Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 4 Issue 3

Calculation for the secular variation of the orbit of massive binary stars by the method of average values

Lin-Sen Li

School of physics, Northeast Normal University, China

Correspondence: Lin-Sen Li, School of physics, Northeast Normal University, Changchun, 130024, China

Received: October 30, 2019 | Published: June 11, 2020

Citation: Li LS. Calculation for the secular variation of the orbit of massive binary stars by the method of average values. Phys Astron Int J. 2020;4(3):113-118. DOI: 10.15406/paij.2020.04.00208

Download PDF

Abstract

In this paper, the influence of the gravitational radiation damping on the evolution of the orbital elements of massive binary system is examined. The solutions are obtained by using the method of average values upon Gaussian perturbation equations. The theoretical results show that semi-major axis and eccentricity exhibit secular variation, but another orbital elements do not exhibit secular variation. The influence of the secular variation of the orbit would leads to collapse the system of binary stars. The theoretical results are applied to the calculation for the secular variation of the orbital elements of some known massive binary systems We concluded in this work that the gravitational radiation damping may results in that the orbital semi major axis of binary stars shrinks with time and the eccentricity decrease with time.

Keywords: gravitational radiation damping, massive binary systems, Gaussian perturbation equations, secular variation, orbital elements, eccentricity

Introduction

It is well known that the gravitational wave comes mainly from binary system.1,2 Therefore, some binary systems are the best objects for testing the theory of the gravitational radiation.3 However, all binary systems are not suitable for the test. There are two possibilities for this test. One is two components with near separation: another one is two components with large mass. The former must be explored in the compact binary system. The latter is explored in the massive binary system. Lincoln et al.4 research evolution and gravitational radiation of binary systems of compact objects to (post)5/2. Newtonian order. Li5 studied reaction effect of gravitational radiation of central body upon the variation of celestial orbital plane, but he do not studied the effect of gravitational radiation upon the orbital elements of celestial body. Li6 examined the gravitational radiation damping and evolution of the orbit of the compact binary stars by solution of the first perturbation method. Li7 studied influence of the gravitational radiation damping on the time of periastron passage of binary stars. Li8 also studied the gravitation radiation damping and the evolution of the orbit of compact binary stars by the solution of the second perturbation method. Li9 studied the secular effect of gravitational radiation damping on the periastron advance of binary stars in second order perturbation theory. However these methods are some trouble and expanding expression of the disturbing function is very long. If we only find the secular variation of the orbit, we may use the method of average to separate out the secular variable terms of the orbit and do not consider the periodic variable terms. Because it is important that find the secular variable term of orbit. This is advantage for the method of average. Because this paper only finds the secular variable terms of the orbital elements, so that this paper uses the method of average values to study the secular influence of gravitational radiation damping on the evolution of the orbit of massive binary stars.

Solution by the method of average values upon Gaussian perturbation equations

The formula for the relative acceleration with Post, Post-Post and Post5/2 was given by Lincoln et al.4

a =(m/ r 2 )[(1+A) n +B V ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadggagaWcai abg2da9iaacIcacaWGTbGaai4laiaadkhadaahaaWcbeqaaiaaikda aaGccaGGPaGaai4waiaacIcacqGHsislcaaIXaGaey4kaSIaamyqai aacMcaceWGUbGbaSaacqGHRaWkcaWGcbGabmOvayaalaGaaiyxaaaa @47FB@ . (1)

For the gravitational emission, we take

a 5/2 =(m/ r 2 )[(1+ A 5/2 ) n ¯ + B 5/2 V ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadggagaWcam aaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaeyypa0Jaaiikaiaa d2gacaGGVaGaamOCamaaCaaaleqabaGaaGOmaaaakiaacMcacaGGBb GaaiikaiabgkHiTiaaigdacqGHRaWkcaWGbbWaaSbaaSqaaiaaiwda caGGVaGaaGOmaaqabaGccaGGPaGabmOBayaaraGaey4kaSIaamOqam aaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGabmOvayaalaGaaiyx aaaa@4F2D@  . (2)

Here m and r denote mass and separation of two binary stars respectively; n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad6gagaWcaa aa@3816@  and V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadAfagaWcaa aa@37FE@ denote the unit vector of a radial direction and the vector of the relative velocity respectively. In the formula (2) the Newtonian term is – (m/ r 2 ) n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGTb Gaai4laiaadkhadaahaaWcbeqaaiaaikdaaaGccaGGPaGabmOBayaa laaaaa@3CFE@ and the Post-Newtonain term (Post)5/2 is (m/ r 2 )( A 5/2 n + B 5/2 V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGTb Gaai4laiaadkhadaahaaWcbeqaaiaaikdaaaGccaGGPaGaaiikaiaa dgeadaWgaaWcbaGaaGynaiaac+cacaaIYaaabeaakiqad6gagaWcai abgUcaRiaadkeadaWgaaWcbaGaaGynaiaac+cacaaIYaaabeaakiqa dAfagaWcaiaacMcaaaa@467B@

In the previous paper Li resolved the perturbation acceleration a ¯ 5/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadggagaqeam aaBaaaleaacaaI1aGaai4laiaaikdaaeqaaaaa@3A69@  into a radial component R5/2 and a transverse component S5/2 perpendicular to R5/2, and a component W5/2 normal to the orbital plane induced by gravitational radiation damping on the orbit of binary stars as follows Li9

R 5/2 = 8 15 η ( m r ) 3 ( m p ) 1 2 p 1 esinf(14+6 e 2 +20ecosf) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaaGynaiaac+cacaaIYaaabeaakiabg2da9maalaaabaGaaGio aaqaaiaaigdacaaI1aaaaiabeE7aOjaacIcadaWcaaqaaiaad2gaae aacaWGYbaaaiaacMcadaahaaWcbeqaaiaaiodaaaGccaGGOaWaaSaa aeaacaWGTbaabaGaamiCaaaacaGGPaWaaWbaaSqabeaadaWcaaqaai aaigdaaeaacaaIYaaaaaaakiaadchadaahaaWcbeqaaiabgkHiTiaa igdaaaGccaWGLbGaci4CaiaacMgacaGGUbGaamOzaiaacIcacaaIXa GaaGinaiabgUcaRiaaiAdacaWGLbWaaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaGOmaiaaicdacaWGLbGaci4yaiaac+gacaGGZbGaamOzai aacMcaaaa@5D70@ , (3)

S 5/2 = 8 15 η m 3 r 4 ( m p ) 1 2 (12+3 e 2 +15ecosf) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaaGynaiaac+cacaaIYaaabeaakiabg2da9iabgkHiTmaalaaa baGaaGioaaqaaiaaigdacaaI1aaaaiabeE7aOnaalaaabaGaamyBam aaCaaaleqabaGaaG4maaaaaOqaaiaadkhadaahaaWcbeqaaiaaisda aaaaaOGaaiikamaalaaabaGaamyBaaqaaiaadchaaaGaaiykamaaCa aaleqabaWaaSaaaeaacaaIXaaabaGaaGOmaaaaaaGccaGGOaGaaGym aiaaikdacqGHRaWkcaaIZaGaamyzamaaCaaaleqabaGaaGOmaaaaki abgUcaRiaaigdacaaI1aGaamyzaiGacogacaGGVbGaai4CaiaadAga caGGPaaaaa@5678@ , (4)

W 5,2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabEfadaWgaa WcbaGaaGynaiaacYcacaaIYaaabeaakiabg2da9iaabccacaaIWaaa aa@3CAF@ . (5)

Here m= m 1 + m 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqGH9a qpcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyBamaaBaaa leaacaaIYaaabeaakiaacYcaaaa@3E62@   η= μ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9maaliaabaGaeqiVd0gabaGaamyBaaaaaaa@3C7D@ , μ= m 1 m 2 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2 da9maalaaabaGaamyBamaaBaaaleaacaaIXaaabeaakiaad2gadaWg aaWcbaGaaGOmaaqabaaakeaacaWGTbaaaaaa@3E96@ , (G =c=1), f  denotes the true anomaly. p=a(1 e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacqGH9a qpcaWGHbGaaiikaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacaaI YaaaaOGaaiykaaaa@3ED0@ ,   a and e denote semi-major axis and eccentricity respectively. Because this paper only researches the secular effect upon the evolution of the orbit, we use the average method. According to the definition of the average values, the average formula for the variable rate of the arbitrary orbital elements σ ˙ =F(a,e,.......) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeo8aZzaaca Gaeyypa0JaamOraiaacIcacaWGHbGaaiilaiaadwgacaGGSaGaaiOl aiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaacMcaaaa@4415@  can be written as

σ ˙ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGafq 4WdmNbaiaaaaaaaa@38EE@  = 1 T 0 T F(a,e......)dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaadsfaaaWaa8qCaeaacaWGgbGaaiikaiaadggacaGGSaGa amyzaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaacMcaca WGKbGaamiDaaWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipaaaa@4763@

Here T is orbital period. The mean motion n= 2π T , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpdaWcaaqaaiaaikdacqaHapaCaeaacaWGubaaaiaacYcaaaa@3D1C@   dt= dM n . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWG0b Gaeyypa0ZaaSaaaeaacaWGKbGaamytaaqaaiaad6gaaaGaaiOlaaaa @3D69@   M is the mean anomaly. The above average formula can be written as

σ ˙ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGafq 4WdmNbaiaaaaaaaa@38EE@  = 1 2π 0 2π F(a,e,,,,,,)dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdacqaHapaCaaWaa8qCaeaacaWGgbGaaiikaiaadgga caGGSaGaamyzaiaacYcacaGGSaGaaiilaiaacYcacaGGSaGaaiilai aacMcacaWGKbGaamytaaWcbaGaaGimaaqaaiaaikdacqaHapaCa0Ga ey4kIipaaaa@4A70@

Gaussian equations can be written by average upon the mean anomaly dM (Gaussian equations cite the symbol used by Lincoln et al.4 

a ˙ ¯ = 1 2π 0 2π 2 a 2 (mp) 1/2 [ e R 5/2 sinf+(p/r) S 5/2 ]dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGabm yyayaacaaaaiabg2da9maalaaabaGaaGymaaqaaiaaikdacqaHapaC aaWaa8qmaeaadaWcaaqaaiaaikdacaWGHbWaaWbaaSqabeaacaaIYa aaaaGcbaGaaiikaiaad2gacaWGWbGaaiykamaaCaaaleqabaGaaGym aiaac+cacaaIYaaaaaaaaeaacaaIWaaabaGaaGOmaiabec8aWbqdcq GHRiI8aOWaamWaaeaacaWGLbGaamOuamaaBaaaleaacaaI1aGaai4l aiaaikdaaeqaaOGaci4CaiaacMgacaGGUbGaamOzaiabgUcaRiaacI cacaWGWbGaai4laiaadkhacaGGPaGaam4uamaaBaaaleaacaaI1aGa ai4laiaaikdaaeqaaaGccaGLBbGaayzxaaGaamizaiaad2eaaaa@5D9D@

= 2 a 2 (mp) 1/2 [ e R 5/2 sinf ¯ + p r S 5/2 ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaGGOaGaamyBaiaa dchacaGGPaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaaaaOWaam WaaeaacaWGLbWaa0aaaeaacaWGsbWaaSbaaSqaaiaaiwdacaGGVaGa aGOmaaqabaGcciGGZbGaaiyAaiaac6gacaWGMbaaaiabgUcaRmaana aabaWaaSaaaeaacaWGWbaabaGaamOCaaaacaWGtbWaaSbaaSqaaiaa iwdacaGGVaGaaGOmaaqabaaaaaGccaGLBbGaayzxaaaaaa@4F6D@ , (6)

e ˙ ¯ = 1 2π 0 2π (p/m) 1/2 { R 5/2 sinf+[e( r p )+(1+ r p )cosf] S 5/2 }dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGabm yzayaacaaaaiabg2da9maalaaabaGaaGymaaqaaiaaikdacqaHapaC aaWaa8qmaeaacaGGOaGaamiCaiaac+cacaWGTbGaaiykamaaCaaale qabaGaaGymaiaac+cacaaIYaaaaaqaaiaaicdaaeaacaaIYaGaeqiW dahaniabgUIiYdGcdaGadaqaaiabgkHiTiaadkfadaWgaaWcbaGaaG ynaiaac+cacaaIYaaabeaakiGacohacaGGPbGaaiOBaiaadAgacqGH RaWkcaGGBbGaamyzaiaacIcadaWcaaqaaiaadkhaaeaacaWGWbaaai aacMcacqGHRaWkcaGGOaGaaGymaiabgUcaRmaalaaabaGaamOCaaqa aiaadchaaaGaaiykaiGacogacaGGVbGaai4CaiaadAgacaGGDbGaam 4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaaGccaGL7bGaayzF aaGaamizaiaad2eaaaa@678A@

