Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 2 Issue 1

A theoretical checking for resistive instabilities into the plasma: one proposed criterion for identification of the plasma waves

Xaplanteris CL,1 Xaplanteris SC2

1Plasma Physics Laboratory, NCSR ?Demokritos, Greece
2School of Civil Engineering, National Technical University of Athens, Greece

Correspondence: Constantine L Xaplanteris, Plasma Physics Laboratory, Institute of Nanoscience and Nanotechnology (I.N.N.), National Centre for Scientific Research, N.C.S.R. ?Demokritos?, 153 10, Athens, Greece, Tel 2106857429

Received: November 22, 2017 | Published: February 6, 2018

Citation: Xaplanteris CL, Xaplanteris SC. A theoretical checking for resistive instabilities into the plasma: one proposed criterion for identification of theplasma waves. Phys Astron Int J. 2018;2(1):74-79. DOI: 10.15406/paij.2018.02.00051

Download PDF

Abstract

As the resistive instabilities with their serious difficulty at the thermonuclear fusion programs have concentrated much interest of the researchers, the present study has the ambition to provide an applicable and useful criterion for examining and identifying if a observed plasma wave is resistive or not. A dispersion relation is obtained, by using the two fluids equation and considering that a resistive force exists, and then the growth rate can be solved. Subsequently, the resistance factor is calculated using the experimental values and data obtained. Finally, a comparison of the calculated resistance factor with the ones published in bibliography will be performed, which gives the expected answer about the type of the examined wave.

Keywords: Thermonuclear fusion; Fluids equation; Plasma physics; Astrophysics; Energy; Plasma waves; Electric field

Introduction

The resistive instabilities are between the most investigated phenomena of the plasma physics and the astrophysics, as well,1–5 and the dripping on these are passed-printed in the relevant bibliography.6–10 Early 60’s the topic has been investigated very enough as it is accused for energy losses in the plasma,11 but and presently the interest on them is very strong.12–14 As the all instabilities resulted into every kind plasma waves and their organized energy is absents from the plasmas' chaotic (thermal) energy, so, early they faced as obstacles in the thermonuclear fusion process.15–17 Instabilities in fusion plasmas appear at all times and by many types of them, therefore it will not try to catalog them here. Only instabilities and plasma waves which investigated and studied in our plasma laboratory of ‘Demokritos’ are mentioned in the present and this briefly. So, early 70's, ion-acoustic waves have been fund into non magnetized argon plasma,18 and after this the energy losses of the plasma due to these waves have been published as well.19 Furthermore, drift waves have been fund into magnetized argon plasma (in Q-machine), whish identified as caused on the if electric field gradient.20 With newer publications the influence of these drift waves on the Hall conductivity of the plasma have be given.21,22 Recently, another kind low frequency waves observed into our semi Q-machine; these waves identified as collisional one and caused on the electron-neutral collisions as well.23 As the experience with the plasma wave’s study have be increased, it was appears the need to finding a criterion suitable for the identification of the appeared waves into our plasma. With the present theoretical work a criterion is proposed, suitable to distinguish if a plasma wave is resistive or not.

As our experience on the plasma waves' study have be increase, it was appears the need to finding a criterion for the identification of the appeared waves into our plasma. By the present work a criterion is proposed, suitable to distinguish if a wave is resistive or not.

For this way, the kinetic equation for both, ions and electrons have be taken, with the inclusion of the resistance term, and after mathematical elaboration and the necessary approaches we resulted with the dispersion relation (D.R.),from which the growth rate have be calculated; so, the derived resistance’s factor  may be the indicator for a resistive wave or not.

The paper is written as following: the apparatus's description and the experimental data are presented in Section 2. Afterwards, the D.R. is elaborated in the Section 3, and its complete study has been made in the next Section 4. Finally, in the Section 5 the Conclusion-discussion has been given. The paper is ended with the Appendix A and Appendix B, which contain more mathematical details for alleviation of the text.

The experimental part

Although many improvised experimental devices are produced and used in the plasma laboratory of 'Demokritos', only two of them are mentions here: the first was the device into which by a non-magnetized argon plasma, the ion-acoustic instabilities appeared, and decently the semi-Q machine where the drift waves caused on the rf electrical field gradient, and the collisional instabilities are appear and studied, as well.

In the Figure 1 the first apparatus is shown, when in the Figure 2 (A) the spectrum of the ion-acoustic wave is presented and the Figure 2 (B) is a photo of oscillator screen.

Figure 1 The arrangement of the plasma production and the experiment’s space are presented.

Figure 2A The spectrum one typical ion-acoustic wave and its harmonic are presented.

Figure 2B ThreeA photo of the oscillator’s screen is given.

In the Figure 3 the drawing of the Q machine is shown and in the Figure 4 (A&B) the spectrum of the drifts waves and the collisional are given, as well.

Figure 3 A drawing of the ‘Demokritos’ Q-machine is shown.

Figure 4 (a) The spectrum one typical drift wave and (b) the spectrum one typical collisional wave have been given too.

Furthermore, on the Table 1 the typical values of the plasma parameters for the ion-acoustic wave are presented.

 

Minimum Value

Maximum Value

Argon pressure   p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchaaaa@3A43@

0.01Pa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGimaiaaigdacaWGqbGaamyyaaaa@3DEA@ 0.13Pa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGymaiaaiodacaWGqbGaamyyaaaa@3DED@

Argon number density, n g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gajuaGdaWgaaqcbasaaKqzadGaam4zaaWcbeaaaaa@3D3F@

2x 10 16 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaWG4bGaaGymaiaaicdalmaaCaaajeaibeqaaKqz adGaaGymaiaaiAdaaaqcLbsacaWGTbWcdaahaaqcbasabeaajugWai abgkHiTiaaiodaaaaaaa@442C@ 2.6x 10 17 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaGGUaGaaGOnaiaadIhacaaIXaGaaGimaSWaaWba aKqaGeqabaqcLbmacaaIXaGaaG4naaaajugibiaad2galmaaCaaaje aibeqaaKqzadGaeyOeI0IaaG4maaaaaaa@459F@

Anodic circuit power  P A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadcfajuaGdaWgaaqcbasaaKqzadGaamyqaaWcbeaaaaa@3CFB@

0,2Watt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGSaGaaGOmaiaadEfacaWGHbGaamiDaiaadsha aaa@3F28@ 300Watt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiodacaaIWaGaaGimaiaadEfacaWGHbGaamiDaiaadsha aaa@3F33@

Electron velocity   V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaa@3D25@

