Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 5 Issue 2

Calculation of the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment

Sergey M. Afonin

Correspondence: Afonin SM. National Research University of Electronic Technology, MIET, Moscow, Russia

Received: May 28, 2021 | Published: July 27, 2021

Citation: Afonin SM. Calculation of the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment. Phys Astron Int J. 2021;5(2):55-58. DOI: 10.15406/paij.2021.05.00234

Download PDF

Abstract

In this paper we have determined the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment. In the visibility of energy conversion the structural schema of an electromagnetoelastic actuator has a difference from Cady and Mason electrical equivalent circuits of a piezo vibrator. The matrix equation and the matrix transfer function of an electromagnetoelastic actuator are received.

Keywords:electromagnetoelastic actuator, piezo actuator, deformation, structural schema, matrix equation

Introduction

In astrophysics research an electromagnetoelastic actuator in the form of piezo engine or magnetostriction actuator is used for composite telescope, strophysics equipment and adaptive laser system.1–6 The piezo actuator is applied for optical–mechanical device, adaptive optics system, fiber–optic system, scanning microscopy.5–14 For an electromagnetoelastic actuator the electromagnetoelasticity equation and the ordinary differential equation of the second order are solved to obtain the structural schema of an actuator. In the visibility of energy conversion the structural schema of an electromagnetoelastic actuator has a difference from Cady and Mason electrical equivalent circuits of a piezo vibrator. By applying the methods of electromagnetoelasticity the structural schema of an electromagnetoelastic actuator for composite telescope and astrophysics equipment is obtained.4–12

Deformation of engine

The equation electromagnetoelasticity of an electromagnetoelastic actuator for composite telescope and astrophysics equipment1–30  has the form

S i = d mi Ψ m + s ij Ψ T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaqcLbsacaWGtb qcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiabg2da9iaadsga juaGdaWgaaWcbaqcLbsacaWGTbGaamyAaaWcbeaajugibiabfI6azL qbaoaaBaaaleaajugibiaad2gaaSqabaqcLbsacqGHRaWkcaWGZbqc fa4aa0baaSqaaKqzGeGaamyAaiaadQgaaSqaaKqzGeGaeuiQdKfaai aadsfajuaGdaWgaaWcbaqcLbsacaWGQbaaleqaaaaa@4E8A@

where S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaWGPbaabeaaaaa@37E8@ , d mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaqcLbsacaWGKb WcdaWgaaqaaKqzGdGaamyBaiaadMgaaSqabaaaaa@3AD3@ , Ψ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1cda Wgaaqaaiaad2gaaeqaaaaa@38A3@ , s ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGPbGaamOAaaqaaiabfI6azbaaaaa@3A87@  and T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGQbaabeaaaaa@37EA@  are the relative deformation, the module, the control parameter or the intensity of field, the elastic compliance, and the mechanical intensity.

In static the mechanical characteristic 4–45 of an electromagnetoelastic actuator has the form

S i | Ψ=const = d mi Ψ m | Ψ=const + s ij Ψ T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaqcfa4aaqGaaO qaaKqzGeGaam4uaKqbaoaaBaaaleaajugibiaadMgaaSqabaaakiaa wIa7aKqbaoaaBaaaleaajugibiabfI6azjabg2da9iaabogacaqGVb GaaeOBaiaabohacaqG0baaleqaaKqzGeGaeyypa0tcfa4aaqGaaOqa aKqzGeGaamizaSWaaSbaaeaajug4aiaad2gacaWGPbaakeqaaKqzGe GaeuiQdKvcfa4aaSbaaSqaaKqzGeGaamyBaaWcbeaaaOGaayjcSdqc fa4aaSbaaSqaaKqzGeGaeuiQdKLaeyypa0Jaae4yaiaab+gacaqGUb Gaae4CaiaabshaaSqabaqcLbsacqGHRaWkcaWGZbqcfa4aa0baaSqa aKqzGeGaamyAaiaadQgaaSqaaKqzGeGaeuiQdKfaaiaadsfajuaGda WgaaWcbaqcLbsacaWGQbaakeqaaaaa@64F6@

