Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 4 Issue 4

A universe with a constant expansion rate

Hans J Fahr,1 Michael Heyl2

1Argelander Institut für Astronomie, Universität Bonn Auf dem Hügel 71, Germany
2Deutsches Zentrum für Luft und Raumfahrt (DLR) Königswinterer Str. 522 - 524, 53227 Bonn, Germany

Correspondence: Hans J Fahr, Argelander Institut für Astronomie, Universität Bonn Auf dem Hügel 71, 53121 Bonn, Germany

Received: July 21, 2020 | Published: August 12, 2020

Citation: Fahr HJ, Heyl M. A universe with a constant expansion rate. Phys Astron Int J. 2020;4(4):156-163. DOI: 10.15406/paij.2020.04.00215

Download PDF

Abstract

One of the strongest supports for the existence of a cosmological vacuum energy density Λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Mdaaa@3850@ is given by the SN-Ia luminosities as function of the redshift z of the host galaxies, since they seem to indicate an accelerated expansion of the universe in more recent cosmic times. In this paper, we show that one in fact, however, can start out from the astronomical observations of two-point correlation functions regulating the positions of galaxies and clusters of galaxies and derive from them the average cosmic mass density in the universe. We obtained that for the scale-invariant mass distribution derived from these correlation functions we only obtain a finite mass density for a positive curvature parameter k=+1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgUcaRiaaigdacaGGSaaaaa@3B72@ while for curvature parameters k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DF@ and k=−1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaadkoacaqGglGaaeygGiaaigdaaaa@3D4E@ one obtains vanishing cosmic mass densities. In these latter universes one consequently would find conditions for a "coasting cosmology" fulfilled which abolishes the need for a cosmic vacuum energy Λ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Mdiaab6caaaa@3901@

Keywords: vacuum energy density, redshift, host galaxies, accelerated expansion, coasting cosmology

Introduction

During many decades after the first Friedman-Lemaitre FLRW- cosmological models1,2 on the basis of Einstein‘s GTR field equations3,4 the expansion of the universe was assumed to occur as decelerated by the internal gravitation of the universe due to its matter and energy contents. In the recent decades, however, measurements of the luminosity of distant high-redshift type Ia supernovae seemed to show that these standard candles are looking fainter than could be expected on the basis of these classical cosmological models.5–10 For the purpose to nevertheless fit these new observations with cosmological models, an artificial term - called  and denoting the dynamical effect of a cosmic vacuum energy density of completely unknown nature - has been introduced into the earlier Friedman equations with the wholesome effect of accelerating the cosmic expansion at large scales of our present epoch. Meanwhile, however, the need for this artificial enlargement of the Friedman equations has been doubted on several grounds; one is that the interpretations of luminosities of the most distant supernovae SNe-Ia may not be correctly carried out and thus misleading in the conclusions derived with them, the other is that so-called "coastal cosmology" - models , without cosmic vacuum energy density as ingredient, can in fact be proposed that can well fit the observed SNe-Ia luminosities (e.g. see Cassado, 2020).

Most recently Kang et al.,11 have found evidences for an evolutionary trend in SN Ia supernova brightnesses which in principle were pointed out all the time since the publication by Tinsley12. Their most recent studies namely seem to have shown that the brightness of standardized SN Ia supernovae is intrinsically correlated to the morphology, the mass, and the local star formation rate of the host galaxy, while in the works by Perlmutter et al.,13 and contemporary publishers it had been assumed that the standardized SN Ia brightness does not evolve with redshift or look-back time. This indicates the problem that the present SN Ia light curve fitters supporting the standard ΛCDM MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4MdiaadoeacaWGebGaamytaiabgkHiTaaa@3BA0@ cosmological models are not taking care for a correction for this population age effect which would therefore create a serious systematic bias with increasing redshift. Just those most red-shifted SN Ia objects which presently give the strongest support for an accelerating cosmic expansion and the action of a cosmic vacuum energy would be most concerned by this bias. Meanwhile Riess et al.,14 recognized that a luminosity evolution of 25 percent over a look-back-time of 5 Gyr would be sufficient to nullify the present cosmological claims.

In this respect it is highly interesting to read in the most recent publication by Cassado (2020) that the presently discussed SNe Ia data are also fitted nicely by a universe with a "coasting cosmology" which expands according to a linear expansion model R( t )t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyipI4Na amiDaaaa@3D07@ with no deceleration and no acceleration, but with a permanently vanishing deceleration parameter q=R R ¨ / R ˙ 2 =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCaiabg2da9iabgkHiTiaadkfaceWGsbWdayaadaWdbiaac+ca ceWGsbWdayaacaWaaWbaaSqabeaapeGaaGOmaaaakiabg2da9iaaic dacaGGUaaaaa@4105@ This was already found in earlier publications by Dev et.,15–18 This fact of an equally nice fit of a coasting universe compared to the prominent ΛCDM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4MdiaadoeacaWGebGaamytaiabgkHiTaaa@3B9F@ model concerning compatibility with SNe Ia data had already shown up clearly in a figure given in a publication by Perlmutter et al.19. But in his publication the author favored the fit by the ΛCDM MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4MdiaadoeacaWGebGaamytaiabgkHiTaaa@3B9F@  model as compared to disfavored coasting model, because the latter needed an empty universe with vanishing mass density (i.e. Ω M ; Ω k =0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyQd8aadaWgaaWcbaWdbiaad2eaa8aabeaak8qacaGG7aGaaeyQ d8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacqGH9aqpcaaIWaGaai ykaaaa@3F62@ which obviously, in view of the present matter in the universe, cannot be assumed to prevail.

This latter conclusion was in principle also shared by Cassado (2020) who therefore was voting for quasi-coastal universe with a quasi-linear expansion like R(t) t (1γ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaacIcacaWG0bGaaiykaiablYJi6iaadshapaWaaWbaaSqa beaapeGaaiikaiaaigdacqGHsislcqaHZoWzcaGGPaaaaaaa@416D@ with γ1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeSOAI0JaaGymaiaac6caaaa@3B9C@ But it should be pointed out here that an empty universe neither is in fact a severe need of the coastal universe, nor can a vanishing of the average cosmic mass density simply be excluded as we are going to show in the following part of the paper. To our knowledge one of the first authors presenting a coastal cosmology was Kolb20 who introduced a special form of matter which he called K-matter with an equation of state p K =( 1/3 ) ρ K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiCa8aadaWgaaWcbaWdbiaadUeaa8aabeaak8qacqGH9aqpcqGH sisldaqadaWdaeaapeGaaGymaiaac+cacaaIZaaacaGLOaGaayzkaa GaeqyWdi3damaaBaaaleaapeGaam4saaWdaeqaaaaa@4218@ in between the poly-tropic behavior of photonic matter and massive matter. For this form of matter the second Friedmann equation delivers

R ¨ R = 4πG 3 ( ρ K +3 p K )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiqadkfapaGbamaaaeaapeGaamOuaaaacqGH9aqp cqGHsisldaWcaaWdaeaapeGaaGinaiabec8aWjaadEeaa8aabaWdbi aaiodaaaWaaeWaa8aabaWdbiabeg8aY9aadaWgaaWcbaWdbiaadUea a8aabeaak8qacqGHRaWkcaaIZaGaamiCa8aadaWgaaWcbaWdbiaadU eaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@49BD@ (1)

It can be shown that this K-matter leads to a density decrease by ρ K R 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaam4saaWdaeqaaOWdbiabgYJi+jaa dkfapaWaaWbaaSqabeaapeGaeyOeI0IaaGOmaaaaaaa@3E67@ and by its polytropic behaviour ρK+3pK=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaadU eacqGHRaWkcaaIZaGaamiCaiaadUeacqGH9aqpcaaIWaaaaa@3EC2@ induces a coasting universe.

This form of a K-matter unfortunately is not a physically very handy and easy to understand form of matter and thus may be disfavored for that reason in offering a physically reliable cosmological solution. As was shown, however, in papers by Fahr21 and Fahr22 and this unconventional sub-adiabatic behavior of density with the scale R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaaaa@3806@ of the universe is naturally obtained for a Machian form of scale-related masses of cosmic particles with mR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaiabgYJi+jaadkfaaaa@3A60@ which then evidently with ρ R 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyipI4NaamOua8aadaahaaWcbeqaa8qacqGHsislcaaI Yaaaaaaa@3D23@ leads to a coasting cosmology. But as we shall show in the following part of the paper, one does not need to believe in such a Machian mass behavior tuning the cosmic masses with the size R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaaaa@3806@ of the universe, but it can be shown that an empty universe with vanishing mass density ρ U =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabg2da9iaa icdaaaa@3BFD@ creating a coasting cosmology is in fact physically reasonable - even in view of the cosmic masses seen around us, if the universe has a scale-invariant hierarchical structuring.

The cosmic mass density in a hierarchically structured universe

In the afore presented argumentation25 it became obvious, that the theoretical interpretation of distant high-redshift SN1a luminosity data is well possible, instead by the new ΛCDM MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4MdiaadoeacaWGebGaamytaiabgkHiTaaa@3BA0@ cosmological models, as well on the basis of a coasting expansion cosmology23,24 with a linear expansion of the scale of the universe with cosmic time t according to R( t )t. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyipI4Na amiDaiaac6caaaa@3DBA@ The attractive advantage on one hand in the use of these latter cosmological models is that neither dark matter nor dark energy is required (i.e Ω D = Ω Λ =0) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyQd8aadaWgaaWcbaWdbiaadseaa8aabeaak8qacqGH9aqpcaqG PoWdamaaBaaaleaapeGaae4MdaWdaeqaaOWdbiabg2da9iaaicdaca GGPaaaaa@3FD2@ for the interpretation, the disadvantage on the other hand, as seen by many of the present main-stream cosmologists, is that such coasting models as given by Kolb et al.,20–27 have to assume an empty energy-momentum tensor T ik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadMgacaWGRbaapaqabaaaaa@3A40@ for the universe, i.e. a tensor with vanishing ingredients at all cosmic times t. Especially such coasting universes should have either, as we are going to show, the special Machian property of scale-related cosmic masses leading to vanishing mass densities at the largest scales, or the property that mass density ρ U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYnaaBa aaleaacaWGvbaabeaaaaa@39D5@ is zero at all relevant cosmic times due to reasons which are connected with a full compensation of contributions from masses through those from pressures in the universe.

Most cosmologists are hesitating to accept this rather unlikely balance in the T ik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadMgacaWGRbaapaqabaGcpeGaeyOe I0caaa@3B47@ ingredients leading to a coasting universe. This zero-mass universe seems to be too much an artifact like the assumption of cosmic vacuum energy Λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Mdaaa@3850@ is too. In the following section, however, just for that purpose, we want to introduce a universe leading to a vanishing cosmic mass density ρ U 0! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabgkziUkaa icdacaGGHaaaaa@3D88@ at the largest cosmic distances without such artifacts which in contrast is even supported by astrophysical measurements as we are going to show below.

We start from the astronomical observations carried out by Bahcall et al.,28,29 and or equally well in more recent times by Sylos-Labini et al.,30 and or Sylos-Labini31 and take their two-point correlation function ξ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3aaeWaa8aabaWdbiaadYgaaiaawIcacaGLPaaaaaa@3B8A@ denoting the probability to find other stellar objects at a distance l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaaaa@3820@ from any other arbitrarily taken stellar object. The quantity l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaaaa@3820@ has to be considered as the so-called distance parameter taken by astronomers to be identical with the redshift distance, making it evidently a cosmologically biased quantity. From this star-correlation function ξ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3aaeWaa8aabaWdbiaadYgaaiaawIcacaGLPaaaaaa@3B8A@ we will deduce in the following an associated model for the underlying cosmic matter density distribution ρ U = ρ U ( l ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabg2da9iab eg8aY9aadaWgaaWcbaWdbiaadwfaa8aabeaak8qadaqadaWdaeaape GaamiBaaGaayjkaiaawMcaaiaac6caaaa@419B@ This we first did for a different aspect in a recent paper Fahr etal.,32. We use the well confirmed correlation function ξ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3aaeWaa8aabaWdbiaadYgaaiaawIcacaGLPaaaaaa@3B8A@ based on astronomical observations of the visible star and galaxy constellation which is surrounding us seen from our cosmic vantage point, - and, according to the generally assumed cosmological principle, also should surround every other cosmic vantage point in an analogous and equivalent manner, unless the generally accepted, sacrosanct cosmological principle would turn out to be violated,- in which case, however, all the other Robertson-Walker cosmologies would as well become invalid, and even taken broader, all cosmology had to be given up.

This two-point correlation function ξ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3aaeWaa8aabaWdbiaadYgaaiaawIcacaGLPaaaaaa@3B8A@ defines the probability to find another star (or galaxy) at a distance lfrom our arbitrary standpoint and, based on astronomical observations, is expressed in the following mathematical form:

ξ( l )= ξ 0 ( l 0 l ) α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3aaeWaa8aabaWdbiaadYgaaiaawIcacaGLPaaacqGH9aqp cqaH+oaEpaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyyXICTaai ikamaalaaapaqaa8qacaWGSbWdamaaBaaaleaapeGaaGimaaWdaeqa aaGcbaWdbiaadYgaaaGaaiyka8aadaahaaWcbeqaa8qacqaHXoqyaa aaaa@484E@      (2)

where ξ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaBaaaleaapeGaaGimaaWdaeqaaaaa@3A05@ is a reference value valid at the reference distance l 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBa8aadaWgaaWcbaWdbiaaicdaa8aabeaakiaac6caaaa@39EF@ The correlation index α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCaaaleqaba aeaaaaaaaaa8qacqaHXoqyaaaaaa@38FA@ has been observationally determined by Bahcall et al.28 with α=1.8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGymaiaac6cacaaI4aaaaa@3C02@ By the way, as we do show in the appendix, this above hierarchic distribution of stars naturally explains why no Olbers Paradox (Paradox of the dark night sky!) has to be expected in such a universe.

