Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 5 Issue 2

Calculation of the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment

Sergey M. Afonin

Correspondence: Afonin SM. National Research University of Electronic Technology, MIET, Moscow, Russia

Received: May 28, 2021 | Published: July 27, 2021

Citation: Afonin SM. Calculation of the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment. Phys Astron Int J. 2021;5(2):55-58. DOI: 10.15406/paij.2021.05.00234

Download PDF

Abstract

In this paper we have determined the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment. In the visibility of energy conversion the structural schema of an electromagnetoelastic actuator has a difference from Cady and Mason electrical equivalent circuits of a piezo vibrator. The matrix equation and the matrix transfer function of an electromagnetoelastic actuator are received.

Keywords:electromagnetoelastic actuator, piezo actuator, deformation, structural schema, matrix equation

Introduction

In astrophysics research an electromagnetoelastic actuator in the form of piezo engine or magnetostriction actuator is used for composite telescope, strophysics equipment and adaptive laser system.1–6 The piezo actuator is applied for optical–mechanical device, adaptive optics system, fiber–optic system, scanning microscopy.5–14 For an electromagnetoelastic actuator the electromagnetoelasticity equation and the ordinary differential equation of the second order are solved to obtain the structural schema of an actuator. In the visibility of energy conversion the structural schema of an electromagnetoelastic actuator has a difference from Cady and Mason electrical equivalent circuits of a piezo vibrator. By applying the methods of electromagnetoelasticity the structural schema of an electromagnetoelastic actuator for composite telescope and astrophysics equipment is obtained.4–12

Deformation of engine

The equation electromagnetoelasticity of an electromagnetoelastic actuator for composite telescope and astrophysics equipment1–30  has the form

Si=dmiΨm+sijΨTj MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaqcLbsacaWGtbqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiabg2da9iaadsgajuaGdaWgaaWcbaqcLbsacaWGTbGaamyAaaWcbeaajugibiabfI6azLqbaoaaBaaaleaajugibiaad2gaaSqabaqcLbsacqGHRaWkcaWGZbqcfa4aa0baaSqaaKqzGeGaamyAaiaadQgaaSqaaKqzGeGaeuiQdKfaaiaadsfajuaGdaWgaaWcbaqcLbsacaWGQbaaleqaaaaa@4E8A@

where Si MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaSbaaeaacaWGPbaabeaaaaa@37E8@ , dmi MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaqcLbsacaWGKbWcdaWgaaqaaKqzGdGaamyBaiaadMgaaSqabaaaaa@3AD3@ , Ψm MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1cdaWgaaqaaiaad2gaaeqaaaaa@38A3@ , sijΨ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDaaaleaacaWGPbGaamOAaaqaaiabfI6azbaaaaa@3A87@  and Tj MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGQbaabeaaaaa@37EA@  are the relative deformation, the module, the control parameter or the intensity of field, the elastic compliance, and the mechanical intensity.

In static the mechanical characteristic 4–45 of an electromagnetoelastic actuator has the form

Si|Ψ=const=dmiΨm|Ψ=const+sijΨTj MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaqcfa4aaqGaaOqaaKqzGeGaam4uaKqbaoaaBaaaleaajugibiaadMgaaSqabaaakiaawIa7aKqbaoaaBaaaleaajugibiabfI6azjabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaleqaaKqzGeGaeyypa0tcfa4aaqGaaOqaaKqzGeGaamizaSWaaSbaaeaajug4aiaad2gacaWGPbaakeqaaKqzGeGaeuiQdKvcfa4aaSbaaSqaaKqzGeGaamyBaaWcbeaaaOGaayjcSdqcfa4aaSbaaSqaaKqzGeGaeuiQdKLaeyypa0Jaae4yaiaab+gacaqGUbGaae4CaiaabshaaSqabaqcLbsacqGHRaWkcaWGZbqcfa4aa0baaSqaaKqzGeGaamyAaiaadQgaaSqaaKqzGeGaeuiQdKfaaiaadsfajuaGdaWgaaWcbaqcLbsacaWGQbaakeqaaaaa@64F6@