the regulation characteristic an actuator has the form

S i | T=const = d mi Ψ m + s ij Ψ T j | T=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaqcfa4aaqGaaO qaaKqzGeGaam4uaKqbaoaaBaaaleaajugibiaadMgaaSqabaaakiaa wIa7aKqbaoaaBaaaleaajugibiaadsfacqGH9aqpcaqGJbGaae4Bai aab6gacaqGZbGaaeiDaaWcbeaajugibiabg2da9iaadsgajuaGdaWg aaWcbaqcLboacaWGTbGaamyAaaGcbeaajugibiabfI6azLqbaoaaBa aaleaajugibiaad2gaaSqabaqcLbsacqGHRaWkjuaGdaabcaGcbaqc LbsacaWGZbqcfa4aa0baaSqaaKqzGdGaamyAaiaadQgaaSqaaKqzGe GaeuiQdKfaaiaadsfajuaGdaWgaaWcbaqcLbsacaWGQbaakeqaaaGa ayjcSdqcfa4aaSbaaSqaaKqzGeGaamivaiabg2da9iaabogacaqGVb GaaeOBaiaabohacaqG0baaleqaaaaa@64CD@

The mechanical characteristic of an electromagnetoelastic actuator has the form

Δl=Δ l max ( 1F/ F max ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaiabg2da9iabfs5aejaadYgalmaaBaaabaGaaeyBaiaabggacaqG 4baabeaakmaabmaabaGaaGymaiabgkHiTmaalyaabaGaamOraaqaai aadAeadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaaaaaakiaawIca caGLPaaaaaa@4691@ ,

Δ l max = d mi Ψ m l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0Jaamiz aSWaaSbaaeaacaWGTbGaamyAaaqabaGccqqHOoqwdaWgaaWcbaGaam yBaaGcbeaacaWGSbaaaa@42FF@ ,      F max = d mi Ψ m S 0 / s ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0ZaaSGbaeaacaWG KbWcdaWgaaqaaiaad2gacaWGPbaabeaakiabfI6aznaaBaaaleaaca WGTbaakeqaaiaadofalmaaBaaabaGaaGimaaqabaaakeaacaWGZbWc daqhaaqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaaaaa@46F1@

For the the transverse piezo actuator after transforms the maximum values of deformation and force have the form

Δ h max = d 31 E 3 h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iAaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0Jaamiz aSWaaSbaaeaacaaIZaGaaGymaaqabaGccaWGfbWaaSbaaSqaaiaaio daaOqabaGaamiAaaaa@4195@ ,    F max = d 31 E 3 S 0 / s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0ZaaSGbaeaacaWG KbWcdaWgaaqaaiaaiodacaaIXaaabeaakiaadweadaWgaaWcbaGaaG 4maaGcbeaacaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaam4CaSWa a0baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaaaa@4463@

At d 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaamizaSWaaS baaeaacaaIZaGaaGymaaqabaaaaa@3883@  = 2∙10–10 m/V, E 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraSWaaS baaeaacaaIZaaabeaaaaa@37A9@  = 1∙105 V/m, h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E3@  = 2.5∙10–2 m, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaaIWaaabeaaaaa@37B4@  = 1.5∙10–5 m2, s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaSWaa0 baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaa@395B@  = 15∙10–12 m2/N the maximum values of deformation and force for the transverse piezo actuator are found Δ h max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iAaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaaaa@3B44@  = 500 nm and F max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaaaa@39BC@  = 20 N.

The regulation characteristic at elastic load of an electromagnetoelastic actuator for composite telescope and astrophysics equipment is obtained in the form

Δl l = d mi Ψ m s ij Ψ C e S 0 Δl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq qHuoarcaWGSbaabaGaamiBaaaacqGH9aqpcaWGKbWcdaWgaaqaaiaa d2gacaWGPbaabeaakiabfI6aznaaBaaaleaacaWGTbaakeqaaiabgk HiTmaalaaabaGaam4CaSWaa0baaeaacaWGPbGaamOAaaqaaiabfI6a zbaakiaadoeadaWgaaWcbaGaamyzaaGcbeaaaeaacaWGtbWcdaWgaa qaaiaaicdaaeqaaaaakiabfs5aejaadYgaaaa@4BA9@ ,    F= C e Δl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabg2 da9iaadoeadaWgaaWcbaGaamyzaaqabaGccqqHuoarcaWGSbaaaa@3C06@

The equation of the deformation at elastic load of an electromagnetoelastic actuator for composite telescope and astrophysics equipment has the form

Δl= d mi l Ψ m 1+ C e / C ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaiabg2da9maalaaabaGaamizaSWaaSbaaeaacaWGTbGaamyAaaqa baGccaWGSbGaeuiQdK1aaSbaaSqaaiaad2gaaOqabaaabaGaaGymai abgUcaRmaalyaabaGaam4qamaaBaaaleaacaWGLbaabeaaaOqaaiaa doeadaqhaaWcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaaaaaaa@4806@

