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Introduction
It is well known that the gravitational wave comes mainly from 

binary system.1,2 Therefore, some binary systems are the best objects 
for testing the theory of the gravitational radiation.3 However, all 
binary systems are not suitable for the test. There are two possibilities 
for this test. One is two components with near separation: another 
one is two components with large mass. The former must be explored 
in the compact binary system. The latter is explored in the massive 
binary system. Lincoln et al.4 research evolution and gravitational 
radiation of binary systems of compact objects to (post)5/2. Newtonian 

order. Li5 studied reaction effect of gravitational radiation of central 
body upon the variation of celestial orbital plane, but he do not 
studied the effect of gravitational radiation upon the orbital elements 
of celestial body. Li6 examined the gravitational radiation damping 
and evolution of the orbit of the compact binary stars by solution of 
the first perturbation method. Li7 studied influence of the gravitational 
radiation damping on the time of periastron passage of binary stars. 
Li8 also studied the gravitation radiation damping and the evolution 
of the orbit of compact binary stars by the solution of the second 
perturbation method. Li9 studied the secular effect of gravitational 
radiation damping on the periastron advance of binary stars in second 
order perturbation theory. However these methods are some trouble 
and expanding expression of the disturbing function is very long. If 
we only find the secular variation of the orbit, we may use the method 
of average to separate out the secular variable terms of the orbit and 
do not consider the periodic variable terms. Because it is important 
that find the secular variable term of orbit. This is advantage for the 
method of average. Because this paper only finds the secular variable 
terms of the orbital elements, so that this paper uses the method of 
average values to study the secular influence of gravitational radiation 
damping on the evolution of the orbit of massive binary stars.

Solution by the method of average values 
upon Gaussian perturbation equations

The formula for the relative acceleration with Post, Post-Post and 
Post5/2 was given by Lincoln et al.4 

                           
2( / )[( 1 ) ]a m r A n BV= − + +



  .                                       (1) 

For the gravitational emission, we take 

                      2
5/2 5/2 5/2( / )[( 1 ) ]a m r A n B V= − + +



 .                                   (2) 

Here m and r denote mass and separation of two binary stars 
respectively; n  and V



denote the unit vector of a radial direction and 
the vector of the relative velocity respectively. In the formula (2) the 
Newtonian term is – 2( / )m r n and the Post-Newtonain term (Post)5/2 
is 2

5/2 5/2( / )( )m r A n B V+




In the previous paper Li resolved the perturbation acceleration 
5/2a  into a radial component R5/2 and a transverse component S5/2 

perpendicular to R5/2, and a component W5/2 normal to the orbital plane 
induced by gravitational radiation damping on the orbit of binary stars 
as follows Li9 
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Here 1 2 ,m m m= +  m
µη = , 1 2m m

m
µ = , (G =c=1), f  denotes 

the true anomaly. 2(1 )p a e= − , a  and e  denote semi-major axis 
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and eccentricity respectively. Because this paper only researches the 
secular effect upon the evolution of the orbit, we use the average 
method. According to the definition of the average values, the 
average formula for the variable rate of the arbitrary orbital elements 

( , ,.......)F a eσ =  can be written as

                              σ = 0

1 ( , ......)
T

F a e dt
T ∫

Here T is orbital period. The mean motion 2 ,n
T
π

=  .dMdt
n

=  M

is the mean anomaly. The above average formula can be written as

                                     σ =

2

0

1 ( , ,,,,,,)
2

F a e dM
π

π ∫  
Gaussian equations can be written by average upon the mean 

anomaly dM  (Gaussian equations cite the symbol used by Lincoln 
et al.4
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The longitude of periastron ω  in terms of the argument of 
periastron ,ω  can be written as

                                   ϖ ω= +Ω .                                               (11) 

The equation of mean longitude of periastron at epoch oε  and the 
mean longitude λ  are10

                        

2
5/2

2 2 1/2
2

1 (1 )o
R r e
na e

ε ω= − +
+ −

   ,                           (12) 

0nλ ε= +

 . (13) Next, we take the average values of each term in 
the Gaussian equation according to the formulae of the average values 
of some functions given by Liu11 
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r
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r

 ( p, q = 1, 2, 3). 

The average values used in this paper are list in Appendix.: A(a), 
A(b), A(c), A(d), A(e), A(f), Ag), A(h), A(i), A(j), A(k). 

