaaKqzGeGaa8NCaaaaaOGaayjkaiaawMcaaKqzGeGaeyyp a0Jaa8xraiaa=5cacaWFipGcdaWgaaWcbaqcLbsacaWFUbaaleqaaO WaaeWaaeaadaqdaaqaaKqzGeGaa83AaaaacaWFSaGaaGPaVlaaykW7 kmaanaaabaqcLbsacaWFYbaaaaGccaGLOaGaayzkaaaaaa@56CB@   (3)

H =  H o + H' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGibGaaeiiaiabg2da9iaabccacaWGibqcfa4damaaBaaa leaajugWa8qacaWGVbaal8aabeaajugib8qacqGHRaWkcaqGGaGaam isaiaacEcaaaa@4131@   (4)

H o u n ( k ¯ , r ¯ )= E n ( k ¯ ). u n ( k ¯ , r ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqzGeGaa8hsaOWaaSbaaSqaaKqzadGaa83BaaWcbeaa jugibiaa=vhakmaaBaaaleaajugWaiaa=5gaaSqabaGcdaqadaqaam aanaaabaqcLbsacaWFRbaaaiaa=XcakmaanaaabaqcLbsacaWFYbaa aaGccaGLOaGaayzkaaqcLbsacqGH9aqpcaWFfbGcdaWgaaWcbaqcLb macaWFUbaaleqaaOWaaeWaaeaadaqdaaqaaKqzGeGaa83AaaaaaOGa ayjkaiaawMcaaKqzGeGaa8Nlaiaa=vhakmaaBaaaleaajugWaiaa=5 gaaSqabaGcdaqadaqaamaanaaabaqcLbsacaWFRbaaaiaa=Xcakmaa naaabaqcLbsacaWFYbaaaaGccaGLOaGaayzkaaaaaa@5BC0@   (5)

H is the total Hamiltonian, ψ n ( k ¯ , r ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVyI8VfYJH8ss0=ziW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaruGqV92AGeKB0L wC1fgaiuaajugibiaa=H8akmaaBaaaleaajugWaiaa=5gaaSqabaGc daqadaqaamaanaaabaqcLbsacaWFRbaaaiaa=XcakmaanaaabaqcLb sacaWFYbaaaaGccaGLOaGaayzkaaaaaa@44ED@  is the wave function with u n ( k ¯ , r ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVyI8FfYJH8ss0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqzGeGaa8xDaOWaaSbaaSqaaKqzadGaa8NBaaWcbeaa kmaabmaabaWaa0aaaeaajugibiaa=TgaaaGaa8hlaOWaa0aaaeaaju gibiaa=jhaaaaakiaawIcacaGLPaaaaaa@440B@  as the periodic function of it. H o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqzGeGaa8hsaOWaaSbaaSqaaKqzadGaa83BaaWcbeaa aaa@4083@ , n, r ¯ , k ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaqefi 0BVTgib5gDPfxDHbacfaqcLbsacaWFYbaaaOGaaiilamaanaaabaqc LbsacaWFRbaaaaaa@40A5@ , E and E n ( k ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqzGeGaa8xraOWaaSbaaSqaaKqzadGaa8NBaaWcbeaa kmaabmaabaWaa0aaaeaajugibiaa=TgaaaaakiaawIcacaGLPaaaaa a@43A8@  are the un-perturbed Hamiltonian, the band index, the position vector of electron, the wave vector of the electron, the total energy of the electron and the energy of an electron in the periodic lattice, respectively. For a semiconductor having parabolic energy band, we get from Eqns (1) and (2)

E n ( 2 ) ( k ¯ )= E n ( k ¯ )F n k ¯ | x | n k ¯ + F ˙ 2    { | n k ¯ | x | m k ¯ | 2 E n ( k ¯ ) E m ( k ¯ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamOBaaqaamaabmaabaGaaGOmaaGaayjkaiaawMcaaaaakmaa bmaabaGabm4AayaaraaacaGLOaGaayzkaaGaeyypa0JaamyramaaBa aaleaacaWGUbaabeaakmaabmaabaGabm4AayaaraaacaGLOaGaayzk aaGaeyOeI0IaamOramaaaeaabaGaamOBaiqadUgagaqeamaaemaaba GaamiEaaGaay5bSlaawIa7amaaaiaabaGaamOBaiqadUgagaqeaaGa ayPkJaaacaGLPmcacqGHRaWkceWGgbGbaiaadaahaaWcbeqaaiaaik daaaGcqaaaaaaaaaWdbiaacckacaGGGcWaaiqaaeaadaabdaqaamaa aeaabaGaamOBaiqadUgagaqeamaaemaabaGaamiEaaGaay5bSlaawI a7amaaaiaabaGaamyBaiqadUgagaqeaaGaayPkJaaacaGLPmcaaiaa wEa7caGLiWoaaiaawUhaamaaCaaaleqabaGaaGOmaaaakmaaciaaba WaaSGaaeaaaeaacaWGfbWaaSbaaSqaaiaad6gaaeqaaOWaaeWaaeaa ceWGRbGbaebaaiaawIcacaGLPaaacqGHsislcaWGfbWaaSbaaSqaai aad2gaaeqaaOWaaeWaaeaaceWGRbGbaebaaiaawIcacaGLPaaaaaaa caGL9baaaaa@6D2B@  ……….. (6)

u nm ( k) ¯ = n k ¯ | x |m k ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaiaa=vhadaWgaaqcbaAaaiaad6gacaWGTbaaleqaaOGa aiikamaanaaabaGaam4AaiaacMcaaaGaeyypa0ZaaaWaaeaacaWFUb Waa0aaaeaacaWFRbaaaiaaykW7daabdaqaaiaaykW7caWG4bGaaGPa VdGaay5bSlaawIa7aiaaykW7caWGTbWaa0aaaeaacaWFRbaaaaGaay zkJiaawQYiaaaa@519D@  = …………. (7)

=i u n *. kx u m ( k ¯ , r ¯ ) d 3 r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeyypa0 JaamyAaiaaykW7juaGdaWdbaGcbaqefi0BVTgib5gDPfxDHbacfaqc LbsacaWF1bqcfa4aaSbaaSqaaKqzadGaamOBaaWcbeaaaeqabeqcLb sacqGHRiI8aiaacQcacaaMc8Uaa8NlaiaaykW7juaGdaWcaaGcbaac caqcLbsacqGFciITaOqaaKqbaoaaCaaaleqabaqcLbmacqGFciITca WGRbGaamiEaaaaaaqcLbsacaaMc8Uaa8xDaKqbaoaaBaaaleaajugW aiaa=1gaaSqabaqcLbsacaaMc8Ecfa4aaeWaaOqaaKqbaoaanaaake aajugibiaa=TgaaaGaa8hlaiaaykW7juaGdaqdaaGcbaqcLbsacaWF YbaaaaGccaGLOaGaayzkaaqcLbsacaaMc8Uaa8hzaKqbaoaaCaaale qabaqcLbmacaWFZaaaaKqzGeGaa8NCaaaa@6A3A@  ………….. (8)

Where i= 1, k x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyAaiabg2da9maakaaabaGaeyOeI0IaaGymaiaacYcacaWG RbWaaSbaaeaajugWaiaadIhaaKqbagqaaaqabaaaaa@3EBF@ is the x-component of k ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabm4Aayaaraaaaa@37A1@ and the integration in Eqn (8) extends over the unit cell. From Eqns (6)-(8), with n-corresponding to conduction band ( n=c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba aeaaaaaaaaa8qacaWGUbGaeyypa0Jaam4yaaWdaiaawIcacaGLPaaa aaa@3B12@ and m, corresponding to valence band ( m=v ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba aeaaaaaaaaa8qacaWGTbGaeyypa0JaamODaaWdaiaawIcacaGLPaaa peGaaiilaaaa@3BE4@  Eqns 6 can be reproduced as