the regulation characteristic an actuator has the form

Si|T=const=dmiΨm+sijΨTj|T=const MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaqcfa4aaqGaaOqaaKqzGeGaam4uaKqbaoaaBaaaleaajugibiaadMgaaSqabaaakiaawIa7aKqbaoaaBaaaleaajugibiaadsfacqGH9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiDaaWcbeaajugibiabg2da9iaadsgajuaGdaWgaaWcbaqcLboacaWGTbGaamyAaaGcbeaajugibiabfI6azLqbaoaaBaaaleaajugibiaad2gaaSqabaqcLbsacqGHRaWkjuaGdaabcaGcbaqcLbsacaWGZbqcfa4aa0baaSqaaKqzGdGaamyAaiaadQgaaSqaaKqzGeGaeuiQdKfaaiaadsfajuaGdaWgaaWcbaqcLbsacaWGQbaakeqaaaGaayjcSdqcfa4aaSbaaSqaaKqzGeGaamivaiabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaleqaaaaa@64CD@

The mechanical characteristic of an electromagnetoelastic actuator has the form

Δl=Δlmax(1F/Fmax) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiBaiabg2da9iabfs5aejaadYgalmaaBaaabaGaaeyBaiaabggacaqG4baabeaakmaabmaabaGaaGymaiabgkHiTmaalyaabaGaamOraaqaaiaadAeadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaaaaaakiaawIcacaGLPaaaaaa@4691@ ,

Δlmax=dmiΨml MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiBaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0JaamizaSWaaSbaaeaacaWGTbGaamyAaaqabaGccqqHOoqwdaWgaaWcbaGaamyBaaGcbeaacaWGSbaaaa@42FF@ ,      Fmax=dmiΨmS0/sijΨ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaaleaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0ZaaSGbaeaacaWGKbWcdaWgaaqaaiaad2gacaWGPbaabeaakiabfI6aznaaBaaaleaacaWGTbaakeqaaiaadofalmaaBaaabaGaaGimaaqabaaakeaacaWGZbWcdaqhaaqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaaaaa@46F1@

For the the transverse piezo actuator after transforms the maximum values of deformation and force have the form

Δhmax=d31E3h MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiAaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0JaamizaSWaaSbaaeaacaaIZaGaaGymaaqabaGccaWGfbWaaSbaaSqaaiaaiodaaOqabaGaamiAaaaa@4195@ ,    Fmax=d31E3S0/s11E MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaaleaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0ZaaSGbaeaacaWGKbWcdaWgaaqaaiaaiodacaaIXaaabeaakiaadweadaWgaaWcbaGaaG4maaGcbeaacaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaam4CaSWaa0baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaaaa@4463@

At d31 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaamizaSWaaSbaaeaacaaIZaGaaGymaaqabaaaaa@3883@  = 2∙10–10 m/V, E3 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraSWaaSbaaeaacaaIZaaabeaaaaa@37A9@  = 1∙105 V/m, h MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E3@  = 2.5∙10–2 m, S0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaSbaaeaacaaIWaaabeaaaaa@37B4@  = 1.5∙10–5 m2, s11E MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaSWaa0baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaa@395B@  = 15∙10–12 m2/N the maximum values of deformation and force for the transverse piezo actuator are found Δhmax MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiAaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaaaa@3B44@  = 500 nm and Fmax MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaaleaacaqGTbGaaeyyaiaabIhaaeqaaaaa@39BC@  = 20 N.

The regulation characteristic at elastic load of an electromagnetoelastic actuator for composite telescope and astrophysics equipment is obtained in the form

Δll=dmiΨmsijΨCeS0Δl MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqqHuoarcaWGSbaabaGaamiBaaaacqGH9aqpcaWGKbWcdaWgaaqaaiaad2gacaWGPbaabeaakiabfI6aznaaBaaaleaacaWGTbaakeqaaiabgkHiTmaalaaabaGaam4CaSWaa0baaeaacaWGPbGaamOAaaqaaiabfI6azbaakiaadoeadaWgaaWcbaGaamyzaaGcbeaaaeaacaWGtbWcdaWgaaqaaiaaicdaaeqaaaaakiabfs5aejaadYgaaaa@4BA9@ ,   F=CeΔl MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabg2da9iaadoeadaWgaaWcbaGaamyzaaqabaGccqqHuoarcaWGSbaaaa@3C06@