Appendix
Same orbital average results are chose from the Table given by Liu 

(1992) which are cited in this paper. 
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Using the following average terms with R 5/2 given by the formula 
(3), we yield
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Substitution of the following A(a), A(b), A(c) and A(d) into the above 
expression
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Substitution of the third formula of A(j) and the second and third 

formulas of A(k) into the above expression
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We obtain 

                                      5/2 cos 0R f∴ = . (15) 

Next, using the following averages with S 5/2 given by using (4), 
we get
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Substitution of the following A(a) , A(b) into the above expression, 
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Substitution of the following A(f), A(g) and A(e) into the above 
expression
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Substitution of the following A(b) A(a) and A(c) into the above 
expression 
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Substitution of the following A(j) and A(k) into the above 
expression 
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Substitution of the following third formula A(j) and second 
formula of A(k) into the above expression 
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Substitution of the following second formula and first formula of 
A(k) into the above expression,
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Substituting formulae (14) and (17) into the equation (6), we obtain 
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Substituting the formulae (14) and (16) into the equation (7), we 
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Substituting the formulae (15) and (21)-(22) into the equation (8), 
we obtain 

                                          0ω = .                                               (25) 

Substituting the formula (5) or 5/2W  = 0 into the equation (9)-(10), 
we obtain 

                                        0i = Ω = ,                                                (26) 

                                   0ϖ ω= +Ω = .                                             (27) 

Substituting the formulae (22) and (25) into the equation (12), we 
obtain 

                                           0 0.ε =                                                  (28) 

According to the formulae (13) and (28) 

                                            0nλ ε= +

 .                                           (29) 

The variable rate of the period P is given by the Kepler’s third law 
and the equation (23) 
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Here P denotes the orbital period. 

The lifetime (spiral time) 

                                                   
( ).a yr

a
τ =



                                       (31) 

Numerical results 
We use the formulae (23)–(30) to calculate the secular influence 

of gravitational radiation damping upon the orbital elements of four 
massive binary systems., but it is necessary to reduce the formulas 
(23)- (30) as an applicable formulae before calculation. As in the 
section 2, the right hand of the formulas (3)-(5) need to be multiplied 
by 1/c 2, and m  should be multiplied by G
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The formulae (23)-(30) become
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It is convenient that m1, m2, and a  are denoted by the unit in 
solar mass M(M⊙), M⊙=1.989x1033g and solar radius a ( R⊙), 
R⊙=6.9599x1010cm, P is denotes by the unit in day=86400s 
G=6.67x10-8( c,g,s), c=3× 1010cm/s. Substituting these data into the 
formulae (32), we get
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 (33) 

This paper chooses four massive binary stars V382 Cyg, V448 
Cyg, Y Cyg, ő Ori as an example. For these binary stars, their data for 
P(d), A(R⊙), M1(M⊙), M2(M⊙) and e  are cited from the references 

listed in Table 1. Substituting these data for P (d), ( )A RΘ , 1( )M MΘ
, 2 ( )M MΘ  and e  of four massive binary stars in Table 1 into the 
formulas (33), we obtain the numerical results for the secular effect 
of gravitational radiation damping upon the orbital elements of four 
massive binary systems listed in Table 2. 

Table 1 Data of four massive binary systems

Massive 
binary 
stars

P (d)  A ( R
⊙)

MM (1
⊙) MM (2 ⊙)

References

Y Cyg 2.9963 28.49 17.57 17.04 0.1415 Simon et al15

Y 382 
Cyg 1.8855 26.44 37.16 36.42 0.04 Brancewicz13

Y448Cyg 6.5797 50.09 23.84 15.73 0.04 Batten12

δ  Ori
5.7324 45.99 30.57 9.17 0.1 Batten et 

al12 

Table 2 Numerical results for the secular effects of gravitational radiation 
upon the orbital elements of four massive binary stars