= (p/m) 1/2 [ R 5/2 sinf ¯ + e(r/p) ¯ S 5/2 + cosf ¯ S 5/2 + r p cosf ¯ S 5/2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaacI cacaWGWbGaai4laiaad2gacaGGPaWaaWbaaSqabeaacaaIXaGaai4l aiaaikdaaaGccaGGBbWaa0aaaeaacqGHsislcaWGsbWaaSbaaSqaai aaiwdacaGGVaGaaGOmaaqabaGcciGGZbGaaiyAaiaac6gacaWGMbaa aiabgUcaRmaanaaabaGaamyzaiaacIcacaWGYbGaai4laiaadchaca GGPaaaaiaadofadaWgaaWcbaGaaGynaiaac+cacaaIYaaabeaakmaa CaaaleqabaaaaOGaey4kaSYaa0aaaeaaciGGJbGaai4Baiaacohaca WGMbaaaiaadofadaWgaaWcbaGaaGynaiaac+cacaaIYaaabeaakiab gUcaRmaanaaabaWaaSaaaeaacaWGYbaabaGaamiCaaaaciGGJbGaai 4BaiaacohacaWGMbaaaiaadofadaWgaaWcbaGaaGynaiaac+cacaaI Yaaabeaakiaac2faaaa@6345@  , (7)

e ω ˙ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGafq yYdCNbaiaaaaaaaa@38F8@ = 1 2π 0 2π ( p m ) 1/2 [ R 5/2 cosf+(1+ r p )sinf S 5/2 ]dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdacqaHapaCaaWaa8qmaeaacaGGOaWaaSaaaeaacaWG WbaabaGaamyBaaaacaGGPaaaleaacaaIWaaabaGaaGOmaiabec8aWb qdcqGHRiI8aOWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaGccaGG BbGaeyOeI0IaamOuamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaO Gaci4yaiaac+gacaGGZbGaamOzaiabgUcaRiaacIcacaaIXaGaey4k aSYaaSaaaeaacaWGYbaabaGaamiCaaaacaGGPaGaci4CaiaacMgaca GGUbGaamOzaiabgwSixlaadofadaWgaaWcbaGaaGynaiaac+cacaaI Yaaabeaakiaac2facaWGKbGaamytaaaa@5FEA@

= (p/m) 1/2 [ R 5/2 cosf ¯ + S 5/2 sinf ¯ + r p sinf ¯ S 5/2 e ( r p )cotisinf W 5/2 ¯ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaacI cacaWGWbGaai4laiaad2gacaGGPaWaaWbaaSqabeaacaaIXaGaai4l aiaaikdaaaGccaGGBbGaeyOeI0Yaa0aaaeaacaWGsbWaaSbaaSqaai aaiwdacaGGVaGaaGOmaaqabaGcciGGJbGaai4BaiaacohacaWGMbaa aiabgUcaRmaanaaabaGaam4uamaaBaaaleaacaaI1aGaai4laiaaik daaeqaaOGaci4CaiaacMgacaGGUbGaamOzaaaacqGHRaWkdaqdaaqa amaalaaabaGaamOCaaqaaiaadchaaaGaci4CaiaacMgacaGGUbGaam OzaaaacaWGtbWaaSbaaSqaaiaaiwdacaGGVaGaaGOmaaqabaGccqGH sislcaWGLbWaa0aaaeaacaGGOaWaaSaaaeaacaWGYbaabaGaamiCaa aacaGGPaGaci4yaiaac+gacaGG0bGaamyAaiGacohacaGGPbGaaiOB aiaadAgacaWGxbWaaSbaaSqaaiaaiwdacaGGVaGaaGOmaaqabaaaaO Gaaiyxaaaa@6A04@  , (8)

i ˙ ¯ = 1 2 0 2π rcosf (mp) 1/2 W 5/2 dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGabm yAayaacaaaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaWaa8qC aeaadaWcaaqaaiaadkhaciGGJbGaai4BaiaacohacaWGMbaabaGaai ikaiaad2gacaWGWbGaaiykamaaCaaaleqabaGaaGymaiaac+cacaaI YaaaaaaaaeaacaaIWaWaaSaaaeaaaeaaaaaabaGaaGOmaiabec8aWb qdcqGHRiI8aOGaam4vamaaBaaaleaacaaI1aGaai4laiaaikdaaeqa aOGaamizaiaad2eaaaa@4FA8@ , (9)

. Ω ˙ ¯ = 1 2π 0 2π rsinf (mp) 1/2 sini W 5/2 dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGafu yQdCLbaiaaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaiabec8a WbaadaWdXaqaamaalaaabaGaamOCaiGacohacaGGPbGaaiOBaiaadA gaaeaacaGGOaGaamyBaiaadchacaGGPaWaaWbaaSqabeaacaaIXaGa ai4laiaaikdaaaGcciGGZbGaaiyAaiaac6gacaWGPbaaaaWcbaGaaG imaaqaaiaaikdacqaHapaCa0Gaey4kIipakiaadEfadaWgaaWcbaGa aGynaiaac+cacaaIYaaabeaakiaadsgacaWGnbaaaa@5595@ , (10)

The longitude of periastron ω ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeM8a3zaara aaaa@38F3@  in terms of the argument of periastron ω ¯ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeM8a3zaara Gaaiilaaaa@39A3@  can be written as

ϖ ˙ ¯ = ω ˙ ¯ + Ω ˙ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGafq O1dyNbaiaaaaGaeyypa0Zaa0aaaeaacuaHjpWDgaGaaaaacqGHRaWk daqdaaqaaiqbfM6axzaacaaaaaaa@3E7B@ . (11)

The equation of mean longitude of periastron at epoch ε o MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWGVbaabeaaaaa@39D8@  and the mean longitude λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSbaa@38C5@  are10

ε ˙ o ¯ = 2 R 5/2 r ¯ n a 2 + e 2 1+ (1 e 2 ) 1/2 ω ˙ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGafq yTduMbaiaadaWgaaWcbaGaam4BaaqabaaaaOGaeyypa0JaeyOeI0Ya aSaaaeaacaaIYaWaa0aaaeaacaWGsbWaaSbaaSqaaiaaiwdacaGGVa GaaGOmaaqabaGccaWGYbaaaaqaaiaad6gacaWGHbWaaWbaaSqabeaa caaIYaaaaaaakiabgUcaRmaalaaabaGaamyzamaaCaaaleqabaGaaG OmaaaaaOqaaiaaigdacqGHRaWkcaGGOaGaaGymaiabgkHiTiaadwga daahaaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacaaIXaGaai 4laiaaikdaaaaaaOWaa0aaaeaacuaHjpWDgaGaaaaaaaa@515C@  , (12)

λ ˙ ¯ =n+ ε ˙ 0 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGafq 4UdWMbaiaaaaGaeyypa0JaamOBaiabgUcaRmaanaaabaGafqyTduMb aiaadaWgaaWcbaGaaGimaaqabaaaaaaa@3E61@ . (13) Next, we take the average values of each term in the Gaussian equation according to the formulae of the average values of some functions given by Liu11

( a r ) p sinqf, ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa amiCaaaakiGacohacaGGPbGaaiOBaiaadghacaWGMbGaaiilaaaaaa a@40FD@ : ( a r ) p cosqf, ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa amiCaaaakiGacogacaGGVbGaai4CaiaadghacaWGMbGaaiilaaaaaa a@40F8@  ( p, q = 1, 2, 3).

The average values used in this paper are list in Appendix.: A(a), A(b), A(c), A(d), A(e), A(f), Ag), A(h), A(i), A(j), A(k).

Appendix

Same orbital average results are chose from the Table given by Liu (1992) which are cited in this paper.

( a r ¯ ) 3 = (1 e 2 ) 3/2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaaaaiaacMcadaahaaWcbeqa aiaaiodaaaGccqGH9aqpcaGGOaGaaGymaiabgkHiTiaadwgadaahaa WcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacqGHsislcaaIZaGa ai4laiaaikdaaaGccaGGSaaaaa@4540@ A(a),  ( a r ) 3 cosf ¯ = 1 2 e (1 e 2 ) 3/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aG4maaaakiGacogacaGGVbGaai4CaiaadAgaaaGaeyypa0ZaaSaaae aacaaIXaaabaGaaGOmaaaacaWGLbGaaiikaiaaigdacqGHsislcaWG LbWaaWbaaSqabeaacaaIYaaaaOGaaiykamaaCaaaleqabaGaeyOeI0 IaaG4maiaac+cacaaIYaaaaaaa@4AB5@ A(b)

( a r ) 3 cos2f ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aG4maaaakiGacogacaGGVbGaai4CaiaaikdacaWGMbaaaaaa@3FD6@ A(c)   ( a r ) 3 cos3f ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcadaqdaa qaamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aG4maaaakiGacogacaGGVbGaai4CaiaaiodacaWGMbaaaiabg2da9i aaicdaaaa@4197@ A(d) cA(e)

( a r ) 4 cosf ¯ =e (1 e 2 ) 5/2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aGinaaaakiGacogacaGGVbGaai4CaiaadAgaaaGaeyypa0Jaamyzai aacIcacaaIXaGaeyOeI0IaamyzamaaCaaaleqabaGaaGOmaaaakiaa cMcadaahaaWcbeqaaiabgkHiTiaaiwdacaGGVaGaaGOmaaaakiaacY caaaa@49EB@ A(f)   ( a r ) 4 cos2f ¯ = 1 4 e 2 (1 e 2 ) 5/2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aGinaaaakiGacogacaGGVbGaai4CaiaaikdacaWGMbaaaiabg2da9m aalaaabaGaaGymaaqaaiaaisdaaaGaamyzamaaCaaaleqabaGaaGOm aaaakiaacIcacaaIXaGaeyOeI0IaamyzamaaCaaaleqabaGaaGOmaa aakiaacMcadaahaaWcbeqaaiabgkHiTiaaiwdacaGGVaGaaGOmaaaa kiaacYcaaaa@4D23@ A(g)

( a r ¯ ) 5 =(1+ 3 2 e 2 ) (1 e 2 ) 7/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaaaaiaacMcadaahaaWcbeqa aiaaiwdaaaGccqGH9aqpcaGGOaGaaGymaiabgUcaRmaalaaabaGaaG 4maaqaaiaaikdaaaGaamyzamaaCaaaleqabaGaaGOmaaaakiaacMca caGGOaGaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiaaikdaaaGcca GGPaWaaWbaaSqabeaacqGHsislcaaI3aGaai4laiaaikdaaaaaaa@4AE8@   A(h)

( a r ) 5 cosf= 3 2 ¯ e(1+ 1 4 e 2 ) (1 e 2 ) 7/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aGynaaaakiGacogacaGGVbGaai4CaiaadAgacqGH9aqpdaWcaaqaai aaiodaaeaacaaIYaaaaaaacaWGLbGaaiikaiaaigdacqGHRaWkdaWc aaqaaiaaigdaaeaacaaI0aaaaiaadwgadaahaaWcbeqaaiaaikdaaa GccaGGPaGaaiikaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacaaI YaaaaOGaaiykamaaCaaaleqabaGaeyOeI0IaaG4naiaac+cacaaIYa aaaaaa@5119@   A(i)

( a r )sinf ¯ = ( a r ) 2 sinf ¯ = ( a r ) 3 sinf ¯ = ( a r ) 4 sinf=0 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykaiGacohacaGGPbGa aiOBaiaadAgaaaGaeyypa0Zaa0aaaeaacaGGOaWaaSaaaeaacaWGHb aabaGaamOCaaaacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaci4Caiaa cMgacaGGUbGaamOzaaaacqGH9aqpdaqdaaqaaiaacIcadaWcaaqaai aadggaaeaacaWGYbaaaiaacMcadaahaaWcbeqaaiaaiodaaaGcciGG ZbGaaiyAaiaac6gacaWGMbaaaiabg2da9maanaaabaGaaiikamaala aabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGaaGinaaaa kiGacohacaGGPbGaaiOBaiaadAgacqGH9aqpcaaIWaaaaaaa@5B27@   A(j)