E c ( 2 ) ( k ¯ )= E c ( k ¯ )F.Xcc+ F 2 | X cv | 2 { E c ( k ¯ ) E v ( k ¯ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVyI8VfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqbakaa=veadaqhaaqaaiaa=ngaaSqaamaabmaabaGa a8NmaaGaayjkaiaawMcaaaaajuaGdaqadaqaamaanaaabaGaa83Aaa aaaiaawIcacaGLPaaacaaMc8Uaeyypa0JaaGPaVlaa=veadaWgaaad baGaa83yaaqcfayabaWaaeWaaeaadaqdaaqaaiaa=TgaaaaacaGLOa GaayzkaaGaaGPaVlabgkHiTiaadAeacaGGUaGaamiwaWGaam4yaiaa dogacaaMc8EcfaOaey4kaSIaaGPaVlaa=zeadaahaaqabSqaaKqzad Gaa8NmaaaajuaGdaWcaaqaamaaemaabaGaaGPaVlaadIfadaWgaaad baGaa83yaiaa=zhaaKqbagqaaiaaykW7aiaawEa7caGLiWoadaahaa qabSqaaiaa=jdaaaaajuaGbaWaaiWaaeaacaWFfbWaaSbaaSqaaiaa =ngaaKqbagqaamaabmaabaWaa0aaaeaacaWFRbaaaaGaayjkaiaawM caaiaaykW7cqGHsislcaaMc8Uaa8xraSWaaSbaaeaacaWF2baabeaa juaGdaqadaqaamaanaaabaGaa83AaaaaaiaawIcacaGLPaaaaiaawU hacaGL9baaaaaaaa@7532@  ……….. (9)

where,   E c ( k ¯ )= 2 k 2 2 m c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaiaa=veadaWgaaWcbaGaa83yaaqabaGcdaqadaqaamaa naaabaGaa83AaaaaaiaawIcacaGLPaaacaaMc8Uaeyypa0JaaGPaVp aalaaabaGaeS4dHG2aaWbaaSqabeaacaWFYaaaaOGaa83AamaaCaaa leqabaGaa8NmaaaaaOqaaiaa=jdacaWFTbWaaSbaaSqaaiaa=ngaae qaaaaaaaa@4BF9@ ……(10)

is the un-perturbed parabolic conduction band with  is the effective electron mass at the band-edge of the CB. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeS4dHG MaaGPaVdaa@3B6F@  is the reduced Planck’s constant, given by =h/2π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeS4dHG MaaGPaVlabg2da9iaaykW7ruGqV92AGeKB0LwC1fgaiuaacaWFObGa a83laiaa=jdacqaHapaCaaa@46AA@ . X cc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadogacaWGJbaapaqabaaaaa@3B52@  and Xcv are the intra and interband transition matrix elements, respectively. For the evaluation of X cc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadogacaWGJbaapaqabaaaaa@3B52@  and X cv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaadogacaWG2baapaqabaaaaa@3B65@ , we use k ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sq=NbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaaqaaerbc9 2BRbsqUrxAXvxyaGqbaiaa=Tgaaaaaaa@3D6D@ . p ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaajuaGba qefi0BVTgib5gDPfxDHbacfaGaa8hCaaaaaaa@3C1C@  Perturbation technique7 for the isotropic two-band model. The two-bands are separated by the energy gap, Eg at k ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sq=NbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqdaaqaaerbc9 2BRbsqUrxAXvxyaGqbaKqzGeGaa83AaaaacqGH9aqpcaaIWaaaaa@3FBC@  accordingly, we find X cc =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiwa8aadaWgaaqaa8qacaWGJbGaam4yaaWdaeqaa8qacqGH 9aqpcaaIWaaaaa@3B65@

X cv =[ i   E g 3/2 /( 2 m m 1/2 .η2 ) ]. k x R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamiwamaaBaaabaqcLbmacaWGJbGaamODaaqcfayabaGaeyyp a0ZaamWaaeaacaWGPbGaaiiOa8aacqWIpecApeGaaiiOaiaadweada qhaaqaaiaadEgaaeaacaaIZaGaai4laiaaikdaaaGaai4lamaabmaa baGaaGOmaiaad2gadaqhaaqaaiaad2gaaeaacaaIXaGaai4laiaaik daaaGaaiOlaiabeE7aOjaaikdaaiaawIcacaGLPaaaaiaawUfacaGL DbaacaGGUaWaaSaaaeaacaWGRbWaaSbaaeaacaWG4baabeaaaeaaca WGsbaaaaaa@5499@ ……….. (11)

η= E c ( k ¯ ) E v ( k ¯ )= [ E g 2 + E g 2 k 2 m r ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqbakaa=D7acaaMc8Uaeyypa0JaaGPaVlaa=veadaWg aaadbaGaa83yaaqcfayabaWaaeWaaeaadaqdaaqaaiaa=Tgaaaaaca GLOaGaayzkaaGaaGPaVlabgkHiTiaaykW7caWFfbWaaSbaaWqaaiaa =zhaaKqbagqaamaabmaabaWaa0aaaeaacaWFRbaaaaGaayjkaiaawM caaiaaykW7cqGH9aqpcaaMc8+aamWaaeaacaWFfbGaa83zamaaCaaa beWcbaqcLbmacaWFYaaaaKqbakaaykW7cqGHRaWkcaaMc8+aaSaaae aacaWFfbWaaSbaaWqaaiaa=DgaaKqbagqaaiabl+qiOnaaCaaabeWc baqcLbmacaWFYaaaaKqbakaa=TgadaahaaqabSqaaKqzadGaa8Nmaa aaaKqbagaacaWFTbWaaSbaaeaajugWaiaa=jhaaKqbagqaaaaaaiaa wUfacaGLDbaadaahaaqabeaajugWaiaa=fdacaWFVaGaa8Nmaaaaaa a@6D96@  ………. (12)

and mr is the reduced electron effective mass, given by

m r -1 = m c -1 + m v -1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sq=NbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaruGqV92AGeKB0L wC1fgaiuaajugibiaa=1gakmaaDaaaleaajugWaiaa=jhaaSqaaKqz adGaa8xlaiaa=fdaaaqcLbsacaaMc8Uaeyypa0JaaGPaVlaa=1gakm aaDaaaleaajugWaiaa=ngaaSqaaKqzadGaa8xlaiaa=fdaaaqcLbsa caaMc8Uaey4kaSIaaGPaVlaa=1gakmaaDaaaleaajugWaiaa=zhaaS qaaKqzadGaa8xlaiaa=fdaaaaaaa@57C2@  ………….(13)

Combining the appropriate equations, the electron energy-spectrum in the presence of an external electric field, can be put forward, as.3

k x 2 [ 2 m c E /{ 1+ϕ ( E,F ) } ] + k y 2 2 m c E / 2 + k z 2 2 m c E / 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaSaaaeaacaWGRbWaa0baaeaajugWaiaadIhaaKqbagaajugW aiaaikdaaaaajuaGbaWaamWaaeaacaaIYaGaamyBamaaDaaabaGaam 4yaaqaaiaadweaaaGaai4la8aacqWIpecAdaGabaqaaiaaigdacqGH RaWkcqaHvpGzdaGacaqaamaabmaabaGaamyraiaacYcacaWGgbaaca GLOaGaayzkaaaacaGL9baaaiaawUhaaaWdbiaawUfacaGLDbaaaaGa ey4kaSYaaSaaaeaacaWGRbWaa0baaeaajugWaiaadMhaaKqbagaaju gWaiaaikdaaaaajuaGbaGaaGOmaiaad2gadaqhaaqaaiaadogaaeaa caWGfbaaaiaac+capaGaeS4dHG2aaWbaaeqabaqcLbmacaaIYaaaaa aajuaGpeGaey4kaSYaaSaaaeaacaWGRbWaa0baaeaajugWaiaadQha aKqbagaajugWaiaaikdaaaaajuaGbaGaaGOmaiaad2gadaqhaaqaai aadogaaeaacaWGfbaaaiaac+capaGaeS4dHG2aaWbaaeqabaqcLbma caaIYaaaaaaajuaGpeGaeyypa0JaaGymaaaa@6E21@ ……… (14a)