The equation of the deformation at elastic load of an electromagnetoelastic actuator for composite telescope and astrophysics equipment has the form

Δl=dmilΨm1+Ce/CijΨ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiBaiabg2da9maalaaabaGaamizaSWaaSbaaeaacaWGTbGaamyAaaqabaGccaWGSbGaeuiQdK1aaSbaaSqaaiaad2gaaOqabaaabaGaaGymaiabgUcaRmaalyaabaGaam4qamaaBaaaleaacaWGLbaabeaaaOqaaiaadoeadaqhaaWcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaaaaaaa@4806@

After transforms the equation of the deformation at elastic load for the transverse piezo actuator has the form

Δh=(d31h/δ)U1+Ce/C11E=k31UU MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiAaiabg2da9maalaaabaWaaeWaaeaacaWGKbWcdaWgaaqaaiaaiodacaaIXaaabeaakmaalyaabaGaamiAaaqaaiabes7aKbaaaiaawIcacaGLPaaacaWGvbaabaGaaGymaiabgUcaRmaalyaabaGaam4qamaaBaaaleaacaWGLbaabeaaaOqaaiaadoeadaqhaaWcbaGaaGymaiaaigdaaeaacaWGfbaaaaaaaaGccqGH9aqpcaWGRbWaa0baaSqaaiaaiodacaaIXaaabaGaamyvaaaakiaadwfaaaa@4D34@ ,   k31U=(d31h/δ)/(1+Ce/C11E) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDaaaleaacaaIZaGaaGymaaqaaiaadwfaaaGccqGH9aqpdaWcgaqaamaabmaabaGaamizaSWaaSbaaeaacaaIZaGaaGymaaqabaGcdaWcgaqaaiaadIgaaeaacqaH0oazaaaacaGLOaGaayzkaaaabaWaaeWaaeaacaaIXaGaey4kaSYaaSGbaeaacaWGdbWaaSbaaSqaaiaadwgaaeqaaaGcbaGaam4qamaaDaaaleaacaaIXaGaaGymaaqaaiaadweaaaaaaaGccaGLOaGaayzkaaaaaaaa@49B6@

where k31U MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaam4AamaaDaaaleaacaaIZaGaaGymaaqaaiaadwfaaaaaaa@3965@  is the transfer coefficient.

At d31 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaSbaaeaacaaIZaGaaGymaaqabaaaaa@3883@  = 2∙10–10 m/V, h/δ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacaWGObaabaGaeqiTdqgaaaaa@389E@  = 16, C11E MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaa0baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaa@392B@  = 2.8∙107 N/m, Ce MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaaSbaaeaacaWGLbaabeaaaaa@37D4@  = 0.4∙107 N/m, U MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D0@  = 150 V the transfer coefficient and the deformation of the transverse piezo actuator are obtained k31U MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDaaaleaacaaIZaGaaGymaaqaaiaadwfaaaaaaa@3965@  = 2.8 nm/V and Δh MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiAaaaa@3849@  = 420 nm. Theoretical and practical parameters of the piezo actuator are coincidences with an error of 10%.

The ordinary differential equation of the second order for an electromagnetoelastic actuator for composite telescope and astrophysics equipment has the form4–37

d2Ξ(x,p)/dx2γ2Ξ(x,p)=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaWaaSGbaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeuONdG1aaeWaaeaacaWG4bGaaiilaiaadchaaiaawIcacaGLPaaaaeaacaWGKbGaamiEamaaCaaaleqabaGaaGOmaaaaaaGccqGHsislcqaHZoWzdaahaaWcbeqaaiaaikdaaaGccqqHEoawdaqadaqaaiaadIhacaGGSaGaamiCaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@4B66@

γ=p/cΨ+α MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaeyypa0ZaaSGbaeaacaWGWbaabaGaam4yamaaCaaaleqabaGaeuiQdKfaaaaakiabgUcaRiabeg7aHbaa@3EDD@

where Ξ(x,p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaeWaaeaacaWG4bGaaiilaiaadchaaiaawIcacaGLPaaaaaa@3BA5@ , p MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36EB@ , γ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@379D@ , cΨ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCaaaleqabaGaeuiQdKfaaaaa@389A@ , α MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3795@  are the transform of Laplace for displacement, the operator of transform, the coefficient of wave propagation, the speed of sound and the coefficient of attenuation,