After transforms the equation of the deformation at elastic load for the transverse piezo actuator has the form

Δh= ( d 31 h/δ )U 1+ C e / C 11 E = k 31 U U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iAaiabg2da9maalaaabaWaaeWaaeaacaWGKbWcdaWgaaqaaiaaioda caaIXaaabeaakmaalyaabaGaamiAaaqaaiabes7aKbaaaiaawIcaca GLPaaacaWGvbaabaGaaGymaiabgUcaRmaalyaabaGaam4qamaaBaaa leaacaWGLbaabeaaaOqaaiaadoeadaqhaaWcbaGaaGymaiaaigdaae aacaWGfbaaaaaaaaGccqGH9aqpcaWGRbWaa0baaSqaaiaaiodacaaI XaaabaGaamyvaaaakiaadwfaaaa@4D34@ ,    k 31 U = ( d 31 h/δ )/ ( 1+ C e / C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDa aaleaacaaIZaGaaGymaaqaaiaadwfaaaGccqGH9aqpdaWcgaqaamaa bmaabaGaamizaSWaaSbaaeaacaaIZaGaaGymaaqabaGcdaWcgaqaai aadIgaaeaacqaH0oazaaaacaGLOaGaayzkaaaabaWaaeWaaeaacaaI XaGaey4kaSYaaSGbaeaacaWGdbWaaSbaaSqaaiaadwgaaeqaaaGcba Gaam4qamaaDaaaleaacaaIXaGaaGymaaqaaiaadweaaaaaaaGccaGL OaGaayzkaaaaaaaa@49B6@

where k 31 U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaam4AamaaDa aaleaacaaIZaGaaGymaaqaaiaadwfaaaaaaa@3965@  is the transfer coefficient.

At d 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaaIZaGaaGymaaqabaaaaa@3883@  = 2∙10–10 m/V, h/δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGObaabaGaeqiTdqgaaaaa@389E@  = 16, C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaa0 baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaa@392B@  = 2.8∙107 N/m, C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaaS baaeaacaWGLbaabeaaaaa@37D4@  = 0.4∙107 N/m, U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D0@  = 150 V the transfer coefficient and the deformation of the transverse piezo actuator are obtained k 31 U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDa aaleaacaaIZaGaaGymaaqaaiaadwfaaaaaaa@3965@  = 2.8 nm/V and Δh MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iAaaaa@3849@  = 420 nm. Theoretical and practical parameters of the piezo actuator are coincidences with an error of 10%.

The ordinary differential equation of the second order for an electromagnetoelastic actuator for composite telescope and astrophysics equipment has the form4–37

d 2 Ξ( x,p )/ d x 2 γ 2 Ξ( x,p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaWaaSGbaeaaca WGKbWaaWbaaSqabeaacaaIYaaaaOGaeuONdG1aaeWaaeaacaWG4bGa aiilaiaadchaaiaawIcacaGLPaaaaeaacaWGKbGaamiEamaaCaaale qabaGaaGOmaaaaaaGccqGHsislcqaHZoWzdaahaaWcbeqaaiaaikda aaGccqqHEoawdaqadaqaaiaadIhacaGGSaGaamiCaaGaayjkaiaawM caaiabg2da9iaaicdaaaa@4B66@

γ=p/ c Ψ +α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey ypa0ZaaSGbaeaacaWGWbaabaGaam4yamaaCaaaleqabaGaeuiQdKfa aaaakiabgUcaRiabeg7aHbaa@3EDD@

where Ξ( x,p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aae WaaeaacaWG4bGaaiilaiaadchaaiaawIcacaGLPaaaaaa@3BA5@ , p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EB@ , γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@379D@ , c Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaGaeuiQdKfaaaaa@389A@ , α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3795@  are the transform of Laplace for displacement, the operator of transform, the coefficient of wave propagation, the speed of sound and the coefficient of attenuation,

The decision of the ordinary differential equation of the second order for an electromagnetoelastic actuator has the form

Ξ( x,p )=C e xγ +B e xγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeuONdG1aae WaaeaacaWG4bGaaiilaiaadchaaiaawIcacaGLPaaacqGH9aqpcaWG dbGaamyzamaaCaaaleqabaGaeyOeI0IaamiEaiabeo7aNbaakiabgU caRiaadkeacaWGLbWaaWbaaSqabeaacaWG4bGaeq4SdCgaaaaa@4789@

