Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 3

Adding and doubling solution to the 1D Fokker-Planck Equation

B D Ganapol,1 Ó López Pouso2

1Aerospace and Mechanical Engineering Department, University of Arizona, USA
2Department of Applied Mathematics, University of Santiago de Compostela, Santiago de Compostela, Spain

Correspondence: B D Ganapol, Aerospace and Mechanical Engineering Department, University of Arizona, Tucson Arizona, USA, Tel 520.621.4728

Received: July 02, 2023 | Published: July 14, 2023

Citation: Ganapol BD, Pouso OL. Adding and doubling solution to the 1D Fokker-Planck Equation. Phys Astron Int J. 2023;7(3):170-173. DOI: 10.15406/paij.2023.07.00305

Download PDF

Abstract

The 1D Fokker-Planck equation (FPE) plays a major role in the propagation of light in the universe. It specifically describes small angle scattering of photons (and electrons) as they travel in participating media. In particular, the differential scattering term representing the phase function scattering law enables the small angle scattering. This term also makes the FPE a challenge to solve in the discrete ordinate sense. Our approach utilizes adding and doubling, which has been successfully applied since the 1960s to solve the linear Boltzmann equation. With the help of Morel’s discrete ordinate equivalence of the angular Laplacian, the FPE becomes similar to the discrete ordinates equation of linear transport theory. We then take advantage of the similarity through adding and doubling for its solution.

Introduction

The 1D Fokker-Planck equation (FPE) is one of the most consequential equations of particle transport theory. Small angle scattering of electrons and photons played a significant role in the early universe before the combination of protons and electrons to form the hydrogen atom allowing photons to scatter to the greater universe as the Cosmic Microwave Background (CMB) we see today. Here, we present a new method to solve the FPE employing adding and doubling as proposed by van de Hulst.1 Our approach is in contrast to previously published solutions, such as response matrix,2 finite differences3 and eigenfunction expansion4 and offers the simplicity of the direct numerical solution of a first order ODE. For its solution we choose adding and doubling, which had proven to be one of the more precise methods of solution of the transport equation.5

We begin with the formation of the discrete ordinate approximation to the FPE. The formulation includes the discretization of the angular Laplacian required to preserve the first and second moments of particle intensity. The first order form of the equation naturally leads to a matrix exponential solution for which we employ a Crank Nicolson numerical approximation. By an appropriate choice of exponential approximation, we find the response matrix, which gives the exiting angular intensity in terms of the incoming intensity. Finally, we evaluate the matrix multiplications to give our final numerical benchmark of exiting intensities for angularly uniform incoming intensities to which we compare to the response matrix benchmark of Ref. 2.

The SN equations

The 1D Fokker-Plank equation (FPE) without volume source is

[ μ z +α ]ψ( z,μ )=σ μ [ ( 1 μ 2 ) ψ( z,μ ) μ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aacqaH8oqBdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadQhaaaGaey4k aSIaeqySdegacaGLBbGaayzxaaGaeqiYdK3aaeWaaeaacaWG6bGaai ilaiabeY7aTbGaayjkaiaawMcaaiabg2da9iabeo8aZnaalaaabaGa eyOaIylabaGaeyOaIyRaeqiVd0gaamaadmaabaWaaeWaaKazfa4=ba GaaGymaiabgkHiTiabeY7aTLqbaoaaCaaajuaibeqaaiaaikdaaaaa juaGcaGLOaGaayzkaaWaaSaaaeaacqGHciITcqaHipqEdaqadaqaai aadQhacaGGSaGaeqiVd0gacaGLOaGaayzkaaaabaGaeyOaIyRaeqiV d0gaaaGaay5waiaaw2faaaaa@650F@   (1a)

The solution is to include half-range boundary conditions

ψ( 0,μ )=f( μ ),μ( 0,1 ] ψ( a,μ )=g( μ ),μ[ 1,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq aHipqEdaqadaqaaiaaicdacaGGSaGaeqiVd0gacaGLOaGaayzkaaGa eyypa0JaamOzamaabmaabaGaeqiVd0gacaGLOaGaayzkaaGaaiilai abeY7aTjabgIGiopaajadabaGaaGimaiaacYcacaaIXaaacaGLOaGa ayzxaaaakeaajuaGcqaHipqEdaqadaqaaiaadggacaGGSaGaeqiVd0 gacaGLOaGaayzkaaGaeyypa0Jaam4zamaabmaabaGaeqiVd0gacaGL OaGaayzkaaGaaiilaiabeY7aTjabgIGiopaajibabaGaeyOeI0IaaG ymaiaacYcacaaIWaaacaGLBbGaayzkaaaaaaa@5F9E@   (1b)

at the boundaries x = 0 and a of a slab of width a. The momentum transfer,

σ= σ tr 2 =( 1g ) σ s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm Naeyypa0ZaaSaaaeaacqaHdpWCmmaaBaaajuaGbaqcLbmacaWG0bGa amOCaaqcfayabaaabaGaaGOmaaaacqGH9aqpdaqadaqaaiaaigdacq GHsislcaWGNbaacaGLOaGaayzkaaWaaSaaaeaacqaHdpWCdaWgaaqa aKqzadGaam4CaaqcfayabaaabaGaaGOmaaaaaaa@4AFA@ ,  (1c)

also known as the transport cross section is characteristic of the FPE, where g is the average scattering cosine.

The method of adding and doubling requires discretization of both direction μ and spatial variable z, though spatial discretization has an analytical element to it.    We first consider the directional (or angular) discretization, following from the N zeros of the Legendre Polynomial on the full-range interval [-1,1]

P 2N ( μ m )=0; m=1,....,2N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiuam aaBaaabaqcLbmacaaIYaGaamOtaaqcfayabaWaaeWaaeaacqaH8oqB daWgaaqaaKqzadGaamyBaaqcfayabaaacaGLOaGaayzkaaGaeyypa0 JaaGimaiaacUdacaqGGaGaamyBaiabg2da9iaaigdacaGGSaGaaiOl aiaac6cacaGGUaGaaiOlaiaacYcacaaIYaGaamOtaaaa@4C8F@ .  (2a)

The discretization [also called the Sn (Segment N) approximation], where

0< μ m <1, m=1,...,N 1< μ m = μ 2Nm+1 <  0, m=N+1,...,2N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca aIWaGaeyipaWJaeqiVd0gddaWgaaqaaiaad2gaaeqaaKqbakabgYda 8iaaigdacaGGSaGaaeiiaiaad2gacqGH9aqpcaaIXaGaaiilaiaac6 cacaGGUaqcLbsacaGGUaGaaiilaKqzagGaamOtaaqcfayaaiabgkHi TiaaigdacqGH8aapcqaH8oqBdaWgaaqaaKqzadGaamyBaaqcfayaba Gaeyypa0JaeyOeI0IaeqiVd02aaSbaaeaajugWaiaaikdacaWGobGa eyOeI0IaamyBaiabgUcaRiaaigdaaKqbagqaaiabgYda8abaaaaaaa aapeGaaiiOaiaacckapaGaaGimaiaacYcacaqGGaGaamyBaiabg2da 9iaad6eacqGHRaWkcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacY cacaaIYaGaamOtaaaaaa@68AD@   (2b)

forms the basis of the discretized solution. Note that 2N assumes the role of quadrature order in the discrete ordinates solution of the radiative transfer equation and the zero ordinate is necessarily avoided since 2N is even.