0.5x 10 6 m s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGynaiaadIhacaaIXaGaaGimaSWaaWba aKqaGeqabaqcLbmacaaI2aaaaKqbaoaaliaakeaajugibiaad2gaaO qaaKqzGeGaam4Caaaaaaa@43EC@ 2.5x 10 6 m s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaGGUaGaaGynaiaadIhacaaIXaGaaGimaSWaaWba aKqaGeqabaqcLbmacaaI2aaaaKqbaoaaliaakeaajugibiaad2gaaO qaaKqzGeGaam4Caaaaaaa@43EE@

Electron density, n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6galmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaaaa@3CA9@

0.5x 10 15 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGynaiaadIhacaaIXaGaaGimaKqbaoaa CaaaleqajeaibaqcLbmacaaIXaGaaGynaaaajugibiaad2gajuaGda ahaaqcbasabeaajugWaiabgkHiTiaaiodaaaaaaa@46AB@ 50x 10 15 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiwdacaaIWaGaamiEaiaaigdacaaIWaWcdaahaaqcbasa beaajugWaiaaigdacaaI1aaaaKqzGeGaamyBaSWaaWbaaKqaGeqaba qcLbmacqGHsislcaaIZaaaaaaa@44E8@

Electron temperature, T e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaa@3D23@

3eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiodacaWGLbGaamOvaaaa@3BD0@ 20eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaaIWaGaamyzaiaadAfaaaa@3C89@

Ion temperature, T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CC3@

0.03eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGimaiaaiodacaWGLbGaamOvaaaa@3DF6@ 0.04eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGimaiaaisdacaWGLbGaamOvaaaa@3DF7@

Electron-neutral collision frequency, ν e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe27aULqbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaaaa @3E02@

4.0x 10 5 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaisdacaGGUaGaaGimaiaadIhacaaIXaGaaGimaSWaaWba aKqaGeqabaqcLbmacaaI1aaaaKqzGeGaam4CaSWaaWbaaKqaGeqaba qcLbmacqGHsislcaaIXaaaaaaa@44E2@ 8.0x 10 6 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIdacaGGUaGaaGimaiaadIhacaaIXaGaaGimaSWaaWba aKqaGeqabaqcLbmacaaI2aaaaKqzGeGaam4CaSWaaWbaaKqaGeqaba qcLbmacqGHsislcaaIXaaaaaaa@44E7@

Ion-acoustic velocity, C S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoealmaaBaaajeaibaqcLbmacaWGtbaajeaibeaaaaa@3C9C@

3x 10 3 m s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiodacaWG4bGaaGymaiaaicdalmaaCaaajeaibeqaaKqz adGaaG4maaaajuaGdaWccaGcbaqcLbsacaWGTbaakeaajugibiaado haaaaaaa@427B@ 8x 10 3 m s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiIdacaWG4bGaaGymaiaaicdalmaaCaaajeaibeqaaKqz adGaaG4maaaajuaGdaWccaGcbaqcLbsacaWGTbaakeaajugibiaado haaaaaaa@4280@

Wave’s frequency, f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAgaaaa@3A39@

3KHz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiodacaWGlbGaamisaiaadQhaaaa@3CA7@ 230KHz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaaIZaGaaGimaiaadUeacaWGibGaamOEaaaa@3E1D@

Table 1 The plasma parameters ranging values in ion-acoustic waves

Likewise, on the Table 2 the analogous plasma parameters in the Q-machine are given.

 

Minimum value

Maximum value

Argon pressure   p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadchaaaa@3A43@

0.001Pa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGimaiaaicdacaaIXaGaamiuaiaadgga aaa@3EA4@ 0.1Pa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGymaiaadcfacaWGHbaaaa@3D30@

Argon number density, n g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gajuaGdaWgaaqcbasaaKqzadGaam4zaaWcbeaaaaa@3D3F@

2x 10 15 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaWG4bGaaGymaiaaicdalmaaCaaajeaibeqaaKqz adGaaGymaiaaiwdaaaqcLbsacaWGTbWcdaahaaqcbasabeaajugWai abgkHiTiaaiodaaaaaaa@442B@ 2x 10 17 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaWG4bGaaGymaiaaicdalmaaCaaajeaibeqaaKqz adGaaGymaiaaiEdaaaqcLbsacaWGTbWcdaahaaqcbasabeaajugWai abgkHiTiaaiodaaaaaaa@442D@

Magnetic field intensity, B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadkeaaaa@3A15@

10mT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaaIWaGaamyBaiaadsfaaaa@3C8E@ 200mT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaaIWaGaaGimaiaad2gacaWGubaaaa@3D49@

Microwaves' power, P
Frequency of the rf power (standard value)

20Watt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaaIWaGaam4vaiaadggacaWG0bGaamiDaaaa@3E78@
2.45GHz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaGGUaGaaGinaiaaiwdacaWGhbGaamisaiaadQha aaa@3ED1@
120Watt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaaIYaGaaGimaiaadEfacaWGHbGaamiDaiaadsha aaa@3F33@

Electron density, n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gajuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaaaaa@3D0D@

2x 10 15 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaikdacaWG4bGaaGymaiaaicdalmaaCaaajeaibeqaaKqz adGaaGymaiaaiwdaaaqcLbsacaWGTbWcdaahaaqcbasabeaajugWai abgkHiTiaaiodaaaaaaa@442B@ 4.6x 10 15 m 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaisdacaGGUaGaaGOnaiaadIhacaaIXaGaaGimaSWaaWba aKqaGeqabaqcLbmacaaIXaGaaGynaaaajugibiaad2galmaaCaaaje aibeqaaKqzadGaeyOeI0IaaG4maaaaaaa@459F@

Electron temperature, T e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CBF@

1.5eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaGGUaGaaGynaiaadwgacaWGwbaaaa@3D3F@ 10eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaaIWaGaamyzaiaadAfaaaa@3C88@

Ion temperature, T i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaaaaa@3CC3@

0.025eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGimaiaaikdacaaI1aGaamyzaiaadAfa aaa@3EB4@ 0.048eV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGimaiaaisdacaaI4aGaamyzaiaadAfa aaa@3EB9@

Ionization rate

0.1% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaicdacaGGUaGaaGymaiaacwcaaaa@3C1E@ 90% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiMdacaaIWaGaaiyjaaaa@3B74@

Electron drift velocity, u e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadwhalmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaa@3CE0@