where,

ϕ( E,F )=[ 2 F 2 4 m r E g 2 E ]* [ 1+ 2 m c m r . E Eg ] 5/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVyI8VfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqy1dy2aaeWaaeaacaWGfbGaaiilaiaadAeaaiaawIcacaGL PaaacqGH9aqppaGaai4waiaaykW7daWcaaqaaiabl+qiOnaaCaaabe qaaerbc92BRbsqUrxAXvxyaGqbaKqzadGaa8NmaaaajuaGcaWGgbWa aWbaaeqabaqcLbmacaWFYaaaaaqcfayaaiaa=rdacaWFTbWaaSbaae aajugWaiaa=jhaaKqbagqaaiaadweadaqhaaqaaKqzadWdbiaadEga aKqba+aabaqcLbmacaWFYaaaaKqbakaadweaaaGaaGPaVlaac2faca aMc8UaaiOkaiaaykW7daWadaqaaiaa=fdacaaMc8Uaey4kaSYaaSaa aeaacaaMc8Uaa8Nmaiaa=1galmaaBaaajuaGbaqcLbmacaWFJbaaju aGbeaaaeaacaWFTbWaaSbaaeaajugWaiaa=jhaaKqbagqaaaaacaaM c8UaaiOlaiaaykW7daWcaaqaaiaadweaaeaacaWGfbGaam4zaaaaai aawUfacaGLDbaadaahaaqabeaajugWaiabgkHiTiaaiwdacaWFVaGa a8Nmaaaaaaa@772F@  ………… (14b)

Equations (14a) and (14b) show that in the presence of an external electric field, the isotropic parabolic un-perturbed energy-spectrum, (Eqn 10), exhibits an anisotropic dispersion relation, with energy dependent mass anisotropy in the presence of an external electric field. This anisotropic dispersion relation transform to an isotropic one under the approximation:

k x 2 1/3 k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4AamaaDaaabaqcLbmacaWG4baajuaGbaqcLbmacaaIYaaa aKqbakabgIKi7kaaigdacaGGVaGaaG4maiaadUgadaahaaqabeaaju gWaiaaikdaaaaaaa@43B4@ .……. (15)

Under this, Eqn (14a) turns out to the isotropic dispersion relation:

E= 2 k 2 2 m c + 2 F 2 E g 3 12 m r . [ E g 2 + Eg. 2 k 2 m r ] 5/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqbakaa=veacaaMc8Uaeyypa0JaaGPaVpaalaaabaGa eS4dHG2aaWbaaeqabaqcLbmacaWFYaaaaKqbakaa=Tgadaahaaqabe aajugWaiaa=jdaaaaajuaGbaGaa8Nmaiaa=1galmaaBaaajuaGbaqc LbmacaWFJbaajuaGbeaaaaGaaGPaVlabgUcaRiaaykW7daWcaaqaai abl+qiOnaaCaaabeqaaKqzadGaa8NmaaaajuaGcaWGgbWaaWbaaeqa baqcLbmacaWFYaaaaKqbakaadweadaqhaaqaaKqzadGaam4zaaqcfa yaaKqzadGaa83maaaaaKqbagaacaWFXaGaa8Nmaiaa=1galmaaBaaa juaGbaqcLbmacaWFYbaajuaGbeaaaaGaaGPaVlaa=5cacaaMc8+aam WaaeaacaWGfbWaa0baaeaajugWaiaadEgaaKqbagaajugWaiaa=jda aaqcfaOaaGPaVlabgUcaRmaalaaabaGaamyraKqzadGaam4zaKqbak aac6cacaaMc8UaeS4dHG2aaWbaaeqabaqcLbmacaWFYaaaaKqbakaa =TgadaahaaqabeaajugWaiaa=jdaaaaajuaGbaGaa8xBaSWaaSbaaK qbagaajugWaiaa=jhaaKqbagqaaaaaaiaawUfacaGLDbaadaahaaqa beaajugWaiabgkHiTiaaiwdacaWFVaGaa8Nmaaaaaaa@86EF@  ……. (16)

Further, in the limiting case, when K ¯ 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGabm4sayaaraGaeyOKH4QaaGimaiaacYcaaaa@3AD8@  i.e; at the band-edge, Eqn(16) provides the results:

ΔE= 2 F 2 12 m r E g 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgs5aej aadweacqGH9aqpdaWcaaqaaiabl+qiOnaaCaaabeqaaKqzadGaaGOm aaaajuaGcaWGgbWaaWbaaeqabaqcLbmacaaIYaaaaaqcfayaaerbc9 2BRbsqUrxAXvxyaGqbaiaa=fdacaWFYaGaa8xBamaaBaaabaqcLbma caWFYbaajuaGbeaacaWGfbWaa0baaeaajugWaiaadEgaaKqbagaaju gWaiaaikdaaaaaaaaa@502A@  ……… (17)

From Eqn.17, it is clear that in the presence of an electric field, F, the conduction band-edge moves vertically up-word by an amount, ΔE. As a result, the band-gap of semiconductor is apparently increased by ΔE, when an external electric field is applied. This observation is opposite to the Franz8 and Keldysh9 effects, a phenomena where the band-gap decreases by means of an applied electric field. In support of our theoretical findings, the experimental observation of the band-gap enhancement with the electric field can be found in.10–12

Derivation of energy-spectrum in presence of an electric and parallel magnetic fields

In the presence of a parallel magnetic field, B, applied along the direction of the electric field, the transverse component of electron energy, E t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyramaaBaaabaqcLbmacaWG0baajuaGbeaaaaa@3A39@  is quantized by Landau quantization5 as

E t 2 k 2 2 m r =( J+ 1 2 ) ω cv ± 1 2 gμB .B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada WgaaqaaKqzadGaamiDaaqcfayabaWaaSaaaeaacqWIpecAdaahaaqa beaaruGqV92AGeKB0LwC1fgaiuaajugWaiaa=jdaaaqcfaOaam4Aam aaDaaabaWexLMBbXgBd9gzLbvyNv2CaeHbcfgDH52zaGGbaabaaaaa aaaapeGaa4hnLaWdaeaajugWaiaa=jdaaaaajuaGbaGaa8Nmaiaa=1 gadaWgaaqaaKqzadGaa8NCaaqcfayabaaaaiabg2da9maabmaabaGa aeOsaiabgUcaRmaaliaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaay zkaaGaeS4dHGMaeqyYdC3aaSbaaeaajugWaiaadogacaWG2baajuaG beaacqGHXcqSdaWccaqaaiaaigdaaeaacaaIYaaaaKqzadGaam4zai abeY7aTjaadkeajuaGpeGaaiiOaiaac6cacaWGcbaaaa@6B7B@  …..(18)

Where, K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGlbGaeyyPI4faaa@391B@ is the transverse or normal component of wave vector, J is the Landau quantum number; ω cv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabl+qiOj abeM8a3naaBaaabaqcLbmacaWGJbGaamODaaqcfayabaaaaa@3D2F@ is cyclotron energy, given by

ω cv = ω c + ω v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabl+qiOj abeM8a3naaBaaabaqcLbmacaWGJbGaamODaaqcfayabaGaeyypa0Ja eS4dHGMaeqyYdC3aaSbaaeaajugWaiaadogaaKqbagqaaiabgUcaRi abl+qiOjabeM8a3naaBaaabaqcLbmacaWG2baajuaGbeaaaaa@4AA0@ ………(19)

and g is the difference in spin g-factors of conduction and valence band

and μ B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiVd02aaSbaaeaajugWaiaadkeaaKqbagqaaaaa@3AF3@ is the Bohr’s magnetron.

g= g c g v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4zaiabg2da9iaadEgadaWgaaqaaKqzadGaam4yaaqcfaya baGaeyOeI0Iaam4zamaaBaaabaqcLbmacaWG2baajuaGbeaaaaa@40ED@ ………. (20)

Generally, the magnitude of the transverse component of electron energy, E is given as E t E g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamyramaaBaaabaqcLbmacaWG0baajuaGbeaacqWIQjspcaWG fbWaaSbaaeaajugWaiaadEgaaKqbagqaaaaa@3F26@ . Under this condition, we can approximate k x 2 /   K 2 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaam4AamaaDaaabaqcLbmacaWG4baajuaGbaqcLbmacaaIYaaa aKqbakaac+cacaGGGcGaaiiOaiaadUeadaahaaqabeaajugWaiaaik daaaqcfaOaeyisISRaaGymaiaacYcaaaa@465D@ in Eqn(11). Therefore, combining Equation (9)-(12), we can approximately write Eqn (16).