( a r ) 2 sin2f= ( a r ) 3 sin2f ¯ = ( a r ) 3 sin3f ¯ == ( a r ) 4 sin2f=0. ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcadaWcaa qaaiaadggaaeaacaWGYbaaaiaacMcadaahaaWcbeqaaiaaikdaaaGc ciGGZbGaaiyAaiaac6gacaaIYaGaamOzaiabg2da9maanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aG4maaaakiGacohacaGGPbGaaiOBaiaaikdacaWGMbaaaiabg2da9m aanaaabaGaaiikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaa CaaaleqabaGaaG4maaaakiGacohacaGGPbGaaiOBaiaaiodacaWGMb aaaiabg2da9iabg2da9maanaaabaGaaiikamaalaaabaGaamyyaaqa aiaadkhaaaGaaiykamaaCaaaleqabaGaaGinaaaakiGacohacaGGPb GaaiOBaiaaikdacaWGMbGaeyypa0JaaGimaiaac6caaaaaaa@60B3@   A(k)

Using the following average terms with R 5/2 given by the formula (3), we yield

R 5/2 sinf ¯ = 1 2π 0 2π 8 15 η( m r ) 3 ( m p ) 1/2 p 1 e sin 2 f(14+6 e 2 +20ecosf)dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiablwJirnaana aabaGaamOuamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4C aiaacMgacaGGUbGaamOzaaaacqGH9aqpdaWcaaqaaiaaigdaaeaaca aIYaGaeqiWdahaamaapedabaWaaSaaaeaacaaI4aaabaGaaGymaiaa iwdaaaGaeq4TdGMaaiikamaalaaabaGaamyBaaqaaiaadkhaaaGaai ykaaWcbaGaaGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakmaaCaaa leqabaGaaG4maaaakiaacIcadaWcaaqaaiaad2gaaeaacaWGWbaaai aacMcadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaakiaadchadaah aaWcbeqaaiabgkHiTiaaigdaaaGccaWGLbGaci4CaiaacMgacaGGUb WaaWbaaSqabeaacaaIYaaaaOGaamOzaiaacIcacaaIXaGaaGinaiab gUcaRiaaiAdacaWGLbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG OmaiaaicdacaWGLbGaci4yaiaac+gacaGGZbGaamOzaiaacMcacaWG KbGaamytaaaa@6E78@ ,

R 5/2 sinf ¯ = 8 15 η ( m a ) 3 ( m p ) 1/2 p 1 ( a r ) 3 ¯ [(7e+3 e 3 )+ 15 2 e 2 cosf(7e+3 e 3 )cos2f 5 2 e 2 cos3f] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam OuamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4CaiaacMga caGGUbGaamOzaaaacqGH9aqpdaWcaaqaaiaaiIdaaeaacaaIXaGaaG ynaaaacqaH3oaAcaGGOaWaaSaaaeaacaWGTbaabaGaamyyaaaacaGG PaWaaWbaaSqabeaacaaIZaaaaOGaaiikamaalaaabaGaamyBaaqaai aadchaaaGaaiykamaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaOGa amiCamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaanaaabaGaaiikam aalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGaaG4m aaaaaaGccaGGBbGaaiikaiaaiEdacaWGLbGaey4kaSIaaG4maiaadw gadaahaaWcbeqaaiaaiodaaaGccaGGPaGaey4kaSYaaSaaaeaacaaI XaGaaGynaaqaaiaaikdaaaGaamyzamaaCaaaleqabaGaaGOmaaaaki GacogacaGGVbGaai4CaiaadAgacqGHsislcaGGOaGaaG4naiaadwga cqGHRaWkcaaIZaGaamyzamaaCaaaleqabaGaaG4maaaakiaacMcaci GGJbGaai4BaiaacohacaaIYaGaamOzaiabgkHiTmaalaaabaGaaGyn aaqaaiaaikdaaaGaamyzamaaCaaaleqabaGaaGOmaaaakiGacogaca GGVbGaai4CaiaaiodacaWGMbGaaiyxaaaa@79DF@  Substitution of the following A(a), A(b), A(c) and A(d) into the above expression

( a r ) 3 ¯ = (1 e 2 ) 3/2 , ( a r ) 3 cosf ¯ = 1 2 e (1 e 2 ) 3/2 , ( a r ) 3 cos2f ¯ =0, ( a r ) 3 cos3f ¯ =0, 1/ a 3 = p 3 (1 e 2 ) 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaa0aaae aacaGGOaWaaSaaaeaacaWGHbaabaGaamOCaaaacaGGPaWaaWbaaSqa beaacaaIZaaaaaaakiabg2da9iaacIcacaaIXaGaeyOeI0Iaamyzam aaCaaaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiabgkHiTiaa iodacaGGVaGaaGOmaaaakiaacYcadaqdaaqaaiaacIcadaWcaaqaai aadggaaeaacaWGYbaaaiaacMcadaahaaWcbeqaaiaaiodaaaGcciGG JbGaai4BaiaacohacaWGMbaaaiabg2da9maalaaabaGaaGymaaqaai aaikdaaaGaamyzaiaacIcacaaIXaGaeyOeI0IaamyzamaaCaaaleqa baGaaGOmaaaakiaacMcadaahaaWcbeqaaiabgkHiTiaaiodacaGGVa GaaGOmaaaakiaacYcadaqdaaqaaiaacIcadaWcaaqaaiaadggaaeaa caWGYbaaaiaacMcadaahaaWcbeqaaiaaiodaaaGcciGGJbGaai4Bai aacohacaaIYaGaamOzaaaacqGH9aqpcaaIWaGaaiilamaanaaabaGa aiikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqaba GaaG4maaaakiGacogacaGGVbGaai4CaiaaiodacaWGMbaaaiabg2da 9iaaicdacaGGSaaabaGaaGymaiaac+cacaWGHbWaaWbaaSqabeaaca aIZaaaaOGaeyypa0JaamiCamaaCaaaleqabaGaeyOeI0IaaG4maaaa kiaacIcacaaIXaGaeyOeI0IaamyzamaaCaaaleqabaGaaGOmaaaaki aacMcadaahaaWcbeqaaiaaiodaaaGccaGGSaaaaaa@7DB6@

We obtain

R 5/2 sinf ¯ = 8 15 η m 7/2 p 9/2 (1 e 2 ) 3/2 (7e+ 11 2 e 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsJiCnaana aabaGaamOuamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4C aiaacMgacaGGUbGaamOzaaaacqGH9aqpdaWcaaqaaiaaiIdaaeaaca aIXaGaaGynaaaacqaH3oaAcaWGTbWaaWbaaSqabeaacaaI3aGaai4l aiaaikdaaaGccaWGWbWaaWbaaSqabeaacqGHsislcaaI5aGaai4lai aaikdaaaGccaGGOaGaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiaa ikdaaaGccaGGPaWaaWbaaSqabeaacaaIZaGaai4laiaaikdaaaGcca GGOaGaaG4naiaadwgacqGHRaWkdaWcaaqaaiaaigdacaaIXaaabaGa aGOmaaaacaWGLbWaaWbaaSqabeaacaaIZaaaaOGaaiykaaaa@5B47@ . (14)  

R 5/2 cosf ¯ = 1 2π 0 2π 8 15 η( m r ) 3 ( m p ) 1/2 p 1 esinfcosf(14+6 e 2 +20ecosf)dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiablwJirnaana aabaGaamOuamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4y aiaac+gacaGGZbGaamOzaaaacqGH9aqpdaWcaaqaaiaaigdaaeaaca aIYaGaeqiWdahaamaapedabaWaaSaaaeaacaaI4aaabaGaaGymaiaa iwdaaaGaeq4TdGMaaiikamaalaaabaGaamyBaaqaaiaadkhaaaGaai ykaaWcbaGaaGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakmaaCaaa leqabaGaaG4maaaakiaacIcadaWcaaqaaiaad2gaaeaacaWGWbaaai aacMcadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaakiaadchadaah aaWcbeqaaiabgkHiTiaaigdaaaGccaWGLbGaci4CaiaacMgacaGGUb GaamOzaiGacogacaGGVbGaai4CaiaadAgacaGGOaGaaGymaiaaisda cqGHRaWkcaaI2aGaamyzamaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaikdacaaIWaGaamyzaiGacogacaGGVbGaai4CaiaadAgacaGGPaGa amizaiaad2eaaaa@713E@
= 8 15 η ( m p ) 3 ( m p ) 1/2 p 1 (1 e 2 ) 3 ( a r ) 3 ¯ [(7e+3 e 3 )sin2f +5 e 2 sinf+5 e 2 sin3f]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeyypa0 ZaaSaaaeaacaaI4aaabaGaaGymaiaaiwdaaaGaeq4TdGMaaiikamaa laaabaGaamyBaaqaaiaadchaaaGaaiykamaaCaaaleqabaGaaG4maa aakiaacIcadaWcaaqaaiaad2gaaeaacaWGWbaaaiaacMcadaahaaWc beqaaiaaigdacaGGVaGaaGOmaaaakiaadchadaahaaWcbeqaaiabgk HiTiaaigdaaaGccaGGOaGaaGymaiabgkHiTiaadwgadaahaaWcbeqa aiaaikdaaaGccaGGPaWaaWbaaSqabeaacaaIZaaaaOGaaiikamaana aabaWaaSaaaeaacaWGHbaabaGaamOCaaaacaGGPaWaaWbaaSqabeaa caaIZaaaaaaakiaacUfacaGGOaGaaG4naiaadwgacqGHRaWkcaaIZa GaamyzamaaCaaaleqabaGaaG4maaaakiaacMcaciGGZbGaaiyAaiaa c6gacaaIYaGaamOzaaqaaiabgUcaRiaaiwdacaWGLbWaaWbaaSqabe aacaaIYaaaaOGaci4CaiaacMgacaGGUbGaamOzaiabgUcaRiaaiwda caWGLbWaaWbaaSqabeaacaaIYaaaaOGaci4CaiaacMgacaGGUbGaaG 4maiaadAgacaGGDbGaaiOlaaaaaa@6FAD@

Substitution of the third formula of A(j) and the second and third formulas of A(k) into the above expression

( a r ¯ ) 3 sinf ¯ =0, ( a r ) 3 sin2f ¯ =0, ( a r ) 3 ¯ sin3f=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaaaaiaacMcadaahaaWcbeqa aiaaiodaaaGcdaqdaaqaaiGacohacaGGPbGaaiOBaiaadAgaaaGaey ypa0JaaGimaiaacYcadaqdaaqaaiaacIcadaWcaaqaaiaadggaaeaa caWGYbaaaiaacMcadaahaaWcbeqaaiaaiodaaaGcciGGZbGaaiyAai aac6gacaaIYaGaamOzaaaacqGH9aqpcaaIWaGaaiilamaanaaabaGa aiikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqaba GaaG4maaaaaaGcciGGZbGaaiyAaiaac6gacaaIZaGaamOzaiabg2da 9iaaicdacaGGSaaaaa@5815@

We obtain

R 5/2 cosf ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsJiCnaana aabaGaamOuamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4y aiaac+gacaGGZbGaamOzaaaacqGH9aqpcaaIWaaaaa@4119@ . (15)

Next, using the following averages with S 5/2 given by using (4), we get

( p r ) S 5/2 ¯ = 1 2π 0 2π 8 15 m 3 a 5 ( m p ) 1/2 p. ( a r ) 5 [(12+3 e 2 )+15ecosf]dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiablwJirnaana aabaGaaiikamaalaaabaGaamiCaaqaaiaadkhaaaGaaiykaiaadofa daWgaaWcbaGaaGynaiaac+cacaaIYaaabeaaaaGccqGH9aqpcqGHsi sldaWcaaqaaiaaigdaaeaacaaIYaGaeqiWdahaamaapedabaWaaSaa aeaacaaI4aaabaGaaGymaiaaiwdaaaWaaSaaaeaacaWGTbWaaWbaaS qabeaacaaIZaaaaaGcbaGaamyyamaaCaaaleqabaGaaGynaaaaaaaa baGaaGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakiaacIcadaWcaa qaaiaad2gaaeaacaWGWbaaaiaacMcadaahaaWcbeqaaiaaigdacaGG VaGaaGOmaaaakiaadchacaGGUaGaaiikamaalaaabaGaamyyaaqaai aadkhaaaGaaiykamaaCaaaleqabaGaaGynaaaakiaacUfacaGGOaGa aGymaiaaikdacqGHRaWkcaaIZaGaamyzamaaCaaaleqabaGaaGOmaa aakiaacMcacqGHRaWkcaaIXaGaaGynaiaadwgaciGGJbGaai4Baiaa cohacaWGMbGaaiyxaiaadsgacaWGnbaaaa@6BF1@ ,