1x 10 4 m s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaWG4bGaaGymaiaaicdalmaaCaaajeaibeqaaKqz adGaaGinaaaajuaGdaWccaGcbaqcLbsacaWGTbaakeaajugibiaado haaaaaaa@427A@ 1.7x 10 4 m s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaGGUaGaaG4naiaadIhacaaIXaGaaGimaSWaaWba aKqaGeqabaqcLbmacaaI0aaaaKqbaoaaliaakeaajugibiaad2gaaO qaaKqzGeGaam4Caaaaaaa@43ED@

Electron-neutral collision frequency, ν e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe27aULqbaoaaBaaajuaibaqcLbmacaWGLbaajuaGbeaa aaa@3E89@

1.2x 10 7 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaigdacaGGUaGaaGOmaiaadIhacaaIXaGaaGimaSWaaWba aKqaGeqabaqcLbmacaaI3aaaaKqzGeGaam4CaSWaaWbaaKqaGeqaba qcLbmacqGHsislcaaIXaaaaaaa@44E3@ 3x 10 9 s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaaiodacaWG4bGaaGymaiaaicdalmaaCaaajeaibeqaaKqz adGaaGyoaaaajugibiaadohalmaaCaaajeaibeqaaKqzadGaeyOeI0 IaaGymaaaaaaa@4379@

Table 2 The plasma parameters ranging values in Q-machine

The dispersion relation finding

The kinetic equation for the ions is written as following:

d V i dt = e E m i + ω ci . V i x e z η e 2 n 0 m i ( V i V e ) ν in V i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGKbGabmOvayaalaWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaaakeaajugibiaadsgacaWG0baaaiabg2 da9KqbaoaalaaakeaajugibiaadwgaceWGfbGbaSaaaOqaaKqzGeGa amyBaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaaaajugibiabgU caRiabeM8a3TWaaSbaaKqaGeaajugWaiaadogacaWGPbaajeaibeaa jugibiaac6caceWGwbGbaSaalmaaBaaajeaibaqcLbmacaWGPbaaje aibeaajugibiaadIhaceWGLbGbaSaalmaaBaaajeaibaqcLbmacaWG 6baajeaibeaajugibiabgkHiTKqbaoaalaaakeaajugibiabeE7aOj aadwgalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiaad6gajuaG daWgaaWcbaqcLbsacaaIWaaaleqaaaGcbaqcLbsacaWGTbWcdaWgaa qcbasaaKqzadGaamyAaaqcbasabaaaaKqzGeGaaiikaiqadAfagaWc aSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaeyOeI0Iabm OvayaalaWcdaWgaaqcbasaaKqzadGaamyzaaqcbasabaqcLbsacaGG PaGaeyOeI0IaeqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6gaaK qaGeqaaKqzGeGabmOvayaalaWcdaWgaaqcbasaaKqzadGaamyAaaqc basabaaaaa@7E5C@   (1)

It is valid that

(P) i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaacIcacqGHhis0caWGqbGaaiykaSWaaSbaaKqaGeaajugW aiaadMgaaKqaGeqaaKqzGeGaeyyrIaKaaGimaaaa@421A@  (Because the ions have low temperature T i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugi biabgwKiajaaicdaaaa@3F3F@ )

It is valid the Ampere’s law,

J + ε 0 E t =x Η =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadQeagaWcaiabgUcaRiabew7aLTWaaSbaaKqaGeaajugW aiaaicdaaKqaGeqaaKqbaoaalaaakeaajugibiabgkGi2kqadweaga WcaaGcbaqcLbsacqGHciITcaWG0baaaiabg2da9iabgEGirlaadIha cuqHxoasgaWcaiabg2da9iaaicdaaaa@4C59@  and the relation J = n 0 e( V i V e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadQeagaWcaiabg2da9iaad6galmaaBaaajeaibaqcLbma caaIWaaajeaibeaajugibiaadwgacaGGOaGabmOvayaalaWcdaWgaa qcbasaaKqzadGaamyAaaqcbasabaqcLbsacqGHsislceWGwbGbaSaa juaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaajugibiaacMcaaaa@4ADF@

Then, it is results the equation,

n 0 e( V i V e )=jϖ ε 0 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6galmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaadwgacaGGOaGabmOvayaalaWcdaWgaaqcbasaaKqzadGaamyAaa qcbasabaqcLbsacqGHsislceWGwbGbaSaalmaaBaaajeaibaqcLbma caWGLbaajeaibeaajugibiaacMcacqGH9aqpcaWGQbGaeqO1dyNaeq yTdu2cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsaceWGfbGb aSaaaaa@51DC@   (2)

It is valid the relation

E = Φ R.ϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadweagaWcaiabg2da9iabgkHiTKqbaoaalaaakeaajugi biabgEGirlabfA6agbGcbaqcLbsacaWGsbGaaiOlaiabgkGi2kabeg 9akbaaaaa@4584@

And the equation (2) is written as following;

n 0 e( V iϑ V eϑ )= ε 0 lω R Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6galmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biaadwgacaGGOaGaamOvaSWaaSbaaKqaGeaajugWaiaadMgacqaHrp GsaKqaGeqaaKqzGeGaeyOeI0IaamOvaSWaaSbaaKqaGeaajugWaiaa dwgacqaHrpGsaKqaGeqaaKqzGeGaaiykaiabg2da9Kqbaoaalaaake aajugibiabew7aLLqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaamiBaiabeM8a3bGcbaqcLbsacaWGsbaaaiabfA6agbaa@58A7@   (3)

The equation (1) due to equation (2) becomes,

d V i dt = e m i (1j ε 0 ωη) E + V i x ω ci ν in V i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGKbGabmOvayaalaWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaaakeaajugibiaadsgacaWG0baaaiabg2 da9KqbaoaalaaakeaajugibiaadwgaaOqaaKqzGeGaamyBaSWaaSba aKqaGeaajugWaiaadMgaaKqaGeqaaaaajugibiaacIcacaaIXaGaey OeI0IaamOAaiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqa aKqzGeGaeqyYdCNaeq4TdGMaaiykaiqadweagaWcaiabgUcaRiqadA fagaWcaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaamiE aiqbeM8a3zaalaWcdaWgaaqcbasaaKqzadGaam4yaiaadMgaaKqaGe qaaKqzGeGaeyOeI0IaeqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaa d6gaaKqaGeqaaKqzGeGabmOvayaalaWcdaWgaaqcbasaaKqzadGaam yAaaqcbasabaaaaa@6BD8@   (4)