E= 2 k x 2 2 m c + 2 k 2 2mc + 2 E g 3 F 2 12 m r    [ E g 2 + Eg 2 ( k x 2 + k 2 ) m r ] 5/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabweaca qG9aWaaSaaaeaacqWIpecAdaahaaqabeaaruGqV92AGeKB0LwC1fga iuaajugWaiaa=jdaaaqcfaOaam4AamaaDaaabaqcLbmacaWG4baaju aGbaqcLbmacaWFYaaaaaqcfayaaiaa=jdacaWFTbWaaSbaaeaajugW aiaadogaaKqbagqaaaaacqGHRaWkdaWcaaqaaiabl+qiOnaaCaaabe qaaKqzadGaa8NmaaaajuaGcaWGRbWaa0baaeaajugWaiabgwQiEbqc fayaaKqzadGaa8NmaaaaaKqbagaacaaIYaGaamyBaKqzadGaam4yaa aajuaGcqGHRaWkdaWcaaqaaiabl+qiOnaaCaaabeqaaKqzadGaa8Nm aaaajuaGcaWGfbWaa0baaeaajugWaiaadEgaaKqbagaajugWaiaaio daaaqcfaOaamOramaaCaaabeqaaKqzadGaa8NmaaaaaKqbagaacaWF XaGaa8Nmaiaa=1gadaWgaaqaaKqzadGaa8NCaaqcfayabaaaaabaaa aaaaaapeGaaiiOaiaacckapaGaaGPaVpaadmaabaGaamyramaaDaaa baqcLbmacaWGNbaajuaGbaqcLbmacaWFYaaaaKqbakaaykW7cqGHRa WkdaWcaaqaaiaadweacaWGNbGaeS4dHG2aaWbaaeqabaqcLbmacaWF YaaaaKqbakaaykW7caGGOaWdbiaadUgapaWaa0baaeaajugWaiaadI haaKqbagaajugWaiaa=jdaaaqcfaOaey4kaSYdbiaadUgapaWaa0ba aeaatCvAUfeBSn0BKvguHDwzZbqegiuy0fMBNbacgaWdbiaa+rtja8 aabaqcLbmacaWFYaaaaKqbakaacMcaaeaacaWFTbWcdaWgaaqcfaya aKqzadGaa8NCaaqcfayabaaaaiaaykW7aiaawUfacaGLDbaadaahaa qabeaajugWaiabgkHiTiaaiwdacaWFVaGaa8Nmaaaaaaa@A343@  + ……(21)

For F0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGgbGaeyOKH4QaaGimaiaacYcaaaa@3ABC@  we find from Eqns (16) - (18)

k x 2   2 2 m c [ E- m r m c E t ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaamiEaaqaaiaaikdaaaGcqaaaaaaaaaWdbiaacckapaGaeS4d HG2aaWbaaSqabeaaruGqV92AGeKB0LwC1fgaiuaacaWFYaaaaOGaey isISRaaGOmaiaad2gadaWgaaWcbaGaam4yaaqabaGcdaWadaqaaiaa bweacaqGTaWaaSaaaeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaaGcba GaamyBamaaBaaaleaacaWGJbaabeaaaaGccaWGfbWaaSbaaSqaaiaa dshaaeqaaaGccaGLBbGaayzxaaaaaa@5131@  ……….. (22)

Combining Eqns (16), (18)-(21), we get

γ( E,F )= 2 k x 2 2 m c + m r m c  { ( J+1/2 ) ω cv ±1/2  gμB. B } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aabmaabaGaamyraiaacYcacaWGgbaacaGLOaGaayzkaaGaeyypa0Za aSaaaeaacqWIpecAdaahaaqabeaajugWaiaaikdaaaqcfaOaam4Aam aaDaaabaqcLbmacaWG4baajuaGbaqcLbmacaaIYaaaaaqcfayaaerb c92BRbsqUrxAXvxyaGqbaiaa=jdacaWFTbWaaSbaaeaajugWaiaado gaaKqbagqaaaaacqGHRaWkdaWcaaqaaiaad2gadaWgaaqaaKqzadGa amOCaaqcfayabaaabaGaamyBamaaBaaabaqcLbmacaWGJbaajuaGbe aaaaaeaaaaaaaaa8qacaGGGcWaaiqaaeaadaqadaqaaiaabQeacaqG RaGaaeymaiaab+cacaqGYaaacaGLOaGaayzkaaaacaGL7baapaGaeS 4dHGMaaeyYdmaaBaaabaqcLbmacaqGJbGaaeODaaqcfayabaGaeyyS aeBcLbmacaaIXaGaai4laiaaikdajuaGpeGaaiiOamaaciaabaqcLb macaWGNbGaeqiVd0MaamOqaKqbakaac6cacaGGGcGaamOqaaGaayzF aaaaaa@7627@  ……(23)

γ( E,F )=E 2 F 2 12 m r E g 2    [ 1+ 2 m c m r . E Eg ] 5/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo7aNn aabmaabaGaamyraiaacYcacaWGgbaacaGLOaGaayzkaaGaeyypa0Ja amyraiabgkHiTmaalaaabaGaeS4dHG2aaWbaaeqabaqefi0BVTgib5 gDPfxDHbacfaqcLbmacaWFYaaaaKqbakaadAeadaahaaqabeaajugW aiaa=jdaaaaajuaGbaGaa8xmaiaa=jdacaWFTbWcdaWgaaqcfayaaK qzadGaa8NCaaqcfayabaGaamyramaaDaaabaqcLbmacaWGNbaajuaG baqcLbmacaWFYaaaaaaajuaGqaaaaaaaaaWdbiaacckacaGGGcWdai aaykW7daWadaqaaiaa=fdacaaMc8Uaey4kaSYaaSaaaeaacaaMc8Ua a8Nmaiaa=1gadaWgaaqaaiaa=ngaaeqaaaqaaiaa=1gadaWgaaqaaK qzadGaa8NCaaqcfayabaaaaiaaykW7caGGUaGaaGPaVpaalaaabaGa amyraaqaaiaadweacaWGNbaaaaGaay5waiaaw2faamaaCaaabeqaaK qzadGaeyOeI0IaaGynaiaa=9cacaWFYaaaaaaa@71FA@  .……..(24)

Equations (23) and (24) represent the E- kx dispersion relation of conduction electron in presence of electric and parallel magnetic fields. From Eqns (23) and (24), we find that the parabolic energy-band no more remains to the parabolic shape but is quantized by means of electric as well as parallel magnetic fields. Under the limiting conditions, k x 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacqGHsgIRcaaI WaGaaiilaaaa@3E03@ we find from Eqn 21 the new increased band gaps Δ( E ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqbakaa=r5adaqadaqaamaanaaabaGaa8xraaaaaiaa wIcacaGLPaaaaaa@3E92@  of semiconductor in presence of electric and parallel magnetic fields.