The decision of the ordinary differential equation of the second order for an electromagnetoelastic actuator has the form

Ξ(x,p)=Cexγ+Bexγ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeuONdG1aaeWaaeaacaWG4bGaaiilaiaadchaaiaawIcacaGLPaaacqGH9aqpcaWGdbGaamyzamaaCaaaleqabaGaeyOeI0IaamiEaiabeo7aNbaakiabgUcaRiaadkeacaWGLbWaaWbaaSqabeaacaWG4bGaeq4SdCgaaaaa@4789@

The coefficients C MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36BE@ , B MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaaaa@36BD@  have the form

C=(Ξ1elγΞ2)/[2sh(lγ)] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaam4qaiabg2da9maalyaabaWaaeWaaeaacqqHEoawdaWgaaWcbaGaaGymaaqabaGccaWGLbWaaWbaaSqabeaacaWGSbGaeq4SdCgaaOGaeyOeI0IaeuONdG1aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaabaWaamWaaeaacaaIYaGaae4CaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaaaaa@4BA4@

B=(Ξ2Ξ1elγ)/[2sh(lγ)] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaamOqaiabg2da9maalyaabaWaaeWaaeaacqqHEoawdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqqHEoawdaWgaaWcbaGaaGymaaqabaGccaWGLbWaaWbaaSqabeaacqGHsislcaWGSbGaeq4SdCgaaaGccaGLOaGaayzkaaaabaWaamWaaeaacaaIYaGaae4CaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaaaaa@4C90@

where Ξ1(p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaaaa@3AE9@ , Ξ2(p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaaaa@3AEA@  are the transforms Laplace of displacements for faces 1 and 2 for an actuator.

In dynamic the system of the equations for the transforms Laplace of forces on faces of an electromagnetoelastic actuator is received10–42

M1p2Ξ1(p)+F1(p)=S0Tj(0,p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaaIXaaabeaakiaadchadaahaaWcbeqaaiaaikdaaaGccqqHEoawdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaacqGHRaWkcaWGgbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaeyypa0Jaam4uamaaBaaaleaacaaIWaaabeaakiaayIW7caWGubWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaaIWaGaaiilaiaadchaaiaawIcacaGLPaaaaaa@4DF5@

M2p2Ξ2(p)F2(p)=S0Tj(l,p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaamytamaaBaaaleaacaaIYaaabeaakiaadchadaahaaWcbeqaaiaaikdaaaGccqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaacqGHsislcaWGgbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaeyypa0Jaam4uamaaBaaaleaacaaIWaaabeaakiaayIW7caaMi8UaamivamaaBaaaleaacaWGQbaabeaakmaabmaabaGaamiBaiaacYcacaWGWbaacaGLOaGaayzkaaaaaa@50B8@

where M1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaaIXaaabeaaaaa@37AF@ , M2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaaIYaaabeaaaaa@37B0@ , F1(p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaaleaacaaIXaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaa@3A30@ , F2(p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaaleaacaaIYaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaa@3A31@ , Tj(0,p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjcVlaadsfadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaaicdacaGGSaGaamiCaaGaayjkaiaawMcaaaaa@3D6D@ , Tj(l,p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGjcVlaadsfadaWgaaWcbaGaamOAaaqabaGcdaqadaqaaiaadYgacaGGSaGaamiCaaGaayjkaiaawMcaaaaa@3DA4@ , S0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaaleaacaaIWaaabeaakiaayIW7aaa@394F@  are the masses of the loads, the transforms Laplace of forces and stress on faces 1 and 2, the area of an actuator.