By taking the following relations,

Φ= Φ o . e jlϑjωt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfA6agjabg2da9iabfA6agTWaaSbaaKqaGeaajugWaiaa d+gaaKqaGeqaaKqzGeGaaiOlaiaadwgalmaaCaaajeaibeqaaKqzad GaamOAaiaadYgacqaHrpGscqGHsislcaWGQbGaeqyYdCNaamiDaaaa aaa@4BC4@ V e jlϑjωt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiqadAfagaWcaiabgIKi7kaadwgalmaaCaaajeaibeqaaKqz adGaamOAaiaadYgacqaHrpGscqGHsislcaWGQbGaeqyYdCNaamiDaa aaaaa@4685@ n e jlϑjωt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaad6gacqGHijYUcaWGLbWcdaahaaqcbasabeaajugWaiaa dQgacaWGSbGaeqy0dOKaeyOeI0IaamOAaiabeM8a3jaadshaaaaaaa@468B@

And separating in the two components, it is written as,

jω V iϑ = e m i j l R (1j ε 0 ωη).Φ V ir ω ci ν in V iϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgkHiTiaadQgacqaHjpWDcaWGwbWcdaWgaaqcbasaaKqz adGaamyAaiabeg9akbqcbasabaqcLbsacqGH9aqpcqGHsisljuaGda WcaaGcbaqcLbsacaWGLbaakeaajugibiaad2galmaaBaaajeaibaqc LbmacaWGPbaajeaibeaaaaqcLbsacaWGQbqcfa4aaSaaaOqaaKqzGe GaamiBaaGcbaqcLbsacaWGsbaaaiaacIcacaaIXaGaeyOeI0IaamOA aiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq yYdCNaeq4TdGMaaiykaiaac6cacqqHMoGrcqGHsislcaWGwbWcdaWg aaqcbasaaKqzadGaamyAaiaadkhaaKqaGeqaaKqzGeGaeqyYdC3cda WgaaqcbasaaKqzadGaam4yaiaadMgaaKqaGeqaaKqzGeGaeyOeI0Ia eqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqaaKqzGe GaamOvaSWaaSbaaKqaGeaajugWaiaadMgacqaHrpGsaKqaGeqaaaaa @75D5@   (5)

jω V ir = V iϑ . ω ci ν in V ir V ir = ω ci ν in jω . V iϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgkHiTiaadQgacqaHjpWDcaWGwbqcfa4aaSbaaKqaGeaa jugWaiaadMgacaWGYbaaleqaaKqzGeGaeyypa0JaamOvaSWaaSbaaK qaGeaajugWaiaadMgacqaHrpGsaKqaGeqaaKqzGeGaaiOlaiabeM8a 3TWaaSbaaKqaGeaajugWaiaadogacaWGPbaajeaibeaajugibiabgk HiTiabe27aUTWaaSbaaKqaGeaajugWaiaadMgacaWGUbaajeaibeaa jugibiaadAfalmaaBaaajeaibaqcLbmacaWGPbGaamOCaaqcbasaba qcLbsacqGHshI3caWGwbWcdaWgaaqcbasaaKqzadGaamyAaiaadkha aKqaGeqaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaeqyYdC3cda WgaaqcbasaaKqzadGaam4yaiaadMgaaKqaGeqaaaGcbaqcLbsacqaH 9oGBlmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsacq GHsislcaWGQbGaeqyYdChaaiaac6cacaWGwbWcdaWgaaqcbasaaKqz adGaamyAaiabeg9akbqcbasabaaaaa@7A2F@

By putting the V ir MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfalmaaBaaajeaibaqcLbmacaWGPbGaamOCaaqcbasa baaaaa@3DBC@ from the last relation into equation (5) it is taken:

( ν in jω) 2 + ω ci 2 ν in jω V iϑ = e m i . jl R .(1j ε 0 ηω)Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaGGOaGaeqyVd4wcfa4aaSbaaKqaGeaa jugWaiaadMgacaWGUbaaleqaaKqzGeGaeyOeI0IaamOAaiabeM8a3j aacMcajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugibiabgUca RiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGPbaajeaibaqcLb macaaIYaaaaaGcbaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWG PbGaamOBaaqcbasabaqcLbsacqGHsislcaWGQbGaeqyYdChaaiaadA falmaaBaaajeaibaqcLbmacaWGPbGaeqy0dOeajeaibeaajugibiab g2da9iabgkHiTKqbaoaalaaakeaajugibiaadwgaaOqaaKqzGeGaam yBaSWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaaaajugibiaac6ca juaGdaWcaaGcbaqcLbsacaWGQbGaamiBaaGcbaqcLbsacaWGsbaaai aac6cacaGGOaGaaGymaiabgkHiTiaadQgacqaH1oqzlmaaBaaajeai baqcLbmacaaIWaaajeaibeaajugibiabeE7aOjabeM8a3jaacMcacq qHMoGraaa@7CAA@   (6)

From the Ampere’s Law we have the equation (3)

For electrons, The continuity equation for electrons, keeping the first order terms only may be written as following,

D n e Dt + n 0 . 1 R . V eϑ ϑ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGebGaamOBaKqbaoaaBaaajeaibaqc LbmacaWGLbaaleqaaaGcbaqcLbsacaWGebGaamiDaaaacqGHRaWkca WGUbqcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacaGGUaqc fa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaWGsbaaaiaac6caju aGdaWcaaGcbaqcLbsacqGHciITcaWGwbWcdaWgaaqcbasaaKqzadGa amyzaiabeg9akbqcbasabaaakeaajugibiabgkGi2kabeg9akbaacq GH9aqpcaaIWaaaaa@581E@

Fitting the suitable tensor in the above continuity equation we have,

V eϑ = ωlΩ l R . n e n 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfalmaaBaaajeaibaqcLbmacaWGLbGaeqy0dOeajeai beaajugibiabg2da9KqbaoaalaaakeaajugibiabeM8a3jabgkHiTi aadYgacqqHPoWvaOqaaKqbaoaaliaakeaajugibiaadYgaaOqaaKqz GeGaamOuaaaaaaGaaiOlaKqbaoaalaaakeaajugibiaad6galmaaBa aajeaibaqcLbmacaWGLbaajeaibeaaaOqaaKqzGeGaamOBaSWaaSba aKqaGeaajugWaiaaicdaaKqaGeqaaaaaaaa@537A@   (7)

(Where is  Ω= u R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabfM6axjabg2da9KqbaoaaliaakeaajugibiaadwhaaOqa aKqzGeGaamOuaaaaaaa@3F85@ )