(p/r)S ¯ 5/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikaiaadchacaGGVaGaamOCaiaacMcacaWGtbaaamaaBaaaleaacaaI 1aGaai4laiaaikdaaeqaaaaa@3E4C@  = - 8 15 m 3 m 1/2 p 5 p (1 e 2 ) 5 ( a r ) 5 ¯ [(12+3 e 2 )+15ecosf] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ioaaqaaiaaigdacaaI1aaaaiaad2gadaahaaWcbeqaaiaaiodaaaGc caWGTbWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaGccaWGWbWaaW baaSqabeaacqGHsislcaaI1aaaaOGaamiCaiaacIcacaaIXaGaeyOe I0IaamyzamaaCaaaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaai aaiwdaaaGcdaqdaaqaaiaacIcadaWcaaqaaiaadggaaeaacaWGYbaa aiaacMcadaahaaWcbeqaaiaaiwdaaaaaaOGaai4waiaacIcacaaIXa GaaGOmaiabgUcaRiaaiodacaWGLbWaaWbaaSqabeaacaaIYaaaaOGa aiykaiabgUcaRiaaigdacaaI1aGaamyzaiGacogacaGGVbGaai4Cai aadAgacaGGDbaaaa@5B94@

Substitution of the following A(h) and A(i) into the above expression ( a r ) 5 ¯ =(1+ 3 2 e 2 ) (1 e 2 ) 7/2 , ( a r ) 5 cosf ¯ = 3 2 e(1+ 1 4 e 2 ) (1 e 2 ) 7/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aGynaaaaaaGccqGH9aqpcaGGOaGaaGymaiabgUcaRmaalaaabaGaaG 4maaqaaiaaikdaaaGaamyzamaaCaaaleqabaGaaGOmaaaakiaacMca caGGOaGaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiaaikdaaaGcca GGPaWaaWbaaSqabeaacqGHsislcaaI3aGaai4laiaaikdaaaGccaGG SaWaa0aaaeaacaGGOaWaaSaaaeaacaWGHbaabaGaamOCaaaacaGGPa WaaWbaaSqabeaacaaI1aaaaOGaci4yaiaac+gacaGGZbGaamOzaaaa cqGH9aqpdaWcaaqaaiaaiodaaeaacaaIYaaaaiaadwgacaGGOaGaaG ymaiabgUcaRmaalaaabaGaaGymaaqaaiaaisdaaaGaamyzamaaCaaa leqabaGaaGOmaaaakiaacMcacaGGOaGaaGymaiabgkHiTiaadwgada ahaaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacqGHsislcaaI 3aGaai4laiaaikdaaaaaaa@65AA@ ,

We obtain

( p r ) S 5/2 ¯ = 8 15 η m 7/2 p 9/2 (1 e 2 ) 3/2 (12+ 87 2 e 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsJiCnaana aabaGaaiikamaalaaabaGaamiCaaqaaiaadkhaaaGaaiykaiaadofa daWgaaWcbaGaaGynaiaac+cacaaIYaaabeaaaaGccqGH9aqpcqGHsi sldaWcaaqaaiaaiIdaaeaacaaIXaGaaGynaaaacqaH3oaAcaWGTbWa aWbaaSqabeaacaaI3aGaai4laiaaikdaaaGccaWGWbWaaWbaaSqabe aacqGHsislcaaI5aGaai4laiaaikdaaaGccaGGOaGaaGymaiabgkHi TiaadwgadaahaaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaaca aIZaGaai4laiaaikdaaaGccaGGOaGaaGymaiaaikdacqGHRaWkdaWc aaqaaiaaiIdacaaI3aaabaGaaGOmaaaacaWGLbWaaWbaaSqabeaaca aIYaaaaOGaaiykaiaac6caaaa@5C51@  (16)

Θ    e( r p ) S 5/2 ¯ = 1 2π 0 2π 8 15 η m 1/2 m 3 p 1/2 p 1 a 3 e ( a r ) 3 (12+3 e 2 +15ecosf)dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI5arjaacc kacaGGGcGaaiiOamaanaaabaGaamyzaiaacIcadaWcaaqaaiaadkha aeaacaWGWbaaaiaacMcacaWGtbWaaSbaaSqaaiaaiwdacaGGVaGaaG OmaaqabaaaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOm aiabec8aWbaadaWdXaqaamaalaaabaGaaGioaaqaaiaaigdacaaI1a aaaaWcbaGaaGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakiabeE7a Ojaad2gadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaakiaad2gada ahaaWcbeqaaiaaiodaaaGccaWGWbWaaWbaaSqabeaacqGHsislcaaI XaGaai4laiaaikdaaaGccaWGWbWaaWbaaSqabeaacqGHsislcaaIXa aaaOGaamyyamaaCaaaleqabaGaeyOeI0IaaG4maaaakiaadwgacaGG OaWaaSaaaeaacaWGHbaabaGaamOCaaaacaGGPaWaaWbaaSqabeaaca aIZaaaaOGaaiikaiaaigdacaaIYaGaey4kaSIaaG4maiaadwgadaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaGynaiaadwgaciGGJb Gaai4BaiaacohacaWGMbGaaiykaiaadsgacaWGnbaaaa@755B@  

8 15 η m 7/2 p 9/2 (1 e 2 ) 3 ( a r ) 3 ¯ [(12e+3 e 3 )+15 e 2 cosf] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaaGioaaqaaiaaigdacaaI1aaaaiabeE7aOjaad2gadaahaaWc beqaaiaaiEdacaGGVaGaaGOmaaaakiaadchadaahaaWcbeqaaiabgk HiTiaaiMdacaGGVaGaaGOmaaaakiaacIcacaaIXaGaeyOeI0Iaamyz amaaCaaaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiaaiodaaa GccaGGOaWaa0aaaeaadaWcaaqaaiaadggaaeaacaWGYbaaaiaacMca daahaaWcbeqaaiaaiodaaaaaaOGaai4waiaacIcacaaIXaGaaGOmai aadwgacqGHRaWkcaaIZaGaamyzamaaCaaaleqabaGaaG4maaaakiaa cMcacqGHRaWkcaaIXaGaaGynaiaadwgadaahaaWcbeqaaiaaikdaaa GcciGGJbGaai4BaiaacohacaWGMbGaaiyxaaaa@5EA5@  =

Substitution of the following A(a) , A(b) into the above expression,

(a/r) 3 ¯ = (1 e 2 ) 3/2 , ( a r ) 3 cosf ¯ = 1 2 e (1 e 2 ) 3/2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikaiaadggacaGGVaGaamOCaiaacMcadaahaaWcbeqaaiaaiodaaaaa aOGaeyypa0JaaiikaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaaca aIYaaaaOGaaiykamaaCaaaleqabaGaeyOeI0IaaG4maiaac+cacaaI YaaaaOGaaiilamaanaaabaGaaiikamaalaaabaGaamyyaaqaaiaadk haaaGaaiykamaaCaaaleqabaGaaG4maaaakiGacogacaGGVbGaai4C aiaadAgaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGLb GaaiikaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacaaIYaaaaOGa aiykamaaCaaaleqabaGaeyOeI0IaaG4maiaac+cacaaIYaaaaOGaai ilaaaa@5A41@  

We obtain

e( r p ) S 5/2 ¯ = 8 15 η m 7/2 p 9/2 (1 e 2 ) 3/2 (12e+ 21 2 e 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsJiCnaana aabaGaamyzaiaacIcadaWcaaqaaiaadkhaaeaacaWGWbaaaiaacMca caWGtbWaaSbaaSqaaiaaiwdacaGGVaGaaGOmaaqabaaaaOWaaSbaaS qaaaqabaGcdaWgaaWcbaaabeaakiabg2da9iabgkHiTmaalaaabaGa aGioaaqaaiaaigdacaaI1aaaaiabeE7aOjaad2gadaahaaWcbeqaai aaiEdacaGGVaGaaGOmaaaakiaadchadaahaaWcbeqaaiabgkHiTiaa iMdacaGGVaGaaGOmaaaakiaacIcacaaIXaGaeyOeI0IaamyzamaaCa aaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiaaiodacaGGVaGa aGOmaaaakiaacIcacaaIXaGaaGOmaiaadwgacqGHRaWkdaWcaaqaai aaikdacaaIXaaabaGaaGOmaaaacaWGLbWaaWbaaSqabeaacaaIZaaa aOGaaiykaaaa@5DD4@ . (17)

S 5/1 cosf ¯ = 1 2π 0 2π 8 15 η m 3 r 4 ( m p ) 1/2 cosf(12+3 e 2 )+15ecosf)dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiablwJirnaana aabaGaam4uamaaBaaaleaacaaI1aGaai4laiaaigdaaeqaaOGaci4y aiaac+gacaGGZbGaamOzaaaacqGH9aqpcqGHsisldaWcaaqaaiaaig daaeaacaaIYaGaeqiWdahaamaapedabaWaaSaaaeaacaaI4aaabaGa aGymaiaaiwdaaaaaleaacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRi I8aOGaeq4TdG2aaSaaaeaacaWGTbWaaWbaaSqabeaacaaIZaaaaaGc baGaamOCamaaCaaaleqabaGaaGinaaaaaaGccaGGOaWaaSaaaeaaca WGTbaabaGaamiCaaaacaGGPaWaaWbaaSqabeaacaaIXaGaai4laiaa ikdaaaGcciGGJbGaai4BaiaacohacaWGMbGaaiikaiaaigdacaaIYa Gaey4kaSIaaG4maiaadwgadaahaaWcbeqaaiaaikdaaaGccaGGPaGa ey4kaSIaaGymaiaaiwdacaWGLbGaci4yaiaac+gacaGGZbGaamOzai aacMcacaWGKbGaamytaaaa@6AF2@ ,

S 5/2 cosf ¯ = 8 15 η m 7/2 p 9/2 (1 e 2 ) 4 ( a r ) 4 ¯ [(12+3 e 2 )cosf+ 15 2 ecos2f+ 15 2 e] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam 4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4yaiaac+ga caGGZbGaamOzaaaacqGH9aqpdaWcaaqaaiaaiIdaaeaacaaIXaGaaG ynaaaacqaH3oaAcaWGTbWaaWbaaSqabeaacaaI3aGaai4laiaaikda aaGccaWGWbWaaWbaaSqabeaacqGHsislcaaI5aGaai4laiaaikdaaa GccaGGOaGaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiaaikdaaaGc caGGPaWaaWbaaSqabeaacaaI0aaaaOWaa0aaaeaacaGGOaWaaSaaae aacaWGHbaabaGaamOCaaaacaGGPaWaaWbaaSqabeaacaaI0aaaaaaa kiaacUfacaGGOaGaaGymaiaaikdacqGHRaWkcaaIZaGaamyzamaaCa aaleqabaGaaGOmaaaakiaacMcaciGGJbGaai4BaiaacohacaWGMbGa ey4kaSYaaSaaaeaacaaIXaGaaGynaaqaaiaaikdaaaGaamyzaiGaco gacaGGVbGaai4CaiaaikdacaWGMbGaey4kaSYaaSaaaeaacaaIXaGa aGynaaqaaiaaikdaaaGaamyzaiaac2faaaa@6D45@