The coefficients C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BE@ , B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BD@  have the form

C= ( Ξ 1 e lγ Ξ 2 )/ [ 2sh( lγ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaam4qaiabg2 da9maalyaabaWaaeWaaeaacqqHEoawdaWgaaWcbaGaaGymaaqabaGc caWGLbWaaWbaaSqabeaacaWGSbGaeq4SdCgaaOGaeyOeI0IaeuONdG 1aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaWaamWaaeaa caaIYaGaae4CaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIcaca GLPaaaaiaawUfacaGLDbaaaaaaaa@4BA4@

B= ( Ξ 2 Ξ 1 e lγ )/ [ 2sh( lγ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaamOqaiabg2 da9maalyaabaWaaeWaaeaacqqHEoawdaWgaaWcbaGaaGOmaaqabaGc cqGHsislcqqHEoawdaWgaaWcbaGaaGymaaqabaGccaWGLbWaaWbaaS qabeaacqGHsislcaWGSbGaeq4SdCgaaaGccaGLOaGaayzkaaaabaWa amWaaeaacaaIYaGaae4CaiaabIgadaqadaqaaiaadYgacqaHZoWzai aawIcacaGLPaaaaiaawUfacaGLDbaaaaaaaa@4C90@

where Ξ 1 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaa aa@3AE9@ , Ξ 2 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaa aa@3AEA@  are the transforms Laplace of displacements for faces 1 and 2 for an actuator.

In dynamic the system of the equations for the transforms Laplace of forces on faces of an electromagnetoelastic actuator is received10–42

M 1 p 2 Ξ 1 ( p )+ F 1 ( p )= S 0 T j ( 0,p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIXaaabeaakiaadchadaahaaWcbeqaaiaaikdaaaGccqqH EoawdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadchaaiaawIcaca GLPaaacqGHRaWkcaWGgbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaa caWGWbaacaGLOaGaayzkaaGaeyypa0Jaam4uamaaBaaaleaacaaIWa aabeaakiaayIW7caWGubWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaa caaIWaGaaiilaiaadchaaiaawIcacaGLPaaaaaa@4DF5@

M 2 p 2 Ξ 2 ( p ) F 2 ( p )= S 0 T j ( l,p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam ytamaaBaaaleaacaaIYaaabeaakiaadchadaahaaWcbeqaaiaaikda aaGccqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadchaai aawIcacaGLPaaacqGHsislcaWGgbWaaSbaaSqaaiaaikdaaeqaaOWa aeWaaeaacaWGWbaacaGLOaGaayzkaaGaeyypa0Jaam4uamaaBaaale aacaaIWaaabeaakiaayIW7caaMi8UaamivamaaBaaaleaacaWGQbaa beaakmaabmaabaGaamiBaiaacYcacaWGWbaacaGLOaGaayzkaaaaaa@50B8@

where M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIXaaabeaaaaa@37AF@ , M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIYaaabeaaaaa@37B0@ , F 1 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaa @3A30@ , F 2 ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaa @3A31@ , T j ( 0,p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjcVlaads fadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaaicdacaGGSaGaamiC aaGaayjkaiaawMcaaaaa@3D6D@ , T j ( l,p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjcVlaads fadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadYgacaGGSaGaamiC aaGaayjkaiaawMcaaaaa@3DA4@ , S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaaIWaaabeaakiaayIW7aaa@394F@  are the masses of the loads, the transforms Laplace of forces and stress on faces 1 and 2, the area of an actuator.

The system of the equations the transforms Laplace of stresses on faces of an actuator has the form

T j ( 0,p )= 1 s ij Ψ dΞ( 0,p ) dx d mi s ij Ψ Ψ m ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGQbaabeaakmaabmaabaGaaGimaiaacYcacaWGWbaacaGL OaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaale aacaWGPbGaamOAaaqaaiabfI6azbaaaaGcdaWcaaqaaiaadsgacqqH EoawdaqadaqaaiaaicdacaGGSaGaamiCaaGaayjkaiaawMcaaaqaai aadsgacaWG4baaaiabgkHiTmaalaaabaGaamizamaaBaaaleaacaWG TbGaamyAaaqabaaakeaacaWGZbWaa0baaSqaaiaadMgacaWGQbaaba GaeuiQdKfaaaaakiabfI6aznaaBaaaleaacaWGTbaabeaakmaabmaa baGaamiCaaGaayjkaiaawMcaaaaa@585F@