Applying the Sn approximation, the exact solution relates to the approximate as

ψ( z, μ m )= ψ m ( z )+ε( z, μ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK 3aaeWaaeaacaWG6bGaaiilaiabeY7aTnaaBaaabaqcLbmacaWGTbaa juaGbeaaaiaawIcacaGLPaaacqGH9aqpcqaHipqEdaWgaaqaaKqzad GaamyBaaqcfayabaWaaeWaaeaacaWG6baacaGLOaGaayzkaaGaey4k aSIaeqyTdu2aaeWaaeaacaWG6bGaaiilaiabeY7aTnaaBaaabaqcLb macaWGTbaajuaGbeaaaiaawIcacaGLPaaaaaa@52B0@ .  (3a)

ε( z, μ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu 2aaeWaaeaacaWG6bGaaiilaiabeY7aTXWaaSbaaKqbagaajugWaiaa d2gaaKqbagqaaaGaayjkaiaawMcaaaaa@40B2@  is the discretization error, and the Sn balance equation is

[ μ m z +α ] ψ m ( z )=σ m 2 ψ m ( z ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aacqaH8oqBmmaaBaaajuaGbaqcLbmacaWGTbaajuaGbeaadaWcaaqa aiabgkGi2cqaaiabgkGi2kaadQhaaaGaey4kaSIaeqySdegacaGLBb GaayzxaaGaeqiYdKhddaWgaaqcfayaaKqzadGaamyBaaqcfayabaWa aeWaaeaacaWG6baacaGLOaGaayzkaaGaeyypa0Jaeq4WdmNaey4bIe nddaqhaaqcfayaaKqzadGaamyBaaqcfayaaKqzadGaaGOmaaaajuaG cqaHipqEdaWgaaqaaKqzadGaamyBaaqcfayabaWaaeWaaeaacaWG6b aacaGLOaGaayzkaaGaaiOlaaaa@5DE8@ .  (3b)

m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4bIe nddaqhaaqcfayaaKqzadGaamyBaaqcfayaaKqzadGaaGOmaaaaaaa@3D8E@  is the discretized FP operator,4,6

μ [ ( 1 μ 2 ) ψ( z,μ ) μ ] μ m m 2 ψ m ( z ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacqGHciITaeaacqGHciITjuMfbiabeY7aTbaajuaGdaWadaqaamaa bmaabaGaaGymaiabgkHiTiabeY7aTnaaCaaabeqaaKqzadGaaGOmaa aaaKqbakaawIcacaGLPaaadaWcaaqaaiabgkGi2kabeI8a5naabmaa baGaamOEaiaacYcacqaH8oqBaiaawIcacaGLPaaaaeaacqGHciITju MfbiabeY7aTbaaaKqbakaawUfacaGLDbaadaWgaaqaaiabeY7aTnaa BaaabaqcLbmacaWGTbaajuaGbeaaaeqaaKazaa2=cqWIdjYojuaGcq GHhis0mmaaDaaajuaGbaqcLbmacaWGTbaajuaGbaqcLbmacaaIYaaa aKqbakabeI8a5naaBaaabaqcLbmacaWGTbaajuaGbeaadaqadaqaai aadQhaaiaawIcacaGLPaaacaGGSaaaaa@699B@   (4a)

expressed as2

m 2 ψ m ( z ) 1 ω m [ β m+1/2 ( ψ m+1 ( z ) ψ m ( z ) ) β m1/2 ( ψm( z ) ψ m1 ( z ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaSaey4bIe nddaqhaaqcfaCaaKqzaeGaamyBaaqcfaCaaKqzaeGaaGOmaaaajuaW cqaHipqEjuaGdaWgaaqcfaCaaKqzaeGaamyBaaqcfaCabaqcfa4aae WaaKqbahaacaWG6baacaGLOaGaayzkaaGaeyyyIOBcfa4aaSaaaKqb ahaacaaIXaaabaGaeqyYdCxcfa4aaSbaaKqbahaajugabiaad2gaaK qbahqaaaaajuaGdaWadaqcfambaeqabaGaeqOSdigddaWgaaqcfaCa aKqzaeGaamyBaiabgUcaRiaaigdacaGGVaGaaGOmaaqcfaCabaqcfa 4aaeWaaKqbahaacqaHipqEmmaaBaaajuaWbaqcLbqacaWGTbGaey4k aSIaaGymaaqcfaCabaqcfa4aaeWaaKqbahaacaWG6baacaGLOaGaay zkaaGaeyOeI0IaeqiYdKxcfa4aaSbaaKqbahaacaWGTbaabeaajuaG daqadaqcfaCaaiaadQhaaiaawIcacaGLPaaaaiaawIcacaGLPaaacq GHsislaeaacqGHsislcqaHYoGymmaaBaaajuaWbaqcLbqacaWGTbGa eyOeI0IaaGymaiaac+cacaaIYaaajuaWbeaajuaGdaqadaqcfaCaai abeI8a5LqzaeGaamyBaKqbaoaabmaajuaWbaGaamOEaaGaayjkaiaa wMcaaiabgkHiTiabeI8a5XWaaSbaaKqbahaajugabiaad2gacqGHsi slcaaIXaaajuaWbeaajuaGdaqadaqcfaCaaiaadQhaaiaawIcacaGL PaaaaiaawIcacaGLPaaaaaGaay5waiaaw2faaaaa@9122@   (4b)

with

β m+1/2 γ m+1/2 μ m+1 μ m γ m+1/2 = γ m1/2 2 μ m ω m ,  γ 1/2 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq aHYoGymmaaBaaajuaGbaqcLbmacaWGTbGaey4kaSIaaGymaiaac+ca caaIYaaajuaGbeaacqGHHjIUdaWcaaqaaiabeo7aNXWaaSbaaKqbag aajugWaiaad2gacqGHRaWkcaaIXaGaai4laiaaikdaaKqbagqaaaqa aiabeY7aTXWaaSbaaKqbagaajugWaiaad2gacqGHRaWkcaaIXaaaju aGbeaamiabgkHiTKqbakabeY7aTnaaBaaabaqcLbmacaWGTbaajuaG beaaaaaakeaajuaGcqaHZoWzmmaaBaaajuaGbaqcLbmacaWGTbGaey 4kaSIaaGymaiaac+cacaaIYaaajuaGbeaacqGH9aqpcqaHZoWzmmaa BaaajuaGbaqcLbmacaWGTbGaeyOeI0IaaGymaiaac+cacaaIYaaaju aGbeaaliabgkHiTKqbakaaikdacqaH8oqBdaWgaaqaaKqzadGaamyB aaqcfayabaGaeqyYdC3aaSbaaeaajugWaiaad2gaaKqbagqaaiaacY cacaqGGaGaeq4SdCgddaWgaaqcfayaaKqzadGaaGymaiaac+cacaaI YaaajuaGbeaacqGHHjIUcaaIWaGaaiOlaaaaaa@7DA2@   (4c)