The system of the equations the transforms Laplace of stresses on faces of an actuator has the form

Tj(0,p)=1sijΨdΞ(0,p)dxdmisijΨΨm(p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGQbaabeaakmaabmaabaGaaGimaiaacYcacaWGWbaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaaleaacaWGPbGaamOAaaqaaiabfI6azbaaaaGcdaWcaaqaaiaadsgacqqHEoawdaqadaqaaiaaicdacaGGSaGaamiCaaGaayjkaiaawMcaaaqaaiaadsgacaWG4baaaiabgkHiTmaalaaabaGaamizamaaBaaaleaacaWGTbGaamyAaaqabaaakeaacaWGZbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaakiabfI6aznaaBaaaleaacaWGTbaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaa@585F@

Tj(l,p)=1sijΨdΞ(l,p)dxdmisijΨΨm(p) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGQbaabeaakmaabmaabaGaamiBaiaacYcacaWGWbaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaaleaacaWGPbGaamOAaaqaaiabfI6azbaaaaGcdaWcaaqaaiaadsgacqqHEoawdaqadaqaaiaadYgacaGGSaGaamiCaaGaayjkaiaawMcaaaqaaiaadsgacaWG4baaaiabgkHiTmaalaaabaGaamizamaaBaaaleaacaWGTbGaamyAaaqabaaakeaacaWGZbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaakiabfI6aznaaBaaaleaacaWGTbaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaa@58CD@

After transforms the system of the equations for the structural schema on Figure 1 and model of an electromagnetoelastic actuator for composite telescope and astrophysics equipment has the form

Ξ1(p)=(M1p2)1×{F1(p)+(1/χijΨ)×[dmiΨm(p)+[γ/sh(lγ)]×[Ξ2(p)ch(lγ)Ξ1(p)]]} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaamiCamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgEna0oaacmaaeaqabeaacqGHsislcaWGgbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaadaWcgaqaaiaaigdaaeaacqaHhpWydaqhaaWcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaaGccaGLOaGaayzkaaaabaGaey41aq7aamWaaqaabeqaaiaadsgadaWgaaWcbaGaamyBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaey4kaSYaamWaaeaadaWcgaqaaiabeo7aNbqaaiaabohacaqGObWaaeWaaeaacaWGSbGaeq4SdCgacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaqaaiabgEna0oaadmaabaGaeuONdG1aaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaeyOeI0Iaae4yaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIcacaGLPaaacqqHEoawdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaGaay5waiaaw2faaaaacaGL7bGaayzFaaaaaa@80B4@

Ξ2(p)=(M2p2)1×{F2(p)+(1/χijΨ)××[dmiΨm(p)+[γ/sh(lγ)]×[Ξ1(p)ch(lγ)Ξ2(p)]]} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeuONdG1aaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaOGaamiCamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgEna0oaacmaaeaqabeaacqGHsislcaWGgbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaadaWcgaqaaiaaigdaaeaacqaHhpWydaqhaaWcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaaGccaGLOaGaayzkaaGaey41aqlabaGaey41aq7aamWaaqaabeqaaiaadsgadaWgaaWcbaGaamyBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaey4kaSYaamWaaeaadaWcgaqaaiabeo7aNbqaaiaabohacaqGObWaaeWaaeaacaWGSbGaeq4SdCgacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaqaaiabgEna0oaadmaabaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaeyOeI0Iaae4yaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIcacaGLPaaacqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaGaay5waiaaw2faaaaacaGL7bGaayzFaaaaaa@82CE@

Figure 1 Structural schema of an electromagnetoelastic actuator for composite telescope and astrophysics equipment.