T j ( l,p )= 1 s ij Ψ dΞ( l,p ) dx d mi s ij Ψ Ψ m ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGQbaabeaakmaabmaabaGaamiBaiaacYcacaWGWbaacaGL OaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaale aacaWGPbGaamOAaaqaaiabfI6azbaaaaGcdaWcaaqaaiaadsgacqqH EoawdaqadaqaaiaadYgacaGGSaGaamiCaaGaayjkaiaawMcaaaqaai aadsgacaWG4baaaiabgkHiTmaalaaabaGaamizamaaBaaaleaacaWG TbGaamyAaaqabaaakeaacaWGZbWaa0baaSqaaiaadMgacaWGQbaaba GaeuiQdKfaaaaakiabfI6aznaaBaaaleaacaWGTbaabeaakmaabmaa baGaamiCaaGaayjkaiaawMcaaaaa@58CD@

After transforms the system of the equations for the structural schema on Figure 1 and model of an electromagnetoelastic actuator for composite telescope and astrophysics equipment has the form

Ξ 1 ( p )= ( M 1 p 2 ) 1 ×{ F 1 ( p )+( 1/ χ ij Ψ ) ×[ d mi Ψ m ( p )+[ γ/ sh( lγ ) ] ×[ Ξ 2 ( p )ch( lγ ) Ξ 1 ( p ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGa eyypa0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaamiCam aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa eyOeI0IaaGymaaaakiabgEna0oaacmaaeaqabeaacqGHsislcaWGgb WaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzk aaGaey4kaSYaaeWaaeaadaWcgaqaaiaaigdaaeaacqaHhpWydaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaaGccaGLOaGaayzkaaaa baGaey41aq7aamWaaqaabeqaaiaadsgadaWgaaWcbaGaamyBaiaadM gaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaeqaaOWaaeWaaeaacaWG WbaacaGLOaGaayzkaaGaey4kaSYaamWaaeaadaWcgaqaaiabeo7aNb qaaiaabohacaqGObWaaeWaaeaacaWGSbGaeq4SdCgacaGLOaGaayzk aaaaaaGaay5waiaaw2faaaqaaiabgEna0oaadmaabaGaeuONdG1aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGa eyOeI0Iaae4yaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIcaca GLPaaacqqHEoawdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadcha aiaawIcacaGLPaaaaiaawUfacaGLDbaaaaGaay5waiaaw2faaaaaca GL7bGaayzFaaaaaa@80B4@

Ξ 2 ( p )= ( M 2 p 2 ) 1 ×{ F 2 ( p )+( 1/ χ ij Ψ )× ×[ d mi Ψ m ( p )+[ γ/ sh( lγ ) ] ×[ Ξ 1 ( p )ch( lγ ) Ξ 2 ( p ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGa eyypa0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaOGaamiCam aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa eyOeI0IaaGymaaaakiabgEna0oaacmaaeaqabeaacqGHsislcaWGgb WaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzk aaGaey4kaSYaaeWaaeaadaWcgaqaaiaaigdaaeaacqaHhpWydaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaaGccaGLOaGaayzkaaGa ey41aqlabaGaey41aq7aamWaaqaabeqaaiaadsgadaWgaaWcbaGaam yBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaeqaaOWaaeWa aeaacaWGWbaacaGLOaGaayzkaaGaey4kaSYaamWaaeaadaWcgaqaai abeo7aNbqaaiaabohacaqGObWaaeWaaeaacaWGSbGaeq4SdCgacaGL OaGaayzkaaaaaaGaay5waiaaw2faaaqaaiabgEna0oaadmaabaGaeu ONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGa ayzkaaGaeyOeI0Iaae4yaiaabIgadaqadaqaaiaadYgacqaHZoWzai aawIcacaGLPaaacqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqa aiaadchaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaGaay5waiaaw2 faaaaacaGL7bGaayzFaaaaaa@82CE@

Figure 1 Structural schema of an electromagnetoelastic actuator for composite telescope and astrophysics equipment.