Substitution of the following A(f), A(g) and A(e) into the above expression

c S 5/2 cosf ¯ = 8 15 η m 7/2 p 9/2 (1 e 2 ) 4 ( a r ) 4 ¯ [(12+3 e 2 )cosf+ 15 2 ecos2f+ 15 2 e] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam 4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4yaiaac+ga caGGZbGaamOzaaaacqGH9aqpdaWcaaqaaKqzGeGaaGioaaGcbaqcLb sacaaIXaGaaGynaaaakiabeE7aOjaad2gadaahaaWcbeqaaiaaiEda caGGVaGaaGOmaaaakiaadchadaahaaWcbeqaaiabgkHiTiaaiMdaca GGVaGaaGOmaaaakiaacIcacaaIXaGaeyOeI0IaamyzamaaCaaaleqa baGaaGOmaaaakiaacMcadaahaaWcbeqaaiaaisdaaaGcdaqdaaqaai aacIcadaWcaaqaaiaadggaaeaacaWGYbaaaiaacMcadaahaaWcbeqa aiaaisdaaaaaaOGaai4waiaacIcacaaIXaGaaGOmaiabgUcaRiaaio dacaWGLbWaaWbaaSqabeaacaaIYaaaaOGaaiykaiGacogacaGGVbGa ai4CaiaadAgacqGHRaWkdaWcaaqaaiaaigdacaaI1aaabaGaaGOmaa aacaWGLbGaci4yaiaac+gacaGGZbGaaGOmaiaadAgacqGHRaWkdaWc aaqaaiaaigdacaaI1aaabaGaaGOmaaaacaWGLbGaaiyxaaaa@6E77@ We obtain

S 5/2 cosf ¯ = 8 15 η m 7/2 p 9/2 (1 e 2 ) 3/2 ( 39 2 e+ 69 8 e 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsJiCnaana aabaGaam4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4y aiaac+gacaGGZbGaamOzaaaacqGH9aqpcqGHsisldaWcaaqaaiaaiI daaeaacaaIXaGaaGynaaaacqaH3oaAcaWGTbWaaWbaaSqabeaacaaI 3aGaai4laiaaikdaaaGccaWGWbWaaWbaaSqabeaacqGHsislcaaI5a Gaai4laiaaikdaaaGccaGGOaGaaGymaiabgkHiTiaadwgadaahaaWc beqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacaaIZaGaai4laiaaik daaaGccaGGOaWaaSaaaeaacaaIZaGaaGyoaaqaaiaaikdaaaGaamyz aiabgUcaRmaalaaabaGaaGOnaiaaiMdaaeaacaaI4aaaaiaadwgada ahaaWcbeqaaiaaiodaaaGccaGGPaaaaa@5DCE@ . (18)  

r p cosf S 5/2 ¯ = 1 2π 0 2π 8 15 η m 3 r 3 m 1/2 p 1 cosf[(12+3 e 2 )+15ecosf]dM, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiablwJirnaana aabaWaaSaaaeaacaWGYbaabaGaamiCaaaaciGGJbGaai4Baiaacoha caWGMbGaam4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaaaakm aaBaaaleaaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGa aGOmaiabec8aWbaadaWdXaqaamaalaaabaGaaGioaaqaaiaaigdaca aI1aaaaaWcbaGaaGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakiab eE7aOnaalaaabaGaamyBamaaCaaaleqabaGaaG4maaaaaOqaaiaadk hadaahaaWcbeqaaiaaiodaaaaaaOGaamyBamaaCaaaleqabaGaaGym aiaac+cacaaIYaaaaOGaamiCamaaCaaaleqabaGaeyOeI0IaaGymaa aakiGacogacaGGVbGaai4CaiaadAgacaGGBbGaaiikaiaaigdacaaI YaGaey4kaSIaaG4maiaadwgadaahaaWcbeqaaiaaikdaaaGccaGGPa Gaey4kaSIaaGymaiaaiwdacaWGLbGaci4yaiaac+gacaGGZbGaamOz aiaac2facaWGKbGaamytaiaacYcaaaa@6F5D@

r p cosf S 5/2 ¯ = 8 15 η m 7/2 p 9/2 (1 e 2 ) 3 ( a r ) 3 ¯ [(12+3 e 2 )cosf+ 15 2 e+ 15 2 ecos2f] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaWaaS aaaeaacaWGYbaabaGaamiCaaaaciGGJbGaai4BaiaacohacaWGMbGa am4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaaaakiabg2da9i abgkHiTmaalaaabaGaaGioaaqaaiaaigdacaaI1aaaaiabeE7aOjaa d2gadaahaaWcbeqaaiaaiEdacaGGVaGaaGOmaaaakiaadchadaahaa WcbeqaaiabgkHiTiaaiMdacaGGVaGaaGOmaaaakiaacIcacaaIXaGa eyOeI0IaamyzamaaCaaaleqabaGaaGOmaaaakiaacMcadaahaaWcbe qaaiaaiodaaaGcdaqdaaqaaiaacIcadaWcaaqaaiaadggaaeaacaWG YbaaaiaacMcadaahaaWcbeqaaiaaiodaaaaaaOGaai4waiaacIcaca aIXaGaaGOmaiabgUcaRiaaiodacaWGLbWaaWbaaSqabeaacaaIYaaa aOGaaiykaiGacogacaGGVbGaai4CaiaadAgacqGHRaWkdaWcaaqaai aaigdacaaI1aaabaGaaGOmaaaacaWGLbGaey4kaSYaaSaaaeaacaaI XaGaaGynaaqaaiaaikdaaaGaamyzaiGacogacaGGVbGaai4Caiaaik dacaWGMbGaaiyxaaaa@702C@ ,

Substitution of the following A(b) A(a) and A(c) into the above expression

ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@38D6@   ( a r ) 3 ¯ = (1 e 2 ) 3/2 , ( a r ) 3 cosf ¯ = 1 2 e (1e) 3/2 ,( a r ) 3 cos2f ¯ =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aG4maaaaaaGccqGH9aqpcaGGOaGaaGymaiabgkHiTiaadwgadaahaa WcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacqGHsislcaaIZaGa ai4laiaaikdaaaGccaGGSaWaa0aaaeaacaGGOaWaaSaaaeaacaWGHb aabaGaamOCaaaacaGGPaWaaWbaaSqabeaacaaIZaaaaOGaci4yaiaa c+gacaGGZbGaamOzaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYa aaaiaadwgacaGGOaGaaGymaiabgkHiTiaadwgacaGGPaWaaWbaaSqa beaacqGHsislcaaIZaGaai4laiaaikdaaaGccaGGSaGaaiikamaana aabaWaaSaaaeaacaWGHbaabaGaamOCaaaacaGGPaWaaWbaaSqabeaa caaIZaaaaOGaci4yaiaac+gacaGGZbGaaGOmaiaadAgaaaGaeyypa0 JaaGimaiaacYcaaaa@63E0@ We obtain

r p cosf S 5/2 ¯ = 8 15 η m 7/2 p 9/2 (1 e 2 ) 3/2 ( 27 2 e+ 3 2 e 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsJiCnaana aabaWaaSaaaeaacaWGYbaabaGaamiCaaaaciGGJbGaai4Baiaacoha caWGMbGaam4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaaaaki abg2da9iabgkHiTmaalaaabaGaaGioaaqaaiaaigdacaaI1aaaaiab eE7aOjaad2gadaahaaWcbeqaaiaaiEdacaGGVaGaaGOmaaaakiaadc hadaahaaWcbeqaaiabgkHiTiaaiMdacaGGVaGaaGOmaaaakiaacIca caaIXaGaeyOeI0IaamyzamaaCaaaleqabaGaaGOmaaaakiaacMcada ahaaWcbeqaaiaaiodacaGGVaGaaGOmaaaakiaacIcadaWcaaqaaiaa ikdacaaI3aaabaGaaGOmaaaacaWGLbGaey4kaSYaaSaaaeaacaaIZa aabaGaaGOmaaaacaWGLbWaaWbaaSqabeaadaahaaadbeqaaiaaioda aaaaaOWaaSbaaSqaaaqabaGccaGGPaWaaWbaaSqabeaaaaaaaa@5F8C@ . (19)

S 5/2 sinf ¯ = 1 2π 0 2π 8 15 m 3 r 4 ( m p ) 1/2 sinf[(12+3 e 2 )+15ecosf]dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiablwJirnaana aabaGaam4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4C aiaacMgacaGGUbGaamOzaaaacqGH9aqpcqGHsisldaWcaaqaaiaaig daaeaacaaIYaGaeqiWdahaamaapedabaWaaSaaaeaacaaI4aaabaGa aGymaiaaiwdaaaaaleaacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRi I8aOWaaSaaaeaacaWGTbWaaWbaaSqabeaacaaIZaaaaaGcbaGaamOC amaaCaaaleqabaGaaGinaaaaaaGccaGGOaWaaSaaaeaacaWGTbaaba GaamiCaaaacaGGPaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaGc ciGGZbGaaiyAaiaac6gacaWGMbGaai4waiaacIcacaaIXaGaaGOmai abgUcaRiaaiodacaWGLbWaaWbaaSqabeaacaaIYaaaaOGaaiykaiab gUcaRiaaigdacaaI1aGaamyzaiGacogacaGGVbGaai4CaiaadAgaca GGDbGaamizaiaad2eaaaa@6A64@ ,

S 5/2 sinf ¯ = 8 15 m 7/2 p 9/2 (1 e 2 ) 4 ( a r ) 4 ¯ [(12+3 e 2 )sinf+ 15 2 esin2f] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam 4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4CaiaacMga caGGUbGaamOzaaaacqGH9aqpcqGHsisldaWcaaqaaiaaiIdaaeaaca aIXaGaaGynaaaacaWGTbWaaWbaaSqabeaacaaI3aGaai4laiaaikda aaGccaWGWbWaaWbaaSqabeaacqGHsislcaaI5aGaai4laiaaikdaaa GccaGGOaGaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiaaikdaaaGc caGGPaWaaWbaaSqabeaacaaI0aaaaOGaaiikamaanaaabaWaaSaaae aacaWGHbaabaGaamOCaaaacaGGPaWaaWbaaSqabeaacaaI0aaaaaaa kiaacUfacaGGOaGaaGymaiaaikdacqGHRaWkcaaIZaGaamyzamaaCa aaleqabaGaaGOmaaaakiaacMcaciGGZbGaaiyAaiaac6gacaWGMbGa ey4kaSYaaSaaaeaacaaIXaGaaGynaaqaaiaaikdaaaGaamyzaiGaco hacaGGPbGaaiOBaiaaikdacaWGMbGaaiyxaaaa@6883@  ,

Substitution of the following A(j) and A(k) into the above expression

( a r ) 4 sinf ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aGinaaaakiGacohacaGGPbGaaiOBaiaadAgaaaGaeyypa0JaaGimaa aa@40E0@ , ( a r ) 4 sin2f ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aGinaaaakiGacohacaGGPbGaaiOBaiaaikdacaWGMbaaaiabg2da9i aaicdaaaa@419C@

We obtain

S 5/2 sinf ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsJiCnaana aabaGaam4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaOGaci4C aiaacMgacaGGUbGaamOzaaaacqGH9aqpcaaIWaaaaa@411F@ . (20)

r p sinf S 5/2 ¯ = 1 2π 0 2π 8 15 m 3 r 3 m 1/2 p 1/2 p 1 sinf[(12+3 e 2 )+15ecosf]dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiablwJirnaana aabaWaaSaaaeaacaWGYbaabaGaamiCaaaaciGGZbGaaiyAaiaac6ga caWGMbGaam4uamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaaaaki abg2da9iabgkHiTmaalaaabaGaaGymaaqaaiaaikdacqaHapaCaaWa a8qmaeaadaWcaaqaaiaaiIdaaeaacaaIXaGaaGynaaaaaSqaaiaaic daaeaacaaIYaGaeqiWdahaniabgUIiYdGcdaWcaaqaaiaad2gadaah aaWcbeqaaiaaiodaaaaakeaacaWGYbWaaWbaaSqabeaacaaIZaaaaa aakiaad2gadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaakiaadcha daahaaWcbeqaaiabgkHiTiaaigdacaGGVaGaaGOmaaaakiaadchada ahaaWcbeqaaiabgkHiTiaaigdaaaGcciGGZbGaaiyAaiaac6gacaWG MbGaai4waiaacIcacaaIXaGaaGOmaiabgUcaRiaaiodacaWGLbWaaS baaSqaaiaaikdaaeqaaOGaaiykaiabgUcaRiaaigdacaaI1aGaamyz aiGacogacaGGVbGaai4CaiaadAgacaGGDbGaamizaiaad2eaaaa@7117@ ,