where χijΨ=sijΨ/S0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeq4Xdm2aa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaeyypa0ZaaSGbaeaacaWGZbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaGcbaGaam4uamaaBaaaleaacaaIWaaabeaaaaaaaa@42C5@ , dmi={d33,d31,d15d33,d31,d15 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaamizamaaBaaaleaacaWGTbGaamyAaaqabaGccqGH9aqpdaGabaqaauaabeqaceaaaeaacaWGKbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaacYcacaWGKbWaaSbaaSqaaiaaiodacaaIXaaabeaakiaacYcacaWGKbWaaSbaaSqaaiaaigdacaaI1aaabeaaaOqaaiaadsgadaWgaaWcbaGaaG4maiaaiodaaeqaaOGaaiilaiaadsgadaWgaaWcbaGaaG4maiaaigdaaeqaaOGaaiilaiaadsgadaWgaaWcbaGaaGymaiaaiwdaaeqaaaaaaOGaay5Eaaaaaa@4D74@ , Ψm={E3,E1H3,H1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1aaSbaaSqaaiaad2gaaeqaaOGaeyypa0ZaaiqaaeaafaqabeGabaaabaGaamyramaaBaaaleaacaaIZaaabeaakiaacYcacaWGfbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamisamaaBaaaleaacaaIZaaabeaakiaacYcacaWGibWaaSbaaSqaaiaaigdaaeqaaaaaaOGaay5Eaaaaaa@4330@ , sijΨ={s33E,s11E,s55Es33H,s11H,s55H MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDaaaleaacaWGPbGaamOAaaqaaiabfI6azbaakiabg2da9maaceaabaqbaeqabiqaaaqaaiaadohadaqhaaWcbaGaaG4maiaaiodaaeaacaWGfbaaaOGaaiilaiaadohadaqhaaWcbaGaaGymaiaaigdaaeaacaWGfbaaaOGaaiilaiaadohadaqhaaWcbaGaaGynaiaaiwdaaeaacaWGfbaaaaGcbaGaam4CamaaDaaaleaacaaIZaGaaG4maaqaaiaadIeaaaGccaGGSaGaam4CamaaDaaaleaacaaIXaGaaGymaaqaaiaadIeaaaGccaGGSaGaam4CamaaDaaaleaacaaI1aGaaGynaaqaaiaadIeaaaaaaaGccaGL7baaaaa@5439@ , γ={γEγH MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaeyypa0ZaaiqaaeaafaqabeGabaaabaGaeq4SdC2aaWbaaSqabeaacaWGfbaaaaGcbaGaeq4SdC2aaWbaaSqabeaacaWGibaaaaaaaOGaay5Eaaaaaa@3F1D@ , E and H are the intensity of electric field and the intensity of magnetic field in an actuator

The structural schema of an electromagnetoelastic actuator replaces Cady and Mason electrical equivalent circuits.5–10

The matrix equation of an electromagnetoelastic actuator with matrix transfer function has the form

(Ξ1(p)Ξ2(p))=(W11(p)W12(p)W13(p)W21(p)W22(p)W23(p))(Ψm(p)F1(p)F2(p)) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaWaaeWaaeaafaqabeGabaaabaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaabaGaeuONdG1aaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaaaaGaayjkaiaawMcaaiabg2da9maabmaabaqbaeqabiqaaaqaauaabeqabmaaaeaacaWGxbWaaSbaaSqaaiaaigdacaaIXaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaqaaiaadEfadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaabaGaam4vamaaBaaaleaacaaIXaGaaG4maaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaaaabaqbaeqabeWaaaqaaiaadEfadaWgaaWcbaGaaGOmaiaaigdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaabaGaam4vamaaBaaaleaacaaIYaGaaGOmaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaeaacaWGxbWaaSbaaSqaaiaaikdacaaIZaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaaaaaacaGLOaGaayzkaaGaaGjbVpaabmaabaqbaeqabmqaaaqaaiabfI6aznaaBaaaleaacaWGTbaakeqaamaabmaabaGaamiCaaGaayjkaiaawMcaaaqaaiaadAeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaeaacaWGgbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaaaaGaayjkaiaawMcaaaaa@7329@

From the matrix equation of an electromagnetoelastic actuator at the inertial load the steady–state deformations in the form ξ1() MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cdaWgaaqaaiaaigdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaaaaa@3BA4@ , ξ2() MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cdaWgaaqaaiaaikdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaaaaa@3BA5@  of an actuator have the form

ξ1(t)|t=ξ1()=dmiΨmlM2/(M1+M2) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaWaaqGaaeaacqaH+oaElmaaBaaabaGaaeymaaqabaGcdaqadaqaaiaadshaaSGaayjkaiaawMcaaaGccaGLiWoadaWgaaWcbaGaamiDaiabgkziUkabg6HiLcqabaGccqGH9aqpcqaH+oaElmaaBaaabaGaaGymaaqabaGcdaqadaqaaiabg6HiLcGaayjkaiaawMcaaiabg2da9iaadsgalmaaBaaabaGaamyBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaOqabaGaamiBaiaaykW7daWcgaqaaiaad2eadaWgaaWcbaGaaGOmaaqabaaakeaadaqadaqaaiaad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaaaa@5915@