Binary stars      Y Cyg   V382 Cyg   V448Cyg     δOri   

)/( yrcma -56.5 -635.9 -13.13 -139.96

)/10( 12 yre −


-6.5 -21.3 -0.038 -0.11

)/( yrradϖω  = 0 0 0 0

)/(0 yrradε 0 0 0 0

)/( yrradλ 766 12121 348 400

)/10( 5 yrsP −
 -1.1 -8.4 -0.35 -0.34

)10( 9 yrt 35 2.9 265 22.87

Discussion 
The comparison of the present paper with the previous 
paper

In the previous paper8 there are both secular and periodic variation 
for semi-major axis and eccentricity.. However, it is very long and 
trouble for expanding perturbation function by using the perturbation 
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method. In the present paper there is only secular variation for semi-
major axis and eccentricity, and there is not periodic variation if we 
do not consider the periodic variation. However, it is a simple method 
for deriving the orbital elements by using a method of average values. 
The numerical results show that the orbital effects of massive binary 
stars are larger than that of the compact binary stars in some cases. 
For example, in the previous paper the variable rate of semi-major 

axis 143( / )da cm yr
dt

= − for the compact binary system PSR1913+16: 

but in the present paper 635( / )da cm yr
dt

= −  for the massive binary 

system V382 Cyg So that the value of the orbital effect of massive 
binary star is large than that of the compact binary star. However, 
it is not all massive binary stars that their orbital effect is large, and 
only the massive binary stars with smaller separation are such case. 
For example, in the present paper for the massive binary star V448 
Cyg even through their masses are large, but their orbital effect 

13.13( / )da cm yr
dt

= −  is small because their separation is large.

The theoretical results obtained by using the average method 
are consistent with the theoretical results obtained by using the 
perturbation method in the previous paper even through the forms of 
solutions are not different. However, both theoretical results may be 
transformed mutually in both methods. For example in the previous 
work8 the secular variable of the semi-major axis is

          
5/2 3/2 2 2 2

0
82 2 { (1 ) (24 73 ).}

15
a A m p e eπ π η − −∆ = = − +

We can write this formula divide by the period T

              a =
2a

T T
π∆

= 5/2 3/2 2 2 28{ (1 ) (24 73 ).}
15

m p e eη − −− + .

Using Kepler’s third law 
1/2

3/2
2 ,mn
T a
π
= =  

2(1 ).p a e= −  

Substituting these into the above expression, we can transform to 
the formula (32)

                        3 2 1/2 28 ( ) (1 ) (24 73 )
15

ma e e
p

η −= − − +

This means that the results in this paper are all correct with 
previous paper and may be transformed mutually.

The comparison of this work with the work of other 
author

In this paper although the derivation for the formulae ((1)-(3) 
based on the work of Lincoln et al.4 however, the derivation in both 
method are different. The present paper obtained the secular effect on 
the orbital elements by using a method of average values. The work 
of L-W obtained the secular effect of the orbital elements by using 
the iterative method. However, the results obtained by both methods 
may be transformed to the same results for semi-major axis and 
eccentricity through the following relative formula:

                    
2( 2 ) / (1 ).a p ae e∆ = ∆ + −  

2(1 ).p a e= −

We can obtain from the results (3.1a) and (3.1b) of the works of 
Lincoln[-Will

             
5/2 3/2 2 2 282 { (1 ) (24 73 ).}

15
a m p e eπ η − −∆ = − +

This expression may be transformed to the formula (32) in this 
paper

               3 2 1/2 28 ( ) (1 ) (24 73 )
15

ma e e
p

η −= − − + .                         (32) 

The possibility of the observed effect It is possible to observe 
the effect of gravitational radiation damping on the orbit of massive 
binary stars because as in the calculated results for the massive binary 
star V382 Cyg, its orbital semi-major axis shrinks over 6.3 m per year, 
such large effect may be observed by using the recent astronomical 
telescope through per year.10–17

Conclusion
 We conclude that the gravitational radiation damping may results 

in that the orbital semi major axis of binary stars shrinks with time and 
the eccentricity decrease with time. It can be seen from the numerical 
results in Table 2 that for the lifetime (spiral time) of four massive 
binary systems the longest lifetime is the order 10 11 year for V448 Cyg. 
The smallest lifetime is the order 109 year for V382Cyg. Another both 
massive binary stars are the order 1010 year. So that the first collapsed 
binary star is the massive star V382 Cyg. The last collapsible massive 
binary star is V448 Cyg. The collapse time of these binary systems 
are very meaningful. Because when systems collapse and two massive 
binary stars collide mutually, the gravitational wave will be emitted 
possibly. 

We also conclude that we may use different methods to research 
the same topic. If we consider secular and periodic variation of orbit, 
the best method is used to the perturbation method: if we only consider 
secular effect of the orbit, the best method is used to the method of 
average values.

For observing the effect of the gravitation emission damping on 
the orbit, the best means may explore in the compact binary system 
and also may explore in the massive binary system. However, it is not 
all massive binary system that their orbital effects are large, only the 
massive binary system with smaller reparation is such case. 
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