An interesting problem connected with the above mentioned clustering is the cosmologically important point, that the validity of the above correlation function can evidently also be interpreted as an expression for the structured stellar mass density ρ=ρ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0JaeqyWdi3aaeWaa8aabaWdbiaadYgaaiaawIca caGLPaaaaaa@3E4E@ or stellar mass density distribution of surrounding stars or galaxies in our cosmic environment. In this view it also expresses a standpoint-oriented mass density distribution ρ=ρ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0JaeqyWdi3aaeWaa8aabaWdbiaadYgaaiaawIca caGLPaaaaaa@3E4E@ when it is recognized that the mass dM( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaaaa @3B83@ in this case is closely associated with the number of stars with a typical average stellar or galactic mass m 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3935@ on a spherical shell at distance l, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiaacYcaaaa@38D0@ and is given for a Euklidean space geometry (i.e. a flat universe with k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DF@ ) by

dM( l )=4π l 2 m 0 ξ 0 ( l 0 l ) α dl=4π l 2 ρ 0 ( l 0 l ) α dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcaWGSbWdamaaCaaaleqabaWdbiaaikdaaa GccaWGTbWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabe67a49aa daWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGOaWaaSaaa8aabaWdbi aadYgapaWaaSbaaSqaa8qacaaIWaaapaqabaaakeaapeGaamiBaaaa caGGPaWdamaaCaaaleqabaWdbiabeg7aHbaakiaadsgacaWGSbGaey ypa0JaaGinaiabec8aWjaadYgapaWaaWbaaSqabeaapeGaaGOmaaaa kiabeg8aY9aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1ca GGOaWaaSaaa8aabaWdbiaadYgapaWaaSbaaSqaa8qacaaIWaaapaqa baaakeaapeGaamiBaaaacaGGPaWdamaaCaaaleqabaWdbiabeg7aHb aakiaadsgacaWGSbaaaa@61A2@ (3)

with ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaaGimaaWdaeqaaaaa@3A03@ denoting the hierarchy-typical reference value of mass density.

Bahcall and Chokski29 do furthermore point out the astonishing fact that the general type of the above mentioned two-point correlation function ξ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3aaeWaa8aabaWdbiaadYgaaiaawIcacaGLPaaaaaa@3B8A@ is observationally confirmed as well for galaxy correlations, as for cluster correlations, as also for super-cluster correlations, with the difference that only the reference scale l 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3934@ and the reference probability ξ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaBaaaleaapeGaaGimaaWdaeqaaaaa@3A06@ or mass density ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaaGimaaWdaeqaaaaa@3A03@ have to be adapted from the galaxy-case up to the super-cluster case, while as a surprise the same correlation index of α G = α C = α SC =1.8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaBaaaleaapeGaam4raaWdaeqaaOWdbiabg2da9iab eg7aH9aadaWgaaWcbaWdbiaadoeaa8aabeaak8qacqGH9aqpcqaHXo qypaWaaSbaaSqaa8qacaWGtbGaam4qaaWdaeqaaOWdbiabg2da9iaa igdacaGGUaGaaGioaaaa@45DD@ is reappearing as a number common for all these hierarchies (i.e. scale invariant structuring!).

To comprehend and correctly describe space at the largest achievable distances l SC,0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBa8aadaWgaaWcbaWdbiaadofacaWGdbGaaiilaiaaicdaa8aa beaaaaa@3B84@ of the order 100Mpc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaaicdacaaIWaGaamytaiaadchacaWGJbaaaa@3C0D@ or more, we take the largest hierarchy, i.e. super-clusters, and use the corresponding SCSC MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4uaiaadoeacqGHsislcaWGtbGaam4qaaaa@3B5C@ correlation function. Connected with that correlation the following, associated mass increment with distance l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaaaa@3820@ is given:

dM( l )=4π l 2 ρ SC,0 ( l SC,0 l ) α SC dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcaWGSbWdamaaCaaaleqabaWdbiaaikdaaa GccqaHbpGCpaWaaSbaaSqaa8qacaWGtbGaam4qaiaacYcacaaIWaaa paqabaGcpeGaeyyXICTaaiikamaalaaapaqaa8qacaWGSbWdamaaBa aaleaapeGaam4uaiaadoeacaGGSaGaaGimaaWdaeqaaaGcbaWdbiaa dYgaaaGaaiyka8aadaahaaWcbeqaa8qacqaHXoqypaWaaSbaaWqaa8 qacaWGtbGaam4qaaWdaeqaaaaak8qacqGHflY1caWGKbGaamiBaaaa @579B@                        (4)

In order to address scientifically correct the largest achievable cosmic distances lR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiabloKi7iaadkfaaaa@3A28@ , with R denoting the scale of the universe, we have also to pay attention to the prevailing cosmic space geometry conditions and need to face the situation that, in order to keep our considerations open to the widest generality, that we are perhaps embedded not in a Euklidean universe, but in a curved general-relativistic space-time geometry. We for the sake of this generality should pay attention to the fact that the radial distance parameter l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaaaa@3820@ , in the Robertson-Walker approximation of the cosmic geometry, is transformed into a geometrical distance r( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCamaabmaapaqaa8qacaWGSbaacaGLOaGaayzkaaaaaa@3ABF@ given by the following function:33,34

r( l )=l (1+k l 2 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCamaabmaapaqaa8qacaWGSbaacaGLOaGaayzkaaGaeyypa0Ja amiBaiabgwSixlaacIcacaaIXaGaey4kaSIaam4AaiaadYgapaWaaW baaSqabeaapeGaaGOmaaaakiaacMcapaWaaWbaaSqabeaapeGaeyOe I0IaaGymaaaaaaa@46DD@                  (5)

i.e. the spherical area associated to the distance parameter l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaaaa@3820@ then is Φ( l )=4π r 2 ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOPdmaabmaapaqaa8qacaWGSbaacaGLOaGaayzkaaGaeyypa0Ja aGinaiabec8aWjaadkhapaWaaWbaaSqabeaapeGaaGOmaaaakmaabm aapaqaa8qacaWGSbaacaGLOaGaayzkaaaaaa@4317@ where k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ denotes the cosmic curvature parameter. The latter e.g. is determined by looking for the best fitting cosmological FLRW-model35 which supports the value k0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4AaiabloKi7iaaicdaaaa@3A0A@ . This latter uncurved cosmological model is, however, associated with and enforced by specifically equilibrated average cosmic T ik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadMgacaWGRbaapaqabaaaaa@3A40@ -ingredients like Ω Λ , Ω M , Ω D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeyQd8aadaWgaaWcbaWdbiaabU5aa8aabeaak8qacaGGSaGaaeyQ d8aadaWgaaWcbaWdbiaad2eaa8aabeaakiaacYcapeGaaeyQd8aada WgaaWcbaWdbiaadseaa8aabeaaaaa@401A@ . These latter ingredients, however, under the perspectives given here, are shown to be highly problematic quantities. Nevertheless and besides of that, anticipating the indicated curvature value k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ as an apriori input, one can then take account of this above geometric distance transformation by bringing the above formula for dM( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaaaa @3B83@ into the following form: dM( l )=4π l 2 (1+k l 2 ) 2 m SC,0 ξ SC,0 ( l SC,0 l ) α × MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcaWGSbWdamaaCaaaleqabaWdbiaaikdaaa GccqGHflY1caGGOaGaaGymaiabgUcaRiaadUgacaWGSbWdamaaCaaa leqabaWdbiaaikdaaaGccaGGPaWdamaaCaaaleqabaWdbiabgkHiTi aaikdaaaGccqGHflY1caWGTbWdamaaBaaaleaapeGaam4uaiaadoea caGGSaGaaGimaaWdaeqaaOWdbiabe67a49aadaWgaaWcbaWdbiaado facaWGdbGaaiilaiaaicdaa8aabeaak8qacqGHflY1caGGOaWaaSaa a8aabaWdbiaadYgapaWaaSbaaSqaa8qacaWGtbGaam4qaiaacYcaca aIWaaapaqabaaakeaapeGaamiBaaaacaGGPaWdamaaCaaaleqabaWd biabeg7aHbaakiabgEna0caa@6472@          

× ( 1k l 2 ) (1+k l 2 ) 2 dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aq7aaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0Ia am4AaiaadYgapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkaiaawM caaaWdaeaapeGaaiikaiaaigdacqGHRaWkcaWGRbGaamiBa8aadaah aaWcbeqaa8qacaaIYaaaaOGaaiyka8aadaahaaWcbeqaa8qacaaIYa aaaaaakiaadsgacaWGSbaaaa@48AC@                         (6)

and after a little rearrangement of the terms.

dM( l )=4π ρ SC,0 ( l SC,0 l ) α ( 1k l 2 ) (1+k l 2 ) 4 l 2 dl ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcqaHbpGCpaWaaSbaaSqaa8qacaWGtbGaam 4qaiaacYcacaaIWaaapaqabaGcpeGaeyyXIC9aaKama8aabaWdbmaa laaapaqaa8qacaWGSbWdamaaBaaaleaapeGaam4uaiaadoeacaGGSa GaaGimaaWdaeqaaaGcbaWdbiaadYgaaaGaaiyka8aadaahaaWcbeqa a8qacqaHXoqyaaGccqGHflY1daWcaaWdaeaapeWaaeWaa8aabaWdbi aaigdacqGHsislcaWGRbGaamiBa8aadaahaaWcbeqaa8qacaaIYaaa aaGccaGLOaGaayzkaaaapaqaa8qacaGGOaGaaGymaiabgUcaRiaadU gacaWGSbWdamaaCaaaleqabaWdbiaaikdaaaGccaGGPaWdamaaCaaa leqabaWdbiaaisdaaaaaaOGaamiBa8aadaahaaWcbeqaa8qacaaIYa aaaOGaamizaiaadYgaaiaawIcacaGLDbaaaaa@6483@                           (7)

The cosmic curvature parameter k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaaaa@381F@ can be restricted to values of k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DF@ or k=±1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgglaXkaaigdaaaa@3BCE@ , if l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaaaa@3820@ is scaled with the cosmic scale parameter R=R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaadkfadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaaaa@3C84@ by k=K R 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaadUeacqGHflY1caWGsbWdamaaCaaaleqabaWd biaaikdaaaaaaa@3E1E@ , K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saaaa@37FF@ being the cosmic curvature scalar or the contracted Ricci tensor K= R i i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabg2da9iaadkfapaWaa0baaSqaa8qacaWGPbaapaqaa8qa caWGPbaaaaaa@3C23@ . Therefore, besides the Euklidean case k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DF@ , favored by Benett et al.,35 one should also consider the following two more options:

dM( l )=4π ρ SC,0 l SC,0 α [ ( 1 l 2 R 2 ) (1± l 2 R 2 ) 4 l 2α dl ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcqaHbpGCpaWaaSbaaSqaa8qacaWGtbGaam 4qaiaacYcacaaIWaaapaqabaGcpeGaamiBa8aadaqhaaWcbaWdbiaa dofacaWGdbGaaiilaiaaicdaa8aabaWdbiabeg7aHbaakiabgwSixp aadmaapaqaa8qadaWcaaWdaeaapeWaaeWaa8aabaWdbiaaigdacqWI tisBdaWcaaWdaeaapeGaamiBa8aadaahaaWcbeqaa8qacaaIYaaaaa Gcpaqaa8qacaWGsbWdamaaCaaaleqabaWdbiaaikdaaaaaaaGccaGL OaGaayzkaaaapaqaa8qacaGGOaGaaGymaiabgglaXoaalaaapaqaa8 qacaWGSbWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadkfa paWaaWbaaSqabeaapeGaaGOmaaaaaaGccaGGPaWdamaaCaaaleqaba WdbiaaisdaaaaaaOGaamiBa8aadaahaaWcbeqaa8qacaaIYaGaeyOe I0IaeqySdegaaOGaamizaiaadYgaaiaawUfacaGLDbaaaaa@6683@                             (8)

After this inspection one can then state that the expression for the average cosmic density in such a hierarchically structured universe, for instance with k=±1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgglaXkaaigdaaaa@3BCE@ finally takes the following form:

ρ( l )= M( l ) V( l ) 4π ρ SC,0 l SC,0 α 0 λ [ ( 1μ λ 2 P 2 ) (1+ λ 2 P 2 ) 2 λ 2α δλ ] 0 λ [ ( 1μ λ 2 P 2 ) (1+ λ 2 P 2 ) 2 λ 2 δλ ] =4π ρ SC,0 l SC,0 α R α 0 Ξ [ ( 1μ ξ 2 ) ( 1+ ξ 2 ) 4 ξ 2α δξ ] 0 Ξ [ ( 1 ξ 2 ) ( 1+ ξ 2 ) 4 ξ 2 δξ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaaeaacaWGSbaacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacaWGnbWaaeWaaeaacaWGSbaacaGLOaGaayzkaaaabaGaamOvam aabmaabaGaamiBaaGaayjkaiaawMcaaaaacaaI0aGaeqiWdaNaeqyW di3aaSbaaSqaaiaadofacaWGdbGaaiilaiaaicdaaeqaaOGaamiBam aaDaaaleaacaWGtbGaam4qaiaacYcacaaIWaaabaGaeqySdegaaOWa aSaaaeaadaWdXbqaamaadmaabaWaaSaaaeaadaqadaqaaiaaigdacq aH8oqBdaWcaaqaaiabeU7aSnaaCaaaleqabaGaaGOmaaaaaOqaaiaa dcfadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaaabaGaai ikaiaaigdacqGHRaWkdaWcaaqaaiabeU7aSnaaCaaaleqabaGaaGOm aaaaaOqaaiaadcfadaahaaWcbeqaaiaaikdaaaaaaOGaaiykamaaCa aaleqabaGaaGOmaaaaaaGccqaH7oaBdaahaaWcbeqaaiaaikdacqGH sislcqaHXoqyaaGccqaH0oazcqaH7oaBaiaawUfacaGLDbaaaSqaai aaicdaaeaacqaH7oaBa0Gaey4kIipaaOqaamaapehabaWaamWaaeaa daWcaaqaamaabmaabaGaaGymaiabeY7aTnaalaaabaGaeq4UdW2aaW baaSqabeaacaaIYaaaaaGcbaGaamiuamaaCaaaleqabaGaaGOmaaaa aaaakiaawIcacaGLPaaaaeaacaGGOaGaaGymaiabgUcaRmaalaaaba Gaeq4UdW2aaWbaaSqabeaacaaIYaaaaaGcbaGaamiuamaaCaaaleqa baGaaGOmaaaaaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaaaakiabeU 7aSnaaCaaaleqabaGaaGOmaaaakiabes7aKjabeU7aSbGaay5waiaa w2faaaWcbaGaaGimaaqaaiabeU7aSbqdcqGHRiI8aaaakiabg2da9i aaisdacqaHapaCcqaHbpGCdaWgaaWcbaGaam4uaiaadoeacaGGSaGa aGimaaqabaGcdaWcaaqaaiaadYgadaqhaaWcbaGaam4uaiaadoeaca GGSaGaaGimaaqaaiabeg7aHbaaaOqaaiaadkfadaahaaWcbeqaaiab eg7aHbaaaaGcdaWcaaqaamaapehabaWaamWaaeaadaWcaaqaamaabm aabaGaaGymaiabeY7aTjabe67a4naaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaaqaamaabmaabaGaaGymaiabgUcaRiabe67a4naaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGin aaaaaaGccqaH+oaEdaahaaWcbeqaaiaaikdacqGHsislcqaHXoqyaa GccqaH0oazcqaH+oaEaiaawUfacaGLDbaaaSqaaiaaicdaaeaacqqH Eoawa0Gaey4kIipaaOqaamaapehabaWaamWaaeaadaWcaaqaamaabm aabaGaaGymaiabgkHiTiabe67a4naaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaaqaamaabmaabaGaaGymaiabgUcaRiabe67a4naaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGin aaaaaaGccqaH+oaEdaahaaWcbeqaaiaaikdaaaGccqaH0oazcqaH+o aEaiaawUfacaGLDbaaaSqaaiaaicdaaeaacqqHEoawa0Gaey4kIipa aaaaaa@D60B@                 (9)

In Figure 1 we show the quantity ρ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadYgaaiaawIcacaGLPaaaaaa@3B88@ as function of l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaaaa@3820@ , for all relevant cosmic geometries, i.e. k=±1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgglaXkaaigdaaaa@3BCE@ and k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DF@ .