ξ2(t)|t=ξ2()=dmiΨmlM1/(M1+M2) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaWaaqGaaeaacqaH+oaElmaaBaaabaGaaeOmaaqabaGcdaqadaqaaiaadshaaSGaayjkaiaawMcaaaGccaGLiWoadaWgaaWcbaGaamiDaiabgkziUkabg6HiLcqabaGccqGH9aqpcqaH+oaElmaaBaaabaGaaGOmaaqabaGcdaqadaqaaiabg6HiLcGaayjkaiaawMcaaiabg2da9iaadsgalmaaBaaabaGaamyBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaOqabaGaamiBaiaaykW7daWcgaqaaiaad2eadaWgaaWcbaGaaGymaaqabaaakeaadaqadaqaaiaad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaaaa@5916@

Therefore, after transforms the steady–state deformations of the transverse piezo actuator at the inertial load have the form

ξ1()=d31(h/δ)UM2/(M1+M2) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeqOVdG3cdaWgaaqaaiaaigdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaacqGH9aqpdaWcgaqaaiaadsgadaWgaaWcbaGaaG4maiaaigdaaeqaaOWaaeWaaeaadaWcgaqaaiaadIgaaeaacqaH0oazaaaacaGLOaGaayzkaaGaamyvaiaad2eadaWgaaWcbaGaaGOmaaqabaaakeaadaqadaqaaiaad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaaaa@4C18@

ξ2()=d31(h/δ)UM1/(M1+M2) MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeqOVdG3cdaWgaaqaaiaaikdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaacqGH9aqpdaWcgaqaaiaadsgadaWgaaWcbaGaaG4maiaaigdaaeqaaOWaaeWaaeaadaWcgaqaaiaadIgaaeaacqaH0oazaaaacaGLOaGaayzkaaGaamyvaiaad2eadaWgaaWcbaGaaGymaaqabaaakeaadaqadaqaaiaad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaaaa@4C18@

Therefore, at d31 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaSbaaeaacaaIZaGaaGymaaqabaaaaa@3883@  = 2∙10–10 m/V, h/δ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacaWGObaabaGaeqiTdqgaaaaa@389E@  = 20, U MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D0@  = 250 V, M1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaaIXaaabeaaaaa@37AF@  = 2 kg and M2 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaaleaacaaIYaaabeaaaaa@37B0@  = 8 kg the deformations of the transverse piezo actuator are received ξ1() MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeqOVdG3cdaWgaaqaaiaaigdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaaaaa@3BA4@  = 800 nm, ξ2() MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeqOVdG3cdaWgaaqaaiaaikdaaeqaaOWaaeWaaeaacqGHEisPaiaawIcacaGLPaaaaaa@3BA5@  = 200 nm, ξ1()+ξ2() MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGacaGaaiaabmqaamaabaabaaGcbaGaeqOVdG3aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacqGHDisTaiaawIcacaGLPaaacqGHRaWkcqaH+oaElmaaBaaabaGaaGOmaaqabaGcdaqadaqaaiabg2Hi1cGaayjkaiaawMcaaaaa@4253@  = 1000 nm.

Conclusion

In the article the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment is obtained. The structural schema of an electromagnetoelastic actuator is shown. In the visibility of energy conversion the structural schema of an electromagnetoelastic actuator has a difference from Cady and Mason electrical equivalent circuits of a piezo vibrator. From the equation electromagnetoelasticity and the ordinary differential equation of the second order the structural schema of an electromagnetoelastic actuator is received. The matrix equation and the matrix transfer function of an electromagnetoelastic actuator for composite telescope and astrophysics equipment are found.

Acknowledgments

None.

Conflicts of interest

Author declares there is no conflict of interest.