Δ( E ¯ )=  m r m c E t + 2 F 2 12 m r E g 2    [ 1+ 2Et E g . ] 5/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqbakaa=r5adaqadaqaamaanaaabaGaa8xraaaaaiaa wIcacaGLPaaacqGH9aqpqaaaaaaaaaWdbiaacckapaWaaSaaaeaaca WGTbWaaSbaaeaacaWGYbaabeaaaeaacaWGTbWcdaWgaaqcfayaaKqz adGaam4yaaqcfayabaaaaiaadweadaWgaaqaaiaadshaaeqaaiabgU caRmaalaaabaGaeS4dHG2aaWbaaeqabaqcLbmacaWFYaaaaKqbakaa dAeadaahaaqabeaajugWaiaa=jdaaaaajuaGbaGaa8xmaiaa=jdaca WFTbWcdaWgaaqcfayaaKqzadGaa8NCaaqcfayabaGaamyramaaDaaa baqcLbmacaWGNbaajuaGbaqcLbmacaWFYaaaaaaajuaGpeGaaiiOai aacckapaGaaGPaVpaadmaabaGaa8xmaiaaykW7cqGHRaWkdaWcaaqa aiaaykW7caaIYaGaa8xraKqzadGaa8hDaaqcfayaaiaadweadaWgaa qaaKqzadGaam4zaaqcfayabaaaaiaaykW7caGGUaGaaGPaVdGaay5w aiaaw2faamaaCaaabeqaaKqzadGaeyOeI0IaaGynaiaa=9cacaWFYa aaaaaa@778B@  ……..(25)

Under the case, when B0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOqaiabgkziUkaaicdaaaa@3BB9@ and k x 0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacqGHsgIRcaaI WaGaaiilaaaa@3E03@

We find from Eqns (23)-(25), the increased band-gap Δ( E ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqbakaa=r5acaaMc8+aaeWaaeaadaqdaaqaaiaa=vea aaaacaGLOaGaayzkaaaaaa@401D@  in presence of electric field only same as Eqn (17). Combining Eqns (17) and (25), we find that the increased band-gap value of semiconductor in the presence of electric field and a parallel magnetic field of greater that the value, when only electric field is present, i.e., Δ( E ¯ )>ΔE. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaerbc92BRbsqUr xAXvxyaGqbaKqbakaa=r5acaaMc8+aaeWaaeaadaqdaaqaaiaa=vea aaaacaGLOaGaayzkaaGaeyOpa4JaeyiLdqKaamyraiaac6caaaa@4408@  

Derivation of the density –of-states (DOS) functions in presence of electric as well as with the presence of electric and parallel magnetic fields

The density-of-states, N (E, F), in presence of electric field (F) can be written from Eqns. (14a) and (14b) as3

N ( E, F )  = 1 2 π 2 . ( 2 m c 2 ) 3/2 E 1/2 (1+Φ(E,F)) 1/2 *{11/3(E.ψ(E,F)/(1+Φ(E,F)} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOtaiaabccapaWaaeWaaeaapeGaamyraiaacYcacaqGGaGa amOraaWdaiaawIcacaGLPaaapeGaaiiOaiaabccacqGH9aqppaWaaS aaaeaaruGqV92AGeKB0LwC1fgaiuaacaWFXaaabaGaa8Nmaiabec8a WnaaCaaabeqaaKqzadGaa8NmaaaaaaqcfaOaaGPaVlaa=5cacaaMc8 +aaeWaaeaadaWcaaqaaiaa=jdacaWFTbWaaSbaaeaacaWFJbaabeaa aeaacqWIpecAdaahaaqabeaajugWaiaa=jdaaaaaaaqcfaOaayjkai aawMcaamaaCaaabeqaaKqzadGaa83maiaa=9cacaWFYaaaaKqbakaa dweadaahaaqabeaajugWaiaaigdacaGGVaGaaGOmaaaajuaGcaGGOa GaaGymaiabgUcaR8qacqqHMoGrcaGGOaGaamyraiaacYcacaWGgbGa aiykaiaacMcapaWaaWbaaeqabaqcLbmacqGHsislcaaIXaGaai4lai aaikdaaaqcfaOaaiOkaiaacUhacaaIXaGaeyOeI0IaaGymaiaac+ca caaIZaGaaiikaiaadweacaGGUaWdbiabeI8a5jaacIcacaWGfbGaai ilaiaadAeacaGGPaGaai4laiaacIcapaGaaGymaiabgUcaR8qacqqH MoGrcaGGOaGaamyraiaacYcacaWGgbGaaiyka8aacaGG9baaaa@820C@ .………. (26)

Where

ψ(E,F) = Φ(E,F){( 1/E )+  5 m c m r E g    [ 1+ 2 m c m r . E Eg ] 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaeqiYdKNaaiikaiaadweacaGGSaGaamOraiaacMcacaGGGcGa eyypa0JaaiiOaiabgkHiTiabfA6agjaacIcacaWGfbGaaiilaiaadA eacaGGPaGaai4EamaabmaabaGaaGymaiaac+cacaWGfbaacaGLOaGa ayzkaaGaey4kaSIaaiiOa8aadaWcaaqaaiaaiwdaruGqV92AGeKB0L wC1fgaiuaacaWFTbWaaSbaaeaajugWaiaadogaaKqbagqaaaqaaiaa =1galmaaBaaajuaGbaqcLbmacaWFYbaajuaGbeaacaWGfbWcdaWgaa qcfayaaKqzadGaam4zaaqcfayabaaaa8qacaGGGcGaaiiOa8aacaaM c8+aamWaaeaacaWFXaGaaGPaVlabgUcaRmaalaaabaGaaGPaVlaa=j dacaWFTbWcdaWgaaqcfayaaKqzadGaa83yaaqcfayabaaabaGaa8xB amaaBaaabaqcLbmacaWFYbaajuaGbeaaaaGaaGPaVlaac6cacaaMc8 +aaSaaaeaacaWGfbaabaGaamyraKqzadGaam4zaaaaaKqbakaawUfa caGLDbaadaahaaqabeaajugWaiabgkHiTiaaigdaaaqcfaOaaiyFaa aa@7DC5@  ……………. (27)

In the absence of electric field, N (E, 0) assumes the well-known form,13 from Eqns. (26) and (27), as

N ( E ) = 1 2 π 2 . ( 2 m c 2 ) 3/2 E 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaCOtaiaabccapaWaaeWaaeaapeGaaCyraaWdaiaawIcacaGL PaaapeGaaeiiaiabg2da98aadaWcaaqaaerbc92BRbsqUrxAXvxyaG qbaiaa=fdaaeaacaWFYaGaeqiWda3aaWbaaeqabaqcLbmacaWFYaaa aaaajuaGcaaMc8Uaa8NlaiaaykW7daqadaqaamaalaaabaGaa8Nmai aa=1gadaWgaaqaaKqzadGaa83yaaqcfayabaaabaGaeS4dHG2aaWba aeqabaqcLbmacaWFYaaaaaaaaKqbakaawIcacaGLPaaadaahaaqabe aajugWaiaa=ndacaWFVaGaa8NmaaaajuaGcaWGfbWaaWbaaeqajuay baqcLbmacaaIXaGaai4laiaaikdaaaaaaa@5CE5@ …….  (28)

Now, from Eqns (24) and (25), the density-of-states, N (E, F, B) in the presence of electric and parallel magnetic fields, is given as (for conduction band, CB)