Figure 1 Shown is the average cosmic density ρ( 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaaeaacaaIXaaacaGLOaGaayzkaaaaaa@3B32@ in units of the super-cluster density ρSC,0 as function of the averaging scale l/R for three different cosmic geometries characterized by curvature values k = 0 and k =±1.

As one can see in Figure 1 there exists only one model which leads to a finite cosmic density at large scales, namely for the positively curved universe with k=+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgUcaRiaaigdaaaa@3AC2@ ; the other two models with k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DF@ k=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgkHiTiaaigdaaaa@3ACD@ show cosmic densities which fall below every lower density limit with increasing scales, i.e. at largest scales they fall down to a density value of ρ U 0! MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabloKi7iaa icdacaGGHaaaaa@3CCD@

Coming back to the question whether coasting universes should be considered as a physical possibility, one can thus see from the above considerations that in universes with curvatures k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DF@ or k=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgkHiTiaaigdaaaa@3ACD@ and a hierarchical mass distribution one finds the appropriate prerequisites fulfilled for a coasting universe with a vanishing average cosmic mass density, i.e. ρ U =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabg2da9iaa icdaaaa@3BFD@ !, despite the visible stars and galaxies around us. One more cosmological possibility might perhaps need to be considered here, namely that the hierarchical structuring of masses in the universe which was considered in the above calculation could perhaps also be a time-invariant cosmic structuring, meaning that even though the universe undergoes an expansion in cosmic time, its hierarchical structuring endures or persists. Of course an expanding hierarchical universe must also change its mass density, however in such a way that the hierarchical structuring of matter persists, i.e. a time-invariant scale-invariance under these auspices must be considered. This form of a structure persistence is given when only the reference density of the reference structure undergoes an associated cosmological time-dependence. Under these auspices the mass increment dM( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaaaa @3B83@ derived above would then instead now be given by the expression:

dM( l )=4π l 2 ρ SC,0 ( t ) ( l SC,0 ( t ) l ) α SC dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcaWGSbWdamaaCaaaleqabaWdbiaaikdaaa GccqaHbpGCpaWaaSbaaSqaa8qacaWGtbGaam4qaiaacYcacaaIWaaa paqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGHfl Y1caGGOaWaaSaaa8aabaWdbiaadYgapaWaaSbaaSqaa8qacaWGtbGa am4qaiaacYcacaaIWaaapaqabaGcpeWaaeWaa8aabaWdbiaadshaai aawIcacaGLPaaaa8aabaWdbiaadYgaaaGaaiyka8aadaahaaWcbeqa a8qacqaHXoqypaWaaSbaaWqaa8qacaWGtbGaam4qaaWdaeqaaaaak8 qacqGHflY1caWGKbGaamiBaaaa@5CFC@                              (10)

One may assume that the dimension l SC,0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBa8aadaWgaaWcbaWdbiaadofacaWGdbGaaiilaiaaicdaa8aa beaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@3E3F@ of super-clusters increases with cosmic time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaaaa@3828@ like the cosmic scale parameter, i.e. l SC,0 ( t )R( t ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBa8aadaWgaaWcbaWdbiaadofacaWGdbGaaiilaiaaicdaa8aa beaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgYJi+j aadkfadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaac6caaaa@43D1@ The reference value for the super-cluster density on the other hand most probably scales according to

ρ SC,0 ( t )= ρ SC,0 ( R 0 /R( t )) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaam4uaiaadoeacaGGSaGaaGimaaWd aeqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0 JaeqyWdi3damaaBaaaleaapeGaam4uaiaadoeacaGGSaGaaGimaaWd aeqaaOWdbiabgwSixlaacIcacaWGsbWdamaaBaaaleaapeGaaGimaa WdaeqaaOWdbiaac+cacaWGsbWaaeWaa8aabaWdbiaadshaaiaawIca caGLPaaacaGGPaWdamaaCaaaleqabaWdbiaaiodaaaaaaa@502E@                                (11)

which then all-together leads to a mixed expression in time t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaaaa@3828@ and distance l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaaaa@3820@ given by:

dM( l )=4π l 2 ρ SC,0 ( R 0 /R( t )) 3 ( R( t ) l ) α SC dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcaWGSbWdamaaCaaaleqabaWdbiaaikdaaa GccqaHbpGCpaWaaSbaaSqaa8qacaWGtbGaam4qaiaacYcacaaIWaaa paqabaGcpeGaeyyXICTaaiikaiaadkfapaWaaSbaaSqaa8qacaaIWa aapaqabaGcpeGaai4laiaadkfadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaiaacMcapaWaaWbaaSqabeaapeGaaG4maaaakiaacIcada WcaaWdaeaapeGaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzk aaaapaqaa8qacaWGSbaaaiaacMcapaWaaWbaaSqabeaapeGaeqySde 2damaaBaaameaapeGaam4uaiaadoeaa8aabeaaaaGcpeGaeyyXICTa amizaiaadYgaaaa@5F5F@                     (12)

and again herewith brings up the already well-identified problem that in the cosmological GTR field equations time-averaging and space-averaging cannot be exchanged.36–38 One way to overcome this problem in the above described case would be to connect distances of cosmic masses with the time it takes to bring over the information on their mass locations by their gravity signals, i.e. gravitons, through the velocity c of light by correspondingly retarding the relevant evolutionary state of the universe. This would then lead to the easily integrable expression:

dM( l )=4π l 2 ρ SC,0 ( R 0 R( t 0 l/c ) ) 3 ( R( t 0 l/c ) l ) α SC dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcaWGSbWdamaaCaaaleqabaWdbiaaikdaaa GccqaHbpGCpaWaaSbaaSqaa8qacaWGtbGaam4qaiaacYcacaaIWaaa paqabaGcpeGaeyyXICTaaiikamaalaaapaqaa8qacaWGsbWdamaaBa aaleaapeGaaGimaaWdaeqaaaGcbaWdbiaadkfadaqadaWdaeaapeGa amiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHsislcaWGSb Gaai4laiaadogaaiaawIcacaGLPaaaaaGaaiyka8aadaahaaWcbeqa a8qacaaIZaaaaOGaaiikamaalaaapaqaa8qacaWGsbWaaeWaa8aaba WdbiaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyOeI0Ia amiBaiaac+cacaWGJbaacaGLOaGaayzkaaaapaqaa8qacaWGSbaaai aacMcapaWaaWbaaSqabeaapeGaeqySde2damaaBaaameaapeGaam4u aiaadoeaa8aabeaaaaGcpeGaeyyXICTaamizaiaadYgaaaa@6829@                     (13)

and shows that influences of the distant matter structures now are attaining a cosmologically historical pronunciation making the universe by this view a really authentic space-time unity. To further evaluate the above expression one would need to know the scale evolution R=R( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabg2da9iaadkfadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaaaa@3C84@ in this universe. The latter, however, depends on the prevailing cosmic energy ingredients as especially the average mass density of cosmic matter ρ( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadYgacqGHsgIRcqGHEisPaiaawIca caGLPaaaaaa@3EE6@ which, however, is only found from the integration of expression (13). Not knowing in advance what the integrated expression starting with Equ. (13) will deliver, we can make two alternative assumptions in advance:

  1. The average mass density is positive and finite with ρ( l )= ρ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadYgacqGHsgIRcqGHEisPaiaawIca caGLPaaacqGH9aqpcqaHbpGCpaWaaSbaaSqaa8qacqGHEisPa8aabe aak8qacaGGUaaaaa@4443@

or

  1. The average mass density is ρ( l )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadYgacqGHsgIRcqGHEisPaiaawIca caGLPaaacqGH9aqpcaaIWaaaaa@40A6@

The correctness of the assumption a) or b) will then be proven a posteriori after having carried out the necessary integrations. Starting with case a) we would be based on a matter-dominated flat universe (k=0) the scale evolution of which is known to follow the law R( t ) t 2/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyipI4Na amiDa8aadaahaaWcbeqaa8qacaaIYaGaai4laiaaiodaaaaaaa@3F80@ .39 Thus in this case one has

R( t )= R 0 ( t t 0 ) 2 3 = R 0 ( t 0 l/c t 0 ) 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amOua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1caGGOa WaaSaaa8aabaWdbiaadshaa8aabaWdbiaadshapaWaaSbaaSqaa8qa caaIWaaapaqabaaaaOWdbiaacMcapaWaaWbaaSqabeaapeWaaSaaa8 aabaWdbiaaikdaa8aabaWdbiaaiodaaaaaaOGaeyypa0JaamOua8aa daWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1caGGOaWaaSaaa8 aabaWdbiaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyOe I0IaamiBaiaac+cacaWGJbaapaqaa8qacaWG0bWdamaaBaaaleaape GaaGimaaWdaeqaaaaak8qacaGGPaWdamaaCaaaleqabaWdbmaalaaa paqaa8qacaaIYaaapaqaa8qacaaIZaaaaaaaaaa@57B6@                         (14)

when using R( t )=R( t 0 l/c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amOuamaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaaGimaaWdae qaaOWdbiabgkHiTiaadYgacaGGVaGaam4yaaGaayjkaiaawMcaaaaa @43CB@ with t= t 0 l/c. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyOeI0IaamiBaiaac+cacaWGJbGaaiOlaaaa@3F80@ This then leads Equ. (13) to:

dM( l )=4π l 2 ρ SC,0 ( ( t 0 t 0 l/c ) 2 3 ) 3 ( R 0 l ) α SC × MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcaWGSbWdamaaCaaaleqabaWdbiaaikdaaa GccqaHbpGCpaWaaSbaaSqaa8qacaWGtbGaam4qaiaacYcacaaIWaaa paqabaGcpeGaeyyXICTaaiikaiaacIcadaWcaaWdaeaapeGaamiDa8 aadaWgaaWcbaWdbiaaicdaa8aabeaaaOqaa8qacaWG0bWdamaaBaaa leaapeGaaGimaaWdaeqaaOWdbiabgkHiTiaadYgacaGGVaGaam4yaa aacaGGPaWdamaaCaaaleqabaWdbmaalaaapaqaa8qacaaIYaaapaqa a8qacaaIZaaaaaaakiaacMcapaWaaWbaaSqabeaapeGaaG4maaaaki aacIcadaWcaaWdaeaapeGaamOua8aadaWgaaWcbaWdbiaaicdaa8aa beaaaOqaa8qacaWGSbaaaiaacMcapaWaaWbaaSqabeaapeGaeqySde 2damaaBaaameaapeGaam4uaiaadoeaa8aabeaaaaGcpeGaey41aqla aa@60FC@               

× ( t 0 l/c t 0 ) 2 α SC 3 dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaaiikamaalaaapaqaa8qacaWG0bWdamaaBaaaleaapeGa aGimaaWdaeqaaOWdbiabgkHiTiaadYgacaGGVaGaam4yaaWdaeaape GaamiDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaGcpeGaaiyka8aa daahaaWcbeqaa8qadaWcaaWdaeaapeGaaGOmaiabeg7aH9aadaWgaa adbaWdbiaadofacaWGdbaapaqabaaaleaapeGaaG4maaaaaaGccaWG KbGaamiBaaaa@4A41@                  (15)

or      

dM( l )=4π l 2 ρ SC,0 ( 1 1l/c t 0 ) 2 ( R 0 l ) α SC × MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcaWGSbWdamaaCaaaleqabaWdbiaaikdaaa GccqaHbpGCpaWaaSbaaSqaa8qacaWGtbGaam4qaiaacYcacaaIWaaa paqabaGcpeGaeyyXICTaaiikamaalaaapaqaa8qacaaIXaaapaqaa8 qacaaIXaGaeyOeI0IaamiBaiaac+cacaWGJbGaamiDa8aadaWgaaWc baWdbiaaicdaa8aabeaaaaGcpeGaaiyka8aadaahaaWcbeqaa8qaca aIYaaaaOGaaiikamaalaaapaqaa8qacaWGsbWdamaaBaaaleaapeGa aGimaaWdaeqaaaGcbaWdbiaadYgaaaGaaiyka8aadaahaaWcbeqaa8 qacqaHXoqypaWaaSbaaWqaa8qacaWGtbGaam4qaaWdaeqaaaaak8qa cqGHxdaTaaa@5CF3@

× (1l/c t 0 ) 2 α SC 3 dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aqRaaiikaiaaigdacqGHsislcaWGSbGaai4laiaadogacaWG 0bWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaacMcapaWaaWbaaS qabeaapeWaaSaaa8aabaWdbiaaikdacqaHXoqypaWaaSbaaWqaa8qa caWGtbGaam4qaaWdaeqaaaWcbaWdbiaaiodaaaaaaOGaamizaiaadY gaaaa@4887@               (16)