References

  1. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth–Heinemann Publisher. Oxford. 2017: 382.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;74(3):943–948.
  3. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston: Kluwer Academic Publisher. 1997:347.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York: McGraw–Hill Book Company, London. 1946:806.
  8. Mason W. Principles and Methods, Methods and Devices. 1st edn physical Acoustics. Academic Press. New York. 1964:515.
  9. Zwillinger D. Handbook of Differential Equations. Boston: Academic Press. 1989:673.
  10. Afonin SM. A generalized structural–parametric model of an elecromagnetoelastic converter for nano– and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano– and micrometric movement control systems. Journal of Computer and Systems Sciences International. 2006;45(2):317–325.
  11. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano– and microdisplacement for communications systems. International Journal of Information and Communication Science  .2016;1(2):22–29.
  12. Afonin SM. Structural–parametric model and transfer functions of electroelastic actuator for nano– and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Nova Science. New York. 2015;225–242.
  13. Afonin SM. A structural–parametric model of electroelastic actuator for nano– and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Nova Science. New York. 2017;19:259–284.
  14. Afonin SM. Electromagnetoelastic nano and microactuators for mechatronic systems. Russian Engineering Research. 2018;38(12):938–944.
  15. Afonin SM. Nano– and micro–scale piezomotors. Russian Engineering Research. 2012;32(7–8):519–522.
  16. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers, Mechanics of Solids. 2007;42(1):43–49.
  17. Afonin SM. Stability of strain control systems of nano–and microdisplacement piezotransducers. Mechanics of Solids. 2014;49(2):196–207.
  18. Afonin SM. Structural–parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics.2017;5(1):9–15.
  19. Afonin SM. Structural–parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2):50–57.
  20. Afonin SM. Structural–parametric model of piezoactuator nano– and microdisplacement for nanoscience. AASCIT Journal of Nanoscience. 2017;3(3):12–18.
  21. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano– and micro displacement. International Journal of Mathematical Analysis and Applications. 2016;3(4):31–38.
  22. Afonin SM. Structural–parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1–9.
  23. Afonin SM. Structural–parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):1–14.
  24. Afonin SM. Structural–parametric models and transfer functions of electromagnetoelastic actuators nano– and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics. 2016;2(2):52–59.
  25. Afonin SM. Structural–parametric model of electro elastic actuator for nanotechnology and biotechnology. Journal of Pharmacy and Pharmaceutics. 2018;5(1):8–12.
  26. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mechanics of Solids. 2010;45(1):123–132.
  27. Afonin SM. Electromagnetoelastic Actuator for Nanomechanics. Global Journal of Research in Engineering: A Mechanical and Mechanics Engineering. 2018;18(2):19–23.
  28. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus. 2018;1698–1701.
  29. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communications. 2018;6(3):1–9.
  30. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Transactions on Nnetworks and Communications. 2019;7(3):11–21.
  31. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transactions on Networks and Communications. 2020;8(1):8–15.
  32. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transactions on Machine Learning and Artificial Intelligence. 2020;8(4):23–33.
  33. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation. 2020;3(4):1–7.
  34. Afonin SM. Structural scheme actuator for nano research. COJ Reviews and Research. 2020;2(5):1–3.
  35. Afonin SM. Structural–parametric model electroelastic actuator nano– and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Eco Environ Sci. 2018;3(5):306‒309.
  36. Afonin SM. Structural–parametric model actuator of adaptive optics for composite telescope and astrophysics equipment. Phys Astron Int J. 2020;4(1):18‒21.
  37. Afonin SM. An actuator nano and micro displacements for composite telescope in astronomy and physics research. Phys Astron Int J. 2020;4(4):165‒167.
  38. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surgery & Case Studies Open Access Journal. 2019;3(3):307–309.
  39. Afonin SM. Multilayer engine for microsurgery and nano biomedicine. Surgery & Case Studies Open Access journal. 2020;4(4):423–425.
  40. Afonin SM. Condition absolute stability of control system electro magnetoelastic actuator nano displacement for nano research in sciences. Novel Research in Sciences. 2020;5(1):1–4.
  41. Afonin SM.  Absolute stability of control system with electro magneto elastic actuator for nanobiomedicine. Biomedical Journal of Scientific and Technical Research. 2019;21(4):16027–16030.
  42. Afonin SM.  Multilayer actuator for nano biomedicine. Biomedical Journal of Scientific and Technical Research. 2019;22(4):16885–16887.
  43. Afonin SM. Precision engine for nanobiomedical research. Biomedical Research and Clinical Reviews. 2021;3(4):1–5.
  44. Nalwa HS. Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: American Scientific Publishers. 2004.
Creative Commons Attribution License

©2021 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.