The equation of motion for electrons is,

D V e Dt = e m e (1j ε 0 ηω) E V e x ω ce e ϑ .j l υ t 2 R n e n 0 . ν en V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGebGabmOvayaalaqcfa4aaSbaaKqa GeaajugWaiaadwgaaSqabaaakeaajugibiaadseacaWG0baaaiabg2 da9iabgkHiTKqbaoaalaaakeaajugibiaadwgaaOqaaKqzGeGaamyB aKqbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaaaajugibiaacIcaca aIXaGaeyOeI0IaamOAaiabew7aLTWaaSbaaKqaGeaajugWaiaaicda aKqaGeqaaKqzGeGaeq4TdGMaeqyYdCNaaiykaiqadweagaWcaiabgk HiTiqadAfagaWcaSWaaSbaaKqaGeaajugWaiaadwgaaKqaGeqaaKqz GeGaamiEaiqbeM8a3zaalaWcdaWgaaqcfayaaKqzadGaam4yaiaadw gaaKqbagqaaKqzGeGaeyOeI0Iabmyzayaataqcfa4aaSbaaKqaGeaa jugWaiabeg9akbWcbeaajugibiaac6cacaWGQbqcfa4aaSaaaOqaaK qzGeGaamiBaiabew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaa jugWaiaaikdaaaaakeaajugibiaadkfaaaqcfa4aaSaaaOqaaKqzGe GaamOBaKqbaoaaBaaajeaibaqcLbmacaWGLbaaleqaaaGcbaqcLbsa caWGUbWcdaWgaaqcbasaaKqzadGaaGimaaqcbasabaaaaKqzGeGaai OlaiabgkHiTiabe27aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaa jeaibeaajugibiqadAfagaWcaSWaaSbaaKqaGeaajugWaiaadwgaaK qaGeqaaaaa@8A2F@

By using the equation (2), the last term of the above equation is formed as following,

η n 0 e 2 m e ( V e V i )= ηe m e j ε 0 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgkHiTiabeE7aOLqbaoaalaaakeaajugibiaad6gajuaG daWgaaqcKfaG=haajugWaiaaicdaaSqabaqcLbsacaWGLbWcdaahaa qcKfaG=hqabaqcLbmacaaIYaaaaaGcbaqcLbsacaWGTbqcfa4aaSba aKazba4=baqcLbmacaWGLbaajeaibeaaaaqcLbsacaGGOaGabmOvay aalaWcdaWgaaqcKfaG=haajugWaiaadwgaaKqaGeqaaKqzGeGaeyOe I0IabmOvayaalaWcdaWgaaqcKfaG=haajugWaiaadMgaaKazba4=be aajugibiaacMcacqGH9aqpjuaGdaWcaaGcbaqcLbsacqaH3oaAcaWG Lbaakeaajugibiaad2gajuaGdaWgaaqcKfaG=haajugWaiaadwgaaK qaGeqaaaaajugibiaadQgacqaH1oqzlmaaBaaajqwaa+FaaKqzadGa aGimaaqcKfaG=hqaaKqzGeGabmyrayaalaaaaa@748A@

And by putting it into the last equation it becomes,

D V e Dt = e m e (1j ε 0 ηω) E V e x ω c e e e ϑ .j l υ t 2 R n e n 0 . ν en V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGebGabmOvayaalaqcfa4aaSbaaKaz ba4=baqcLbmacaWGLbaajeaibeaaaOqaaKqzGeGaamiraiaadshaaa Gaeyypa0JaeyOeI0scfa4aaSaaaOqaaKqzGeGaamyzaaGcbaqcLbsa caWGTbqcfa4aaSbaaKazba4=baqcLbmacaWGLbaajeaibeaaaaqcLb sacaGGOaGaaGymaiabgkHiTiaadQgacqaH1oqzlmaaBaaajqwaa+Fa aKqzadGaaGimaaqcKfaG=hqaaKqzGeGaeq4TdGMaeqyYdCNaaiykai qadweagaWcaiabgkHiTiqadAfagaWcaSWaaSbaaKazba4=baqcLbma caWGLbaajqwaa+FabaqcLbsacaWG4bGafqyYdCNbaSaalmaaBaaajq waa+FaaKqzadGaam4yaiaadwgalmaaBaaajqwba9FaaKqzadGaamyz aaqcKvaq=hqaaaqcbasabaqcLbsacqGHsislceWGLbGbambajuaGda WgaaqcKfaG=haajugWaiabeg9akbWcbeaajugibiaac6cacaWGQbqc fa4aaSaaaOqaaKqzGeGaamiBaiabew8a1TWaa0baaKazba4=baqcLb macaWG0baajqwaa+FaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOuaaaa juaGdaWcaaGcbaqcLbsacaWGUbWcdaWgaaqcKfaG=haajugWaiaadw gaaKqaGeqaaaGcbaqcLbsacaWGUbWcdaWgaaqcKfaG=haajugWaiaa icdaaKazba4=beaaaaqcLbsacaGGUaGaeyOeI0IaeqyVd42cdaWgaa qcKfaG=haajugWaiaadwgacaWGUbaajqwaa+FabaqcLbsaceWGwbGb aSaalmaaBaaajqwaa+FaaKqzadGaamyzaaqcKfaG=hqaaaaa@ACDA@

Where it is valid υ t 2 K B T e m e . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaajugW aiaaikdaaaqcLbsacqGHHjIUjuaGdaWccaGcbaqcLbsacaWGlbqcfa 4aaSbaaKqaGeaajugWaiaadkeaaSqabaqcLbsacaWGubqcfa4aaSba aKqaGeaajugWaiaadwgaaSqabaaakeaajugibiaad2galmaaBaaaje aibaqcLbmacaWGLbaaleqaaaaajugibiaac6caaaa@508A@  the thermal velocity.