We now use the substitution z=1l/c t 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabg2da9iaaigdacqGHsislcaWGSbGaai4laiaadogacaWG 0bWdamaaBaaaleaapeGaaGimaaWdaeqaaOGaaiilaaaa@402F@ hereby keeping in mind that the relation t= t 0 l/c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiDaiabg2da9iaadshapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyOeI0IaamiBaiaac+cacaWGJbaaaa@3ECE@ leads to l( t=0 )=c t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBamaabmaapaqaa8qacaWG0bGaeyypa0JaaGimaaGaayjkaiaa wMcaaiabg2da9iaadogacaWG0bWdamaaBaaaleaapeGaaGimaaWdae qaaaaa@407C@ and l( t= t 0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBamaabmaapaqaa8qacaWG0bGaeyypa0JaamiDa8aadaWgaaWc baWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaaIWa aaaa@3FAE@ which means z=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabg2da9iaaicdaaaa@39EE@ for l( t=0 )=c t 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBamaabmaapaqaa8qacaWG0bGaeyypa0JaaGimaaGaayjkaiaa wMcaaiabg2da9iaadogacaWG0bWdamaaBaaaleaapeGaaGimaaWdae qaaaaa@407C@ and z=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabg2da9iaaigdaaaa@39EF@ for l( t= t 0 )=0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBamaabmaapaqaa8qacaWG0bGaeyypa0JaamiDa8aadaWgaaWc baWdbiaaicdaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaaIWa GaaiOlaaaa@4060@ Furthermore, dl is given by dl=c t 0 dz. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadYgacqGH9aqpcqGHsislcaWGJbGaamiDa8aadaWgaaWc baWdbiaaicdaa8aabeaak8qacaWGKbGaamOEaiaac6caaaa@40A5@ This finally results in the following equation:

M=4π (c t 0 ) 3 ( R 0 c t 0 ) α SC ρ SC,0 × MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamytaiabg2da9iaaisdacqaHapaCcaGGOaGaam4yaiaadshapaWa aSbaaSqaa8qacaaIWaaapaqabaGcpeGaaiyka8aadaahaaWcbeqaa8 qacaaIZaaaaOGaaiikamaalaaapaqaa8qacaWGsbWdamaaBaaaleaa peGaaGimaaWdaeqaaaGcbaWdbiaadogacaWG0bWdamaaBaaaleaape GaaGimaaWdaeqaaaaak8qacaGGPaWdamaaCaaaleqabaWdbiabeg7a H9aadaWgaaadbaWdbiaadofacaWGdbaapaqabaaaaOWdbiabeg8aY9 aadaWgaaWcbaWdbiaadofacaWGdbGaaiilaiaaicdaa8aabeaak8qa cqGHxdaTaaa@52EE@               

× 0 1 (1z) ( 2 α SC ) z ( 2 3 α SC 2 ) dz MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aq7aaybCaeqal8aabaWdbiaaicdaa8aabaWdbiaaigdaa0Wd aeaapeGaey4kIipaaOGaaeydGiaacIcacaaIXaGaeyOeI0IaamOEai aacMcapaWaaWbaaSqabeaapeWaaeWaa8aabaWdbiaaikdacqGHsisl cqaHXoqypaWaaSbaaWqaa8qacaWGtbGaam4qaaWdaeqaaaWcpeGaay jkaiaawMcaaaaakiaadQhapaWaaWbaaSqabeaapeWaaeWaa8aabaWd bmaalaaapaqaa8qacaaIYaaapaqaa8qacaaIZaaaaiabeg7aH9aada WgaaadbaWdbiaadofacaWGdbaapaqabaWcpeGaeyOeI0IaaGOmaaGa ayjkaiaawMcaaaaakiaadsgacaWG6baaaa@55A9@                   (17)

The retarded average density ρ( lR ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadYgacqGHsgIRcaWGsbaacaGLOaGa ayzkaaaaaa@3E4C@ is then given by:               

ρ( R )= M( R ) V( R ) =4π (c t 0 ) 3 ( R 0 c t 0 ) α SC ρ SC,0 × MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadkfaaiaawIcacaGLPaaacqGH9aqp daWcaaWdaeaapeGaamytamaabmaapaqaa8qacaWGsbaacaGLOaGaay zkaaaapaqaa8qacaWGwbWaaeWaa8aabaWdbiaadkfaaiaawIcacaGL PaaaaaGaeyypa0JaaGinaiabec8aWjaacIcacaWGJbGaamiDa8aada WgaaWcbaWdbiaaicdaa8aabeaak8qacaGGPaWdamaaCaaaleqabaWd biaaiodaaaGccaGGOaWaaSaaa8aabaWdbiaadkfapaWaaSbaaSqaa8 qacaaIWaaapaqabaaakeaapeGaam4yaiaadshapaWaaSbaaSqaa8qa caaIWaaapaqabaaaaOWdbiaacMcapaWaaWbaaSqabeaapeGaeqySde 2damaaBaaameaapeGaam4uaiaadoeaa8aabeaaaaGcpeGaeqyWdi3d amaaBaaaleaapeGaam4uaiaadoeacaGGSaGaaGimaaWdaeqaaOWdbi abgEna0caa@5E5A@

× (c t 0 ) 3 ( R 0 c t 0 ) α SC ρ SC,0 0 1 (1z) ( 2 α SC ) z ( 2 3 α SC 2 ) dz 0 c t 0 l 2 dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aq7aaSaaa8aabaWdbiaacIcacaWGJbGaamiDa8aadaWgaaWc baWdbiaaicdaa8aabeaak8qacaGGPaWdamaaCaaaleqabaWdbiaaio daaaGccaGGOaWaaSaaa8aabaWdbiaadkfapaWaaSbaaSqaa8qacaaI WaaapaqabaaakeaapeGaam4yaiaadshapaWaaSbaaSqaa8qacaaIWa aapaqabaaaaOWdbiaacMcapaWaaWbaaSqabeaapeGaeqySde2damaa BaaameaapeGaam4uaiaadoeaa8aabeaaaaGcpeGaeqyWdi3damaaBa aaleaapeGaam4uaiaadoeacaGGSaGaaGimaaWdaeqaaOWdbiabgwSi xpaavadabeWcpaqaa8qacaaIWaaapaqaa8qacaaIXaaan8aabaWdbi abgUIiYdaakiaab2aicaGGOaGaaGymaiabgkHiTiaadQhacaGGPaWd amaaCaaaleqabaWdbmaabmaapaqaa8qacaaIYaGaeyOeI0IaeqySde 2damaaBaaameaapeGaam4uaiaadoeaa8aabeaaaSWdbiaawIcacaGL PaaaaaGccaWG6bWdamaaCaaaleqabaWdbmaabmaapaqaa8qadaWcaa WdaeaapeGaaGOmaaWdaeaapeGaaG4maaaacqaHXoqypaWaaSbaaWqa a8qacaWGtbGaam4qaaWdaeqaaSWdbiabgkHiTiaaikdaaiaawIcaca GLPaaaaaGccaWGKbGaamOEaaWdaeaapeWaaubmaeqal8aabaWdbiaa icdaa8aabaWdbiaadogacaWG0bWdamaaBaaameaapeGaaGimaaWdae qaaaqdbaWdbiabgUIiYdaakiaab2aicaWGSbWdamaaCaaaleqabaWd biaaikdaaaGccaWGKbGaamiBaaaaaaa@781A@                             (18)

Now, with the typical correlation index α SC =1.8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySde2damaaBaaaleaapeGaam4uaiaadoeaa8aabeaak8qacqGH 9aqpcaaIXaGaaiOlaiaaiIdaaaa@3E17@ mentioned before in section 2 of this paper, and expressing the volume V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOvaaaa@380A@ by 4π 3 (c t o ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaisdacqaHapaCa8aabaWdbiaaiodaaaGaaiik aiaadogacaWG0bWdamaaBaaaleaapeGaam4BaaWdaeqaaOWdbiaacM capaWaaWbaaSqabeaapeGaaG4maaaaaaa@4060@ we get:

ρ=3 ( R 0 c t 0 ) α SC ρ SC,0 0 1 (1z) 0.2 z 0.8 dz MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0JaaG4maiaacIcadaWcaaWdaeaapeGaamOua8aa daWgaaWcbaWdbiaaicdaa8aabeaaaOqaa8qacaWGJbGaamiDa8aada WgaaWcbaWdbiaaicdaa8aabeaaaaGcpeGaaiyka8aadaahaaWcbeqa a8qacqaHXoqypaWaaSbaaWqaa8qacaWGtbGaam4qaaWdaeqaaaaak8 qacqaHbpGCpaWaaSbaaSqaa8qacaWGtbGaam4qaiaacYcacaaIWaaa paqabaGcpeGaeyyXIC9aaybCaeqal8aabaWdbiaaicdaa8aabaWdbi aaigdaa0WdaeaapeGaey4kIipaaOGaaeydGmaalaaapaqaa8qacaGG OaGaaGymaiabgkHiTiaadQhacaGGPaWdamaaCaaaleqabaWdbiaaic dacaGGUaGaaGOmaaaaaOWdaeaapeGaamOEa8aadaahaaWcbeqaa8qa caaIWaGaaiOlaiaaiIdaaaaaaOGaamizaiaadQhacqGHijYUaaa@5FBB@

3 ( R 0 c t 0 ) α SC ρ SC,0 4.75 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyisISRaaG4maiaacIcadaWcaaWdaeaapeGaamOua8aadaWgaaWc baWdbiaaicdaa8aabeaaaOqaa8qacaWGJbGaamiDa8aadaWgaaWcba Wdbiaaicdaa8aabeaaaaGcpeGaaiyka8aadaahaaWcbeqaa8qacqaH XoqypaWaaSbaaWqaa8qacaWGtbGaam4qaaWdaeqaaaaak8qacqaHbp GCpaWaaSbaaSqaa8qacaWGtbGaam4qaiaacYcacaaIWaaapaqabaGc peGaeyyXICTaaGinaiaac6cacaaI3aGaaGynaaaa@4EB1@                          (19)

This shows that in case a) for the universe with a time-invariant and scale-invariant matter structuring one obtains a finite and positive average mass density which then a posteriori also justifies the use of the scale evolution law R t 2/3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiabgYJi+jaadshapaWaaWbaaSqabeaapeGaaGOmaiaac+ca caaIZaaaaaaa@3CDF@ valid for the matter-dominated universe.

Case b):

For this case we in advance want to assume that one obtains a vanishing average cosmic mass density with ρ( lR )=0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadYgacqGHsgIRcaWGsbaacaGLOaGa ayzkaaGaeyypa0JaaGimaiaac6caaaa@40BE@ Consequently the scale evolution law for this universe is a "coasting cosmology evolution" given by the law R( t )t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyipI4Na amiDaaaa@3D08@ , and by carrying out the analogue calculation of the mass density as above for this universe we should be able to a posteriori prove that in this case the associated average density in fact is ρ( lR )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadYgacqGHsgIRcaWGsbaacaGLOaGa ayzkaaGaeyypa0JaaGimaaaa@400C@ !But in fact we have carried out this alternative integration for case b) and it turns out that the resulting average mass density is again positive and even greater than in case a). But this then means that the use of the coasting cosmology scale law R( t )t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyipI4Na amiDaaaa@3D08@ is not a posteriori justified in this case b).

Deceleration of differential mass motions with respect to the local standard of rest

Let us consider now a single mass m embedded in a homogeneous, infinite universe. Then one may want to study the question: What will happen in case this mass m has a peculiar motion by a certain velocity U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmyva8aagaWcaaaa@382A@ with respect to the local standard of rest of the ambient universe? How does this velocity behave in time? For the case that this peculiar motion is changing in time by an amount b =d U /dt, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOya8aagaWca8qacqGH9aqpcaWGKbGabmyva8aagaWca8qacaGG VaGaamizaiaadshacaGGSaaaaa@3E86@ a local force must be identifiable causing this de-/ac-celeration b . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOya8aagaWca8qacaGGUaaaaa@38F9@ In the absence of any viscous forces or electromagnetic forces etc. one may be able to reduce the force candidate to some effective force caused by the net gravitational pull of all the cosmic masses surrounding this peculiar mass , and one should be able to quantify a locally acting force as due to the net gravitational force of the ambient universe influencing this peculiar mass m at its peculiar motion U . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmyva8aagaWca8qacaGGUaaaaa@38EC@

In order to study this problem more quantitatively one could follow the approach that already was used by Thirring40 or Soergel-Fabricius41 to study centrifugal forces acting on a mass rotating with respect to the rest of a universe with a homogeneous mass distribution. The idea there was to represent the mass of the universe as a system of congruent spherical mass shells. While Thirring40 or later Fahr24 and along this way had faced the problem of a rotating central mass to study the origin of cosmic centrifugal forces, we here instead have to look for a solution of the problem connected with a central mass m in peculiar motion U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmyva8aagaWcaaaa@382A@ with respect to the rest of the universe. Question: Would this motion persist unchanged in time or will it undergo a temporal change and by what amount would it do it?