. r p sinf S 5/2 ¯ = 8 15 η m 7/2 p 9/2 (1 e 2 ) 3 ( a r ) 3 ¯ [(12+3 e 2 )sinf+ 15 2 esin2f] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaac6cadaqdaa qaamaalaaabaGaamOCaaqaaiaadchaaaGaci4CaiaacMgacaGGUbGa amOzaiaadofadaWgaaWcbaGaaGynaiaac+cacaaIYaaabeaaaaGccq GH9aqpdaWcaaqaaiaaiIdaaeaacaaIXaGaaGynaaaacqaH3oaAcaWG TbWaaWbaaSqabeaacaaI3aGaai4laiaaikdaaaGccaWGWbWaaWbaaS qabeaacqGHsislcaaI5aGaai4laiaaikdaaaGccaGGOaGaaGymaiab gkHiTiaadwgadaahaaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabe aacaaIZaaaaOGaaiikamaanaaabaWaaSaaaeaacaWGHbaabaGaamOC aaaacaGGPaWaaWbaaSqabeaacaaIZaaaaaaakiaacUfacaGGOaGaaG ymaiaaikdacqGHRaWkcaaIZaGaamyzamaaCaaaleqabaGaaGOmaaaa kiaacMcaciGGZbGaaiyAaiaac6gacaWGMbGaey4kaSYaaSaaaeaaca aIXaGaaGynaaqaaiaaikdaaaGaamyzaiGacohacaGGPbGaaiOBaiaa ikdacaWGMbGaaiyxaaaa@6BEE@  ,

Substitution of the following third formula A(j) and second formula of A(k) into the above expression

( a r )sinf ¯ =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiablwJirnaana aabaGaaiikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykaiGacoha caGGPbGaaiOBaiaadAgaaaGaeyypa0JaaGimaiaacYcaaaa@41D4@   ( a r ) 3 sin2f ¯ =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aG4maaaakiGacohacaGGPbGaaiOBaiaaikdacaWGMbaaaiabg2da9i aaicdacaGGSaaaaa@424B@  

We obtain

r p sinf. S 5/2 ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsJiCnaana aabaWaaSaaaeaacaWGYbaabaGaamiCaaaaciGGZbGaaiyAaiaac6ga caWGMbGaaiOlaiaadofadaWgaaWcbaGaaGynaiaac+cacaaIYaaabe aaaaGccqGH9aqpcaaIWaaaaa@43CD@ . (21)

rR ¯ 5/2 = 1 2π 0 2π 8 15 η m 3 r 2 m 1/2 p 1/2 p 1 esinf(4+6 e 2 +20ecosf)dM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiablwJirnaana aabaGaamOCaiaadkfaaaWaaSbaaSqaaiaaiwdacaGGVaGaaGOmaaqa baGccqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaGaeqiWda haamaapedabaWaaSaaaeaacaaI4aaabaGaaGymaiaaiwdaaaaaleaa caaIWaaabaGaaGOmaiabec8aWbqdcqGHRiI8aOGaeq4TdG2aaSaaae aacaWGTbWaaWbaaSqabeaacaaIZaaaaaGcbaGaamOCamaaCaaaleqa baGaaGOmaaaaaaGccaWGTbWaaWbaaSqabeaacaaIXaGaai4laiaaik daaaGccaWGWbWaaWbaaSqabeaacqGHsislcaaIXaGaai4laiaaikda aaGccaWGWbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaamyzaiGaco hacaGGPbGaaiOBaiaadAgacaGGOaGaaGinaiabgUcaRiaaiAdacaWG LbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaicdacaWGLb Gaci4yaiaac+gacaGGZbGaamOzaiaacMcacaWGKbGaamytaaaa@6C6A@   

 = 8 15 η m 7/2 p 7/2 (1 e 2 ) 2 e ( a r ) 2 ¯ [(4+6 e 2 )sinf+10esin2f] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ioaaqaaiaaigdacaaI1aaaaiabeE7aOjaad2gadaahaaWcbeqaaiaa iEdacaGGVaGaaGOmaaaakiaadchadaahaaWcbeqaaiabgkHiTiaaiE dacaGGVaGaaGOmaaaakiaacIcacaaIXaGaeyOeI0IaamyzamaaCaaa leqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiaaikdaaaGccaWGLb Waa0aaaeaacaGGOaWaaSaaaeaacaWGHbaabaGaamOCaaaacaGGPaWa aWbaaSqabeaacaaIYaaaaaaakiaacUfacaGGOaGaaGinaiabgUcaRi aaiAdacaWGLbWaaWbaaSqabeaacaaIYaaaaOGaaiykaiGacohacaGG PbGaaiOBaiaadAgacqGHRaWkcaaIXaGaaGimaiaadwgaciGGZbGaai yAaiaac6gacaaIYaGaamOzaiaac2faaaa@6089@

Substitution of the following second formula and first formula of A(k) into the above expression,

( a r ) 2 sinf ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aGOmaaaakiGacohacaGGPbGaaiOBaiaadAgaaaGaeyypa0JaaGimaa aa@40DE@ ( a r ) 2 sin2f ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaai ikamaalaaabaGaamyyaaqaaiaadkhaaaGaaiykamaaCaaaleqabaGa aGOmaaaakiGacohacaGGPbGaaiOBaiaaikdacaWGMbaaaiabg2da9i aaicdaaaa@419A@ ,

We obtain  

rR ¯ 5/2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsJiCnaana aabaGaamOCaiaadkfaaaWaaSbaaSqaaiaaiwdacaGGVaGaaGOmaaqa baGccqGH9aqpcaaIWaaaaa@3E52@   W 5/2 ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaam 4vamaaBaaaleaacaaI1aGaai4laiaaikdaaeqaaaaakiabg2da9iaa icdaaaa@3C22@  (22)

Substituting formulae (14) and (17) into the equation (6), we obtain

a ˙ ¯ 8 15 η ( m p ) 3 (1 e 2 ) 1/2 (24+73 e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGabm yyayaacaaaaiabgkHiTmaalaaabaGaaGioaaqaaiaaigdacaaI1aaa aiabeE7aOjaacIcadaWcaaqaaiaad2gaaeaacaWGWbaaaiaacMcada ahaaWcbeqaaiaaiodaaaGccaGGOaGaaGymaiabgkHiTiaadwgadaah aaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacqGHsislcaaIXa Gaai4laiaaikdaaaGccaGGOaGaaGOmaiaaisdacqGHRaWkcaaI3aGa aG4maiaadwgadaahaaWcbeqaaiaaikdaaaGccaGGPaaaaa@5076@ . (23)

Substituting the formulae (14) and (16) into the equation (7), we obtain

e ˙ ¯ = 8 15 η ( m p ) 3 p 1 (1 e 2 ) 3/2 (38e+ 121 8 e 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGabm yzayaacaaaaiabg2da9iabgkHiTmaalaaabaGaaGioaaqaaiaaigda caaI1aaaaiabeE7aOjaacIcadaWcaaqaaiaad2gaaeaacaWGWbaaai aacMcadaahaaWcbeqaaiaaiodaaaGccaWGWbWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaaiikaiaaigdacqGHsislcaWGLbWaaWbaaSqabe aadaahaaadbeqaaiaaikdaaaaaaOGaaiykamaaCaaaleqabaGaaG4m aiaac+cacaaIYaaaaOGaaiikaiaaiodacaaI4aGaamyzaiabgUcaRm aalaaabaGaaGymaiaaikdacaaIXaaabaGaaGioaaaacaWGLbWaaWba aSqabeaacaaIZaaaaOGaaiykaaaa@560D@ . (24)

Substituting the formulae (15) and (21)-(22) into the equation (8), we obtain

ω ˙ ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGafq yYdCNbaiaaaaGaeyypa0JaaGimaaaa@3AB8@ . (25)

Substituting the formula (5) or W 5/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGynaiaac+cacaaIYaaabeaaaaa@3A47@  = 0 into the equation (9)-(10), we obtain

i ˙ ¯ = Ω ˙ ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGabm yAayaacaaaaiabg2da9maanaaabaGafuyQdCLbaiaaaaGaeyypa0Ja aGimaaaa@3C87@ , (26)

ϖ ˙ ¯ = ω ˙ ¯ + Ω ˙ ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGafq O1dyNbaiaaaaGaeyypa0Zaa0aaaeaacuaHjpWDgaGaaaaacqGHRaWk daqdaaqaaiqbfM6axzaacaaaaiabg2da9iaaicdaaaa@403B@ . (27)

Substituting the formulae (22) and (25) into the equation (12), we obtain

ε ˙ 0 =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbew7aLzaaca WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaiaac6caaaa@3C20@  (28)

According to the formulae (13) and (28)

λ ˙ ¯ =n+ ε ˙ 0 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGafq 4UdWMbaiaaaaGaeyypa0JaamOBaiabgUcaRmaanaaabaGafqyTduMb aiaadaWgaaWcbaGaaGimaaqabaaaaaaa@3E61@ . (29)

The variable rate of the period P is given by the Kepler’s third law and the equation (23)

P ˙ ¯ = 3 2 { P a ) da dt ¯ .= 4 5 η( m 3 p 4 ) (1 e 2 ) 3/2 (24+73 e 2 )P(s/cy) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGabm iuayaacaaaaiabg2da9maalaaabaGaaG4maaqaaiaaikdaaaGaai4E amaalaaabaGaamiuaaqaaiaadggaaaGaaiykamaanaaabaWaaSaaae aacaWGKbGaamyyaaqaaiaadsgacaWG0baaaaaacaGGUaGaeyypa0Ja eyOeI0YaaSaaaeaacaaI0aaabaGaaGynaaaacqaH3oaAcaGGOaWaaS aaaeaacaWGTbWaaWbaaSqabeaacaaIZaaaaaGcbaGaamiCamaaCaaa leqabaGaaGinaaaaaaGccaGGPaGaaiikaiaaigdacqGHsislcaWGLb WaaWbaaSqabeaacaaIYaaaaOGaaiykamaaCaaaleqabaGaeyOeI0Ia aG4maiaac+cacaaIYaaaaOGaaiikaiaaikdacaaI0aGaey4kaSIaaG 4naiaaiodacaWGLbWaaWbaaSqabeaacaaIYaaaaOGaaiykaiaadcfa caGGOaGaam4Caiaac+cacaWGJbGaamyEaiaacMcaaaa@61EC@ . (30)

Here P denotes the orbital period.

The lifetime (spiral time)

τ= a a ˙ (yr). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0jabg2 da9maalaaabaGaamyyaaqaaiqadggagaGaaaaacaGGOaGaamyEaiaa dkhacaGGPaGaaiOlaaaa@3FC1@  (31)

Numerical results

We use the formulae (23)–(30) to calculate the secular influence of gravitational radiation damping upon the orbital elements of four massive binary systems., but it is necessary to reduce the formulas (23)- (30) as an applicable formulae before calculation. As in the section 2, the right hand of the formulas (3)-(5) need to be multiplied by 1/c 2, and m should be multiplied by G  

MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyinIWfaaa@3735@    η m 3 = m 1 m 2 m 2 m 3 = m 1 m 2 m = G 3 m 1 m 2 ( m 1 + m 2 ) , η m 2 = m 1 m 2 = G 2 m 1 m 2 ,p=a(1 e 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeq4TdG MaamyBamaaCaaaleqabaGaaG4maaaakiabg2da9maalaaabaGaamyB amaaBaaaleaacaaIXaaabeaakiaad2gadaWgaaWcbaGaaGOmaaqaba aakeaacaWGTbWaaWbaaSqabeaacaaIYaaaaaaakiaad2gadaahaaWc beqaaiaaiodaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaaigdaaeqaaO GaamyBamaaBaaaleaacaaIYaaabeaakiaad2gadaahaaWcbeqaaaaa kiabg2da9iaadEeadaahaaWcbeqaaiaaiodaaaGccaWGTbWaaSbaaS qaaiaaigdaaeqaaOGaamyBamaaBaaaleaacaaIYaaabeaakiaacIca caWGTbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyBamaaBaaale aacaaIYaaabeaakiaacMcadaahaaWcbeqaaaaakiaacYcaaeaacqaH 3oaAcaWGTbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaamyBamaaBa aaleaacaaIXaaabeaakiaad2gadaWgaaWcbaGaaGOmaaqabaGccqGH 9aqpcaWGhbWaaWbaaSqabeaacaaIYaaaaOGaamyBamaaBaaaleaaca aIXaaabeaakiaad2gadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamiC aiabg2da9iaadggacaGGOaGaaGymaiabgkHiTiaadwgadaahaaWcbe qaaiaaikdaaaGccaGGPaGaaiOlaaaaaa@6EC9@

