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Abbreviations: DOS, density-of-states; VB, valence band; 
CB, conduction band; H, Hamiltonian 

Introduction
It was demonstrated that applying an external electric field, 

as a perturbation to a semiconductor, the bands are perturbed by 
the interaction of the electric field with the valence band (VB) 
and the conduction band (CB).1 Therefore, the energy-spectrum 
of an electron in (CB) and hole in (VB) was modified with respect 
to un-perturbed bands. Accordingly, the basic characteristics of 
semiconductors such as density-of- state (DOS) functions, transport 
properties, etc. are influenced significantly2 under different physical 
conditions. The importance of DOS has already been revealed by 
Landsberg.3The analytical formulations of various quantum processes 
of semiconductor, having different energy-band spectrum, are based 
on the DOS functions. Although, DOS functions have already been 
investigated extensively,1,4 nevertheless it appears from the literatures 
survey that the electron energy-spectrum and the corresponding DOS 
have yet to be studied in semiconductors in the presence of an external 
electric and parallel magnetic fields. 

In the present study, we describe a theoretical analysis on the 
electron energy-spectrum and corresponding DOS functions of 
a parabolic band semiconductor, in the presence of an externally 
applied electric field, ( )ef ,F = and a parallel magnetic fields, B(in 
Tesla). The present results are obtained by simply extending the 
same in the case of an electric field alone4 to the case of magnetic 
field, when the transverse component of the electron energy in the 
E k−  dispersion relation is substituted by the quantizing energy5 

due to Landau quantization. The present manuscript is arranged as 
the followings: in section 2, the theoretical back-ground followed 
by an electric field, applied along x-axis; in section 2B, the same 
energy–spectrum is extended to the cases of electric and a parallel 
magnetic fields, In section 2C, the DOS functions are derived for the 
above cases. In section 3, results are critically discussed based on our 
theoretical observations. Finally, in section 4, important conclusions 
are drawn based on our analyses.

Theoretical background
Derivation of energy spectrum in presence of an 
external electric field

For an external electric field (f) applied along the x-axis, the 
perturbed Hamiltonian (H′), can be forwarded as ' . ......H F x=       (1)

Where, efF = and e is the electron charge. The second order 
energy Eigen-value, ( ) ( )2 ,nE k under perturbation condition, Eqn (1) 
is given as6

( ) ( ) ( ) ( ) ( )
2

n m

nk H mk
E k E k

  ′ ′= + +  
−  

2
n nE k E k nk H nk     (2)

where,	

                      
( ) ( )=Hø k,r E.ø k, rn n 		                        (3)

                               'oH H H= + 		                                                    (4)  
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Abstract

An attempt has been made to study the energy-spectrum of conduction electrons and the 
corresponding density-of-states (DOS) functions in semiconductors with the presence of 
electric and parallel magnetic fields. It is found for n-GaAs that the isotropic parabolic 
un-perturbed energy spectrum exhibits anisotropic dispersion with energy dependent mass 
anisotropy in the presence of an external electric field. This anisotropic dispersion relation 
transforms to an isotropic one under the approximation: 2 21 / 3 ;xk k≈ where xk also, the 
band-gap of semiconductor increases with both of electric and parallel magnetic fields. 
Is the x-component of wave-vector . Furthermore, the carriers are disappeared from the 
conduction band-edge without oscillations in the case of only electric field. However, 
carriers vanish with oscillations with the presence of both the electric and magnetic fields. 
The well-known result of the DOS functions for parabolic band has been retrieved, under 
certain limiting conditions, from our generalized expressions. Our theoretical observations 
of band-gap enhancement and the DOS functions are correlated with the nature of the 
experimental findings.
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( ) ( ) ( )=o n n nH u k,r E k .u k,r 	               (5)