For  ω m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC hddaWgaaqcfayaaKqzadGaamyBaaqcfayabaaaaa@3BEA@

ω m = ω ˜ Nm+1 ,m=1,...,N ω 2Nm+1 = ω ˜ m,m=N+1,...,2N, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGcq aHjpWDdaWgaaqaaKqzadGaamyBaaqcfayabaGaeyypa0JafqyYdCNb aGaammaaBaaajuaGbaqcLbmacaWGobGaeyOeI0IaamyBaiabgUcaRi aaigdaaKqbagqaaiaacYcacaWGTbGaeyypa0JaaGymaiaacYcacaGG UaGaaiOlaiaac6cacaGGSaGaamOtaaGcbaqcfaOaeqyYdChddaWgaa qcfayaaKqzadGaaGOmaiaad6eacqGHsislcaWGTbGaey4kaSIaaGym aaqcfayabaGaeyypa0JafqyYdCNbaGaajugWaiaad2gajuaGcaGGSa GaamyBaiabg2da9iaad6eacqGHRaWkcaaIXaGaaiilaiaac6cacaGG UaGaaiOlaiaacYcacaaIYaGaamOtaiaacYcaaaaa@66EF@   (4d)

which is the corresponding Gauss quadrature weight for the prescribed ordinate at m.

If one defines the L matrix as

L=[ ν 1 β 3/2 0 0 ... ... 0 β3/2 ν 2 β 5/2 0 ... ... ... ... ... .... 0 ... β m1/2 ν m β m+1/2 0 ... 0 ... ... ... ... ... ... ... ... ... ... β 2N3/2 ν 2N1 β 2N1/2 0 ... ... 0 β 2N1/2 ν 2N ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaacbmqcfaOaa8 htaiabg2da9maadmaabaqbaeqabGacaaaaaaaabaGaeyOeI0IaeqyV d4gddaWgaaqcfayaaKqzadGaaGymaaqcfayabaaabaGaeqOSdi2aaS baaeaajugWaiaaiodacaGGVaGaaGOmaaqcfayabaaabaGaaGimaaqa aiaaicdaaeaacaGGUaGaaiOlaiaac6caaeaacaGGUaGaaiOlaiaac6 caaeaaaeaacaaIWaaabaGaeqOSdiwcLbmacaaIZaGaai4laiaaikda aKqbagaacqGHsislcqaH9oGBdaWgaaqaaKqzadGaaGOmaaqcfayaba aabaGaeqOSdigddaWgaaqcfawaaKqzadGaaGynaiaac+cacaaIYaaa juaybeaaaKqbagaacaaIWaaabaGaaiOlaiaac6cacaGGUaaabaaaba aabaGaaiOlaiaac6cacaGGUaaabaGaaiOlaiaac6cacaGGUaaabaGa aiOlaiaac6cacaGGUaaabaGaaiOlaiaac6cacaGGUaaabaGaaiOlai aac6cacaGGUaGaaiOlaaqaaaqaaaqaaaqaaaqaaiaaicdaaeaacaGG UaGaaiOlaiaac6caaeaacqaHYoGymmaaBaaajuaGbaqcLbmacaWGTb GaeyOeI0IaaGymaiaac+cacaaIYaaajuaGbeaaaeaacqGHsislcqaH 9oGBdaWgaaqaaKqzadGaamyBaaqcfayabaaabaGaeqOSdigddaWgaa qcfayaaKqzadGaamyBaiabgUcaRiaaigdacaGGVaGaaGOmaaqcfaya baaabaGaaGimaaqaaiaac6cacaGGUaGaaiOlaaqaaiaaicdaaeaaca GGUaGaaiOlaiaac6caaeaaaeaacaGGUaGaaiOlaiaac6caaeaacaGG UaGaaiOlaiaac6caaeaacaGGUaGaaiOlaiaac6caaeaaaeaaaeaaae aaaeaaaeaaaeaacaGGUaGaaiOlaiaac6caaeaacaGGUaGaaiOlaiaa c6caaeaacaGGUaGaaiOlaiaac6caaeaaaeaacaGGUaGaaiOlaiaac6 caaeaacaGGUaGaaiOlaiaac6caaeaaaeaaaeaaaeaacaGGUaGaaiOl aiaac6caaeaacqaHYoGydaWgaaqaaKqzadGaaGOmaiaad6eacqGHsi slcaaIZaGaai4laiaaikdaaKqbagqaaaqaaiabgkHiTiabe27aUnaa BaaabaqcLbmacaaIYaGaamOtaiabgkHiTiaaigdaaKqbagqaaaqaai abek7aInaaBaaabaqcLbmacaaIYaGaamOtaiabgkHiTiaaigdacaGG VaGaaGOmaaqcfayabaaabaGaaGimaaqaaiaac6cacaGGUaGaaiOlaa qaaaqaaaqaaiaac6cacaGGUaGaaiOlaaqaaiaaicdaaeaacqaHYoGy daWgaaqcfawaaKqzadGaaGOmaiaad6eacqGHsislcaaIXaGaai4lai aaikdaaKqbagqaaaqaaiabgkHiTiabe27aUnaaBaaabaqcLbmacaaI YaGaamOtaaqcfayabaaaaaGaay5waiaaw2faaaaa@C92A@   (5a)

with

ν m β m+1/2 + β m1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyVd4 2cdaWgaaqcbasaaiaad2gaaeqaaKqbakabggMi6kabek7aITWaaSba aKqaGeaacaWGTbGaey4kaSIaaGymaiaac+cacaaIYaaabeaajuaGcq GHRaWkcqaHYoGylmaaBaaajeaibaGaamyBaiabgkHiTiaaigdacaGG VaGaaGOmaaqabaaaaa@4970@ ;  (5b)

then the balance equation, Eq(3b), becomes the following set of first order ODEs:

[ M z +α ]ψ( z )=σ W 1 Lψ( z )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aaieWacaWFnbWaaSaaaeaacqGHciITaeaacqGHciITcaWG6baaaiab gUcaRiabeg7aHbGaay5waiaaw2faaGGadiab+H8a5naabmaabaGaam OEaaGaayjkaiaawMcaaiabg2da9iabeo8aZjaa=DfammaaCaaajuaG beqaaKqzadGaeyOeI0IaaGymaaaajuaGcaWFmbGae4hYdK3aaeWaae aacaWG6baacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@52D7@ .  (6a)

with

Wdiag{ ω m } Mdiag{ μ m }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaieWaju aGcaWFxbGaeyyyIORaamizaiaadMgacaWGHbGaam4zamaacmaabaGa eqyYdChddaWgaaqcfayaaKqzadGaamyBaaqcfayabaaacaGL7bGaay zFaaaakeaajuaGcaWFnbGaeyyyIORaamizaiaadMgacaWGHbGaam4z amaacmaabaGaeqiVd02aaSbaaeaammaaBaaajuaGbaqcLbmacaWGTb aajuaGbeaaaeqaaaGaay5Eaiaaw2haaiaac6caaaaa@5373@   (6b)

Equation (6a) is to be resolved numerically within the slab; but for this presentation, we only report the exiting intensity at slab boundaries.