To answer this question on the basis of post-Newtonian SRT gravity one has to realize that due to the finite propagation speed of gravitons, communicating the surrounding mass constellation by gravitons to the position of the moving central mass m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaaaa@3821@ with the velocity of light c, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4yaiaacYcaaaa@38C7@ the individual mass sources δ M U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaamyta8aadaWgaaWcbaWdbiaadwfaa8aabeaaaaa@3ADA@ of the surrounding gravity field of the universe are all effectively acting from "apparently retarded" positions when judged from the position of the moving central mass (a phenomenon analogous to stars appearing at positions shifted from their true positions due to the motion of the observer: i.e. stellar aberration). That means, if the mass element δ M U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaamyta8aadaWgaaWcbaWdbiaadwfaa8aabeaaaaa@3ADA@ on a spherical mass shell is seen by a central object at rest under an angle θ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdeNaaiilaaaa@3995@ it instead acts effectively from the aberration angle θ' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdeNaai4jaaaa@3990@ on the central object, when the latter moves with the velocity U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmyva8aagaWcaaaa@382A@ with respect to the local standard of rest. According to STR relations these two angles are connected by the following STR Doppler relation:

cosθ'= cosθ+β 1+βcosθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4yaiaab+gacaqGZbGaeqiUdeNaai4jaiabg2da9maalaaapaqa a8qacaWGJbGaam4BaiaadohacqaH4oqCcqGHRaWkcqaHYoGya8aaba WdbiaaigdacqGHRaWkcqaHYoGycaWGJbGaam4BaiaadohacqaH4oqC aaaaaa@4C87@                  (20)

where β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdigaaa@38D0@ is given by β=U/c. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0Jaamyvaiaac+cacaWGJbGaaiOlaaaa@3CFD@

Assuming a homogeneous and constant cosmic mass density distribution with ρ= ρ U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyypa0JaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqa aOGaaiilaaaa@3DA3@ then one arrives at the following effective gravitational force K =( K U U )/U, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaOWdbiabg2da9maa bmaapaqaa8qaceWGlbWdayaalaWaaSbaaSqaa8qacaWGvbaapaqaba GcpeGaeyyXICTabmyva8aagaWcaaWdbiaawIcacaGLPaaacaGGVaGa amyvaiaacYcaaaa@440B@ aligned with the direction of the peculiar velocity U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gabmyva8aagaWca8qacaGGSaaaaa@38EA@ acting in the direction ( U ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiabgkHiTiqadwfapaGbaSaaa8qacaGLOaGaayzk aaaaaa@3ACF@ on the central mass m, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaiaacYcaaaa@38D1@ due to the net gravitational pull of the surrounding cosmic mass assembly of the universe:         

K = 0 R max d R U 0 π dθ× MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaOWdbiabg2da9iab gkHiTmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacaWGsbWdamaaBa aameaapeGaaeyBaiaabggacaqG4baapaqabaaaneaapeGaey4kIipa aOGaaeydGiaadsgacaWGsbWdamaaBaaaleaapeGaamyvaaWdaeqaaO WdbmaawahabeWcpaqaa8qacaaIWaaapaqaa8qacqaHapaCa0Wdaeaa peGaey4kIipaaOGaaeydGiaadsgacqaH4oqCcqGHxdaTaaa@5185@

× 0 2π dϕρU R U 2 Gm R U 2 cosθsinθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aq7aa8qCaeaacaWGKbGaeqy1dyMaeqyWdiNaamyvaiaadkfa daqhaaWcbaGaamyvaaqaaiaaikdaaaaabaGaaGimaaqaaiaaikdacq aHapaCa0Gaey4kIipakmaalaaabaGaam4raiaad2gaaeaacaWGsbWa a0baaSqaaiaadwfaaeaacaaIYaaaaaaakiGacogacaGGVbGaai4Cai abeI7aXjGacohacaGGPbGaaiOBaiabeI7aXbaa@544F@                                (21)

evidently leading to

K =2π ρ U Gm 0 R max δ Ρ Υ 0 π cosθ' sinθdθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaOWdbiabg2da9iab gkHiTiaaikdacqaHapaCcqaHbpGCpaWaaSbaaSqaa8qacaWGvbaapa qabaGcpeGaam4raiaad2gadaGfWbqabSWdaeaapeGaaGimaaWdaeaa peGaamOua8aadaWgaaadbaWdbiaab2gacaqGHbGaaeiEaaWdaeqaaa qdbaWdbiabgUIiYdaakiaab2aicqaH0oazcqqHHoGupaWaaSbaaSqa a8qacqqHLoqva8aabeaakmaapehabaGaci4yaiaac+gacaGGZbGaeq iUdeNaai4ja8qacaGGGcWdaiaacohacaGGPbGaaiOBaiabeI7aXjaa csgacqaH4oqCaSqaaiaaicdaaeaacqaHapaCa0Gaey4kIipaaaa@6299@                               (22)

and to

K =2π ρ Y Γμ R max 0 π cosθ'sinθdθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaaBaaaleaacqWILicuaeqaaOGaeyypa0JaeyOeI0IaaGOm aiabec8aWjabeg8aYnaaBaaaleaacaWGzbaabeaakiabfo5ahjabeY 7aTjaadkfadaWgaaWcbaGaciyBaiaacggacaGG4baabeaakmaapeha baGaci4yaiaac+gacaGGZbGaeqiUdeNaai4jaiGacohacaGGPbGaai OBaiabeI7aXjaadsgacqaH4oqCaSqaaiaaicdaaeaacqaHapaCa0Ga ey4kIipaaaa@58DC@                      (23)

This expression already in this form reveals that K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaaaa@3981@ can only be a finite quantity, if the product ρ U R max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiaadkfapaWa aSbaaSqaa8qacaqGTbGaaeyyaiaabIhaa8aabeaaaaa@3E3D@ stays finite, requiring that the average density should be either strictly zero or proportional to ρ U R max 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabgYJi+jaa dkfapaWaa0baaSqaa8qacaqGTbGaaeyyaiaabIhaa8aabaWdbiabgk HiTiaaigdaaaaaaa@415E@ in an infinite universe.

On the other way, with the average cosmic density ρ U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOGaaiilaaaa@3ADD@ expressed through the total mass M U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadwfaa8aabeaaaaa@3935@ for the Euclidean universe, given by ρ U =( 3/4π ) M U / R max 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabg2da9maa bmaapaqaa8qacaaIZaGaai4laiaaisdacqaHapaCaiaawIcacaGLPa aacaWGnbWdamaaBaaaleaapeGaamyvaaWdaeqaaOWdbiaac+cacaWG sbWdamaaDaaaleaapeGaaeyBaiaabggacaqG4baapaqaa8qacaaIZa aaaOWdaiaacYcaaaa@4940@ - R max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeqaaaaa @3B2F@ being the radius of the matter-filled universe -, leads to the following expression:

K = 3 2 Gm M U R max 2 0 π cosθ+β 1+βcosθ sinθdθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaaBaaaleaacqWILicuaeqaaOGaeyypa0JaeyOeI0YaaSaa aeaacaaIZaaabaGaaGOmaaaacaWGhbGaamyBamaalaaabaGaamytam aaBaaaleaacaWGvbaabeaaaOqaaiaadkfadaqhaaWcbaGaciyBaiaa cggacaGG4baabaGaaGOmaaaaaaGcdaWdXbqaamaalaaabaGaci4yai aac+gacaGGZbGaeqiUdeNaey4kaSIaeqOSdigabaGaaGymaiabgUca Riabek7aIjGacogacaGGVbGaai4CaiabeI7aXbaaaSqaaiaaicdaae aacqaHapaCa0Gaey4kIipakiGacohacaGGPbGaaiOBaiabeI7aXjaa dsgacqaH4oqCaaa@6020@                  (24)

and, to obtain a finite quantity K , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaOGaaiilaaaa@3A3B@ would then require M U R max 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadwfaa8aabeaak8qacqGH8iIFcaWG sbWdamaaDaaaleaapeGaaeyBaiaabggacaqG4baapaqaa8qacaaIYa aaaaaa@3F84@ . For a positively/negatively curved space k=+1/1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgUcaRiaaigdacaGGVaGaeyOeI0IaaGymaaaa @3D1D@ we would instead find the following relation:

ρ U =( 3/4π ) M U /( R max 3 ( 1/5 )( k/ r 2 ) r 5 +...)=( 3/20π ) M U / R max 3 /( 18/20π ) M U / R max 3 .: MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabg2da9maa bmaapaqaa8qacaaIZaGaai4laiaaisdacqaHapaCaiaawIcacaGLPa aacaWGnbWdamaaBaaaleaapeGaamyvaaWdaeqaaOWdbiaac+cacaGG OaGaamOua8aadaqhaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeaape GaaG4maaaakiabgkHiTmaabmaapaqaa8qacaaIXaGaai4laiaaiwda aiaawIcacaGLPaaadaqadaWdaeaapeGaam4Aaiaac+cacaWGYbWdam aaCaaaleqabaWdbiaaikdaaaaakiaawIcacaGLPaaacaWGYbWdamaa CaaaleqabaWdbiaaiwdaaaGccqGHRaWkcaGGUaGaaiOlaiaac6caca GGPaGaeyypa0ZaaeWaa8aabaWdbiaaiodacaGGVaGaaGOmaiaaicda cqaHapaCaiaawIcacaGLPaaacaWGnbWdamaaBaaaleaapeGaamyvaa WdaeqaaOWdbiaac+cacaWGsbWdamaaDaaaleaapeGaaeyBaiaabgga caqG4baapaqaa8qacaaIZaaaaOGaai4lamaabmaapaqaa8qacaaIXa GaaGioaiaac+cacaaIYaGaaGimaiabec8aWbGaayjkaiaawMcaaiaa d2eapaWaaSbaaSqaa8qacaWGvbaapaqabaGcpeGaai4laiaadkfapa Waa0baaSqaa8qacaqGTbGaaeyyaiaabIhaa8aabaWdbiaaiodaaaGc paGaaiOlaiaacQdaaaa@78D8@

By substituting coordinates θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiUdehaaa@38E5@ by x=cosθ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiabg2da9iaabogacaqGVbGaae4CaiabeI7aXbaa@3DB6@ one obtains:

K = 3 2 Gm M U R max 2 1 1 x+β 1+βx dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaaBaaaleaacqWILicuaeqaaOGaeyypa0JaeyOeI0YaaSaa aeaacaaIZaaabaGaaGOmaaaacaWGhbGaamyBamaalaaabaGaamytam aaBaaaleaacaWGvbaabeaaaOqaaiaadkfadaqhaaWcbaGaciyBaiaa cggacaGG4baabaGaaGOmaaaaaaGcdaWdXbqaamaalaaabaGaamiEai abgUcaRiabek7aIbqaaiaaigdacqGHRaWkcqaHYoGycaWG4baaaaWc baGaaGymaaqaaiabgkHiTiaaigdaa0Gaey4kIipakiaadsgacaWG4b aaaa@53AE@                               (25)

K = 3 2 Gm M U R max 2 1 1 [ x 1+βx + β 1+βx ] dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaaBaaaleaacqWILicuaeqaaOGaeyypa0ZaaSaaaeaacaaI ZaaabaGaaGOmaaaacaWGhbGaamyBamaalaaabaGaamytamaaBaaale aacaWGvbaabeaaaOqaaiaadkfadaqhaaWcbaGaciyBaiaacggacaGG 4baabaGaaGOmaaaaaaGcdaWdXbqaamaadmaabaWaaSaaaeaacaWG4b aabaGaaGymaiabgUcaRiabek7aIjaadIhaaaGaey4kaSYaaSaaaeaa cqaHYoGyaeaacaaIXaGaey4kaSIaeqOSdiMaamiEaaaaaiaawUfaca GLDbaaaSqaaiaaigdaaeaacqGHsislcaaIXaaaniabgUIiYdGccaWG KbGaamiEaaaa@58FE@                               (26)

which can be further integrated to yield:          

K = 3 2 Gm M U R max 2 [ 1 β 2 × 1+β 1β ( y1 )dy y +[ n( 1β )ln( 1+β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaOWdbiabg2da9maa laaapaqaa8qacaaIZaaapaqaa8qacaaIYaaaaiaadEeacaWGTbWaaS aaa8aabaWdbiaad2eapaWaaSbaaSqaa8qacaWGvbaapaqabaaakeaa peGaamOua8aadaqhaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeaape GaaGOmaaaaaaGccaGGBbWaaSaaa8aabaWdbiaaigdaa8aabaWdbiab ek7aI9aadaahaaWcbeqaa8qacaaIYaaaaaaakiabgEna0oaawahabe Wcpaqaa8qacaaIXaGaey4kaSIaeqOSdigapaqaa8qacaaIXaGaeyOe I0IaeqOSdigan8aabaWdbiabgUIiYdaakmaalaaabaWaaeWaaeaaca WG5bGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadsgacaWG5baabaGa amyEaaaacqGHRaWkdaWadaqaaiaad6gadaqadaqaaiaaigdacqGHsi slcqaHYoGyaiaawIcacaGLPaaacqGHsislciGGSbGaaiOBamaabmaa baGaaGymaiabgUcaRiabek7aIbGaayjkaiaawMcaaaGaay5waiaaw2 faaaaa@6CB1@                              (27)

and:

K = 3 2 Gm M U R max 2 [ 1 β 2 +β β ζδζ ζ+1 +ln 1β 1+β ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaaBaaaleaacqWILicuaeqaaOGaeyypa0JaeyOeI0YaaSaa aeaacaaIZaaabaGaaGOmaaaacaWGhbGaamyBamaalaaabaGaamytam aaBaaaleaacaWGvbaabeaaaOqaaiaadkfadaqhaaWcbaGaciyBaiaa cggacaGG4baabaGaaGOmaaaaaaGccaGGBbWaaSaaaeaacaaIXaaaba GaeqOSdi2aaWbaaSqabeaacaaIYaaaaaaakmaapehabaWaaSaaaeaa cqaH2oGEcqaH0oazcqaH2oGEaeaacqaH2oGEcqGHRaWkcqGHXaqmaa aaleaacqGHRaWkcqaHYoGyaeaacqGHsislcqaHYoGya0Gaey4kIipa kiabgUcaRiGacYgacaGGUbWaaSaaaeaacaaIXaGaeyOeI0IaeqOSdi gabaGaaGymaiabgUcaRiabek7aIbaacaGGDbaaaa@63E3@                               (28)

or finally leading to:

K ( β )= 3 2 Gm M U R max 2 [ 1 β 2 β 2 ln( 1+β 1β ) 2 β ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaOWdbmaabmaapaqa a8qacqaHYoGyaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaG 4maaWdaeaapeGaaGOmaaaacaWGhbGaamyBamaalaaapaqaa8qacaWG nbWdamaaBaaaleaapeGaamyvaaWdaeqaaaGcbaWdbiaadkfapaWaa0 baaSqaa8qacaqGTbGaaeyyaiaabIhaa8aabaWdbiaaikdaaaaaaOWa amWaa8aabaWdbmaalaaapaqaa8qacaaIXaGaeyOeI0IaeqOSdi2dam aaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabek7aI9aadaahaaWc beqaa8qacaaIYaaaaaaakiaabYgacaqGUbWaaeWaa8aabaWdbmaala aapaqaa8qacaaIXaGaey4kaSIaeqOSdigapaqaa8qacaaIXaGaeyOe I0IaeqOSdigaaaGaayjkaiaawMcaaiabgkHiTmaalaaapaqaa8qaca aIYaaapaqaa8qacqaHYoGyaaaacaGLBbGaayzxaaaaaa@5FF7@                         (29)

From Figure 2 it becomes evident that this force K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaaaa@3981@ is vanishing for β0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyOKH4QaaGimaaaa@3B77@ which is a natural requirement, since for an object at rest, the masses of the homogeneous universe around, due to symmetry reasons, should not induce any net force. Interestingly enough, one can also calculate the typical cosmic braking period τ( β )=β/dβ/dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3aaeWaa8aabaWdbiabek7aIbGaayjkaiaawMcaaiabg2da 9iabgkHiTiabek7aIjaac+cacaWGKbGaeqOSdiMaai4laiaadsgaca WG0baaaa@45A3@ until differential motions die out given by:

Figure 2 The bracket term [ 1 β 2 β 2 ln( 1+β 1β ) 2 β ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbmaalaaapaqaa8qacaaIXaGaeyOeI0IaeqOSdi2d amaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabek7aI9aadaahaa Wcbeqaa8qacaaIYaaaaaaakiaabYgacaqGUbWaaeWaa8aabaWdbmaa laaapaqaa8qacaaIXaGaey4kaSIaeqOSdigapaqaa8qacaaIXaGaey OeI0IaeqOSdigaaaGaayjkaiaawMcaaiabgkHiTmaalaaapaqaa8qa caaIYaaapaqaa8qacqaHYoGyaaaacaGLBbGaayzxaaaaaa@4E91@ of the cosmic braking power K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaaaa@3981@ in Eq. (29) as function of β=U/c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0Jaamyvaiaac+cacaWGJbaaaa@3C4B@ decelerating peculiar motions U of stars or galaxies in a universe with a constant value of frac M U R max 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOzaiaadkhacaWGHbGaam4yaiaad2eapaWaaSbaaSqaa8qacaWG vbaapaqabaGcpeGaamOua8aadaqhaaWcbaWdbiaab2gacaqGHbGaae iEaaWdaeaapeGaaGOmaaaaaaa@41CC@ .