H is the total Hamiltonian, ( )nø k, r  is the wave function with 
( )nu k, r  as the periodic function of it. oH  , n, r  , ( )nE k, E and ( )nE k  

are the un-perturbed Hamiltonian, the band index, the position 
vector of electron, the wave vector of the electron, the total energy 
of the electron and the energy of an electron in the periodic lattice, 
respectively. For a semiconductor having parabolic energy band, we 
get from Eqns (1) and (2)

                                                                                                ……   (6)

                     
( )nm k x m=u nk k  =              …………. (7)

                            
( )*n kxi

∂

∂
= ∫

3
mu . u k,r d r                                                 (8)

Where 1, xi k= − is the x-component of k  and the integration 
in Eqn (8) extends over the unit cell. From Eqns (6)-(8), with 
n-corresponding to conduction band ( )n c= and m, corresponding to 
valence band ( ) ,m v=  Eqns 6 can be reproduced as 

( ) ( ) ( ) ( ) ( ){ }
. cc

X
F X= − +

−

2
2 cv2

c
c v

E k E k Fc
E k E k

 ……….. (9)

where, ( )= 
2 2

c
c

kE k
2m

	  …………(10)

is the un-perturbed parabolic conduction band with  is the 
effective electron mass at the band-edge of the CB.   is the reduced 
Planck’s constant, given by π= h / 2 . ccX  and Xcv are the intra 
and interband transition matrix elements, respectively. For the 
evaluation of cvX  and cvX , we use k . 0=k  Perturbation technique7 
for the isotropic two-band model. The two-bands are separated by the 
energy gap, Eg at 0=k  accordingly, we find 0Xcc =

( )3/2 1/2  / 2 . 2 .
cv

kxX i E mg m R
η =   

 ……….. (11)

( ) ( )
 
 = − = +
  

g
c v

1/22 2
2

r

E k
ç E k E k Eg

m 	  ………. (12)

and mr is the reduced electron effective mass, given by 

= +-1 -1 -1
r c vm m m  ………….(13)

Combining the appropriate equations, the electron energy-spectrum 
in the presence of an external electric field, can be put forward, as.3

( )}{
22 2

2 2
1

2 / 21 /2 / ,

yx zk

E

k k
E EE m mm cc F cφ

+ + =
 
  

+  



……… (14a)

where,

( )
5

* ., [ ]
g

F EE
EgE E

Fφ
− 

+ 


=




/22 2
c

2
rr

2m1
m4m

 ………… (14b)

Equations (14a) and (14b) show that in the presence of an external 
electric field, the isotropic parabolic un-perturbed energy-spectrum, 
(Eqn 10), exhibits an anisotropic dispersion relation, with energy 
dependent mass anisotropy in the presence of an external electric 
field. This anisotropic dispersion relation transform to an isotropic 
one under the approximation:

                         
2 21 / 3
x

k k≈ .……. (15)

Under this, Eqn (14a) turns out to the isotropic dispersion relation:
5

.gg
g

F E EE
− 

 = + +
  



 

/22 2 32 2 2 2
2

c r r

k kE .
2m 12m m

……. (16)

Further, in the limiting case, when 0,K →  i.e; at the band-edge, 
Eqn(16) provides the results:

                          

2 2

2
g

F
E

E
∆ =



r12m
 ……… (17)

From Eqn.17, it is clear that in the presence of an electric field, F, the 
conduction band-edge moves vertically up-word by an amount, E∆
. As a result, the band-gap of semiconductor is apparently increased 
by t

E , when an external electric field is applied. This observation is 
opposite to the Franz8 and Keldysh9 effects, a phenomena where the 
band-gap decreases by means of an applied electric field. In support of 
our theoretical findings, the experimental observation of the band-gap 
enhancement with the electric field can be found in.10–12

Derivation of energy-spectrum in presence of an 
electric and parallel magnetic fields

In the presence of a parallel magnetic field, B, applied along the 
direction of the electric field, the transverse component of electron 
energy, 

t
E  is quantized by Landau quantization5 as

                 ( ) 11J 22  .g B
t cv

k
BE µω= + ±





2 2

r2m
┴  …..(18)