Before continuing, some additional explanation is in order to complete the derivation of the Sn equations. We have chosen the full-range discretization rather than the half- range over [-1,0),(0,1] since there is evidence that full-range gives better precision.2 Secondly, there are at least three known discretizations for the angular Laplacian. The one chosen preserves the diffusion limit in that the zeroth and first moments of the intensity are exact for the given quadrature order 2N.

The Response Matrix

A reformulated Eq(6a) is

dψ( z ) dz = M 1 [ σ W 1 LαΙ ]ψ( z )Aψ( z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaae aacaWGKbaccmGae8hYdK3aaeWaaeaacaWG6baacaGLOaGaayzkaaaa baGaamizaiaadQhaaaGaeyypa0dcbmGaa4xtamaaCaaabeqaaKqzad GaeyOeI0IaaGymaaaajuaGdaWadaqaaiabeo8aZjaa+Dfadaahaaqa beaajugWaiabgkHiTiaaigdaaaqcfaOaa4htaGGaaiab9jHiTiabeg 7aHjab=L5ajbGaay5waiaaw2faaiab=H8a5naabmaabaGaamOEaaGa ayjkaiaawMcaaiabggMi6kaa+feacqWFipqEdaqadaqaaiaadQhaai aawIcacaGLPaaaaaa@5B59@   (7a)

with formal solution in spatial cell of thickness h = zn+1-zn,

ψ( z n+1 )= e Ah ψ( z n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcfaOae8 hYdK3aaeWaaeaacaWG6baddaWgaaqcfayaaKqzadGaamOBaiabgUca RiaaigdaaKqbagqaaaGaayjkaiaawMcaaiabg2da9iaadwgadaahaa qabeaaieWajugWaiaa+feacaWGObaaaKqbakab=H8a5naabmaabaGa amOEamaaBaaabaqcLbmacaWGUbaajuaGbeaaaiaawIcacaGLPaaaaa a@4CC2@ ,  (7b)

since A is independent of z.

To initiate a Crank-Nicolson finite difference approximation, the exponential in Eq(7b) is re-cast as

e Ah = e Ah/2 e Ah/2 = [ e Ah/2 ] 1 e Ah/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaGYcjqgaa+ VaamyzaOWaaWbaaKqaafqajeaibaacbmGaa8xqaiaadIgaaaqcKbaG =labg2da9iaadwgakmaaCaaajeaqbeqcbasaaiaa=feacaWGObGaai 4laiaaikdaaaqcKbaG=laadwgakmaaCaaajeaqbeqcbasaaiaa=fea caWGObGaai4laiaaikdaaaqcKbaG=labg2da9OWaamWaaKaaafaajq gaa+VaamyzaOWaaWbaaKqaafqajeaibaGaeyOeI0Iaa8xqaiaadIga caGGVaGaaGOmaaaaaKaaajaawUfacaGLDbaakmaaCaaajeaqbeqcba saaiabgkHiTiaaigdaaaqcKbaG=laadwgakmaaCaaajeaqbeqcbasa aiaa=feacaWGObGaai4laiaaikdaaaaaaa@5F98@   (8a)

and introducing the first two terms of the Taylor series for the exponential approximation

e -Ah/2 =IAh/2 P e Ah/2 =I+Ah/2P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajuaGca WGLbaddaahaaqcfayabeaaieWajugWaiaa=1cacaWFbbGaamiAaiaa c+cacaaIYaaaaKqbakabg2da9iaa=LeacqGHsislcaWFbbGaamiAai aac+cacaaIYaGaeyyyIORaa8huaSWaaWbaaKqaGeqabaGaey4fIOca aaGcbaqcfaOaamyzaWWaaWbaaKqbagqabaqcLbmacaWFbbGaamiAai aac+cacaaIYaaaaKqbakabg2da9iaa=LeacaWFRaGaa8xqaiaadIga caGGVaGaaGOmaiabggMi6kaa=bfaaaaa@56FC@   (8b)

giving

ψ( z n+1 )= P 1 Pψ( z n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcfaOae8 hYdK3aaeWaaeaacaWG6bWaaSbaaeaajugWaiaad6gacqGHRaWkcaaI XaaajuaGbeaaaiaawIcacaGLPaaacqGH9aqpieWacaGFqbaddaahaa qcfayabeaajugWaiabgEHiQaaammaaCaaajuaGbeqaaKqzadGaeyOe I0IaaGymaaaajuaGcaGFqbGae8hYdK3aaeWaaeaacaWG6bWaaSbaae aajugWaiaad6gaaKqbagqaaaGaayjkaiaawMcaaaaa@504B@ .  (8c)

The spatial approximation across a single cell then follows as

ψ n+1 = P 1 P ψ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcfaOae8 hYdKhddaWgaaqcfayaaKqzadGaamOBaiabgUcaRiaaigdaaKqbagqa aGqadiaa+1dacaGFqbaddaahaaqcfayabeaajugWaiabgEHiQaaamm aaCaaajuaGbeqaaKqzadGaeyOeI0IaaGymaaaajuaGcaGFqbGae8hY dK3aaSbaaeaajugWaiaad6gaaKqbagqaaaaa@4B8C@ .  (8d)

Since the 1D transport equation tracks particles in either the forward or the backward directions away from the near and far boundaries, one considers the drift in each direction separately, with coupling through scattering. Of course, this is a convenient consequence of the half-range boundary conditions. Thus, we identify the forward (+) and backward (-) components as

ψ( z n )=[ ψ + ( z n ) ψ ( z n ) ][ ψ n + ψ n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcfaOae8 hYdK3aaeWaaeaacaWG6bWaaSbaaeaajugWaiaad6gaaKqbagqaaaGa ayjkaiaawMcaaiabg2da9maadmaabaqbaeqabiqaaaqaaiab=H8a5n aaCaaabeqaaKqzadGaey4kaScaaKqbaoaabmaabaGaamOEamaaBaaa baqcLbmacaWGUbaajuaGbeaaaiaawIcacaGLPaaaaeaacqWFipqEda ahaaqabeaajugWaiabgkHiTaaajuaGdaqadaqaaiaadQhadaWgaaqa aKqzadGaamOBaaqcfayabaaacaGLOaGaayzkaaaaaaGaay5waiaaw2 faaiabloKi7maadmaabaqbaeqabiqaaaqaaiab=H8a5XWaa0baaKqb agaajugWaiaad6gaaKqbagaajugWaiabgUcaRaaaaKqbagaacqWFip qEmmaaDaaajuaGbaqcLbmacaWGUbaajuaGbaqcLbmacqGHsislaaaa aaqcfaOaay5waiaaw2faaaaa@6793@   (9a)