N ( E, F, B ) = 1 4 π 2 . ( 2 m c 2 ) 3/2 ω c J=0 J max Φ  ( E,F ) γ( E,F ) m r m c E t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOtaiaabccapaWaaeWaaeaapeGaamyraiaacYcacaqGGaGa amOraiaacYcacaqGGaGaamOqaaWdaiaawIcacaGLPaaapeGaaeiiai abg2da98aadaWcaaqaaerbc92BRbsqUrxAXvxyaGqbaiaa=fdaaeaa caaI0aGaeqiWda3aaWbaaeqabaqcLbmacaWFYaaaaaaajuaGcaaMc8 Uaa8NlaiaaykW7daqadaqaamaalaaabaGaa8Nmaiaa=1gadaWgaaqa aiaa=ngaaeqaaaqaaiabl+qiOnaaCaaabeqaaKqzadGaa8Nmaaaaaa aajuaGcaGLOaGaayzkaaWaaWbaaeqabaqcLbmacaWFZaGaa83laiaa =jdaaaqcfaOaeS4dHGMaaeyYdmaaBaaabaqcLbmacaWGJbaajuaGbe aadaaeWaqaamaalaaabaGaeuOPdy0dbiaacckacaGGGcWaaeWaaeaa caWGfbGaaiilaiaacAeaaiaawIcacaGLPaaaa8aabaWaaOaaaeaacq aHZoWzdaqadaqaaiaadweacaGGSaGaamOraaGaayjkaiaawMcaaiab gkHiTmaalaaabaGaamyBamaaBaaabaGaamOCaaqabaaabaGaamyBam aaBaaabaqcLbmacaWGJbaajuaGbeaaaaGaamyramaaBaaabaqcLbma caWG0baajuaGbeaaaeqaaaaaaeaajugWaiaadQeacqGH9aqpcaaIWa aajuaGbaGaamOsamaaBaaabaqcLbmacaWGTbGaamyyaiaadIhaaKqb agqaaaGaeyyeIuoaaaa@8346@  ……..(29)

Where,

Φ'( E,F )= dΦ( E,F ) dE =1+ 5 1 2 ˙ mc m r 2 ˙ 2 F 2 E g 3 [ 1+ 2 m c m r . E Eg ] 7/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuOPdy Kaai4jaKqbaoaabmaakeaajugibiaadweacaGGSaGaamOraaGccaGL OaGaayzkaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGKbGaeu OPdyucfa4aaeWaaOqaaKqzGeGaamyraiaacYcacaWGgbaakiaawIca caGLPaaaaeaajugibiaadsgacaWGfbaaaiabg2da9iaaigdacqGHRa WkjuaGdaWcaaGcbaqcLbsacaaI1aaakeaajugibiaaigdaceaIYaGb aiaaaaqcfa4aaSaaaOqaaKqzGeGaamyBaiaadogaaOqaaKqzGeGaam yBaKqbaoaaDaaaleaajugWaiaadkhaaSqaaerbc92BRbsqUrxAXvxy aGqbaKqzadGab8NmayaacaaaaaaajuaGdaWcaaGcbaqcLbsacqWIpe cAjuaGdaahaaWcbeqaaKqzadGaa8NmaaaajugibiaadAeajuaGdaah aaWcbeqaaKqzadGaa8NmaaaaaOqaaKqzGeGaamyraKqbaoaaDaaale aajugWaiaadEgaaSqaaKqzadGaa83maaaaaaqcLbsacaaMc8UaaGPa VNqbaoaadmaakeaajugibiaa=fdacaaMc8Uaey4kaSscfa4aaSaaaO qaaKqzGeGaaGPaVlaa=jdacaWFTbqcfa4aaSbaaSqaaKqzadGaa83y aaWcbeaaaOqaaKqzGeGaa8xBaKqbaoaaBaaaleaajugWaiaa=jhaaS qabaaaaKqzGeGaaGPaVlaac6cacaaMc8Ecfa4aaSaaaOqaaKqzGeGa amyraaGcbaqcLbsacaWGfbGaam4zaaaaaOGaay5waiaaw2faaKqbao aaCaaaleqabaqcLbmacqGHsislcaaI3aGaai4laiaaikdaaaaaaa@9124@  ….  (30)

ωc= e  B m c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeS4dHG MaaeyYdiaabogacaqG9aGcdaWcaaqcfayaaKqzGeGaamyzaiabl+qi ObbaaaaaaaaapeGaaiiOaiaacckacaWGcbaajuaGpaqaaKqzGeGaam yBaOWaaSbaaKqbagaajugWaiaadogaaKqbagqaaaaaaaa@48CC@ i.e. cyclotron of an energy spectrum an electron in the conduction band,

J max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqaaKqzadGaamyBaiaadggacaWG4baajuaGbeaaaaa@3E3A@ =Maximum value of Landau quantum number,

Integer value of γ( E,F )/ ω c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaabm aabaGaamyraiaacYcacaWGgbaacaGLOaGaayzkaaGaai4laKqzGeGa eS4dHGMaaeyYdOWaaSbaaSqaaiaabogaaeqaaaaa@4276@

In the limiting case, when F0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiabgkziUkaaicdacaGGSaaaaa@3C6D@ Eqns (29 and 30) will lead to the well-known form for (CB) as13

N ( E,B )= 1 4 π 2 . ( 2 m c 2 ) 3/2 ωc J=0 J max 1 [ E( J+ 1 2 )ωc ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaamOtaiaabccapaWaaeWaaeaapeGaamyraiaacYcacaWGcbaa paGaayjkaiaawMcaa8qacqGH9aqppaWaaSaaaeaaruGqV92AGeKB0L wC1fgaiuaacaWFXaaabaGaaGinaiabec8aWnaaCaaabeqaaKqzadGa a8NmaaaaaaqcfaOaaGPaVlaa=5cacaaMc8+aaeWaaeaadaWcaaqaai aa=jdacaWFTbWaaSbaaeaajugWaiaa=ngaaKqbagqaaaqaaiabl+qi OnaaCaaabeqaaKqzadGaa8NmaaaaaaaajuaGcaGLOaGaayzkaaWaaW baaeqabaqcLbmacaWFZaGaa83laiaa=jdaaaqcfaOaeS4dHGMaaeyY diaabogadaaeWaqaamaalaaabaGaaGymaaqaamaadmaabaGaamyrai abgkHiTmaabmaabaGaamOsaiabgUcaRmaalaaabaGaaGymaaqaaiaa ikdaaaaacaGLOaGaayzkaaGaeS4dHGMaaeyYdiaabogaaiaawUfaca GLDbaadaahaaqabeaajugWaiabgkHiTiaaigdacaGGVaGaaGOmaaaa aaaajuaGbaqcLbmacaWGkbGaeyypa0JaaGimaaqcfayaaiaadQeada WgaaqaaKqzadGaamyBaiaadggacaWG4baajuaGbeaaaiabggHiLdaa aa@79A6@ ……  (31)

Results and discussion

Using the appropriate equations and taking n-GaAs as an example, together with the parameters,13 E g =1.424 eV,  m c =0.063  m 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadEgaa8aabeaak8qacqGH9aqpcaaI XaGaaiOlaiaaisdacaaIYaGaaGinaiaabccacaWGLbGaamOvaiaacY cacaqGGaGaamyBa8aadaWgaaWcbaWdbiaadogaa8aabeaak8qacqGH 9aqpcaaIWaGaaiOlaiaaicdacaaI2aGaaG4maiaabccacaWGTbWdam aaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacYcaaaa@4D45@  and m v =0.5  m 0 , T=300K, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaWgaaWcbaWdbiaadAhaa8aabeaak8qacqGH9aqpcaaI WaGaaiOlaiaaiwdacaqGGaGaamyBa8aadaWgaaWcbaWdbiaaicdaa8 aabeaak8qacaGGSaGaaeiiaiaadsfacqGH9aqpcaaIZaGaaGimaiaa icdacaWGlbGaaiilaaaa@4783@ we have plotted the energy-spectrum versus electron wave-vector ( k ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeWaaeWaaeaaceWGRbGbaebaaiaawIcacaGLPaaaaaa@3B6A@ shown in Figure 1, in the presence of electric field (f). This Figure 1 is plotted following Eqn. (16). The curve passes through origin, i.e., E=0 and k ¯ =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4AayaaraGaeyypa0JaaGimaiaac6caaaa@3BC5@  This is the case of un-perturbed band. The amount of shift of the band-edge at k ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabm4AayaaraGaeyypa0JaaGimaaaa@3B13@ with electric field, ( f 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba aeaaaaaaaaa8qacaWGMbGaeyiyIKRaaeiiaiaaicdaa8aacaGLOaGa ayzkaaaaaa@3E80@ is given by Eqn. (17). Therefore, it is clear that the parabolic nature of the original band is modified to a large extent due to the electric field. It further appears that as the electric field is increased, the edge of the conduction band (CB) moves vertically in the positive energy direction. Consequently, the band-gap is increased with the electric field.