Where, K ⊥ is the transverse or normal component of wave vector, 
J is the Landau quantum number; 

cv
ω is cyclotron energy, given by 

                                
cv c v

ω ω ω= +    ………(19)

and g is the difference in spin g-factors of conduction and valence 
band and 

B
µ is the Bohr’s magnetron.

                    c v
g g g= − ……. (20)

Generally, the magnitude of the transverse component of electron 
energy, E is given as

t g
E E . Under this condition, we can 

approximate 2 2/  1,
x

k K ≈ in Eqn(11). Therefore, combining Equation 
(9)-(12), we can approximately write Eqn (16).

5
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2

  
xgx

g
cc
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For 0,F →  we find from Eqns (16) - (18)

2 E- 2 r
x c t

c

mk m E
m

 
≈  

 


2  ……….. (22)

Combining Eqns (16), (18)-(21), we get

( ) ( ){ }
2 2

1/2cv J+1/   ,ù 2 .x r g B
c c

k BmE F
m

µγ = + ±




2m
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Equations (23) and (24) represent the E- kx dispersion relation 
of conduction electron in presence of electric and parallel magnetic 
fields. From Eqns (23) and (24), we find that the parabolic energy-
band no more remains to the parabolic shape but is quantized by 
means of electric as well as parallel magnetic fields. Under the 
limiting conditions, 0,xk → we find from Eqn 21 the new increased 
band gaps ( )Ä E  of semiconductor in presence of electric and parallel 
magnetic fields.

( )
5

   2 .
c gg

m Fr Etm EE

− 
= + + 

  



/22 2 t

2
r

EÄ E 1
12m

 ……..(25)

Under the case, when 0B → and 0,xk →

We find from Eqns (23)-(25), the increased band-gap ( )Ä E  in 
presence of electric field only same as Eqn (17). Combining Eqns (17) 
and (25), we find that the increased band-gap value of semiconductor 
in the presence of electric field and a parallel magnetic field of greater 
that the value, when only electric field is present, i.e., ( ) .E>∆Ä E

Derivation of the density –of-states (DOS) functions 
in presence of electric as well as with the presence of 
electric and parallel magnetic fields

The density-of-states, N (E, F), in presence of electric field (F) can 
be written from Eqns. (14a) and (14b) as3

( ) 1/2 1/2 ,   ((1 *{1 1/3( ., )) ( , )/( )},1 (N E F E F E F E FE E
π

ψ− 
+ − += Φ


Φ



3/2

2 2

1 2mc.
2

. ………. (26)

Where 
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In the absence of electric field, N (E, 0) assumes the well-known 
form,13 from Eqns. (26) and (27), as

( ) 1/2  E
π

 
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
=


N E



3/2
c

2 2

1 2m.
2

 ………………. (28)

Now, from Eqns (24) and (25), the density-of-states, N (E, F, B) in 
the presence of electric and parallel magnetic fields, is given as (for 
conduction band, CB)

                                                                              …….. (29)

Where,
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c

e
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

 i.e. cyclotron of an energy spectrum an electron in the 
conduction band,

≡ =Maximum value of Landau quantum number, 

≡ Integer value of ( ) c, /ùE Fγ 

 In the limiting case, when 0,F → Eqns (29 and 30) will lead to 
the well-known form for (CB) as13
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Results and discussion
Using the appropriate equations and taking n-GaAs as an example, 

together with the parameters,13 01.424 ,  0.063 ,g cE eV m m= =  and 
00.5 ,  300 ,vm m T K= = we have plotted the energy-spectrum versus 

electron wave-vector ( )k shown in Figure 1, in the presence of electric 
field (f). This Figure 1 is plotted following Eqn. (16). The curve 
passes through origin, i.e., E=0 and 0.k =  This is the case of un-
perturbed band. The amount of shift of the band-edge at ( ) 0f ≠ with 
electric field, ( ) 0f ≠ is given by Eqn. (17). Therefore, it is clear that 
the parabolic nature of the original band is modified to a large extent 
due to the electric field. It further appears that as the electric field is 
increased, the edge of the conduction band (CB) moves vertically in 
the positive energy direction. Consequently, the band-gap is increased 
with the electric field.