τ( β )= 2 3 R max 2 G M u β [ 1 β 2 β 2 ln( 1+β 1β ) 2 β ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3aaeWaa8aabaWdbiabek7aIbGaayjkaiaawMcaaiabg2da 9maalaaapaqaa8qacaaIYaaapaqaa8qacaaIZaaaamaalaaapaqaa8 qacaWGsbWdamaaDaaaleaapeGaaeyBaiaabggacaqG4baapaqaa8qa caaIYaaaaaGcpaqaa8qacaWGhbGaamyta8aadaWgaaWcbaWdbiaadw haa8aabeaaaaGcpeWaaSaaa8aabaWdbiabek7aIbWdaeaapeWaamWa a8aabaWdbmaalaaapaqaa8qacaaIXaGaeyOeI0IaeqOSdi2damaaCa aaleqabaWdbiaaikdaaaaak8aabaWdbiabek7aI9aadaahaaWcbeqa a8qacaaIYaaaaaaakiaabYgacaqGUbWaaeWaa8aabaWdbmaalaaapa qaa8qacaaIXaGaey4kaSIaeqOSdigapaqaa8qacaaIXaGaeyOeI0Ia eqOSdigaaaGaayjkaiaawMcaaiabgkHiTmaalaaapaqaa8qacaaIYa aapaqaa8qacqaHYoGyaaaacaGLBbGaayzxaaaaaaaa@608C@                                (30)

which for M U R max 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadwfaa8aabeaak8qacqGH8iIFcaWG sbWdamaaDaaaleaapeGaaeyBaiaabggacaqG4baapaqaa8qacaaIYa aaaaaa@3F84@ is a finite time period and in general determines the time after which all peculiar galaxy motions should have died out in the universe, i.e. only the rigorous Hubble motion continues to exist in such a "crystalline" universe after that period. This time evidently is dependent on the cosmic value prevalent for R max 2 / M U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaqhaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeaapeGa aGOmaaaakiaac+cacaWGnbWdamaaBaaaleaapeGaamyvaaWdaeqaaa aa@3EBF@ or equivalently for ρ U R max . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiaadkfapaWa aSbaaSqaa8qacaqGTbGaaeyyaiaabIhaa8aabeaakiaac6caaaa@3EF9@ If these latter values are finite, then the cosmic braking period τ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3aaeWaa8aabaWdbiabek7aIbGaayjkaiaawMcaaaaa@3C3D@ is finite too, and when the universe has an age τ H =1/H=R/ R ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiXdq3damaaBaaaleaapeGaamisaaWdaeqaaOWdbiabg2da9iaa igdacaGGVaGaamisaiabg2da9iaadkfacaGGVaGabmOua8aagaGaaa aa@40F5@ larger than this period, then all peculiar motions in this universe should have died out.

In an infinite universe R max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeqaaOWd biabgkziUkabg6HiLcaa@3EA7@ with finite density the expression for K ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaOWdbmaabmaapaqa a8qacqaHYoGyaiaawIcacaGLPaaaaaa@3CE4@ can only be finite, if the density in such a universe scales with ρ U 1/ R max . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabgYJi+jaa igdacaGGVaGaamOua8aadaWgaaWcbaWdbiaab2gacaqGHbGaaeiEaa WdaeqaaOGaaiOlaaaa@41CF@ Otherwise, if such a physical connection cannot be supported and required with physical sense, the density in such a universe should then simply vanish; i.e. ρ U =0!, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyvaaWdaeqaaOWdbiabg2da9iaa icdacaGGHaGaaiilaaaa@3D52@ as it does in a scale-invariant hierarchically structured universe (see Figure 1 in the section above for k=0;k=1). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdacaGG7aGaam4Aaiabg2da9iabgkHiTiaa igdacaGGPaGaaiOlaaaa@3F9B@

This above consideration may become a little bit more complicated, if also hereby the problem of the expanding universe has to be taken into account in this problem. Then looking into larger distances may mean that evolutionary earlier cosmic phases of cosmic matter distribution are determining the considered gravitational influences. This means that, with growing distances and longer times it takes to communicate through gravitons the cosmic mass positions to the local position, gravitational influences of earlier evolutionary states of the universe with a higher mass density physically come into the game. This may be taken into account by modifying the above expression for the braking power by:

K =2πGm 0 ρ Y ( τ )δ R U 0 π cosθ sinθdθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaeSyjIafabeaakiabg2da9iabgkHiTiaaikdacqaHapaCcaWG hbGaamyBamaapehabaGaeqyWdi3aaSbaaSqaaiaadMfaaeqaaaqaai aaicdaaeaacqGHEisPa0Gaey4kIipakmaabmaabaGaeqiXdqhacaGL OaGaayzkaaGaeqiTdqMaamOuamaaBaaaleaacaWGvbaabeaakmaape habaGaci4yaiaac+gacaGGZbGaeqiUdeheaaaaaaaaa8qacaGGGcWd aiGacohacaGGPbGaaiOBaiabeI7aXjaadsgacqaH4oqCaSqaaiaaic daaeaacqaHapaCa0Gaey4kIipaaaa@5F86@                              (31)

leading by inclusion of the cosmologically retarded densities to the following expression:

K =2πGm 0 ρ( t 0 R u /c ) d R U 0 π cosθ' sinθdθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaaBaaaleaacqWILicuaeqaaOGaeyypa0JaeyOeI0IaaGOm aiabec8aWjaadEeacaWGTbWaa8qCaeaacqaHbpGCdaqadaqaaiaads hadaWgaaWcbaGaaGimaaqabaGccqGHsislcaWGsbWaaSbaaSqaaiaa dwhaaeqaaOGaai4laiaadogaaiaawIcacaGLPaaaaSqaaiaaicdaae aacqGHEisPa0Gaey4kIipakiaadsgacaWGsbWaaSbaaSqaaiaadwfa aeqaaOWaa8qCaeaaciGGJbGaai4BaiaacohacqaH4oqCcaGGNaGaai iOaiaacohacaGGPbGaaiOBaiabeI7aXjaacsgacqaH4oqCaSqaaiaa icdaaeaacqaHapaCa0Gaey4kIipaaaa@6317@                                (32)

leading with R U0 = R U ( t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadwfacaaIWaaapaqabaGcpeGaeyyp a0JaamOua8aadaWgaaWcbaWdbiaadwfaa8aabeaak8qacaGGOaGaam iDa8aadaWgaaWcbaWdbiaaicdaa8aabeaakiaacMcaaaa@40A9@ to:       

K =2πGmρU0 0 ( R U0 R U ( t 0 R u /c ) 3 d R U × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaeSyjIafabeaakiabg2da9iabgkHiTiaaikdacqaHapaCcaWG hbGaamyBaiabeg8aYjaadwfacaaIWaWaa8qCaeaacaGGOaWaaSaaae aacaWGsbWaaSbaaSqaaiaadwfacaaIWaaabeaaaOqaaiaadkfadaWg aaWcbaGaamyvaaqabaGccaGGOaGaamiDamaaBaaaleaacaaIWaaabe aakiabgkHiTiaadkfadaWgaaWcbaGaamyDaaqabaGccaGGVaGaam4y aaaaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaacMcadaahaa WcbeqaaiaaiodaaaGccaWGKbGaamOuamaaBaaaleaacaWGvbaabeaa kiabgEna0caa@5A48@

× 0 π cosθ'sinθdθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey41aq7aaybCaeqal8aabaWdbiaaicdaa8aabaWdbiabec8aWbqd paqaa8qacqGHRiI8aaGccaqGJbGaae4BaiaabohacqaH4oqCcaGGNa Gaae4CaiaabMgacaqGUbGaeqiUdeNaamizaiabeI7aXbaa@4AEB@                   (33)

K = 0 dRU 0 π dθ 0 2π dϕ . ρ U R U 2 Gm R U 2 cosθ' sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaaBaaaleaacqWILicuaeqaaOGaeyypa0JaeyOeI0Yaa8qC aeaacaWGKbGaamOuaiaadwfadaWdXbqaaiaadsgacqaH4oqCaSqaai aaicdaaeaacqaHapaCa0Gaey4kIipaaSqaaiaaicdaaeaacqGHEisP a0Gaey4kIipakmaapehabaGaamizaiabew9aMbWcbaGaaGimaaqaai aaikdacqaHapaCa0Gaey4kIipakiaac6cacqaHbpGCdaWgaaWcbaGa amyvaaqabaGccaWGsbWaa0baaSqaaiaadwfaaeaacaaIYaaaaOWaaS aaaeaacaWGhbGaamyBaaqaaiaadkfadaqhaaWcbaGaamyvaaqaaiaa ikdaaaaaaOGaci4yaiaac+gacaGGZbGaeqiUdeNaai4jaiaacckaci GGZbGaaiyAaiaac6gacqaH4oqCaaa@67DB@                        (34)

This expression, in a hierarchically structured universe, would write the following way:

K =Gm 0 ρ U d R U 0 π δθ 0 2π dϕ.cosθ 'sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4samaaBaaaleaacqWILicuaeqaaOGaeyypa0JaeyOeI0Iaam4r aiaad2gadaWdXbqaaiabeg8aYnaaBaaaleaacaWGvbaabeaaaeaaca aIWaaabaGaeyOhIukaniabgUIiYdGccaWGKbGaamOuamaaBaaaleaa caWGvbaabeaakmaapehabaGaeqiTdqMaeqiUdehaleaacaaIWaaaba GaeqiWdahaniabgUIiYdGcdaWdXbqaaiaadsgacqaHvpGzcaGGUaGa ci4yaiaac+gacaGGZbGaeqiUdeNaaiiOaiaacEcaciGGZbGaaiyAai aac6gacqaH4oqCaSqaaiaaicdaaeaacaaIYaGaeqiWdahaniabgUIi Ydaaaa@6360@                              (35)

and with the differential mass increase in a hierarchic universe given by:

dM( l )=4π ρ SC,0 ( l SC,0 l ) α ( 1k l 2 ) (1+k l 2 ) 4 l 2 dl ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaiaad2eadaqadaWdaeaapeGaamiBaaGaayjkaiaawMcaaiab g2da9iaaisdacqaHapaCcqaHbpGCpaWaaSbaaSqaa8qacaWGtbGaam 4qaiaacYcacaaIWaaapaqabaGcpeGaeyyXIC9aaKama8aabaWdbmaa laaapaqaa8qacaWGSbWdamaaBaaaleaapeGaam4uaiaadoeacaGGSa GaaGimaaWdaeqaaaGcbaWdbiaadYgaaaGaaiyka8aadaahaaWcbeqa a8qacqaHXoqyaaGccqGHflY1daWcaaWdaeaapeWaaeWaa8aabaWdbi aaigdacqGHsislcaWGRbGaamiBa8aadaahaaWcbeqaa8qacaaIYaaa aaGccaGLOaGaayzkaaaapaqaa8qacaGGOaGaaGymaiabgUcaRiaadU gacaWGSbWdamaaCaaaleqabaWdbiaaikdaaaGccaGGPaWdamaaCaaa leqabaWdbiaaisdaaaaaaOGaamiBa8aadaahaaWcbeqaa8qacaaIYa aaaOGaamizaiaadYgaaiaawIcacaGLDbaaaaa@6483@                           (36)

then would lead to:       

K =Gm 0 1 4πρSC,0 . [( l SC,0 l ) α × × (1k ( l/ R u ) 2 ) 1+k ( l/ R u ) 2 ) dl] 0 π dθ 0 2π dϕ . cosθ' . sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4sam aaBaaaleaacqWILicuaeqaaOGaeyypa0JaeyOeI0Iaam4raiaad2ga daWdXaqaaiaaisdacqaHapaCcqaHbpGCcaWGtbGaam4qaiaacYcaca aIWaaeaaaaaaaaa8qacaGGGcGaaiOlaiaacckacaGGBbGaaiikamaa laaabaGaamiBamaaBaaaleaacaWGtbGaam4qaiaacYcacaaIWaaabe aaaOqaaiaadYgaaaaal8aabaGaaGimaaqaaiaaigdaa0Gaey4kIipa kiaacMcadaahaaWcbeqaaiabeg7aHbaakiabgEna0cqaaiabgEna0o aalaaabaGaaiikaiaaigdacqGHsislcaWGRbWaaeWaaeaacaWGSbGa ai4laiaadkfadaWgaaWcbaGaamyDaaqabaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaGccaGGPaaabaGaaGymaiabgUcaRiaadUga daqadaqaaiaadYgacaGGVaGaamOuamaaBaaaleaacaWG1baabeaaaO GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaacMcaaaGaamiz aiaadYgacaGGDbWaa8qmaeaacaWGKbGaeqiUdehaleaacaaIWaaaba GaeqiWdahaniabgUIiYdGcdaWdXbqaaiaadsgacqaHvpGzpeGaaiiO aiaac6cacaGGGcGaci4yaiaac+gacaGGZbGaeqiUdeNaai4jaiaacc kacaGGUaGaaiiOaiGacohacaGGPbGaaiOBaiabeI7aXbWcpaqaaiaa icdaaeaacaaIYaGaeqiWdahaniabgUIiYdaaaaa@8E27@                          (37)

showing that under a hierarchically structured universe this force K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaaaa@3981@ in any case is finite.