and when introduce into the spatial approximation

ψ n+1 = P 1 P ψ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaccmqcfaOae8 hYdKhddaWgaaqcfayaaKqzadGaamOBaiabgUcaRiaaigdaaKqbagqa aiabg2da9Gqadiaa+bfammaaCaaajuaGbeqaaKqzadGaey4fIOIaey OeI0IaaGymaaaajuaGcaGFqbGae8hYdK3aaSbaaeaajugWaiaad6ga aKqbagqaaaaa@49EB@   (9b)

gives, on re-arranging and matrix partitioning

[ P 11 P 12 P 21 P 22 ][ ψ n+1 + ψ n+1 ]=[ P 11 P 12 P 21 P 22 ][ ψ n + ψ n ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aafaqabeGacaaabaacbmGaa8huaWWaa0baaKqbagaajugWaiaaigda caaIXaaajuaGbaqcLbmacqGHxiIkaaaajuaGbaGaa8huaWWaa0baaK qbagaajugWaiaaigdacaaIYaaajuaGbaqcLbmacqGHxiIkaaaajuaG baGaa8huaWWaa0baaKqbagaajugWaiaaikdacaaIXaaajuaGbaqcLb macqGHxiIkaaaajuaGbaGaa8huaWWaa0baaKqbagaajugWaiaaikda caaIYaaajuaGbaqcLbmacqGHxiIkaaaaaaqcfaOaay5waiaaw2faam aadmaabaqbaeqabiqaaaqaaGGadiab+H8a5XWaa0baaKqbagaajugW aiaad6gacqGHRaWkcaaIXaaajuaGbaqcLbmacqGHRaWkaaaajuaGba Gae4hYdKhddaqhaaqcfayaaKqzadGaamOBaiabgUcaRiaaigdaaKqb agaajugWaiabgkHiTaaaaaaajuaGcaGLBbGaayzxaaGaeyypa0Zaam WaaeaafaqabeGacaaabaGaa8huaWWaaSbaaKqbagaajugWaiaaigda caaIXaaajuaGbeaaaeaacaWFqbaddaWgaaqcfayaaKqzadGaaGymai aaikdaaKqbagqaaaqaaiaa=bfadaWgaaqaaKqzadGaaGOmaiaaigda aKqbagqaaaqaaiaa=bfammaaBaaajuaybaqcLbmacaaIYaGaaGOmaa qcfawabaaaaaqcfaOaay5waiaaw2faamaadmaabaqbaeqabiqaaaqa aiab+H8a5XWaa0baaKqbagaajugWaiaad6gaaKqbagaajugWaiabgU caRaaaaKqbagaacqGFipqEmmaaDaaajuaGbaqcLbmacaWGUbaajuaG baqcLbmacqGHsislaaaaaaqcfaOaay5waiaaw2faaaaa@92C5@ .  (9c)

The cell input and output is explicitly shown in Figure 1. By expanding the matrix multiplication.

Figure 1 Cell input and output.

P 11 * ψ n+1 + + P 12 * ψ n+1 = P 11 ψ n + + P 12 ψ n P 21 * ψ n+1 + + P 22 * ψ n+1 = P 21 ψ n + + P 22 ψ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaieWaju aGcaWFqbWcdaqhaaqcbasaaiaaigdacaaIXaaabaGaaiOkaaaaiiWa juaGcqGFipqElmaaDaaajeaibaGaamOBaiabgUcaRiaaigdaaeaacq GHRaWkaaqcfaOaa83kaiaa=bfalmaaDaaajeaibaGaaGymaiaaikda aeaacaGGQaaaaKqbakab+H8a5TWaa0baaKqaGeaacaWGUbGaey4kaS IaaGymaaqaaiabgkHiTaaajuaGcqGH9aqpcaWFqbWcdaWgaaqcbasa aiaaigdacaaIXaaabeaajuaGcqGFipqElmaaDaaajeaibaGaamOBaa qaaiabgUcaRaaajuaGcaWFRaGaa8huaSWaaSbaaKqaGeaacaaIXaGa aGOmaaqabaqcfaOae4hYdK3cdaqhaaqcbasaaiaad6gaaeaacqGHsi slaaaakeaajuaGcaWFqbWcdaqhaaqcbasaaiaaikdacaaIXaaabaGa aiOkaaaajuaGcqGFipqElmaaDaaajeaibaGaamOBaiabgUcaRiaaig daaeaacqGHRaWkaaqcfaOaa83kaiaa=bfalmaaDaaajeaibaGaaGOm aiaaikdaaeaacaGGQaaaaKqbakab+H8a5TWaa0baaKqaGeaacaWGUb Gaey4kaSIaaGymaaqaaiabgkHiTaaajuaGcqGH9aqpcaWFqbWcdaWg aaqcbasaaiaaikdacaaIXaaabeaajuaGcqGFipqElmaaDaaajeaiba GaamOBaaqaaiabgUcaRaaajuaGcaWFRaGaa8huaSWaaSbaaKqaGeaa caaIYaGaaGOmaaqabaqcfaOae4hYdK3cdaqhaaqcbasaaiaad6gaae aacqGHsislaaaaaaa@81D8@   (10a)

and re-arranging so that the incoming intensities are on the RHS and the outgoing on the LHS results in

[ P 11 P 12 P 21 P 22 ][ ψ n+1 + ψ n ]=[ P 11 P 12 * P 21 P 22 * ][ ψ n + ψ n+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaamajuaGda WadaqcfaCaauaabeqaciaaaeaaieWacaWFqbaddaqhaaqcfaCaaKqz aeGaaGymaiaaigdaaKqbahaajugabiabgEHiQaaaaKqbahaacqGHsi slcaWFqbqcfa4aaSbaaKqbahaajugabiaaigdacaaIYaaajuaWbeaa aeaacaWFqbaddaqhaaqcfaCaaKqzaeGaaGOmaiaaigdaaKqbahaaju gabiabgEHiQaaaaKqbahaacqGHsislcaWFqbaddaWgaaqcfaCaaKqz aeGaaGOmaiaaikdaaKqbahqaaaaaaiaawUfacaGLDbaajuaGdaWada qcfaCaauaabeqaceaaaeaaiiWacqGFipqEmmaaDaaajuaWbaqcLbqa caWGUbGaey4kaSIaaGymaaqcfaCaaKqzaeGaey4kaScaaaqcfaCaai ab+H8a5XWaa0baaKqbahaajugabiaad6gaaKqbahaajugabiabgkHi TaaaaaaajuaWcaGLBbGaayzxaaGaeyypa0tcfa4aamWaaKqbahaafa qabeGacaaabaGaa8huaWWaaSbaaKqbahaajugabiaaigdacaaIXaaa juaWbeaaaeaacqGHsislcaWFqbaddaqhaaqcfaCaaKqzaeGaaGymai aaikdaaKqbahaajugabiaacQcaaaaajuaWbaGaa8huaWWaaSbaaKqb ahaajugabiaaikdacaaIXaaajuaWbeaaaeaacqGHsislcaWFqbadda qhaaqcfaCaaKqzaeGaaGOmaiaaikdaaKqbahaajugabiaacQcaaaaa aaqcfaSaay5waiaaw2faaKqbaoaadmaajuaWbaqbaeqabiqaaaqaai ab+H8a5XWaa0baaKqbahaajugabiaad6gaaKqbahaajugabiabgUca RaaaaKqbahaacqGFipqEmmaaDaaajuaWbaqcLbqacaWGUbGaey4kaS IaaGymaaqcfaCaaKqzaeGaeyOeI0caaaaaaKqbalaawUfacaGLDbaa aaa@957E@ .  (10b)