where χ ij Ψ = s ij Ψ / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeq4Xdm2aa0 baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaeyypa0ZaaSGbaeaa caWGZbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaGcbaGaam 4uamaaBaaaleaacaaIWaaabeaaaaaaaa@42C5@ , d mi ={ d 33 , d 31 , d 15 d 33 , d 31 , d 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGTbGaamyAaaqabaGccqGH9aqpdaGabaqaauaabeqaceaa aeaacaWGKbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaacYcacaWGKb WaaSbaaSqaaiaaiodacaaIXaaabeaakiaacYcacaWGKbWaaSbaaSqa aiaaigdacaaI1aaabeaaaOqaaiaadsgadaWgaaWcbaGaaG4maiaaio daaeqaaOGaaiilaiaadsgadaWgaaWcbaGaaG4maiaaigdaaeqaaOGa aiilaiaadsgadaWgaaWcbaGaaGymaiaaiwdaaeqaaaaaaOGaay5Eaa aaaa@4D74@ , Ψ m ={ E 3 , E 1 H 3 , H 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1aaS baaSqaaiaad2gaaeqaaOGaeyypa0ZaaiqaaeaafaqabeGabaaabaGa amyramaaBaaaleaacaaIZaaabeaakiaacYcacaWGfbWaaSbaaSqaai aaigdaaeqaaaGcbaGaamisamaaBaaaleaacaaIZaaabeaakiaacYca caWGibWaaSbaaSqaaiaaigdaaeqaaaaaaOGaay5Eaaaaaa@4330@ , s ij Ψ ={ s 33 E , s 11 E , s 55 E s 33 H , s 11 H , s 55 H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGPbGaamOAaaqaaiabfI6azbaakiabg2da9maaceaabaqb aeqabiqaaaqaaiaadohadaqhaaWcbaGaaG4maiaaiodaaeaacaWGfb aaaOGaaiilaiaadohadaqhaaWcbaGaaGymaiaaigdaaeaacaWGfbaa aOGaaiilaiaadohadaqhaaWcbaGaaGynaiaaiwdaaeaacaWGfbaaaa GcbaGaam4CamaaDaaaleaacaaIZaGaaG4maaqaaiaadIeaaaGccaGG SaGaam4CamaaDaaaleaacaaIXaGaaGymaaqaaiaadIeaaaGccaGGSa Gaam4CamaaDaaaleaacaaI1aGaaGynaaqaaiaadIeaaaaaaaGccaGL 7baaaaa@5439@ , γ={ γ E γ H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey ypa0ZaaiqaaeaafaqabeGabaaabaGaeq4SdC2aaWbaaSqabeaacaWG fbaaaaGcbaGaeq4SdC2aaWbaaSqabeaacaWGibaaaaaaaOGaay5Eaa aaaa@3F1D@ , E and H are the intensity of electric field and the intensity of magnetic field in an actuator

The structural schema of an electromagnetoelastic actuator replaces Cady and Mason electrical equivalent circuits.5–10

The matrix equation of an electromagnetoelastic actuator with matrix transfer function has the form

( Ξ 1 ( p ) Ξ 2 ( p ) )=( W 11 ( p ) W 12 ( p ) W 13 ( p ) W 21 ( p ) W 22 ( p ) W 23 ( p ) )( Ψ m ( p ) F 1 ( p ) F 2 ( p ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaa caWGWbaacaGLOaGaayzkaaaabaGaeuONdG1aaSbaaSqaaiaaikdaae qaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaaaaGaayjkaiaawMca aiabg2da9maabmaabaqbaeqabiqaaaqaauaabeqabmaaaeaacaWGxb WaaSbaaSqaaiaaigdacaaIXaaabeaakmaabmaabaGaamiCaaGaayjk aiaawMcaaaqaaiaadEfadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaae WaaeaacaWGWbaacaGLOaGaayzkaaaabaGaam4vamaaBaaaleaacaaI XaGaaG4maaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaaaaba qbaeqabeWaaaqaaiaadEfadaWgaaWcbaGaaGOmaiaaigdaaeqaaOWa aeWaaeaacaWGWbaacaGLOaGaayzkaaaabaGaam4vamaaBaaaleaaca aIYaGaaGOmaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaeaa caWGxbWaaSbaaSqaaiaaikdacaaIZaaabeaakmaabmaabaGaamiCaa GaayjkaiaawMcaaaaaaaaacaGLOaGaayzkaaGaaGjbVpaabmaabaqb aeqabmqaaaqaaiabfI6aznaaBaaaleaacaWGTbaakeqaamaabmaaba GaamiCaaGaayjkaiaawMcaaaqaaiaadAeadaWgaaWcbaGaaGymaaqa baGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaeaacaWGgbWaaSbaaS qaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaaaaGa ayjkaiaawMcaaaaa@7329@

From the matrix equation of an electromagnetoelastic actuator at the inertial load the steady–state deformations in the form ξ 1 ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaigdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa aaa@3BA4@ , ξ 2 ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaikdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa aaa@3BA5@  of an actuator have the form