Franz8 and Keldysh9 effects, conventionally implies that the band-gap of a semiconductor decreases with the application of an electric field. Incidentally, in accordance with our calculations, Eqns (14a)-(17) and Figure 1, we observe that the Franz-Keldysh effects are directly the opposite one. The physical explanation in support of the above observation can be given, based on our works on optical absorption in the presence of an external electric field.12

Figure 1 Plots of Energy-Spectrum, E (in eV) against k ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadUgagaqeaa aa@3933@ (wave vector in atomic unit, 108 cm-1) for n-GaAs at 300K for f=0.0 V cm-1 (dotted curve), f 1 = 5×  10 6 V c m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaqG GaGaaGynaiabgEna0kaabccacaaIXaGaaGima8aadaahaaWcbeqaa8 qacaaI2aaaaOGaamOvaiaabccacaWGJbGaamyBa8aadaahaaWcbeqa a8qacqGHsislcaaIXaaaaaaa@475E@ and f 2 = 1.0×  10 7 Vc m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpcaqG GaGaaGymaiaac6cacaaIWaGaey41aqRaaeiiaiaaigdacaaIWaWdam aaCaaaleqabaWdbiaaiEdaaaGccaWGwbGaam4yaiaad2gapaWaaWba aSqabeaapeGaeyOeI0IaaGymaaaaaaa@4825@ (solid line).

In Figure 2, we have plotted the electron energy- spectrum against wave-vector k x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3A92@ (in atomic unit) for the electric field, f=0.0 ( V c m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaeOzaiabg2da9iaaicdacaGGUaGaaGimaiaabccapaWaaeWa aeaapeGaamOvaiaabccacaWGJbGaamyBa8aadaahaaqabeaajugWa8 qacqGHsislcaaIXaaaaaqcfa4daiaawIcacaGLPaaaaaa@4645@ and B=3.0 Tesla (dotted line); and f= 1.0×  10 8 V c m 1 , B =3.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbacbaaaaaaa aapeGaaeOzaiabg2da9iaabccacaaIXaGaaiOlaiaaicdacqGHxdaT caqGGaGaaGymaiaaicdapaWaaWbaaeqabaqcLbmapeGaaGioaaaaju aGcaWGwbGaaeiiaiaadogacaWGTbWdamaaCaaabeqaaKqzadWdbiab gkHiTiaaigdaaaqcfaOaaiilaiaabccacaWGcbGaaeiiaiabg2da9i aaiodacaGGUaGaaGimaaaa@5169@ Tesla (Solid line); under extreme quantum limit, i.e., J=0. Figure 2 is plotted following Eqns (24) and (25). It is clear from Figure 2 that the dotted curve does not pass through origin; but shifting from it by an amount equal to (1/2) ω c . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeS4dHG MaaeyYdOWaaSbaaKqbagaajugWaiaadogaaKqbagqaaOGaaiOlaaaa @3F4B@  This shows that the band-gap increase with magnetic field, which is the well-known result. However, for the solid curve, the value of the electron energy (E) further increases with the electric field as well as magnetic fields. As we move deep into the band. For k x >> 0.0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGRbGcpaWaaSbaaKqbagaajugib8qacaWG4baajuaGpaqa baqcLbsapeGaeyOpa4JaeyOpa4JaaeiiaiaaicdacaGGUaGaaGimaa aa@4243@  (a.u) the curves merged to each other. From Figure 2, we may conclude that in the presence of magnetic field, the Landau sub-bands are formed and at k x =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaqaa8qacaWG4baapaqabaWdbiabg2da9iaaicda caGGSaaaaa@3D07@  the band-edge of semiconductor moves vertical upward, indicating the increase of band-gap value with the magnetic field. The increase of band-gap value is further enhanced by the electric field, when both electric and parallel magnetic fields are simultaneously present.

Figure 2 Plots of Energy-Spectrum, E (in eV) against k x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3A92@  (x-component of wave vector in atomic unit, 10 8 c m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGioaaaakiaadogacaWG TbWdamaaCaaaleqabaWdbiabgkHiTaaaaaa@3DEB@ 1) for n-GaAs at 300K for B=3.0 Tesla (dotted curve), f= 1.0×  10 8 V c m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9iaabccacaaIXaGaaiOlaiaaicdacqGHxdaTcaqG GaGaaGymaiaaicdapaWaaWbaaSqabeaapeGaaGioaaaakiaadAfaca qGGaGaam4yaiaad2gapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaa aaa@4799@ and B= 3.0Tesla (solid line).

Figure 3 has been plotted for the density-of-states (DOS), N (E, F), (normalized by 1.6×  10 20 c m 3 /eV, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac6cacaaI2aGaey41aqRaaeiiaiaaigdacaaIWaWdamaa CaaaleqabaWdbiaaikdacaaIWaaaaOGaam4yaiaad2gapaWaaWbaaS qabeaapeGaeyOeI0IaaG4maaaakiaac+cacaWGLbGaamOvaiaacYca aaa@4775@ against electron energy E (in eV) under various values of electric field, f( Vc m 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaqGMbGcpaWaaeWaaeaajugib8qacaWGwbGaam4yaiaad2ga k8aadaahaaWcbeqaaKqzadWdbiabgkHiTiaaigdaaaaak8aacaGLOa GaayzkaaqcLbsapeGaaiOlaaaa@434F@ We may infer from this that, for f= 0.0 Vc m 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOzaiabg2da9iaabccacaaIWaGaaiOlaiaaicdacaqGGaGaamOv aiaadogacaWGTbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGcpa Gaaiilaaaa@4318@ the curve (solid line) passes through the origin. For finite values of the electric energy (E) axis; besides the curves of (N (E, F) are flattened with respect to f=0.0 Vcm-1 case. It is to be noticed that, we cannot apply the electric field F (= e.f) to an arbitrary values, the maximum possible value of f max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaaaa @3C63@  must be limited by: f f max =( Eg / e.d ) Vcm -1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabAgacqGHKj YOqaaaaaaaaaWdbiaabAgapaWaaSbaaSqaa8qacaWGTbGaamyyaiaa dIhaa8aabeaakiabg2da9maabmaabaGaaeyraiaadEgacaGGVaWaaS baaSqaaiaacwgacaGGUaGaaiizaaqabaaakiaawIcacaGLPaaacaqG wbGaae4yaiaab2gadaahaaWcbeqaaiaab2cacaqGXaaaaaaa@4AFA@  where E g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabweadaWgaa WcbaGaam4zaaqabaaaaa@3A0B@ is the band-gap of semiconductor (in eV), “e” is the electron charge and “d” is the lattice constant of semiconductor. This is because for the electric field f>  f max , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOzaiabg6da+iaabccacaqGMbWdamaaBaaaleaapeGaamyBaiaa dggacaWG4baapaqabaGccaGGSaaaaa@3FB1@ there is a possibility of lattice break-down to happen. So, we must limit the value of electric field strength f>  f max . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOzaiabg6da+iaabccacaqGMbWdamaaBaaaleaapeGaamyBaiaa dggacaWG4baapaqabaGccaGGUaaaaa@3FB3@  Referring to Figure 4 plots are made for n-GaAs at 300K for the following cases:

  1. N (E, F, B) (DOS, normalized by 1.6 ×1018 cm-3/eV) vs electron energy, E (eV), in presence of f=0.0 (V cm-1) and a parallel magnetic field, B=3.0 Tesla.
  2. For N (E, F, B) vs electron energy, E (eV), in presence of f=1.6×106cm-3/eV and a parallel magnetic field, B=3.0 esla.
  3. From Figure 4, following remarks might be noticed: (a) in both the graphs (1) and (2), the natures of variations of DOS functions with the electron energy (E) are similar with showings singularities. (b) the positions of the singularity points, (Dotted curves, for the case to when F B are present) are shifted to a higher electron energy E(eV) than case when only magnetic field ‘B’ is present marked by solid lines. Since, we conclude from these graphs that in the study of magneto-resistance, the phase value with F B are higher than the case when only magnetic field (B) is present.