From equation (7) we have

n e n 0 = l R ωlΩ V eϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaWGUbWcdaWgaaqcbasaaKqzadGaamyz aaqcbasabaaakeaajugibiaad6gajuaGdaWgaaqcbasaaKqzadGaaG imaaWcbeaaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcfa4aaSGaaOqa aKqzGeGaamiBaaGcbaqcLbsacaWGsbaaaaGcbaqcLbsacqaHjpWDcq GHsislcaWGSbGaeuyQdCfaaiaadAfajuaGdaWgaaqcbasaaKqzadGa amyzaiabeg9akbWcbeaaaaa@5301@

And the above equation becomes,

j(lΩω) V e = e m e j l R (1j ε 0 ηω)Φ. e ϑ V e x ω c e e e ϑ .j l 2 υ t 2 R 2 ωlΩ V eϑ . e ϑ . ν en V e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQgacaGGOaGaamiBaiabfM6axjabgkHiTiabeM8a3jaa cMcaceWGwbGbaSaajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaju gibiabg2da9KqbaoaalaaakeaajugibiaadwgaaOqaaKqzGeGaamyB aSWaaSbaaKqaGeaajugWaiaadwgaaKqaGeqaaaaajugibiaadQgaju aGdaWcaaGcbaqcLbsacaWGSbaakeaajugibiaadkfaaaGaaiikaiaa igdacqGHsislcaWGQbGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaa qcbasabaqcLbsacqaH3oaAcqaHjpWDcaGGPaGaeuOPdyKaaiOlaiqa dwgagaWeaSWaaSbaaKqaGeaajugWaiabeg9akbqcbasabaqcLbsacq GHsislceWGwbGbaSaajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaa jugibiaadIhacuaHjpWDgaWcaSWaaSbaaKqbGeaajugWaiaadogaca WGLbWcdaWgaaqcfasaaKqzadGaamyzaaqcfasabaaabeaajugibiab gkHiTiqadwgagaWeaKqbaoaaBaaajeaibaqcLbmacqaHrpGsaSqaba qcLbsacaGGUaGaamOAaKqbaoaalaaakeaajuaGdaWccaGcbaqcLbsa caWGSbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHfpqDlm aaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmacaaIYaaaaaGcbaqc LbsacaWGsbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaaGcba qcLbsacqaHjpWDcqGHsislcaWGSbGaeuyQdCfaaiaadAfalmaaBaaa jeaibaqcLbmacaWGLbGaeqy0dOeajeaibeaajugibiaac6caceWGLb GbambajuaGdaWgaaqcbasaaKqzadGaeqy0dOealeqaaKqzGeGaaiOl aiabgkHiTiabe27aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaaje aibeaajugibiqadAfagaWcaSWaaSbaaKqaGeaajugWaiaadwgaaKqa Geqaaaaa@A813@   (8)

Now, the equation (8) is separated in two components from which the first equation becomes,

j(lΩω) V eϑ = e m e j l R (1j ε 0 ηω)Φ. ω ce 2 ν en j(ωlΩ) V eϑ .j l 2 υ t 2 R 2 ωlΩ V eϑ . ν en V eϑ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadQgacaGGOaGaamiBaiabfM6axjabgkHiTiabeM8a3jaa cMcacaWGwbWcdaWgaaqcbasaaKqzadGaamyzaiabeg9akbqcbasaba qcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacaWGLbaakeaajugibiaa d2gajuaGdaWgaaqcbasaaKqzadGaamyzaaWcbeaaaaqcLbsacaWGQb qcfa4aaSaaaOqaaKqzGeGaamiBaaGcbaqcLbsacaWGsbaaaiaacIca caaIXaGaeyOeI0IaamOAaiabew7aLLqbaoaaBaaajeaibaqcLbmaca aIWaaaleqaaKqzGeGaeq4TdGMaeqyYdCNaaiykaiabfA6agjaac6ca cqGHsisljuaGdaWcaaGcbaqcLbsacqaHjpWDlmaaDaaajeaibaqcLb macaWGJbGaamyzaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaeqyV d42cdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaey OeI0IaamOAaiaacIcacqaHjpWDcqGHsislcaWGSbGaeuyQdCLaaiyk aaaacaWGwbWcdaWgaaqcbasaaKqzadGaamyzaiabeg9akbqcbasaba qcLbsacqGHsislcaGGUaGaamOAaKqbaoaalaaakeaajuaGdaWccaGc baqcLbsacaWGSbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacq aHfpqDlmaaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmacaaIYaaa aaGcbaqcLbsacaWGsbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaa aaaaGcbaqcLbsacqaHjpWDcqGHsislcaWGSbGaeuyQdCfaaiaadAfa lmaaBaaajeaibaqcLbmacaWGLbGaeqy0dOeajeaibeaajugibiaac6 cacqGHsislcqaH9oGBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqc basabaqcLbsacaWGwbWcdaWgaaqcbasaaKqzadGaamyzaiabeg9akb qcbasabaWccaGGUaaaaa@AB40@

V eϑ = j l R (1j ε 0 ηω) eΦ m e j(lΩω)+ ω ce 2 ν en j(ϖlΩ) +j l 2 υ t 2 R 2 ωlΩ + ν en MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgkDiElaadAfalmaaBaaajeaibaqcLbmacaWGLbGaeqy0 dOeajeaibeaajugibiabg2da9KqbaoaalaaakeaajugibiaadQgaju aGdaWcaaGcbaqcLbsacaWGSbaakeaajugibiaadkfaaaGaaiikaiaa igdacqGHsislcaWGQbGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaa qcbasabaqcLbsacqaH3oaAcqaHjpWDcaGGPaqcfa4aaSaaaOqaaKqz GeGaamyzaiabfA6agbGcbaqcLbsacaWGTbqcfa4aaSbaaKqaGeaaju gWaiaadwgaaSqabaaaaaGcbaqcLbsacaWGQbGaaiikaiaadYgacqqH PoWvcqGHsislcqaHjpWDcaGGPaGaey4kaSscfa4aaSaaaOqaaKqzGe GaeqyYdCxcfa4aa0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqc LbmacaaIYaaaaaGcbaqcLbsacqaH9oGBjuaGdaWgaaqcbasaaKqzad Gaamyzaiaad6gaaSqabaqcLbsacqGHsislcaWGQbGaaiikaiabeA9a 2jabgkHiTiaadYgacqqHPoWvcaGGPaaaaiabgUcaRiaadQgajuaGda WcaaGcbaqcLbsacaWGSbqcfa4aaWbaaKqaGeqabaqcLbmacaaIYaaa aKqbaoaaliaakeaajugibiabew8a1LqbaoaaDaaajeaibaqcLbmaca WG0baajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaWGsbqcfa4aaWba aKqaGeqabaqcLbmacaaIYaaaaaaaaOqaaKqzGeGaeqyYdCNaeyOeI0 IaamiBaiabfM6axbaacqGHRaWkcqaH9oGBjuaGdaWgaaqcbasaaKqz adGaamyzaiaad6gaaKqaGeqaaaaaaaa@9CF9@

The above value of the V eϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfalmaaBaaajqwaa+FaaKqzadGaamyzaiabeg9akbqc basabaaaaa@402C@ is enter into equation (3) and the value of the component V eϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfalmaaBaaajqwaa+FaaKqzadGaamyzaiabeg9akbqc basabaaaaa@402C@ will be find, so