The formulae (23)-(30) become

a ˙ ¯ = 8 15 π( G 3 c 5 ) m 1 m 2 ( m 1 + m 2 ) a 3 (1 e 2 ) 7/2 (24+73 e 2 ), e ˙ ¯ = 8 15 π( G 3 c 5 ) m 1 m 2 ( m 1 + m 2 ) a 4 (1 e 2 ) 5/2 e(38+ 121 8 e 2 ), ω ˙ ¯ == ϖ ˙ ¯ =0, ε ˙ 0 ¯ =0, P ˙ ¯ = 3 2 ( P a ) a ˙ ¯ .= 4 5 G 3 c 5 m 1 m w ( m 1 + m 2 )(24+73 e 2 ) a 4 (1 e 2 ) 7/2 P. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaa0aaae aaceWGHbGbaiaaaaGaeyypa0JaeyOeI0YaaSaaaeaacaaI4aaabaGa aGymaiaaiwdaaaGaeqiWdaNaaiikamaalaaabaGaam4ramaaCaaale qabaGaaG4maaaaaOqaaiaadogadaahaaWcbeqaaiaaiwdaaaaaaOGa aiykamaalaaabaGaamyBamaaBaaaleaacaaIXaaabeaakiaad2gada WgaaWcbaGaaGOmaaqabaGccaGGOaGaamyBamaaBaaaleaacaaIXaaa beaakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaGccaGGPaaaba GaamyyamaaCaaaleqabaGaaG4maaaakiaacIcacaaIXaGaeyOeI0Ia amyzamaaCaaaleqabaGaaGOmaaaakiaacMcadaahaaWcbeqaaiaaiE dacaGGVaGaaGOmaaaaaaGccaGGOaGaaGOmaiaaisdacqGHRaWkcaaI 3aGaaG4maiaadwgadaahaaWcbeqaaiaaikdaaaGccaGGPaGaaiilaa qaamaanaaabaGabmyzayaacaaaaiabg2da9iabgkHiTmaalaaabaGa aGioaaqaaiaaigdacaaI1aaaaiabec8aWjaacIcadaWcaaqaaiaadE eadaahaaWcbeqaaiaaiodaaaaakeaacaWGJbWaaWbaaSqabeaacaaI 1aaaaaaakiaacMcadaWcaaqaaiaad2gadaWgaaWcbaGaaGymaaqaba GccaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaad2gadaWgaaWc baGaaGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaO GaaiykaaqaaiaadggadaahaaWcbeqaaiaaisdaaaGccaGGOaGaaGym aiabgkHiTiaadwgadaahaaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaS qabeaacaaI1aGaai4laiaaikdaaaaaaOGaamyzaiaacIcacaaIZaGa aGioaiabgUcaRmaalaaabaGaaGymaiaaikdacaaIXaaabaGaaGioaa aacaWGLbWaaWbaaSqabeaacaaIYaaaaOGaaiykaiaacYcaaeaadaqd aaqaaiqbeM8a3zaacaaaaiabg2da9iabg2da9maanaaabaGafqO1dy NbaiaaaaGaeyypa0JaaGimaiaacYcaaeaadaqdaaqaaiqbew7aLzaa caWaaSbaaSqaaiaaicdaaeqaaaaakiabg2da9iaaicdacaGGSaaaba Waa0aaaeaaceWGqbGbaiaaaaGaeyypa0ZaaSaaaeaacaaIZaaabaGa aGOmaaaacaGGOaWaaSaaaeaacaWGqbaabaGaamyyaaaacaGGPaWaa0 aaaeaaceWGHbGbaiaaaaGaaiOlaiabg2da9iabgkHiTmaalaaabaGa aGinaaqaaiaaiwdaaaWaaSaaaeaacaWGhbWaaWbaaSqabeaacaaIZa aaaaGcbaGaam4yamaaCaaaleqabaGaaGynaaaaaaGcdaWcaaqaaiaa d2gadaWgaaWcbaGaaGymaaqabaGccaWGTbWaaSbaaSqaaiaadEhaae qaaOGaaiikaiaad2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG TbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiaacIcacaaIYaGaaGinai abgUcaRiaaiEdacaaIZaGaamyzamaaCaaaleqabaGaaGOmaaaakiaa cMcaaeaacaWGHbWaaWbaaSqabeaacaaI0aaaaOGaaiikaiaaigdacq GHsislcaWGLbWaaWbaaSqabeaacaaIYaaaaOGaaiykamaaCaaaleqa baGaaG4naiaac+cacaaIYaaaaaaakiaadcfacaGGUaaaaaa@BFD2@    (32)

It is convenient that m1, m2, and  are denoted by the unit in solar mass M(M), M=1.989x1033g and solar radius a ( R), R=6.9599x1010cm, P is denotes by the unit in day=86400s G=6.67x10-8( c,g,s), c=31010cm/s. Substituting these data into the formulae (32), we get

a ˙ ¯ =4.8675 M 1 M 2 ( M 1 + M 2 )(24+73 e 2 ) A 3 (1 e 2 ) 7/2 (cm/yr), e ˙ ¯ =6.8513× 10 11 M 1 M 2 ( M 1 + M 2 ) A 4 (1 e 2 ) 5/2 e(38+ 121 8 e 2 )/yr, ω ˙ ¯ = ϖ ˙ ¯ =0, ε ˙ 0 ¯ =0,, P ˙ ¯ =9.314× 10 6 M 1 M 2 ( M 1 + M 2 )(24+73 e 2 ) A 4 (1 e 2 ) 7/2 .P(s/yr). ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaadiaaeaqabe aadaqdaaqaaiqadggagaGaaaaacqGH9aqpcqGHsislcaaI0aGaaiOl aiaaiIdacaaI2aGaaG4naiaaiwdadaWcaaqaaiaad2eadaWgaaWcba GaaGymaaqabaGccaWGnbWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaa d2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWaaSbaaSqaai aaikdaaeqaaOGaaiykaiaacIcacaaIYaGaaGinaiabgUcaRiaaiEda caaIZaGaamyzamaaCaaaleqabaGaaGOmaaaakiaacMcaaeaacaWGbb WaaWbaaSqabeaacaaIZaaaaOGaaiikaiaaigdacqGHsislcaWGLbWa aWbaaSqabeaacaaIYaaaaOGaaiykamaaCaaaleqabaGaaG4naiaac+ cacaaIYaaaaaaakiaacIcacaWGJbGaamyBaiaac+cacaWG5bGaamOC aiaacMcacaGGSaaabaWaa0aaaeaaceWGLbGbaiaaaaGaeyypa0Jaey OeI0IaaGOnaiaac6cacaaI4aGaaGynaiaaigdacaaIZaGaey41aqRa aGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaigdacaaIXaaaaOWaaS aaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaamytamaaBaaaleaa caaIYaaabeaakiaacIcacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamytamaaBaaaleaacaaIYaaabeaakiaacMcaaeaacaWGbbWa aWbaaSqabeaacaaI0aaaaOGaaiikaiaaigdacqGHsislcaWGLbWaaW baaSqabeaacaaIYaaaaOGaaiykamaaCaaaleqabaGaaGynaiaac+ca caaIYaaaaaaakiaadwgacaGGOaGaaG4maiaaiIdacqGHRaWkdaWcaa qaaiaaigdacaaIYaGaaGymaaqaaiaaiIdaaaGaamyzamaaCaaaleqa baGaaGOmaaaakiaacMcacaGGVaGaamyEaiaadkhacaGGSaaabaWaa0 aaaeaacuaHjpWDgaGaaaaacqGH9aqpdaqdaaqaaiqbeA9a2zaacaaa aiabg2da9iaaicdacaGGSaaabaWaa0aaaeaacuaH1oqzgaGaamaaBa aaleaacaaIWaaabeaaaaGccqGH9aqpcaaIWaGaaiilaiaacYcaaeaa daqdaaqaaiqadcfagaGaaaaacqGH9aqpcqGHsislcaaI5aGaaiOlai aaiodacaaIXaGaaGinaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaa cqGHsislcaaI2aaaaOWaaSaaaeaacaWGnbWaaSbaaSqaaiaaigdaae qaaOGaamytamaaBaaaleaacaaIYaaabeaakiaacIcacaWGnbWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamytamaaBaaaleaacaaIYaaabe aakiaacMcacaGGOaGaaGOmaiaaisdacqGHRaWkcaaI3aGaaG4maiaa dwgadaahaaWcbeqaaiaaikdaaaGccaGGPaaabaGaamyqamaaCaaale qabaGaaGinaaaakiaacIcacaaIXaGaeyOeI0IaamyzamaaCaaaleqa baGaaGOmaaaakiaacMcadaahaaWcbeqaaiaaiEdacaGGVaGaaGOmaa aaaaGccaGGUaGaamiuaiaacIcacaWGZbGaai4laiaadMhacaWGYbGa aiykaiaac6caaaGaayzxaaaaaa@C5E6@     (33)

This paper chooses four massive binary stars V382 Cyg, V448 Cyg, Y Cyg, ő Ori as an example. For these binary stars, their data for P(d), A(R), M1(M), M2(M) and  are cited from the references listed in Table 1. Substituting these data for P (d), , ,  and  of four massive binary stars in Table 1 into the formulas (33), we obtain the numerical results for the secular effect of gravitational radiation damping upon the orbital elements of four massive binary systems listed in Table 2.

Massive binary stars

P (d) 

A (R )

M 1 (M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIXaaabeaakiaacIcacaWGnbaaaa@3938@ )

M 2 (M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIYaaabeaakiaacIcacaWGnbaaaa@3939@ )

References

Y Cyg

2.9963

28.49

17.57

17.04

0.1415

Simon et al15

Y 382 Cyg

1.8855

26.44

37.16

36.42

0.04

Brancewicz13

Y448Cyg

6.5797

50.09

23.84

15.73

0.04

Batten12

δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@379C@  Ori

5.7324

45.99

30.57

9.17

0.1

Batten et al12

Table 1 Data of four massive binary systems

Binary stars     

Y Cyg 

 V382 Cyg  

V448Cyg    

δOri  

a ˙ (cm/yr) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyyayaaca GaaiikaiaadogacaWGTbGaai4laiaadMhacaWGYbGaaiykaaaa@3CC1@

-56.5

-635.9

-13.13

-139.96

e ˙ ( 10 12 /yr) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyzayaaca GaaiikaiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIXaGaaGOm aaaakiaac+cacaWG5bGaamOCaiaacMcaaaa@3EFB@

-6.5

-21.3

-0.038

-0.11

ω ˙ = ϖ ˙ (rad/yr) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyYdCNbai aacqGH9aqpcuaHwpGDgaGaaiaacIcacaWGYbGaamyyaiaadsgacaGG VaGaamyEaiaadkhacaGGPaaaaa@417C@

0

0

0

0

ε ˙ 0 (rad/yr) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbai aadaWgaaWcbaGaaGimaaqabaGccaGGOaGaamOCaiaadggacaWGKbGa ai4laiaadMhacaWGYbGaaiykaaaa@3F5E@

0

0

0

0

λ ˙ (rad/yr) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbai aacaGGOaGaamOCaiaadggacaWGKbGaai4laiaadMhacaWGYbGaaiyk aaaa@3E7B@

766

12121

348

400

P ˙ ( 10 5 s/yr) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiuayaaca GaaiikaiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaI1aaaaOGa am4Caiaac+cacaWG5bGaamOCaiaacMcaaaa@3F26@

-1.1

-8.4

-0.35

-0.34

t( 10 9 yr) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaacI cacaaIXaGaaGimamaaCaaaleqabaGaaGyoaaaakiaadMhacaWGYbGa aiykaaaa@3CAD@

35

2.9

265

22.87

Table 2 Numerical results for the secular effects of gravitational radiation upon the orbital elements of four massive binary stars

Discussion

The comparison of the present paper with the previous paper

In the previous paper8 there are both secular and periodic variation for semi-major axis and eccentricity.. However, it is very long and trouble for expanding perturbation function by using the perturbation method. In the present paper there is only secular variation for semi-major axis and eccentricity, and there is not periodic variation if we do not consider the periodic variation. However, it is a simple method for deriving the orbital elements by using a method of average values. The numerical results show that the orbital effects of massive binary stars are larger than that of the compact binary stars in some cases. For example, in the previous paper the variable rate of semi-major axis da dt =143(cm/yr) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadggaaeaacaWGKbGaamiDaaaacqGH9aqpcqGHsislcaaIXaGa aGinaiaaiodacaGGOaGaam4yaiaad2gacaGGVaGaamyEaiaadkhaca GGPaaaaa@44D6@    for the compact binary system PSR1913+16: but in the present paper da dt =635(cm/yr) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadggaaeaacaWGKbGaamiDaaaacqGH9aqpcqGHsislcaaI2aGa aG4maiaaiwdacaGGOaGaam4yaiaad2gacaGGVaGaamyEaiaadkhaca GGPaaaaa@44DC@  for the massive binary system V382 Cyg So that the value of the orbital effect of massive binary star is large than that of the compact binary star. However, it is not all massive binary stars that their orbital effect is large, and only the massive binary stars with smaller separation are such case. For example, in the present paper for the massive binary star V448 Cyg even through their masses are large, but their orbital effect da dt =13.13(cm/yr) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadggaaeaacaWGKbGaamiDaaaacqGH9aqpcqGHsislcaaIXaGa aG4maiaac6cacaaIXaGaaG4maiaacIcacaWGJbGaamyBaiaac+caca WG5bGaamOCaiaacMcaaaa@4642@  is small because their separation is large.