Inverting for the outgoing intensities from both boundaries gives

[ ψ n+1 + ψ n ]=R[ ψ n + ψ n+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaamajuaGda WadaqaauaabeqaceaaaeaaiiWacqWFipqEmmaaDaaajuaGbaqcLbma caWGUbGaey4kaSIaaGymaaqcfayaaKqzadGaey4kaScaaaqcfayaai ab=H8a5XWaa0baaKqbagaajugWaiaad6gaaKqbagaajugWaiabgkHi TaaaaaaajuaGcaGLBbGaayzxaaGaeyypa0dcbmGaa4Nuamaadmaaba qbaeqabiqaaaqaaiab=H8a5XWaa0baaKqbagaajugWaiaad6gaaKqb agaajugWaiabgUcaRaaaaKqbagaacqWFipqEmmaaDaaajuaGbaqcLb macaWGUbGaey4kaSIaaGymaaqcfayaaKqzadGaeyOeI0caaaaaaKqb akaawUfacaGLDbaaaaa@5FFE@   (11a)

and the response matrix emerges as

R [ P 11 P 12 P 21 P 22 ] 1 [ P 11 P 12 * P 21 P 22 * ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaamaieWaju aGcaWFsbGaeyyyIO7aamWaaeaafaqabeGacaaabaGaa8huaWWaa0ba aKqbagaajugWaiaaigdacaaIXaaajuaGbaqcLbmacqGHxiIkaaaaju aGbaGaeyOeI0Iaa8huamaaBaaabaqcLbmacaaIXaGaaGOmaaqcfaya baaabaGaa8huaWWaa0baaKqbagaajugWaiaaikdacaaIXaaajuaGba qcLbmacqGHxiIkaaaajuaGbaGaeyOeI0Iaa8huaWWaaSbaaKqbagaa jugWaiaaikdacaaIYaaajuaGbeaaaaaacaGLBbGaayzxaaWaaWbaae qabaqcLbmacqGHsislcaaIXaaaaKqbaoaadmaabaqbaeqabiGaaaqa aiaa=bfadaWgaaqaaKqzadGaaGymaiaaigdaaKqbagqaaaqaaiabgk HiTiaa=bfammaaDaaajuaGbaqcLbmacaaIXaGaaGOmaaqcfayaaKqz adGaaiOkaaaaaKqbagaacaWFqbWaaSbaaeaajugWaiaaikdacaaIXa aajuaGbeaaaeaacqGHsislcaWFqbaddaqhaaqcfayaaKqzadGaaGOm aiaaikdaaKqbagaajugWaiaacQcaaaaaaaqcfaOaay5waiaaw2faaa aa@73B5@ .  (11b)

Thus, we have successfully obtained an approximation to the response of an infinitesimal slab to boundary inputs. Note that the response is independent of the boundary intensities and depends only on slab properties and thickness--but we still require the response over the entire slab, so we will now add and double.

Adding and doubling

Once we find the response for a single small slab of any thickness, the interaction principle enables construction of the cumulative response for any number of slabs through adding.

We consider the response for two identical slabs as shown in Figure 2 each with response matrix R. Writing out the complete response for each slab, we have

Figure 2 Combined slabs.

[ ψ 1 + ψ 0 ]=[ R 11 R 12 R 21 R 22 ][ ψ 0 + ψ 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aafaqabeGabaaabaaccmGae8hYdKhddaqhaaqcfayaaKqzadGaaGym aaqcfayaaKqzadGaey4kaScaaaqcfayaaiab=H8a5XWaa0baaKqbag aajugWaiaaicdaaKqbagaajugWaiabgkHiTaaaaaaajuaGcaGLBbGa ayzxaaGaeyypa0ZaamWaaeaafaqabeGacaaabaacbmGaa4NuaWWaaS baaKqbagaajugWaiaaigdacaaIXaaajuaGbeaaaeaacaGFsbaddaWg aaqcfayaaKqzadGaaGymaiaaikdaaKqbagqaaaqaaiaa+jfammaaBa aajuaGbaqcLbmacaaIYaGaaGymaaqcfayabaaabaGaa4NuamaaBaaa baqcLbmacaaIYaGaaGOmaaqcfayabaaaaaGaay5waiaaw2faamaadm aabaqbaeqabiqaaaqaaiab=H8a5XWaa0baaKqbagaajugWaiaaicda aKqbagaajugWaiabgUcaRaaaaKqbagaacqWFipqEmmaaDaaajuaGba qcLbmacaaIXaaajuaGbaqcLbmacqGHsislaaaaaaqcfaOaay5waiaa w2faaaaa@6EB5@   (12a,b)

[ ψ 2 + ψ 1 ]=[ R 11 R 12 R 21 R 22 ][ ψ 1 + ψ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaae aafaqabeGabaaabaaccmGae8hYdKhddaqhaaqcfayaaKqzadGaaGOm aaqcfayaaKqzadGaey4kaScaaaqcfayaaiab=H8a5XWaa0baaKqbag aajugWaiaaigdaaKqbagaajugWaiabgkHiTaaaaaaajuaGcaGLBbGa ayzxaaGaeyypa0ZaamWaaeaafaqabeGacaaabaacbmGaa4NuaWWaaS baaKqbagaajugWaiaaigdacaaIXaaajuaGbeaaaeaacaGFsbaddaWg aaqcfayaaKqzadGaaGymaiaaikdaaKqbagqaaaqaaiaa+jfadaWgaa qaaKqzadGaaGOmaiaaigdaaKqbagqaaaqaaiaa+jfadaWgaaqaaKqz adGaaGOmaiaaikdaaKqbagqaaaaaaiaawUfacaGLDbaadaWadaqaau aabeqaceaaaeaacqWFipqEmmaaDaaajuaGbaqcLbmacaaIXaaajuaG baqcLbmacqGHRaWkaaaajuaGbaGae8hYdKhddaqhaaqcfayaaKqzad GaaGOmaaqcfayaaKqzadGaeyOeI0caaaaaaKqbakaawUfacaGLDbaa aaa@6E1F@   (12c,d)