Franz8 and Keldysh9 effects, conventionally implies that the 
band-gap of a semiconductor decreases with the application of an 
electric field. Incidentally, in accordance with our calculations, Eqns 
(14a)-(17) and Figure 1, we observe that the Franz-Keldysh effects 
are directly the opposite one. The physical explanation in support of 
the above observation can be given, based on our works on optical 
absorption in the presence of an external electric field.12

Figure 1 Plots of Energy-Spectrum, E (in eV) against k (wave vector in 
atomic unit, 108 cm-1) for n-GaAs at 300K for f=0.0 V cm-1 (dotted curve), 

6 1
1  5  10  f V cm−= × and 7 1

2  1.0  10f Vcm−= × (solid line).

 In Figure 2, we have plotted the electron energy- spectrum against 
wave-vector xk  (in atomic unit) for the electric field, ( )1f 0.0  V cm−= and 
B=3.0 Tesla (dotted line); and 8 1f  1.0  10  ,   3.0V cm B−= × = Tesla (Solid line); 
under extreme quantum limit, i.e., J=0. Figure 2 is plotted following 
Eqns (24) and (25). It is clear from Figure 2 that the dotted curve 
does not pass through origin; but shifting from it by an amount equal 
to (1/2)  0.0kx >>  This shows that the band-gap increase with magnetic 
field, which is the well-known result. However, for the solid curve, 

( ) ( )

( )
0

  ,F
 , ,  ù

4 ,

max
c J

t
c

E
N J

mr
E B

E
m

F
F Eπ γ

=
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the value of the electron energy (E) further increases with the electric 
field as well as magnetic fields. As we move deep into the band. For 

 0.0kx >>  (a.u) the curves merged to each other. From Figure 2, 
we may conclude that in the presence of magnetic field, the Landau 
sub-bands are formed and at 0,kx =  the band-edge of semiconductor 
moves vertical upward, indicating the increase of band-gap value with 
the magnetic field. The increase of band-gap value is further enhanced 
by the electric field, when both electric and parallel magnetic fields 
are simultaneously present.

Figure 2 Plots of Energy-Spectrum, E (in eV) against xk  (x-component 
of wave vector in atomic unit,

810 cm− 1) for n-GaAs at 300K for B=3.0 Tesla 
(dotted curve), 8 1 1.0  10  f V cm−= × and B= 3.0Tesla (solid line).

Figure 3 has been plotted for the density-of-states (DOS), N (E, 
F), (normalized by 20 31.6  10 / ,cm eV−×  against electron energy E 
(in eV) under various values of electric field, ( )1f .Vcm− We may 
infer from this that, for 1f  0.0 ,Vcm−= the curve (solid line) passes 
through the origin. For finite values of the electric energy (E) axis; 
besides the curves of (N (E, F) are flattened with respect to f=0.0 
Vcm-1 case. It is to be noticed that, we cannot apply the electric field 
F (= e.f) to an arbitrary values, the maximum possible value of fmax  
must be limited by: ( ) -1

e.df E / Vcmfmax g≤ =  where Eg is the band-
gap of semiconductor (in eV), “e” is the electron charge and “d” is the 
lattice constant of semiconductor. This is because for the electric field 
f . fmax> there is a possibility of lattice break-down to happen. So, we 
must limit the value of electric field strength f . fmax>  Referring to 
Figure 4 plots are made for n-GaAs at 300K for the following cases:

Figure 3 Plots for density-of-state function, N (E, F) (normalized by a factor 
( )20 11.6 10 /cm eV−× against electron energy, E (in eV) for n-GaAs under various 

electric fields, f.