ξ 1 ( t )| t = ξ 1 ( )= d mi Ψ m l M 2 / ( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaWaaqGaaeaacq aH+oaElmaaBaaabaGaaeymaaqabaGcdaqadaqaaiaadshaaSGaayjk aiaawMcaaaGccaGLiWoadaWgaaWcbaGaamiDaiabgkziUkabg6HiLc qabaGccqGH9aqpcqaH+oaElmaaBaaabaGaaGymaaqabaGcdaqadaqa aiabg6HiLcGaayjkaiaawMcaaiabg2da9iaadsgalmaaBaaabaGaam yBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaOqabaGaamiB aiaaykW7daWcgaqaaiaad2eadaWgaaWcbaGaaGOmaaqabaaakeaada qadaqaaiaad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaaaa@5915@

ξ 2 ( t )| t = ξ 2 ( )= d mi Ψ m l M 1 / ( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaWaaqGaaeaacq aH+oaElmaaBaaabaGaaeOmaaqabaGcdaqadaqaaiaadshaaSGaayjk aiaawMcaaaGccaGLiWoadaWgaaWcbaGaamiDaiabgkziUkabg6HiLc qabaGccqGH9aqpcqaH+oaElmaaBaaabaGaaGOmaaqabaGcdaqadaqa aiabg6HiLcGaayjkaiaawMcaaiabg2da9iaadsgalmaaBaaabaGaam yBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaOqabaGaamiB aiaaykW7daWcgaqaaiaad2eadaWgaaWcbaGaaGymaaqabaaakeaada qadaqaaiaad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWa aSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaaaa@5916@

Therefore, after transforms the steady–state deformations of the transverse piezo actuator at the inertial load have the form

ξ 1 ( )= d 31 ( h/δ )U M 2 / ( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaigdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa cqGH9aqpdaWcgaqaaiaadsgadaWgaaWcbaGaaG4maiaaigdaaeqaaO WaaeWaaeaadaWcgaqaaiaadIgaaeaacqaH0oazaaaacaGLOaGaayzk aaGaamyvaiaad2eadaWgaaWcbaGaaGOmaaqabaaakeaadaqadaqaai aad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWaaSbaaSqa aiaaikdaaeqaaaGccaGLOaGaayzkaaaaaaaa@4C18@

ξ 2 ( )= d 31 ( h/δ )U M 1 / ( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaikdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa cqGH9aqpdaWcgaqaaiaadsgadaWgaaWcbaGaaG4maiaaigdaaeqaaO WaaeWaaeaadaWcgaqaaiaadIgaaeaacqaH0oazaaaacaGLOaGaayzk aaGaamyvaiaad2eadaWgaaWcbaGaaGymaaqabaaakeaadaqadaqaai aad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWaaSbaaSqa aiaaikdaaeqaaaGccaGLOaGaayzkaaaaaaaa@4C18@

Therefore, at d 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaaIZaGaaGymaaqabaaaaa@3883@  = 2∙10–10 m/V, h/δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGObaabaGaeqiTdqgaaaaa@389E@  = 20, U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D0@  = 250 V, M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIXaaabeaaaaa@37AF@  = 2 kg and M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIYaaabeaaaaa@37B0@  = 8 kg the deformations of the transverse piezo actuator are received ξ 1 ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaigdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa aaa@3BA4@  = 800 nm, ξ 2 ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaikdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaa aaa@3BA5@  = 200 nm, ξ 1 ( )+ ξ 2 ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacqGHDisTaiaawIcacaGLPaaa cqGHRaWkcqaH+oaElmaaBaaabaGaaGOmaaqabaGcdaqadaqaaiabg2 Hi1cGaayjkaiaawMcaaaaa@4253@  = 1000 nm.

Conclusion

In the article the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment is obtained. The structural schema of an electromagnetoelastic actuator is shown. In the visibility of energy conversion the structural schema of an electromagnetoelastic actuator has a difference from Cady and Mason electrical equivalent circuits of a piezo vibrator. From the equation electromagnetoelasticity and the ordinary differential equation of the second order the structural schema of an electromagnetoelastic actuator is received. The matrix equation and the matrix transfer function of an electromagnetoelastic actuator for composite telescope and astrophysics equipment are found.

Acknowledgments

None.

Conflicts of interest

Author declares there is no conflict of interest.