Redshifting of cosmic photons

In the above sections the asymmetric action of cosmic mass distributions on a single mass m with a peculiar motion by a velocity U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvaaaa@3809@ with respect to the rest of the universe (i.e. local standard of rest) was considered, and with β=U/c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0Jaamyvaiaac+cacaWGJbaaaa@3C4B@ the following expression has been derived for the net gravitational force that acts on this mass

K ( β )= 3 2 Gm M U R max 2 [ 1 β 2 β 2 ln( 1+β 1β ) 2 β ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaOWdbmaabmaapaqa a8qacqaHYoGyaiaawIcacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaG 4maaWdaeaapeGaaGOmaaaacaWGhbGaamyBamaalaaapaqaa8qacaWG nbWdamaaBaaaleaapeGaamyvaaWdaeqaaaGcbaWdbiaadkfapaWaa0 baaSqaa8qacaWGTbGaamyyaiaadIhaa8aabaWdbiaaikdaaaaaaOWa amWaa8aabaWdbmaalaaapaqaa8qacaaIXaGaeyOeI0IaeqOSdi2dam aaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiabek7aI9aadaahaaWc beqaa8qacaaIYaaaaaaakiaabYgacaqGUbWaaeWaa8aabaWdbmaala aapaqaa8qacaaIXaGaey4kaSIaeqOSdigapaqaa8qacaaIXaGaeyOe I0IaeqOSdigaaaGaayjkaiaawMcaaiabgkHiTmaalaaapaqaa8qaca aIYaaapaqaa8qacqaHYoGyaaaacaGLBbGaayzxaaaaaa@5FFD@                         (38)

As one can see in Figure 2 this expression can also be evaluated for β1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyOKH4QaaGymaiaacYcaaaa@3C28@ i.e. relativistic particles or photons moving with the velocity U=c. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyvaiabg2da9iaadogacaGGUaaaaa@3AA9@ For photons one would obtain the following result:

K ( β=1 )= 3 2 Gm M U R max 2 [2] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4sa8aadaWgaaWcbaWdbiablwIiqbWdaeqaaOWdbmaabmaapaqa a8qacqaHYoGycqGH9aqpcaaIXaaacaGLOaGaayzkaaGaeyypa0ZaaS aaa8aabaWdbiaaiodaa8aabaWdbiaaikdaaaGaam4raiaad2gadaWc aaWdaeaapeGaamyta8aadaWgaaWcbaWdbiaadwfaa8aabeaaaOqaa8 qacaWGsbWdamaaDaaaleaapeGaaeyBaiaabggacaqG4baapaqaa8qa caaIYaaaaaaakiabgwSixlaacUfacqGHsislcaaIYaGaaiyxaaaa@5009@                  (39)

Talking about photons here, one can interpret this equation as stating that the temporal change of the momentum of the photon d P ν /dt=d/dt( hν/c ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizaiaadcfapaWaaSbaaSqaa8qacqaH9oGBa8aabeaak8qacaGG VaGaamizaiaadshacqGH9aqpcaWGKbGaai4laiaadsgacaWG0bWaae Waa8aabaWdbiaadIgacqaH9oGBcaGGVaGaam4yaaGaayjkaiaawMca aaaa@481A@ is given as the function of the mass of the photon, i.e. m=hν/ c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBaiabg2da9iaadIgacqaH9oGBcaGGVaGaam4ya8aadaahaaWc beqaa8qacaaIYaaaaaaa@3E6F@ by

h c dν dt =3G hν c 2 M U R max 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadIgaa8aabaWdbiaadogaaaWaaSaaa8aabaWd biaadsgacqaH9oGBa8aabaWdbiaadsgacaWG0baaaiabg2da9iabgk HiTiaaiodacaWGhbWaaSaaa8aabaWdbiaadIgacqaH9oGBa8aabaWd biaadogapaWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaWcaaWdaeaape Gaamyta8aadaWgaaWcbaWdbiaadwfaa8aabeaaaOqaa8qacaWGsbWd amaaDaaaleaapeGaaeyBaiaabggacaqG4baapaqaa8qacaaIYaaaaa aaaaa@4DA8@                             (40)

or describing the change of the photon frequency ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4gaaa@38E7@ by

dν dt =3G ν c M U R max 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgacqaH9oGBa8aabaWdbiaadsgacaWG0baa aiabg2da9iabgkHiTiaaiodacaWGhbWaaSaaa8aabaWdbiabe27aUb WdaeaapeGaam4yaaaadaWcaaWdaeaapeGaamyta8aadaWgaaWcbaWd biaadwfaa8aabeaaaOqaa8qacaWGsbWdamaaDaaaleaapeGaaeyBai aabggacaqG4baapaqaa8qacaaIYaaaaaaaaaa@4986@                  (41)

yielding the following solution for the cosmic frequency shift of cosmic photons during the course of cosmic time:

ν( t )=ν( t 0 )exp[ 3G M U c R max 2 ( t t 0 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd42aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqp cqaH9oGBdaqadaWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaaicdaa8 aabeaaaOWdbiaawIcacaGLPaaacaqGLbGaaeiEaiaabchadaWadaWd aeaapeGaeyOeI0IaaG4maiaadEeadaWcaaWdaeaapeGaamyta8aada WgaaWcbaWdbiaadwfaa8aabeaaaOqaa8qacaWGJbGaamOua8aadaqh aaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeaapeGaaGOmaaaaaaGcda qadaWdaeaapeGaamiDaiabgkHiTiaadshapaWaaSbaaSqaa8qacaaI Waaapaqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@5735@                     (42)

Interestingly enough, this result must be interpreted as a photon redshift which is caused by the asymmetric action of cosmic gravity during the mere passage time or travel distance of the photon since its emission. This cosmic redshift would thus be a pure indicator of the distance which the photon has covered since its emission, and would not have anything to do with the cosmic expansion dynamics of the universe. Galactic photon redshifts could thus not be ascribed to the recession velocity of the photon emitting galaxies. We now use λν=c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeqyVd4Maeyypa0Jaam4yaaaa@3C89@ and λ 0 ν 0 =c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabe27aU9aa daWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH9aqpcaWGJbaaaa@3EE5@ for a photon with wavelength λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWgaaa@38E3@ and frequency ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyVd4gaaa@38E7@ as well as λ= λ 0 (1+z) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdWMaeyypa0Jaeq4UdW2damaaBaaaleaapeGaaGimaaWdaeqa aOWdbiaacIcacaaIXaGaey4kaSIaamOEaiaacMcaaaa@40C0@ at a given redshift z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaaaa@382E@ and the above mentioned travel distance D=c(t t 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9iaadogacaGGOaGaamiDaiabgkHiTiaadshapaWa aSbaaSqaa8qacaaIWaaapaqabaGccaGGPaaaaa@3F3C@ to get:

1+z=exp[ 3G M U c R max 2 ( t t 0 )] =exp [3G M U c 2 R max 2 D ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgUcaRiaadQhacqGH9aqpcaqGLbGaaeiEaiaabchadaWa daWdaeaapeGaaG4maiaadEeadaWcaaWdaeaapeGaamyta8aadaWgaa WcbaWdbiaadwfaa8aabeaaaOqaa8qacaWGJbGaamOua8aadaqhaaWc baWdbiaab2gacaqGHbGaaeiEaaWdaeaapeGaaGOmaaaaaaGcdaqada WdaeaapeGaamiDaiabgkHiTiaadshapaWaaSbaaSqaa8qacaaIWaaa paqabaaak8qacaGLOaGaayzkaaWaaKWia8aabaWdbiabg2da9iaabw gacaqG4bGaaeiCaaGaayzxaiaawUfaaiaaiodacaWGhbWaaSaaa8aa baWdbiaad2eapaWaaSbaaSqaa8qacaWGvbaapaqabaaakeaapeGaam 4ya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamOua8aadaqhaaWcbaWd biaab2gacaqGHbGaaeiEaaWdaeaapeGaaGOmaaaaaaGccaWGebaaca GLBbGaayzxaaaaaa@6089@                               (43)

or:

M U R max 2 = c 2 3GD ln( 1+z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaad2eapaWaaSbaaSqaa8qacaWGvbaapaqabaaa keaapeGaamOua8aadaqhaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdae aapeGaaGOmaaaaaaGccqGH9aqpdaWcaaWdaeaapeGaam4ya8aadaah aaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIZaGaam4raiaadseaaa GaamiBaiaad6gadaqadaWdaeaapeGaaGymaiabgUcaRiaadQhaaiaa wIcacaGLPaaaaaa@4A1D@                            (44)

With z=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabg2da9iaaicdacaGGUaGaaGynaaaa@3B5F@ und D=300Mpc 10 25 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9iaaiodacaaIWaGaaGimaiaad2eacaWGWbGaam4y aiabgIKi7kaaigdacaaIWaWdamaaCaaaleqabaWdbiaaikdacaaI1a aaaOGaamyBaaaa@43C7@ as typical given values for a galaxy33 the expression M U / R max 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadwfaa8aabeaak8qacaGGVaGaamOu a8aadaqhaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeaapeGaaGOmaa aaaaa@3ECF@ yields:     

M U R max 2 (3 10 8 ) 2 36.67 10 11 10 25 ln( 1.5 ) kg m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaad2eapaWaaSbaaSqaa8qacaWGvbaapaqabaaa keaapeGaamOua8aadaqhaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdae aapeGaaGOmaaaaaaGccqGHijYUdaWcaaWdaeaapeGaaiikaiaaioda cqGHflY1caaIXaGaaGima8aadaahaaWcbeqaa8qacaaI4aaaaOGaai yka8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIZaGaeyyX ICTaaGOnaiaac6cacaaI2aGaaG4naiabgwSixlaaigdacaaIWaWdam aaCaaaleqabaWdbiabgkHiTiaaigdacaaIXaaaaOGaeyyXICTaaGym aiaaicdapaWaaWbaaSqabeaapeGaaGOmaiaaiwdaaaaaaOGaamiBai aad6gadaqadaWdaeaapeGaaGymaiaac6cacaaI1aaacaGLOaGaayzk aaWaaSaaa8aabaWdbiaadUgacaWGNbaapaqaa8qacaWGTbWdamaaCa aaleqabaWdbiaaikdaaaaaaOGaeyisISlaaa@65EC@

300 6.67 0.4 kg m 2 18 kg m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaaiodacaaIWaGaaGimaaWdaeaapeGaaGOnaiaa c6cacaaI2aGaaG4naaaacaaIWaGaaiOlaiaaisdadaWcaaWdaeaape Gaam4AaiaadEgaa8aabaWdbiaad2gapaWaaWbaaSqabeaapeGaaGOm aaaaaaGccqGHijYUcaaIXaGaaGioamaalaaapaqaa8qacaWGRbGaam 4zaaWdaeaapeGaamyBa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@4A4B@                             (45)

With z=0.1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOEaiabg2da9iaaicdacaGGUaGaaGymaaaa@3B5B@ and D=500Mpc MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiraiabg2da9iaaiwdacaaIWaGaaGimaiaad2eacaWGWbGaam4y aaaa@3DE0@ we get 3 kg m 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyisISRaaG4mamaalaaapaqaa8qacaWGRbGaam4zaaWdaeaapeGa amyBa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiaac6caaaa@3E7D@

On the other hand, we can also calculate the expression M U / R max 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadwfaa8aabeaak8qacaGGVaGaamOu a8aadaqhaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdaeaapeGaaGOmaa aaaaa@3ECF@ with typical values of M U 10 53 kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadwfaa8aabeaak8qacqGHijYUcaaI XaGaaGima8aadaahaaWcbeqaa8qacaaI1aGaaG4maaaakiaadUgaca WGNbaaaa@4023@ and R max c t o 10 26 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaad2gacaWGHbGaamiEaaWdaeqaaOWd biabgIKi7kaadogacaWG0bWdamaaBaaaleaapeGaam4BaaWdaeqaaO WdbiabgIKi7kaaigdacaaIWaWdamaaCaaaleqabaWdbiaaikdacaaI 2aaaaOGaamyBaaaa@4633@ 33 - with t0 the age of the universe - to retrieve:

M U R max 2 10 53 10 52 =10 kg m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaad2eapaWaaSbaaSqaa8qacaWGvbaapaqabaaa keaapeGaamOua8aadaqhaaWcbaWdbiaab2gacaqGHbGaaeiEaaWdae aapeGaaGOmaaaaaaGccqGHijYUdaWcaaWdaeaapeGaaGymaiaaicda paWaaWbaaSqabeaapeGaaGynaiaaiodaaaaak8aabaWdbiaaigdaca aIWaWdamaaCaaaleqabaWdbiaaiwdacaaIYaaaaaaakiabg2da9iaa igdacaaIWaWaaSaaa8aabaWdbiaadUgacaWGNbaapaqaa8qacaWGTb WdamaaCaaaleqabaWdbiaaikdaaaaaaaaa@4D80@                             (46)

which is a very satisfying result since it is in the same order of magnitude.