Figure 4 Plots of density-of-states function, N (E, F, B) against electron energy, 
E (in eV) for n-GaAs at 300K for 10.0 (f vm−= ) and B=3.0 Tesla (solid 
curves) and 8 11.0 10f vm−= × and B=3.0 Tesla (dotted curves).

I.	N (E, F, B) (DOS, normalized by 1.6 ×1018 cm-3/eV) vs electron 
energy, E (eV), in presence of f=0.0 (V cm-1) and a parallel 
magnetic field, B=3.0 Tesla.

II.	For N (E, F, B) vs electron energy, E (eV), in presence of 
f=1.6×106cm-3/eV and a parallel magnetic field, B=3.0 esla.

III.	From Figure 4, following remarks might be noticed: (a) in 
both the graphs (1) and (2), the natures of variations of DOS 
functions with the electron energy (E) are similar with showings 
singularities. (b) the positions of the singularity points, (Dotted 
curves, for the case to when F B are present) are shifted to a 
higher electron energy E(eV) than case when only magnetic field 
‘B’ is present marked by solid lines. Since, we conclude from 
these graphs that in the study of magneto-resistance, the phase 
value with F B are higher than the case when only magnetic 
field (B) is present.

Referring to Figure 5, it appears that DOS function, N(E,F) varies 
with more or less constant values against electric field (up to a certain 
value), for different values of Electron energy, E. Thereafter, the rates 
of fall of N (E, F) value (in magnitude) increases with electron energy 
(E). Finally, the value of N (E, F) approaches to zero, implying thereby 
that the carriers disappear near the conduction band (CB) edge, as 
the applied electric field increase.3 Similar types of vanishing of the 
carriers have been observed in (CB) experimentally by Miyazawa 
and Ikoma.14 In Figure 6, we have plotted DOS function, N (E, F, B) 
[normalized by a factor of 1.6×1018(cm3/eV), against electric field, 
f(Vcm-1), for electron energy, E=30meV and a parallel magnetic 
field, B=3.0 Tesla for n-GaAs at 300K. It is shown in Figure 6, that 
the DOS function is almost a constant value over a certain values of 
the variation of the electric field. Therefore, as the electric field f is 
further increased the values of DOS decreases with oscillations and 
finally approaches to zero value. This implies that in the presence of 
an electric field and parallel magnetic fields, the availability of the 
carriers disappear from the CB edge with oscillations due to magnetic 
field. This phenomenon is unlikely to the cases; only when electric 
field is present and absence of magnetic fields (Figure 5).
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Figure 5 Plots of density-of-State function, N (E, F) (normalized by a factor, 
20 3(1.6 10 /cm eV−× ) for n-GaAs against electric field f (in Vcm-1) for 

E=1.0(meV), 10.0 meV) and 50(meV).

Figure 6 Plots of density-of-State function, N (E, F, B) (normalized by a factor, 
18 3(1.6 10 /cm eV−× ) for n-GaAs against electric field f (in vcm-1) for 

E=30(meV), B=3.0 Tesla.

Conclusion
The numerical results presented in the manuscript, would be 

different for various semiconductor, but the nature of variations, 
presented here, would be un-altered. The theoretical results, displayed 
in the paper, would be useful in analyzing various other experimental 
data related to the above described phenomena. In this context, it 
might be notice that from the E k− dispersion relation, we can 
formulate the DOS functions but the density-of- states techniques, as 
used in literature14 cannot provide the derivations of E k−  dispersion 
relation. Therefore, we may conclude that our studies presented here, 
are more fundamental than those of the existing literatures. This is 

because the Boltzmann transport equations, which determine the 
study of the charge, transport properties of semiconductor devices, 
can be solved if and only if the E-  dispersions are known.
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