and expanding the products

ψ 1 + = R 11 ψ 0 + + R 12 ψ 1 ψ 0 = R 21 ψ 0 + + R 22 ψ 1 ψ 2 + = R 11 ψ 1 + + R 12 ψ 2 ψ 1 = R 21 ψ 1 + + R 22 ψ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceiqabeaaadqaaG GadKqbakab=H8a5XWaa0baaKqbagaajugWaiaaigdaaKqbagaajugW aiabgUcaRaaaieWajuaGcaGF9aGaa4hiaiaa+jfammaaBaaajuaGba qcLbmacaaIXaGaaGymaaqcfayabaGae8hYdKhddaqhaaqcfayaaKqz adGaaGimaaqcfayaaKqzadGaey4kaScaaKqbakaa+bcacaGFGaGaa4 hiaiaa+TcacaGFGaGaa4hiaiaa+jfadaWgaaqaaKqzadGaaGymaiaa ikdaaKqbagqaaiab=H8a5XWaa0baaKqbGfaajugWaiaaigdaaKqbGf aajugWaiabgkHiTaaaaKqbagaacqWFipqEmmaaDaaajuaGbaqcLbma caaIWaaajuaGbaqcLbmacqGHsislaaqcfaOaa4xpaiaa+jfadaWgaa qaaKqzadGaaGOmaiaaigdaaKqbagqaaiab=H8a5XWaa0baaKqbagaa jugWaiaaicdaaKqbagaajugWaiabgUcaRaaacaGFGaqcfaOaa4hiai aa+TcacaGFGaGaa4hiaiaa+bcacaGFsbWaaSbaaeaajugWaiaaikda caaIYaaajuaGbeaacqWFipqEmmaaDaaajuaGbaqcLbmacaaIXaaaju aGbaqcLbmacqGHsislaaaajuaGbaGae8hYdKhddaqhaaqcfayaaKqz adGaaGOmaaqcfayaaKqzadGaey4kaScaaKqbakaa+1dacaGFsbadda WgaaqcfayaaKqzadGaaGymaiaaigdaaKqbagqaaiab=H8a5XWaa0ba aKqbagaajugWaiaaigdaaKqbagaajugWaiabgUcaRaaajuaGcaGFGa Gaa43kaiaa+bcacaGFGaGaa4hiaiaa+jfadaWgaaqaaKqzadGaaGym aiaaikdaaKqbagqaaiab=H8a5XWaa0baaKqbagaajugWaiaaikdaaK qbagaajugWaiabgkHiTaaaaOqaaKqbakab=H8a5XWaa0baaKqbagaa jugWaiaaigdaaKqbagaajugWaiabgkHiTaaajuaGcaGF9aGaa4Nuam aaBaaabaqcLbmacaaIYaGaaGymaaqcfayabaGae8hYdKhddaqhaaqc fayaaKqzadGaaGymaaqcfayaaKqzadGaey4kaScaaKqbakaa+Tcaca GFsbaddaWgaaqcfayaaKqzadGaaGOmaiaaikdaaKqbagqaaiab=H8a 5XWaa0baaKqbagaajugWaiaaikdaaKqbagaajugWaiabgkHiTaaaju aGcaGGUaaaaaa@C58D@    (13a,b,c,d)

Expressing the ingoing and outgoing intensities at the combined slab center interface with Eqs(13a,d) gives

[ I R 12 R 21 I ][ ψ 1 + ψ 1 ]=[ R 11 0 0 R 22 ][ ψ 0 + ψ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaamajuaGda WadaqaauaabeqaciaaaeaaieWacaWFjbaabaGaeyOeI0Iaa8NuaWWa aSbaaKqbagaajugWaiaaigdacaaIYaaajuaGbeaaaeaacqGHsislca WFsbaddaWgaaqcfayaaKqzadGaaGOmaiaaigdaaKqbagqaaaqaaiaa =LeaaaaacaGLBbGaayzxaaWaamWaaeaafaqabeGabaaabaaccmGae4 hYdKhddaqhaaqcfayaaKqzadGaaGymaaqcfayaaKqzadGaey4kaSca aaqcfayaaiab+H8a5XWaa0baaKqbagaajugWaiaaigdaaKqbagaaju gWaiabgkHiTaaaaaaajuaGcaGLBbGaayzxaaGaeyypa0ZaamWaaeaa faqabeGacaaabaGaa8NuamaaBaaabaqcLbmacaaIXaGaaGymaaqcfa yabaaabaacbeGaa0hmaaqaaiaa9bdaaeaacaWFsbWaaSbaaeaajugW aiaaikdacaaIYaaajuaGbeaaaaaacaGLBbGaayzxaaWaamWaaeaafa qabeGabaaabaGae4hYdKhddaqhaaqcfayaaKqzadGaaGimaaqcfaya aKqzadGaey4kaScaaaqcfayaaiab+H8a5XWaa0baaKqbagaajugWai aaikdaaKqbagaajugWaiabgkHiTaaaaaaajuaGcaGLBbGaayzxaaaa aa@75B8@ ,  (14a)

and the incoming and outgoing for the second slab from Eqs(13b,c) gives

[ ψ 2 + ψ 1 ]=[ 0 R 12 R 21 0 ][ ψ 0 + ψ 2 ]+[ R 11 0 0 R 22 ][ ψ 1 + ψ 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaamajuaGda WadaqaauaabeqaceaaaeaaiiWacqWFipqEmmaaDaaajuaGbaqcLbma caaIYaaajuaGbaqcLbmacqGHRaWkaaaajuaGbaGae8hYdKhddaqhaa qcfayaaKqzadGaaGymaaqcfayaaKqzadGaeyOeI0caaaaaaKqbakaa wUfacaGLDbaacqGH9aqpdaWadaqaauaabeqaciaaaeaaieqacaGFWa aabaacbmGaa0NuamaaBaaabaqcLbmacaaIXaGaaGOmaaqcfayabaaa baGaa0NuaWWaaSbaaKqbagaajugWaiaaikdacaaIXaaajuaGbeaaae aacaGFWaaaaaGaay5waiaaw2faamaadmaabaqbaeqabiqaaaqaaiab =H8a5XWaa0baaKqbagaajugWaiaaicdaaKqbagaajugWaiabgUcaRa aaaKqbagaacqWFipqEmmaaDaaajuaGbaqcLbmacaaIYaaajuaGbaqc LbmacqGHsislaaaaaaqcfaOaay5waiaaw2faaiabgUcaRmaadmaaba qbaeqabiGaaaqaaiaa9jfammaaBaaajuaGbaqcLbmacaaIXaGaaGym aaqcfayabaaabaGaa4hmaaqaaiaa+bdaaeaacaqFsbWaaSbaaeaaju gWaiaaikdacaaIYaaajuaGbeaaaaaacaGLBbGaayzxaaWaamWaaeaa faqabeGabaaabaGae8hYdKhddaqhaaqcfayaaKqzadGaaGymaaqcfa yaaKqzadGaey4kaScaaaqcfayaaiab=H8a5XWaa0baaKqbagaajugW aiaaigdaaKqbagaajugWaiabgkHiTaaaaaaajuaGcaGLBbGaayzxaa aaaa@85C9@ .  (14b)