References

  1. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth–Heinemann Publisher. Oxford. 2017: 382.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;74(3):943–948.
  3. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston: Kluwer Academic Publisher. 1997:347.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York: McGraw–Hill Book Company, London. 1946:806.
  8. Mason W. Principles and Methods, Methods and Devices. 1st edn physical Acoustics. Academic Press. New York. 1964:515.
  9. Zwillinger D. Handbook of Differential Equations. Boston: Academic Press. 1989:673.
  10. Afonin SM. A generalized structural–parametric model of an elecromagnetoelastic converter for nano– and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano– and micrometric movement control systems. Journal of Computer and Systems Sciences International. 2006;45(2):317–325.
  11. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano– and microdisplacement for communications systems. International Journal of Information and Communication Science  .2016;1(2):22–29.
  12. Afonin SM. Structural–parametric model and transfer functions of electroelastic actuator for nano– and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Nova Science. New York. 2015;225–242.
  13. Afonin SM. A structural–parametric model of electroelastic actuator for nano– and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Nova Science. New York. 2017;19:259–284.
  14. Afonin SM. Electromagnetoelastic nano and microactuators for mechatronic systems. Russian Engineering Research. 2018;38(12):938–944.
  15. Afonin SM. Nano– and micro–scale piezomotors. Russian Engineering Research. 2012;32(7–8):519–522.
  16. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers, Mechanics of Solids. 2007;42(1):43–49.
  17. Afonin SM. Stability of strain control systems of nano–and microdisplacement piezotransducers. Mechanics of Solids. 2014;49(2):196–207.
  18. Afonin SM. Structural–parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics.2017;5(1):9–15.
  19. Afonin SM. Structural–parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2):50–57.
  20. Afonin SM. Structural–parametric model of piezoactuator nano– and microdisplacement for nanoscience. AASCIT Journal of Nanoscience. 2017;3(3):12–18.
  21. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano– and micro displacement. International Journal of Mathematical Analysis and Applications. 2016;3(4):31–38.
  22. Afonin SM. Structural–parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1–9.
  23. Afonin SM. Structural–parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):1–14.
  24. Afonin SM. Structural–parametric models and transfer functions of electromagnetoelastic actuators nano– and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics. 2016;2(2):52–59.
  25. Afonin SM. Structural–parametric model of electro elastic actuator for nanotechnology and biotechnology. Journal of Pharmacy and Pharmaceutics. 2018;5(1):8–12.
  26. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mechanics of Solids. 2010;45(1):123–132.
  27. Afonin SM. Electromagnetoelastic Actuator for Nanomechanics. Global Journal of Research in Engineering: A Mechanical and Mechanics Engineering. 2018;18(2):19–23.
  28. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus. 2018;1698–1701.
  29. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communications. 2018;6(3):1–9.
  30. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Transactions on Nnetworks and Communications. 2019;7(3):11–21.
  31. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transactions on Networks and Communications. 2020;8(1):8–15.
  32. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transactions on Machine Learning and Artificial Intelligence. 2020;8(4):23–33.
  33. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation. 2020;3(4):1–7.
  34. Afonin SM. Structural scheme actuator for nano research. COJ Reviews and Research. 2020;2(5):1–3.
  35. Afonin SM. Structural–parametric model electroelastic actuator nano– and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Eco Environ Sci. 2018;3(5):306‒309.
  36. Afonin SM. Structural–parametric model actuator of adaptive optics for composite telescope and astrophysics equipment. Phys Astron Int J. 2020;4(1):18‒21.
  37. Afonin SM. An actuator nano and micro displacements for composite telescope in astronomy and physics research. Phys Astron Int J. 2020;4(4):165‒167.
  38. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surgery & Case Studies Open Access Journal. 2019;3(3):307–309.
  39. Afonin SM. Multilayer engine for microsurgery and nano biomedicine. Surgery & Case Studies Open Access journal. 2020;4(4):423–425.
  40. Afonin SM. Condition absolute stability of control system electro magnetoelastic actuator nano displacement for nano research in sciences. Novel Research in Sciences. 2020;5(1):1–4.
  41. Afonin SM.  Absolute stability of control system with electro magneto elastic actuator for nanobiomedicine. Biomedical Journal of Scientific and Technical Research. 2019;21(4):16027–16030.
  42. Afonin SM.  Multilayer actuator for nano biomedicine. Biomedical Journal of Scientific and Technical Research. 2019;22(4):16885–16887.
  43. Afonin SM. Precision engine for nanobiomedical research. Biomedical Research and Clinical Reviews. 2021;3(4):1–5.
  44. Nalwa HS. Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: American Scientific Publishers. 2004.
Creative Commons Attribution License

©2021 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.