The theoretical results obtained by using the average method are consistent with the theoretical results obtained by using the perturbation method in the previous paper even through the forms of solutions are not different. However, both theoretical results may be transformed mutually in both methods. For example in the previous work8 the secular variable of the semi-major axis is

Δa=2π A 0 =2π{ 8 15 η m 5/2 p 3/2 (1 e 2 ) 2 (24+73 e 2 ).} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadg gacqGH9aqpcaaIYaGaeqiWdaNaamyqamaaBaaaleaacaaIWaaabeaa kiabg2da9iaaikdacqaHapaCcaGG7bWaaSaaaeaacaaI4aaabaGaaG ymaiaaiwdaaaGaeq4TdGMaamyBamaaCaaaleqabaGaaGynaiaac+ca caaIYaaaaOGaamiCamaaCaaaleqabaGaeyOeI0IaaG4maiaac+caca aIYaaaaOGaaiikaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacaaI YaaaaOGaaiykamaaCaaaleqabaGaeyOeI0IaaGOmaaaakiaacIcaca aIYaGaaGinaiabgUcaRiaaiEdacaaIZaGaamyzamaaCaaaleqabaGa aGOmaaaakiaacMcacaGGUaGaaiyFaaaa@5E25@

We can write this formula divide by the period T

a ˙ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGabm yyayaacaaaaaaa@3811@  = Δa T = 2π T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeu iLdqKaamyyaaqaaiaadsfaaaGaeyypa0ZaaSaaaeaacaaIYaGaeqiW dahabaGaamivaaaaaaa@3EAE@ , { 8 15 η m 5/2 p 3/2 (1 e 2 ) 2 (24+73 e 2 ).} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacUhadaWcaa qaaiaaiIdaaeaacaaIXaGaaGynaaaacqaH3oaAcaWGTbWaaWbaaSqa beaacaaI1aGaai4laiaaikdaaaGccaWGWbWaaWbaaSqabeaacqGHsi slcaaIZaGaai4laiaaikdaaaGccaGGOaGaaGymaiabgkHiTiaadwga daahaaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacqGHsislca aIYaaaaOGaaiikaiaaikdacaaI0aGaey4kaSIaaG4naiaaiodacaWG LbWaaWbaaSqabeaacaaIYaaaaOGaaiykaiaac6cacaGG9baaaa@5325@ .

Using Kepler’s third law 2π T =n= m 1/2 a 3/2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG Omaiabec8aWbqaaiaadsfaaaGaeyypa0JaamOBaiabg2da9maalaaa baGaamyBamaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaGcbaGaam yyamaaCaaaleqabaGaaG4maiaac+cacaaIYaaaaaaakiaacYcaaaa@44CE@   p=a(1 e 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacqGH9a qpcaWGHbGaaiikaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacaaI YaaaaOGaaiykaiaac6caaaa@3F82@  

Substituting these into the above expression, we can transform to the formula (32)

a ˙ = ¯ 8 15 η ( m p ) 3 (1 e 2 ) 1/2 (24+73 e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGabm yyayaacaGaeyypa0daaiabgkHiTmaalaaabaGaaGioaaqaaiaaigda caaI1aaaaiabeE7aOjaacIcadaWcaaqaaiaad2gaaeaacaWGWbaaai aacMcadaahaaWcbeqaaiaaiodaaaGccaGGOaGaaGymaiabgkHiTiaa dwgadaahaaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacqGHsi slcaaIXaGaai4laiaaikdaaaGccaGGOaGaaGOmaiaaisdacqGHRaWk caaI3aGaaG4maiaadwgadaahaaWcbeqaaiaaikdaaaGccaGGPaaaaa@517C@

This means that the results in this paper are all correct with previous paper and may be transformed mutually.

The comparison of this work with the work of other author

In this paper although the derivation for the formulae ((1)-(3) based on the work of Lincoln et al.4 however, the derivation in both method are different. The present paper obtained the secular effect on the orbital elements by using a method of average values. The work of L-W obtained the secular effect of the orbital elements by using the iterative method. However, the results obtained by both methods may be transformed to the same results for semi-major axis and eccentricity through the following relative formula:

Δa=(Δp+2ae)/(1 e 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadg gacqGH9aqpcaGGOaGaeuiLdqKaamiCaiabgUcaRiaaikdacaWGHbGa amyzaiaacMcacaGGVaGaaiikaiaaigdacqGHsislcaWGLbWaaWbaaS qabeaacaaIYaaaaOGaaiykaiaac6caaaa@47C8@   p=a(1 e 2 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacqGH9a qpcaWGHbGaaiikaiaaigdacqGHsislcaWGLbWaaWbaaSqabeaacaaI YaaaaOGaaiykaiaac6caaaa@3F82@

We can obtain from the results (3.1a) and (3.1b) of the works of Lincoln[-Will

Δa=2π{ 8 15 η m 5/2 p 3/2 (1 e 2 ) 2 (24+73 e 2 ).} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadg gacqGH9aqpcaaIYaGaeqiWdaNaai4EamaalaaabaGaaGioaaqaaiaa igdacaaI1aaaaiabeE7aOjaad2gadaahaaWcbeqaaiaaiwdacaGGVa GaaGOmaaaakiaadchadaahaaWcbeqaaiabgkHiTiaaiodacaGGVaGa aGOmaaaakiaacIcacaaIXaGaeyOeI0IaamyzamaaCaaaleqabaGaaG OmaaaakiaacMcadaahaaWcbeqaaiabgkHiTiaaikdaaaGccaGGOaGa aGOmaiaaisdacqGHRaWkcaaI3aGaaG4maiaadwgadaahaaWcbeqaai aaikdaaaGccaGGPaGaaiOlaiaac2haaaa@58F0@

This expression may be transformed to the formula (32) in this paper

a ˙ = ¯ 8 15 η ( m p ) 3 (1 e 2 ) 1/2 (24+73 e 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqadeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGabm yyayaacaGaeyypa0daaiabgkHiTmaalaaabaGaaGioaaqaaiaaigda caaI1aaaaiabeE7aOjaacIcadaWcaaqaaiaad2gaaeaacaWGWbaaai aacMcadaahaaWcbeqaaiaaiodaaaGccaGGOaGaaGymaiabgkHiTiaa dwgadaahaaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacqGHsi slcaaIXaGaai4laiaaikdaaaGccaGGOaGaaGOmaiaaisdacqGHRaWk caaI3aGaaG4maiaadwgadaahaaWcbeqaaiaaikdaaaGccaGGPaaaaa@517C@  . (32)

The possibility of the observed effect It is possible to observe the effect of gravitational radiation damping on the orbit of massive binary stars because as in the calculated results for the massive binary star V382 Cyg, its orbital semi-major axis shrinks over 6.3 m per year, such large effect may be observed by using the recent astronomical telescope through per year.10–17

Conclusion

 We conclude that the gravitational radiation damping may results in that the orbital semi major axis of binary stars shrinks with time and the eccentricity decrease with time. It can be seen from the numerical results in Table 2 that for the lifetime (spiral time) of four massive binary systems the longest lifetime is the order 10 11 year for V448 Cyg. The smallest lifetime is the order 109 year for V382Cyg. Another both massive binary stars are the order 1010 year. So that the first collapsed binary star is the massive star V382 Cyg. The last collapsible massive binary star is V448 Cyg. The collapse time of these binary systems are very meaningful. Because when systems collapse and two massive binary stars collide mutually, the gravitational wave will be emitted possibly.

We also conclude that we may use different methods to research the same topic. If we consider secular and periodic variation of orbit, the best method is used to the perturbation method: if we only consider secular effect of the orbit, the best method is used to the method of average values.

For observing the effect of the gravitation emission damping on the orbit, the best means may explore in the compact binary system and also may explore in the massive binary system. However, it is not all massive binary system that their orbital effects are large, only the massive binary system with smaller reparation is such case.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

Funding

None.

References

  1. Weinberg S. Gravitation and Cosmology: Principles and Applications to the General Theory of Relativity. Chapter 10 Gravitation radiation, 287, John Wiley, New York, 1972.
  2. Misner CW, Thorne KS, Wheeler JA. Gravitation, Part 111 Gravitational waves, 941, W H Freeman, San Francisco U S. 1973.
  3. Arras P. Gravitational waves and the maximum spin rate of accreting neutron stars. ASP Conference Series Vol 382 edited by FA Rasio & IH Stairs. 2005. p. 317.
  4. Lincoln CW, Will CM. Coalescing binary systems of compact objects to (Post)5/2.. Newtonian order: Late-time evolution and gravitational-radiation emission. Phys Rev. 1990;D42(4):1123.
  5. Li Lin-Sen. Reaction effect of gravitational radiation of rotating ellipsoid as central body upon the variation of celestial orbital plane. Chinese Physics Letters. 1997;14(5):328.
  6. Li Lin-Sen. Gravitational radiation damping and evolution of the orbit of compact binary pulsars (Solution by the first perturbation method). IL NUOVO CIMENTO. 2009;124B(7):709.
  7. Li Lin-Sen. Influence of the gravitational radiation damping on the time of periastron passage of binary stars. Astrophys & Space Sci. 2011;334:125.
  8. Li Lin-Sen. Gravitational radiation damping and evolution of the orbit of compact binary stars (Solution by the second perturbation method). J Astrophys Astronomy. 2014;35(2):189.
  9. Li Lin-Sen. The secular effect of gravitational radiation damping on the periastron advance of binary stars in second order perturbation theory. Res Astron Astrophys. 2017;17(8):84.
  10. Brouwer D, Clemence GM. Method of Celestial Mechanics. 1st ed. Academic Press, New York and London. 1961.
  11. Liu Lin. Orbital Mechanics for Artificial Earth Satellite. High Education Press, Beijing, 1992. p. 566.
  12. Batten AH, Flecher JM, MacCarthy DG. Eighth Catalogue of the Orbital Elements of Spectroscopic Binary Systems, Publ. Dominion. Astrophys Obs. 1989;17(1).
  13. Brancewicz HK, Dwornk TZ. A Catalogue of Parameters for Eclipsing Binaries. Acta Astron. 1980;30:501.
  14. Damour T, Gopakumar A, Iyer BR. Phasing of gravitational waves from inspiralling eccentric binaries. General Relativity and Quantum Cosmology. 2004;30:1–49.
  15. Simon KP, Sturm E, Fiedler A. Spectroscopic analysis of hot binaries II the components of Y Cygni. Astron Astrophys. 1994;292:507.
  16. Will CW. Theory and experiment in gravitational physics. Chapter 10 Gravitational Radiation as a tool for testing relativistic gravity, 221, Cambridge University Press, Cambridge, U K, New York, US. 1993.
  17. Will CM. The Confrontation between General Relativity and Experiment, 4 Strong Gravity and Gravitational Waves: New texting ground, Living Rev. Relativity. 2006;9:3.
Creative Commons Attribution License

©2020 Li. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.