
Submit Manuscript | http://medcraveonline.com

Introduction
The 1D Fokker-Planck equation (FPE) is one of the most 

consequential equations of particle transport theory. Small angle 
scattering of electrons and photons played a significant role in the 
early universe before the combination of protons and electrons to form 
the hydrogen atom allowing photons to scatter to the greater universe 
as the Cosmic Microwave Background (CMB) we see today. Here, 
we present a new method to solve the FPE employing adding and 
doubling as proposed by van de Hulst.1 Our approach is in contrast 
to previously published solutions, such as response matrix,2 finite 
differences3 and eigenfunction expansion4 and offers the simplicity of 
the direct numerical solution of a first order ODE. For its solution we 
choose adding and doubling, which has proven to be one of the more 
precise methods of solution of the transport equation.5

We begin with the formation of the discrete ordinate approximation 
to the FPE. The formulation includes the discretization of the angular 
Laplacian required to preserve the first and second moments of particle 
intensity. The first order form of the equation naturally leads to a 
matrix exponential solution for which we employ a Crank Nicolson 
numerical approximation. By an appropriate choice of exponential 
approximation, we find the response matrix, which gives the exiting 
angular intensity in terms of the incoming intensity. Finally, we 
evaluate the matrix multiplications to give our final numerical 
benchmark of exiting intensities for angularly uniform incoming 
intensities to which we compare to the response matrix benchmark 
of Ref. 2.

The SN equations

The 1D Fokker-Plank equation (FPE) without volume source is
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The solution is to include half-range boundary conditions
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at the boundaries x = 0 and a of a slab of width a. The momentum 
transfer,
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also known as the transport cross section is characteristic of the FPE, 
where g is the average scattering cosine.

The method of adding and doubling requires discretization of both 
direction µ and spatial variable z, though spatial discretization has an 
analytical element to it. We first consider the directional (or angular) 
discretization, following from the N zeros of the Legendre Polynomial 
on the full-range interval [−1,1]
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The discretization [also called the Sn (Segment N) approximation], 
where
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forms the basis of the discretized solution. Note that 2N assumes 
the role of quadrature order in the discrete ordinates solution of the 
radiative transfer equation and the zero ordinate is necessarily avoided 
since 2N is even.

Applying the Sn approximation, the exact solution relates to the 
approximate as
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( ), mzε µ is the discretization error, and the Sn balance equation is
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m
∇ is the discretized FP operator,4,6

	               (4a) 

expressed as2
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Abstract

The 1D Fokker-Planck equation (FPE) plays a major role in the propagation of light in the 
universe. It specifically describes small angle scattering of photons (and electrons) as they 
travel in participating media. In particular, the differential scattering term representing the 
phase function scattering law enables the small angle scattering. This term also makes the 
FPE a challenge to solve in the discrete ordinate sense. Our approach utilizes adding and 
doubling, which has been successfully applied since the 1960s to solve the linear Boltzmann 
equation. With the help of Morel’s discrete ordinate equivalence of the angular Laplacian, 
the FPE becomes similar to the discrete ordinates equation of linear transport theory. We 
then take advantage of the similarity through adding and doubling for its solution.
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which is the corresponding Gauss quadrature weight for the prescribed 
ordinate at m.

If one defines the L matrix as
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with
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then the balance equation, Eq(3b), becomes the following set of first 
order ODEs:
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Equation (6a) is to be resolved numerically within the slab; but for this 
presentation, we only report the exiting intensity at slab boundaries.

Before continuing, some additional explanation is in order to 
complete the derivation of the Sn equations. We have chosen the full-
range discretization rather than the half- range over [-1,0),(0,1] since 
there is evidence that full-range gives better precision.2 Secondly, there 
are at least three known discretizations for the angular Laplacian. The 
one chosen preserves the diffusion limit in that the zeroth and first 
moments of the intensity are exact for the given quadrature order 2N.