Figure 3 Plots for density-of-state function, N (E, F) (normalized by a factor 1.6 × 10 20 ( c m 1 /eV ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac6cacaaI2aGaaeiiaiabgEna0kaaigdacaaIWaWdamaa CaaaleqabaWdbiaaikdacaaIWaaaaOWdamaabmaabaWdbiaadogaca WGTbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGccaGGVaGaamyz aiaadAfaa8aacaGLOaGaayzkaaaaaa@487A@ against electron energy, E (in eV) for n-GaAs under various electric fields, f.

Figure 4 Plots of density-of-states function, N (E, F, B) against electron energy, E (in eV) for n-GaAs at 300K for f=0.0 (v m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9iaaicdacaGGUaGaaGimaiaabccapaGaaiika8qa caWG2bGaamyBa8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaaaa@41B1@ ) and B=3.0 Tesla (solid curves) and f=1.0× 10 8 v m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiabg2da9iaaigdacaGGUaGaaGimaiabgEna0kaaigdacaaI WaWdamaaCaaaleqabaWdbiaaiIdaaaGccaWG2bGaamyBa8aadaahaa Wcbeqaa8qacqGHsislcaaIXaaaaaaa@44E8@ and B=3.0 Tesla (dotted curves).

Referring to Figure 5, it appears that DOS function, N(E,F) varies with more or less constant values against electric field (up to a certain value), for different values of Electron energy, E. Thereafter, the rates of fall of N (E, F) value (in magnitude) increases with electron energy (E). Finally, the value of N (E, F) approaches to zero, implying thereby that the carriers disappear near the conduction band (CB) edge, as the applied electric field increase.3 Similar types of vanishing of the carriers have been observed in (CB) experimentally by Miyazawa and Ikoma.14 In Figure 6, we have plotted DOS function, N (E, F, B) [normalized by a factor of 1.6×1018(cm3/eV), against electric field, f(Vcm-1), for electron energy, E=30meV and a parallel magnetic field, B=3.0 Tesla for n-GaAs at 300K. It is shown in Figure 6, that the DOS function is almost a constant value over a certain values of the variation of the electric field. Therefore, as the electric field f is further increased the values of DOS decreases with oscillations and finally approaches to zero value. This implies that in the presence of an electric field and parallel magnetic fields, the availability of the carriers disappear from the CB edge with oscillations due to magnetic field. This phenomenon is unlikely to the cases; only when electric field is present and absence of magnetic fields (Figure 5).

Figure 5 Plots of density-of-State function, N (E, F) (normalized by a factor, 1.6× 10 20 (c m 3 /eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac6cacaaI2aGaey41aqRaaGymaiaaicdapaWaaWbaaSqa beaapeGaaGOmaiaaicdaaaGcpaGaaiika8qacaWGJbGaamyBa8aada ahaaWcbeqaa8qacqGHsislcaaIZaaaaOGaai4laiaadwgacaWGwbaa aa@46ED@ ) for n-GaAs against electric field f (in Vcm-1) for E=1.0(meV), 10.0 meV) and 50(meV).

Figure 6 Plots of density-of-State function, N (E, F, B) (normalized by a factor, 1.6× 10 18 (c m 3 /eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac6cacaaI2aGaey41aqRaaGymaiaaicdapaWaaWbaaSqa beaapeGaaGymaiaaiIdaaaGcpaGaaiika8qacaWGJbGaamyBa8aada ahaaWcbeqaa8qacqGHsislcaaIZaaaaOGaai4laiaadwgacaWGwbaa aa@46F4@ ) for n-GaAs against electric field f (in vcm-1) for E=30(meV), B=3.0 Tesla.

Conclusion

The numerical results presented in the manuscript, would be different for various semiconductor, but the nature of variations, presented here, would be un-altered. The theoretical results, displayed in the paper, would be useful in analyzing various other experimental data related to the above described phenomena. In this context, it might be notice that from the E k ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiabgkHiTiqadUgagaqeaaaa@3B0A@ dispersion relation, we can formulate the DOS functions but the density-of- states techniques, as used in literature14 cannot provide the derivations of E k ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiabgkHiTiqadUgagaqeaaaa@3B0A@  dispersion relation. Therefore, we may conclude that our studies presented here, are more fundamental than those of the existing literatures. This is because the Boltzmann transport equations, which determine the study of the charge, transport properties of semiconductor devices, can be solved if and only if the E k ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyraiabgkHiTiqadUgagaqeaaaa@3B0A@  dispersions are known.

Acknowledgments

Authors are grateful to IACS for providing the library and computer facilities.

Funding details

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. PK Chakraborty, BN Mondal, BK Choudhuri. Laser-induced modulation of optical band-gap parametersin the III–V-type semiconductors from the density-of-state (DOS) calculations. Pramana J Phys. 2019;92:85.
  2. PT Landsberg. Solid-state analogue of the relativistic gases. Phys Rev. 1986;33B:8321.
  3. PK Chakraborty, S Choudhury, KP Ghatak. Simple theoretical analysis of the density-of-states function of Kane type semiconductors in the presence of an external electric field. Physica B. 2007;387(1–2):333–343.
  4. PN Argyres. Theory of Tunneling and its Dependence on a Longitudinal Magnetic Field. Phys Rev. 1962;126:1386.
  5. LI Schiff. Quantum Mechanics. McGraw Hill, 1968.
  6. EO Kane. Zener tunneling in semiconductors. J Phys Chem Solids. 1959;12(2):181–188.
  7. W Franz Z. Einfluß eines elektrischen Feldes auf eine optische Absorption skante. Natureforch. 1958;13:484.
  8. VS Bagaev, NV Zamkovets, LV Keldysh, et al. Kinetics of exciton condensation in germanium. Sov Phys JETP. 1958;7(4):783.
  9. HD Rees. Representation of the Franz-Keldysh effect by spectral broadening: Experimental test for GaAs. Solid St Comm. 1967;5(5):365–368.
  10. BT Frech. Positronium Diffusion in Solids. Phys Rev. 1968;174:193–991.
  11. PK Chakraborty, KP Ghatak. A Simple Theoretical Analysis of the Effective Electron Mass in Heavily Doped III–V Semiconductors in the Presence of Band-Tails. J Appl Phys. 2001;89:1375.
  12. BR Nag. Electron Transport in Compound Semiconductor. Springer Series in Solid State Sci. 1980. p. 11–74.
  13. H Miyazawa, H Ikoma. Evidence for absence of electrons from conduction band in N-InSb at low temperatures. Solid St Comm. 1967;5(4):229–231.
  14. JH Davis. Physics of Low Dimensional Semiconductors. Cambridge University Press, London. 1998. p. 1–458.
Creative Commons Attribution License

©2019 Chakraborty, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.