Conclusion

 In this paper we have picked up the idea of Cassado25 that a "coasting universe", i.e. a universe with an unaccelerated scale expansion velocity R ˙ =const, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOua8aagaGaa8qacqGH9aqpcaWGJbGaam4Baiaad6gacaWGZbGa amiDaiaacYcaaaa@3EA4@ may well explain the redshifts of distant supernovae SN-Ia. These puzzling redshifts had led authors like Perlmutter et al.,5–10 to the conclusion that in the more recent cosmic evolution times the universe shows an accelerated expansion and thus requires a non-vanishing positive vacuum energy density Λ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Mdiaab6caaaa@3901@ In order, however, to accept a coasting universe one would need to see very specific cosmic conditions as fulfilled. Kolb20 was the first to study such conditions and concluded that, for this case to be fulfilled, pressure P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuaaaa@3804@ and matter density ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdihaaa@38EF@ of the relevant cosmic matter should be related by a poly-tropic relation of the form P=( 1/3 )ρ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuaiabg2da9iabgkHiTmaabmaapaqaa8qacaaIXaGaai4laiaa iodaaiaawIcacaGLPaaacqaHbpGCcaGGUaaaaa@403C@ This then, as shown by the second Friedman equation, leads to a vanishing scale acceleration R ¨ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GabmOua8aagaWaa8qacaGGUaaaaa@38E1@ The needed poly-tropic relation, as Kolb20 showed, would characterize a form of matter behavior between baryonic and photonic matter, called by him "K-matter" (Koino-matter). In more recent papers by Fahr et al.,21,22 it was then shown that a coasting universe also results for the Machian case of scale-related cosmic masses leading to a mass density behavior according to ρ R 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdiNaeyyhIuRaamOua8aadaahaaWcbeqaa8qacqGHsislcaaI YaaaaOWdaiaac6caaaa@3E06@ In this paper here we looked into a further possibility to have a coasting universe realized, namely by having a vanishing cosmic mass density. This, at a first glance, looks quite unlikely in view of the stars around us, but as we do show here, such an "empty universe" with ρ R =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaaWaaeaacqaHbpGCaiaawMYicaGLQmcadaWgaaWcbaGaamOuaaqa baGccqGH9aqpcaaIWaaaaa@3D8C@ naturally results for universes with a pervasive scale-invariant mass structuring as indicated by the observed two-point correlation functions describing stellar or galactic positions (Bahcall et al., 1988). For such universes we can show that the average mass density ρ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamOuaaWdaeqaaaaa@3A20@ only is finite for a positively curved universe with k=+1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgUcaRiaaigdacaGGSaaaaa@3B72@ while for universes with k=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaaicdaaaa@39DF@ or k=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iabgkHiTiaaigdaaaa@3ACD@ the mass density vanishes , i.e. ρ R =0!. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaaWaaeaacqaHbpGCaiaawMYicaGLQmcadaWgaaWcbaGaamOuaaqa baGccqGH9aqpcaaIWaGaaiyiaiaac6caaaa@3EE3@ These latter universes would be "coasting ones" and thus would, as pointed out by Cassado25 explain the distances of supernovae of type SN-Ia without any need for a vacuum energy Λ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4Mdiaac6caaaa@3902@

Appendix: The Olbers paradox in a hierarchically structured universe

The result for the stellar density distribution in a hierarchically structured universe has an interesting consequence for the night-sky luminosity which we want to mention here: If we may assume here that this form of a stellar or galactic clustering continues to larger and larger cosmic distances (i.e.: scale-invariant clustering!), then this fact perhaps could give an evident solution of the Olbers paradox,41 namely the fact that the sky during night is dark. Several other possible solutions meanwhile have been offered, all perhaps worth a discussion, but none convincing up to the present, only one has been overlooked up to now. Because under these above mentioned conditions of a scale-invariant stellar clustering one would simply obtain the following growth O( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4tamaabmaapaqaa8qacaWGSbWdamaaBaaaleaapeGaeyOhIuka paqabaaak8qacaGLOaGaayzkaaaaaa@3C81@ of the illuminated part of the sky in any arbitrary direction with a view cone of d 2 Ω: MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiza8aadaahaaWcbeqaa8qacaaIYaaaaOGaaeyQdiaacQdaaaa@3B17@                     

O( l )= 1 l 2 d 2 Ω l 0 l l 2 d 2 Ωξ( l ) π r s 2 l 2 dl= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad+eadaqada qaaiaadYgadaWgaaWcbaGaeyOhIukabeaaaOGaayjkaiaawMcaaiab g2da9maalaaabaGaaGymaaqaaiaadYgadaqhaaWcbaGaeyOhIukaba GaaGOmaaaakiaadsgadaahaaWcbeqaaiaaikdaaaGccqGHPoWvaaWa a8qCaeaacaWGSbWaaWbaaSqabeaacaaIYaaaaaqaaiaadYgadaWgaa adbaGaaGimaaqabaaaleaacaWGSbGaeyOhIukaniabgUIiYdGccaWG KbWaaWbaaSqabeaacaaIYaaaaOGaeyyQdCLaeqOVdG3aaeWaaeaaca WGSbaacaGLOaGaayzkaaWaaSaaaeaacqaHapaCcaWGYbWaa0baaSqa aiaadohaaeaacaaIYaaaaaGcbaGaamiBamaaCaaaleqabaGaaGOmaa aaaaGccaWGKbGaamiBaiabg2da9aaa@5E36@

1 l 2 l 0 l l 2 . ξ( l ) π r s 2 l 2 dl== π r s 2 l 0 2 ξ 0 .  l 0 α l0 l 1 l α dl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaaeaacaaIXaaabaGaamiBamaaDaaaleaacqGHEisPaeaacaaI YaaaaaaakmaapehabaGaamiBamaaCaaaleqabaGaaGOmaaaaaeaaca WGSbWaaSbaaWqaaiaaicdaaeqaaaWcbaGaamiBaiabg6HiLcqdcqGH RiI8aOGaaiOlaiaacckacqaH+oaEdaqadaqaaiaadYgaaiaawIcaca GLPaaadaWcaaqaaiabec8aWjaadkhadaqhaaWcbaGaam4Caaqaaiaa ikdaaaaakeaacaWGSbWaaWbaaSqabeaacaaIYaaaaaaakiaadsgaca WGSbGaeyypa0Jaeyypa0ZaaSaaaeaacqaHapaCcaWGYbWaa0baaSqa aiaadohaaeaacaaIYaaaaaGcbaGaamiBamaaDaaaleaacaaIWaaaba GaaGOmaaaaaaGccqaH+oaEdaWgaaWcbaGaaGimaaqabaGccaGGUaGa aiiOaiaadYgadaqhaaWcbaGaaGimaaqaaiabeg7aHbaakmaapehaba WaaSaaaeaacaaIXaaabaGaamiBamaaCaaaleqabaGaeqySdegaaaaa aeaacaWGSbGaaGimaaqaaiaadYgacqGHEisPa0Gaey4kIipakiaads gacaWGSbaaaa@6F90@

=π r s 2 ξ 0 l 0 α2 l 0 1α 1α [ ( l l 0 ) 1α 1] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaeqiWdaNaamOCa8aadaqhaaWcbaWdbiaadohaa8aabaWd biaaikdaaaGccqaH+oaEpaWaaSbaaSqaa8qacaaIWaaapaqabaGcpe GaamiBa8aadaqhaaWcbaWdbiaaicdaa8aabaWdbiabeg7aHjabgkHi TiaaikdaaaGcdaWcaaWdaeaapeGaamiBa8aadaqhaaWcbaWdbiaaic daa8aabaWdbiaaigdacqGHsislcqaHXoqyaaaak8aabaWdbiaaigda cqGHsislcqaHXoqyaaGaai4waiaacIcadaWcaaWdaeaapeGaamiBa8 aadaWgaaWcbaWdbiabg6HiLcWdaeqaaaGcbaWdbiaadYgapaWaaSba aSqaa8qacaaIWaaapaqabaaaaOWdbiaacMcapaWaaWbaaSqabeaape GaaGymaiabgkHiTiabeg7aHbaakiabgkHiTiaaigdacaGGDbaaaa@5BE8@                            (47)

with r s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCa8aadaWgaaWcbaWdbiaadohaa8aabeaaaaa@3978@ the standard radius of a standard light candle. First here one can see that for α=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0JaaGimaaaa@3A8E@ (i.e. no structuring; homogeneous matter distribution!) one would have the following result

O( l )=π r s 2 ξ 0 l 0 1 [ ( l l 0 )1 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4tamaabmaapaqaa8qacaWGSbWdamaaBaaaleaapeGaeyOhIuka paqabaaak8qacaGLOaGaayzkaaGaeyypa0JaeqiWdaNaamOCa8aada qhaaWcbaWdbiaadohaa8aabaWdbiaaikdaaaGccqaH+oaEpaWaaSba aSqaa8qacaaIWaaapaqabaGcpeGaamiBa8aadaqhaaWcbaWdbiaaic daa8aabaWdbiabgkHiTiaaigdaaaGcdaWadaWdaeaapeWaaeWaa8aa baWdbmaalaaapaqaa8qacaWGSbWdamaaBaaaleaapeGaeyOhIukapa qabaaakeaapeGaamiBa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaaa k8qacaGLOaGaayzkaaGaeyOeI0IaaGymaaGaay5waiaaw2faaaaa@53A2@                  (48)

clearly showing that for increasing values of ( l / l 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadYgapaWaaSbaaSqaa8qacqGHEisPa8aabeaa k8qacaGGVaGaamiBa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOWdbi aawIcacaGLPaaaaaa@3E7F@ the sky coverage would grow to O( l )>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4tamaabmaapaqaa8qacaWGSbWdamaaBaaaleaapeGaeyOhIuka paqabaaak8qacaGLOaGaayzkaaGaeyOpa4JaaGymaaaa@3E44@ (i.e. illuminated sky =Olbers paradox!). To the contrast, however, for values as observationally confirmed, namely =1.8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeyypa0JaaGymaiaac6cacaaI4aaaaa@3A64@ , one can see that O( l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4tamaabmaapaqaa8qacaWGSbWdamaaBaaaleaapeGaeyOhIuka paqabaaak8qacaGLOaGaayzkaaaaaa@3C81@ always leads to values O( l )<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4tamaabmaapaqaa8qacaWGSbWdamaaBaaaleaapeGaeyOhIuka paqabaaak8qacaGLOaGaayzkaaGaeyipaWJaaGymaaaa@3E40@ (i.e. non-illuminated sky = no Olbers paradox!).43

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Friedmann A. Über die Krümmung des Raumes. Zeitschrift f Physik. 1992;10:377.
  2. Friedmann A. Über die Möglichkeit einer Welt mit konstanter negative Krümmung. Zeitschrift f Physik. 1924;21:326.
  3. Einstein A. Die Feldgleichungen der Gravitation. Sitzungsber. d. Preuss. Akad. Wissensch. 1915;48:844.
  4. Einstein A. Kosmologische Betrachtungen der allgemeinen Relativitätstheorie. Sitzungsber. Preuss. Akademie Wissenschaft. 1917;55:142.
  5. Perlmutter S. Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications. NATURE. 1998;391, 51.
  6. Riess AG. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J. 1998;116(3):1009.
  7. Riess AG. Cosmological Acceleration through Transition to Constant Scalar Curvature. Astrophys J. 2001;560:49.
  8. Schmidt BP. The high-z supernova search; measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. Astrophys J. 1998;507(1):46.
  9. Tonry JL. Cosmological results from high-z supernovae. Astrophys J. 2003;594(1):1.
  10. Wang L. Cosmological Applications of a Geometrical Interpretation of “c”. Astrophys J. 2003;590:944.
  11. Kang Y. Early type host galaxies of Type Ia supernovae: Evidence for luminosity evolution in supernova cosmology. arXiv: 1912. 04903v2. 2020.
  12. Tinsley BM. Evolution of the Stars and Gas in Galaxies. ApJ. 1968;151: 547.
  13. Perlmutter S. Supernova cosmology project. Astrophys J. 1997;483:565.
  14. Riess AG, Strolger LG, Casertano S. New Hubble space telescope discoveries of Type Ia supernovae at z > 1: narrowing constraints on the early behaviour of dark energy. Astrophys. J. 2007;659(1):98.
  15. Dev A, Sethi M, Lohiya D. Linear coasting in cosmology and SNe Ia luminosities. Phys Lett B. 2001;504(3):207.
  16. Gehlaut S, Kumar P, Lohiya D. A concordant "freely coasting cosmology". astro-ph/0306448. 2003.
  17. Sethi G, Dev A, Jain D. Cosmological constraints on a power-law universe. Phys Lett B. 2005;624(3–4):135.
  18. Wei JJ, Melia F, Maier RS. A comprehensive analysis of the supernova legacy survey sample with LCDM- and R=ct –universe. Astron J. 2015;149(3):102.
  19. Perlmutter S. Supernovae, Dark Energy, and the accelerating universe. Physics Today. 2003;56(4):53.
  20. Kolb EW. A coasting cosmology. Astrophys J. 1989;344:543.
  21. Fahr HJ. Cosmological consequences of scale-related comoving masses for cosmic pressure, mass and vacuum energy density. Found Phys Lett. 2006;19(5):423.
  22. Fahr HJ, Heyl M. About universes with scale-related total masses and their abolition of presently outstanding cosmological problems. Astronom Nachrichten / AN. 2007;328(2):192.
  23. Overduin JM, Copperstock FI. Evolution of the scale factor with a varaibel cosmological term. Phys Rev D. 1998;58(4):043506.
  24. Fahr HJ, Zoennchen J. Cosmological implications of the Machian principle. Naturwissenschaften. 2006;93:577.
  25. Casado J. Linear expansion models vs. standard cosmologies: a critical and historical overview. Astrophys Space Sci. 2020;365:16.
  26. Casado J. Modelling the expansion of the universe by a steady flow of space time. APEIRON. 2009;16(2):161.
  27. Casado J, Jou D. Steady flow cosmological model. Astrophys Space Sci. 2013;344(2):513.
  28. Bahcall NA. Large scale structure in the universe indicated by galaxy clusters. Ann Rev Astron Astrophys. 1988;26:631.
  29. Bahcall NA, Chokski A. The clustering of radiogalaxies. Ap J. 1992;385:L33.
  30. Sylos-Labini F, Vasilyev NL. Absence of self-averaging and of homogeneity in the large scalegalaxy distribution. Astron Astrophys. 2008;477:381.
  31. Sylos-Labini F. Gravitational fluctuations of the galaxy distribution. Astron Astrophys. 2010;523:A68.
  32. Fahr HJ, Heyl M. Stellar matter distribution with scale-invariant hierarchical structuring. Phys Astron Int J. 2019;3(4):146–150.
  33. Goenner H. Einführung in die Kosmologie. Spektrum Verlag. 1994.
  34. Fliessbach T. Allgemeine Relativitätstheorie. Wissenschaftsverlag BI, Mannheim/Wien/Zürich. 1990.
  35. Benett CL. First-Year Wilkinson Microwave Anisotropy Probe (WMAP)1 Observations: Foreground Emission. Astrophys J Suppl Ser. 2003;148:97.
  36. Buchert T. On average properties of inhomogeneous fluids in general relativity. General Relativity and Gravitation. 2001;33(8):1381.
  37. Buchert T. A cosmic equation of state for a inhomogeneous universe: can a global far from equilibrium state explain dark energy?. Classical and Quantum Gravity. 2005;22(19):L113.
  38. Wiltshire DL. Cosmic clocks, cosmic variance and cosmic averages. New Journal of Physics. 2007;9:377.
  39. Goenner H. Einführung in die Spezielle und Allgemeine Reltivitätstheorie. Spektrum Akad. Verlag, Heidelberg-Berlin-Oxford. 1996.
  40. Thirring H. Über die Wirkung rotierender ferner Massen in der Einstein‘schen Gravitationstheorie. Phys Z. 1918;19:33.
  41. Soergel-Fabricius C. Thirring Effekt im Einstein Kosmos. Zeitschrift f Physik. 1960;159:541.
  42. Olbers HWM. Über die Durchsichtigkeit des Weltraums. Astronomisches Jahrbuch für das Jahr 1826, Berlin. 1926;1823:110.
  43. Casado J. A steady flow cosmological model from a minimal large numbers hypothesis. APEIRON. 2011;18(3):297.
Creative Commons Attribution License

©2020 Fahr, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.