The Response Matrix

A reformulated Eq(6a) is
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with formal solution in spatial cell of thickness h = zn+1−zn, 
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since A is independent of z.

To initiate a Crank-Nicolson finite difference approximation, the 
exponential in Eq(7b) is re-cast as
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and introducing the first two terms of the Taylor series for the 
exponential approximation
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giving
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The spatial approximation across a single cell then follows as
1
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= P Pψ ψ .				                     (8d)

Since the 1D transport equation tracks particles in either the forward 
or the backward directions away from the near and far boundaries, one 
considers the drift in each direction separately, with coupling through 
scattering. Of course, this is a convenient consequence of the half-
range boundary conditions. Thus, we identify the forward (+) and 
backward (−) components as

			                 (9a)

and when introduce into the spatial approximation
1
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gives, on re-arranging and matrix partitioning
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The cell input and output is explicitly shown in Figure 1. By 
expanding the matrix multiplication

Figure 1 Cell input and output.
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and re-arranging so that the incoming intensities are on the RHS and 
the outgoing on the LHS results in
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Inverting for the outgoing intensities from both boundaries gives
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and the response matrix emerges as
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Thus, we have successfully obtained an approximation to the 
response of an infinitesimal slab to boundary inputs. Note that the 
response is independent of the boundary intensities and depends only 
on slab properties and thickness--but we still require the response over 
the entire slab, so we will now add and double.

Adding and doubling

Once we find the response for a single small slab of any thickness, 
the interaction principle enables construction of the cumulative 
response for any number of slabs through adding.

We consider the response for two identical slabs as shown in Figure 
2 each with response matrix R. Writing out the complete response for 
each slab, we have

Figure 2 Combined slabs.
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and expanding the products
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Expressing the ingoing and outgoing intensities at the combined slab 
center interface with Eqs(13a,d) gives
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and the incoming and outgoing for the second slab from Eqs(13b,c) 
gives
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On solving Eq(14a), there results
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and introducing Eq(15a) into Eq(14b), gives the following combined 
response of two slabs:
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with 
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Doubling then follows by considering the two slabs as one with 
response R2 and replacing the components of R2 with those of R2 
in Eqs(16b) to produce R4 for the combination of two by two slabs 
into the response for four slabs. We continue the replacement until 
the entire original slab is covered. Thus, for a single slab of width a, 
partitioned into 2l sub-slabs to give h = a/2l, it takes l doublings to find 
the total slab response 2

lR  across the slab of width a.

Numerical Demonstration

Figure 3 shows the intensities exiting the boundaries. The circle

Figure 3 Exiting intensities for 2N=1600, l = 9 (15s CPU).
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symbols are the 11 edits found in Table 1. The physical parameters 
for this case are 

 1
 0.02
 2

 0.99.

a

s

a

g

σ
σ

=
=
=
=

The plots are identical to those of Refs 2-4 and are insensitive to 
spatial discretization for l > 8.

As a further measure of precision, Table 1 gives a cubic spline 
approximation to 11 intensity edits exiting the surfaces for quadrature 
orders 2N =800(100)1600 and l = 9. The computational time was 
about 1min on a Dell Precision 2.4 Ghz PC. The last panel is in 
complete agreement with the results of the response matrix.2 The 
last two columns give the relative error from consecutive panels 
indicating improvement with quadrature order. The most significant 
observation is that one achieves six-place precision and that four 
places are guaranteed for 2N ≥ 800.

Table 1 Spline Approximation for l = 9 period

2N=800

2N=1000

2N=1200

2N=1400

2N=1600

Conclusion
The method of adding and doubling has been applied to the Fokker 

Planck Equation of particle transport theory with success. The method 
is arguably nearly the least complicated of all the transport methods. 
For selected edits, a spline fit delivers seven figure (six− place) 
precision with confirmation from the response matrix solution. While 
not shown, it is relatively straightforward to include heterogeneous 
media in the solution as demonstrated in Ref 7.
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