On solving Eq(14a), there results

[ ψ 1 + ψ 1 ]=U[ ψ 0 + ψ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaamajuaGda WadaqaauaabeqaceaaaeaaiiWacqWFipqEmmaaDaaajuaGbaqcLbma caaIXaaajuaGbaqcLbmacqGHRaWkaaaajuaGbaGae8hYdKhddaqhaa qcfayaaKqzadGaaGymaaqcfayaaKqzadGaeyOeI0caaaaaaKqbakaa wUfacaGLDbaacqGH9aqpieWacaGFvbWaamWaaeaafaqabeGabaaaba Gae8hYdKhddaqhaaqcfayaaKqzadGaaGimaaqcfayaaKqzadGaey4k aScaaaqcfayaaiab=H8a5XWaa0baaKqbagaajugWaiaaikdaaKqbag aajugWaiabgkHiTaaaaaaajuaGcaGLBbGaayzxaaaaaa@5BE7@ ,  (15a)

where

U [ I R 12 R 21 I ] 1 [ R 11 0 0 R 22 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaamaieWaju aGcaWFvbGaeyyyIO7aamWaaeaafaqabeGacaaabaGaa8xsaaqaaiab gkHiTiaa=jfadaWgaaqaaKqzadGaaGymaiaaikdaaKqbagqaaaqaai abgkHiTiaa=jfammaaBaaajuaGbaqcLbmacaaIYaGaaGymaaqcfaya baaabaGaa8xsaaaaaiaawUfacaGLDbaammaaCaaajuaGbeqaaKqzad GaeyOeI0IaaGymaaaajuaGdaWadaqaauaabeqaciaaaeaacaWFsbWa aSbaaKqbGfaajugWaiaaigdacaaIXaaajuaGbeaaaeaaieqacaGFWa aabaGaa4hmaaqaaiaa=jfammaaBaaajuaGbaqcLbmacaaIYaGaaGOm aaqcfayabaaaaaGaay5waiaaw2faaaaa@595C@   (15b)

and introducing Eq(15a) into Eq(14b), gives the following combined response of two slabs:

[ ψ 2 + ψ 0 ]= R 2 [ ψ 0 + ψ 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaamajuaGda WadaqaauaabeqaceaaaeaaiiWacqWFipqEmmaaDaaajuaGbaqcLbma caaIYaaajuaGbaqcLbmacqGHRaWkaaaajuaGbaGae8hYdKhddaqhaa qcfayaaKqzadGaaGimaaqcfayaaKqzadGaeyOeI0caaaaaaKqbakaa wUfacaGLDbaacqGH9aqpieWacaGFsbaddaWgaaqcfawaaKqzadGaaG Omaaqcfawabaqcfa4aamWaaeaafaqabeGabaaabaGae8hYdKhddaqh aaqcfayaaKqzadGaaGimaaqcfayaaKqzadGaey4kaScaaaqcfayaai ab=H8a5XWaa0baaKqbagaajugWaiaaikdaaKqbagaajugWaiabgkHi TaaaaaaajuaGcaGLBbGaayzxaaaaaa@5F65@   (16a)

with

R 2 [ R 11 0 0 R 22 ]U+[ 0 R 12 R 21 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaamaieWaju aGcaWFsbWaaSbaaeaajugWaiaaikdaaKqbagqaaiabggMi6oaadmaa baqbaeqabiGaaaqaaiaa=jfadaWgaaqaaKqzadGaaGymaiaaigdaaK qbagqaaaqaaGqabiaa+bdaaeaacaGFWaaabaGaa8NuaWWaaSbaaKqb agaajugWaiaaikdacaaIYaaajuaGbeaaaaaacaGLBbGaayzxaaGaa8 xvaiabgUcaRmaadmaabaqbaeqabiGaaaqaaiaa+bdaaeaacaWFsbad daWgaaqcfayaaKqzadGaaGymaiaaikdaaKqbagqaaaqaaiaa=jfada WgaaqaaKqzadGaaGOmaiaaigdaaKqbagqaaaqaaiaa+bdaaaaacaGL BbGaayzxaaaaaa@570E@ .  (16b)

Doubling then follows by considering the two slabs as one with response R2 and replacing the components of R2 with those of R2 in Eqs(16b) to produce R4 for the combination of two by two slabs into the response for four slabs. We continue the replacement until the entire original slab is covered. Thus, for a single slab of width a, partitioned into 2l sub-slabs to give h = a/2l, it takes l doublings to find the total slab response R 2 l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadkfadaqhaaWcbaGaaGOmaaqaaiaadYgaaaaaaa@3A94@  across the slab of width a.

Numerical Demonstration

Figure 3 shows the intensities exiting the boundaries. The circle

Figure 3 Exiting intensities for 2N=1600, l = 9 (15s CPU).

symbols are the 11 edits found in Table 1. The physical parameters for this case are

a= 1 σ a = 0.02 σ s = 2 g= 0.99. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeGabaaWauaabaqaee aaaaqaaabaaaaaaaaapeGaamyyaiabg2da9iaabccacaaIXaaapaqa aiabeo8aZnaaBaaaleaapeGaamyyaaWdaeqaaOWdbiabg2da9iaabc cacaaIWaGaaiOlaiaaicdacaaIYaaapaqaaiabeo8aZnaaBaaaleaa peGaam4CaaWdaeqaaOWdbiabg2da9iaabccacaaIYaaapaqaa8qaca WGNbGaeyypa0JaaeiiaiaaicdacaGGUaGaaGyoaiaaiMdacaGGUaaa aaaa@4F94@

The plots are identical to those of Refs 2-4 and are insensitive to spatial discretization for l > 8.

As a further measure of precision, Table 1 gives a cubic spline approximation to 11 intensity edits exiting the surfaces for quadrature orders 2N =800(100)1600 and l = 9. The computational time was about 1min on a Dell Precision 2.4 Ghz PC. The last panel is in complete agreement with the results of the response matrix.2 The last two columns give the relative error from consecutive panels indicating improvement with quadrature order. The most significant observation is that one achieves six-place precision and that four places are guaranteed for 2N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFv0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyzImlaaa@37EC@ 800.

Conclusion

The method of adding and doubling has been applied to the Fokker Planck Equation of particle transport theory with success. The method is arguably nearly the least complicated of all the transport methods. For selected edits, a spline fit delivers seven figure (six- place) precision with confirmation from the response matrix solution. While not shown, it is relatively straightforward to include heterogeneous media in the solution as demonstrated in Ref 7.

2N=800

2N=1000

2N=1200

2N=1400

2N=1600

Table 1 Cell input and output.

Acknowledgments

OLP acknowledges support from Ministerio de Ciencia e Innovación (Spain), project PID2021-122625OB-I00 with funds from MCIN/AEI/10.13039/

501100011033/ERDF, UE, and from the Xunta de Galicia (2021 GRC Gl-1563 - ED431C 2021/15).

Conflicts of interest

None.

References

Creative Commons Attribution License

©2023 Ganapol, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.