V iϑ = ε 0 lΦω R n 0 e + j l R (1j ε 0 ηω) eΦ m e j(ωlΩ)+ ω ce 2 ν en j(ωlΩ) +j l 2 υ t 2 R 2 ωlΩ + ν en MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadAfalmaaBaaajeaibaqcLbmacaWGPbGaeqy0dOeajeai beaajugibiabg2da9Kqbaoaalaaakeaajugibiabew7aLLqbaoaaBa aajeaibaqcLbmacaaIWaaaleqaaKqzGeGaamiBaiabfA6agjabeM8a 3bGcbaqcLbsacaWGsbGaamOBaKqbaoaaBaaajeaibaqcLbmacaaIWa aaleqaaKqzGeGaamyzaaaacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWG Qbqcfa4aaSGaaOqaaKqzGeGaamiBaaGcbaqcLbsacaWGsbaaaiaacI cacaaIXaGaeyOeI0IaamOAaiabew7aLLqbaoaaBaaajeaibaqcLbma caaIWaaaleqaaKqzGeGaeq4TdGMaeqyYdCNaaiykaKqbaoaalaaake aajugibiaadwgacqqHMoGraOqaaKqzGeGaamyBaSWaaSbaaKqaGeaa jugWaiaadwgaaKqaGeqaaaaaaOqaaKqzGeGaeyOeI0IaamOAaiaacI cacqaHjpWDcqGHsislcaWGSbGaeuyQdCLaaiykaiabgUcaRKqbaoaa laaakeaajugibiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGLb aajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacqaH9oGBlmaaBaaajeai baqcLbmacaWGLbGaamOBaaqcbasabaqcLbsacqGHsislcaWGQbGaai ikaiabeM8a3jabgkHiTiaadYgacqqHPoWvcaGGPaaaaiabgUcaRiaa dQgajuaGdaWcaaGcbaqcLbsacaWGSbWcdaahaaqcbasabeaajugWai aaikdaaaqcfa4aaSGaaOqaaKqzGeGaeqyXdu3cdaqhaaqcbasaaKqz adGaamiDaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOuaSWaaW baaKqaGeqabaqcLbmacaaIYaaaaaaaaOqaaKqzGeGaeqyYdCNaeyOe I0IaamiBaiabfM6axbaacqGHRaWkcqaH9oGBlmaaBaaajeaibaqcLb macaWGLbGaamOBaaqcbasabaaaaaaa@AA8B@

With the substitution of the into the eq.(6) we resulted with the complete dispersion relation,

ε 0 lΦω R n 0 e . ( ν in jω) 2 + ω ci 2 ν in jω + j l R (1j ε 0 ηω) eΦ m e j(ωlΩ)+ ω ce 2 ν en j(ωlΩ) +j l 2 υ t 2 R 2 ωlΩ + ν en . ( ν in jω) 2 + ω ci 2 ν in jω = e m i (1j ε 0 ηω).j l R .Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqbaoaalaaakeaajugibiabew7aLTWaaSbaaKqaGeaajugW aiaaicdaaKqaGeqaaKqzGeGaamiBaiabfA6agjabeM8a3bGcbaqcLb sacaWGsbGaamOBaKqbaoaaBaaajeaibaqcLbmacaaIWaaaleqaaKqz GeGaamyzaaaacaGGUaqcfa4aaSaaaOqaaKqzGeGaaiikaiabe27aUL qbaoaaBaaajeaibaqcLbmacaWGPbGaamOBaaWcbeaajugibiabgkHi TiaadQgacqaHjpWDcaGGPaWcdaahaaqcbasabeaajugWaiaaikdaaa qcLbsacqGHRaWkcqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyA aaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaeqyVd4wcfa4aaSbaaK qaGeaajugWaiaadMgacaWGUbaaleqaaKqzGeGaeyOeI0IaamOAaiab eM8a3baacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGQbqcfa4aaSGaaO qaaKqzGeGaamiBaaGcbaqcLbsacaWGsbaaaiaacIcacaaIXaGaeyOe I0IaamOAaiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaK qzGeGaeq4TdGMaeqyYdCNaaiykaKqbaoaalaaakeaajugibiaadwga cqqHMoGraOqaaKqzGeGaamyBaKqbaoaaBaaajeaibaqcLbmacaWGLb aaleqaaaaaaOqaaKqzGeGaeyOeI0IaamOAaiaacIcacqaHjpWDcqGH sislcaWGSbGaeuyQdCLaaiykaiabgUcaRKqbaoaalaaakeaajugibi abeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqcLbma caaIYaaaaaGcbaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWGLb GaamOBaaqcbasabaqcLbsacqGHsislcaWGQbGaaiikaiabeM8a3jab gkHiTiaadYgacqqHPoWvcaGGPaaaaiabgUcaRiaadQgajuaGdaWcaa GcbaqcLbsacaWGSbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaqc fa4aaSGaaOqaaKqzGeGaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaa qcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOuaSWaaWbaaKqaGeqa baqcLbmacaaIYaaaaaaaaOqaaKqzGeGaeqyYdCNaeyOeI0IaamiBai abfM6axbaacqGHRaWkcqaH9oGBlmaaBaaajeaibaqcLbmacaWGLbGa amOBaaqcbasabaaaaKqzGeGaaiOlaaGcbaqcfa4aaSaaaOqaaKqzGe Gaaiikaiabe27aUTWaaSbaaKqaGeaajugWaiaadMgacaWGUbaajeai beaajugibiabgkHiTiaadQgacqaHjpWDcaGGPaWcdaahaaqcbasabe aajugWaiaaikdaaaqcLbsacqGHRaWkcqaHjpWDlmaaDaaajeaibaqc LbmacaWGJbGaamyAaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaeq yVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqaaKqzGeGa eyOeI0IaamOAaiabeM8a3baacqGH9aqpcqGHsisljuaGdaWcaaGcba qcLbsacaWGLbaakeaajugibiaad2galmaaBaaajeaibaqcLbmacaWG PbaajeaibeaaaaqcLbsacaGGOaGaaGymaiabgkHiTiaadQgacqaH1o qzlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiabeE7aOjab eM8a3jaacMcacaGGUaGaamOAaKqbaoaalaaakeaajugibiaadYgaaO qaaKqzGeGaamOuaaaacaGGUaGaeuOPdyeaaaa@049E@   (9)

The dispersion relation study

The fund dispersion relation may be written as following:

ε 0 ω n 0 e 2 . ( ν in jω) 2 + ω ci 2 ν in jω + j m e (1j ε 0 ηω) j(ωlΩ)+ ω ce 2 ν en j(ωlΩ) +j l 2 υ t 2 R 2 ωlΩ + ν en . ( ν in jω) 2 + ω ci 2 ν in jω = j m i (1j ε 0 ηω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqbaoaalaaakeaajugibiabew7aLTWaaSbaaKqaGeaajugW aiaaicdaaKqaGeqaaKqzGeGaeqyYdChakeaajugibiaad6gajuaGda WgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaadwgajuaGdaahaaWc beqcbasaaKqzadGaaGOmaaaaaaqcLbsacaGGUaqcfa4aaSaaaOqaaK qzGeGaaiikaiabe27aUTWaaSbaaKqaGeaajugWaiaadMgacaWGUbaa jeaibeaajugibiabgkHiTiaadQgacqaHjpWDcaGGPaWcdaahaaqcba sabeaajugWaiaaikdaaaqcLbsacqGHRaWkcqaHjpWDlmaaDaaajeai baqcLbmacaWGJbGaamyAaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGe GaeqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqaaKqz GeGaeyOeI0IaamOAaiabeM8a3baacqGHRaWkjuaGdaWcaaGcbaqcfa 4aaSGaaOqaaKqzGeGaamOAaaGcbaqcLbsacaWGTbWcdaWgaaqcbasa aKqzadGaamyzaaqcbasabaaaaKqzGeGaaiikaiaaigdacqGHsislca WGQbGaeqyTduwcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsa cqaH3oaAcqaHjpWDcaGGPaaakeaajugibiabgkHiTiaadQgacaGGOa GaeqyYdCNaeyOeI0IaamiBaiabfM6axjaacMcacqGHRaWkjuaGdaWc aaGcbaqcLbsacqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyzaa qcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaeqyVd42cdaWgaaqcbasa aKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaeyOeI0IaamOAaiaacI cacqaHjpWDcqGHsislcaWGSbGaeuyQdCLaaiykaaaacqGHRaWkcaWG Qbqcfa4aaSaaaOqaaKqzGeGaamiBaSWaaWbaaKqaGeqabaqcLbmaca aIYaaaaKqbaoaaliaakeaajugibiabew8a1TWaa0baaKqaGeaajugW aiaadshaaKqaGeaajugWaiaaikdaaaaakeaajugibiaadkfalmaaCa aajeaibeqaaKqzadGaaGOmaaaaaaaakeaajugibiabeM8a3jabgkHi TiaadYgacqqHPoWvaaGaey4kaSIaeqyVd42cdaWgaaqcbasaaKqzad Gaamyzaiaad6gaaKqaGeqaaaaajugibiaac6caaOqaaKqbaoaalaaa keaajugibiaacIcacqaH9oGBlmaaBaaajeaibaqcLbmacaWGPbGaam OBaaqcbasabaqcLbsacqGHsislcaWGQbGaeqyYdCNaaiykaKqbaoaa CaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeqyYdC3cda qhaaqcbasaaKqzadGaam4yaiaadMgaaKqaGeaajugWaiaaikdaaaaa keaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadMgacaWGUbaaje aibeaajugibiabgkHiTiaadQgacqaHjpWDaaGaeyypa0JaeyOeI0sc fa4aaSaaaOqaaKqzGeGaamOAaaGcbaqcLbsacaWGTbWcdaWgaaqcba saaKqzadGaamyAaaqcbasabaaaaKqzGeGaaiikaiaaigdacqGHsisl caWGQbGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLb sacqaH3oaAcqaHjpWDcaGGPaaaaaa@F696@

It is valid that λ D 2 = ε 0 K B T e n 0 e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSTWaa0baaKqaGeaajugWaiaadseaaKqaGeaajugW aiaaikdaaaqcLbsacqGH9aqpjuaGdaWcaaGcbaqcLbsacqaH1oqzju aGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiaadUeajuaGdaWg aaqcbasaaKqzadGaamOqaaWcbeaajugibiaadsfalmaaBaaajeaiba qcLbmacaWGLbaajeaibeaaaOqaaKqzGeGaamOBaSWaaSbaaKqaGeaa jugWaiaaicdaaKqaGeqaaKqzGeGaamyzaSWaaWbaaKqaGeqabaqcLb macaaIYaaaaaaaaaa@5689@  (the Debay length) and   C s 2 = K B T e m i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadoealmaaDaaajeaibaqcLbmacaWGZbaajeaibaqcLbma caaIYaaaaKqzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaam4saSWaaS baaKqaGeaajugWaiaadkeaaKqaGeqaaKqzGeGaamivaSWaaSbaaKqa GeaajugWaiaadwgaaKqaGeqaaaGcbaqcLbsacaWGTbWcdaWgaaqcba saaKqzadGaamyAaaqcbasabaaaaaaa@4CDF@ , the ion-acoustic velocity then, we have,

( ν in jω) 2 + ω ci 2 ν in jω [ λ D 2 ω+ j(1j ε 0 ηω). υ t 2 j(ωlΩ)+ ω ce 2 ν en j(ωlΩ) +j l 2 υ t 2 R 2 ωlΩ + ν en ]=j(1j ε 0 ηω). C s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacaGGOaGaeqyVd42cdaWgaaqcbasaaKqz adGaamyAaiaad6gaaKqaGeqaaKqzGeGaeyOeI0IaamOAaiabeM8a3j aacMcalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRiab eM8a3TWaa0baaKqaGeaajugWaiaadogacaWGPbaajeaibaqcLbmaca aIYaaaaaGcbaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWGPbGa amOBaaqcbasabaqcLbsacqGHsislcaWGQbGaeqyYdChaaKqbaoaadm aakeaajugibiabeU7aSTWaa0baaKqaGeaajugWaiaadseaaKqaGeaa jugWaiaaikdaaaqcLbsacqaHjpWDcqGHRaWkjuaGdaWcaaGcbaqcLb sacaWGQbGaaiikaiaaigdacqGHsislcaWGQbGaeqyTdu2cdaWgaaqc basaaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcqaHjpWDcaGGPa GaaiOlaiabew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaajugW aiaaikdaaaaakeaajugibiabgkHiTiaadQgacaGGOaGaeqyYdCNaey OeI0IaamiBaiabfM6axjaacMcacqGHRaWkjuaGdaWcaaGcbaqcLbsa cqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyzaaqcbasaaKqzad GaaGOmaaaaaOqaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyz aiaad6gaaKqaGeqaaKqzGeGaeyOeI0IaamOAaiaacIcacqaHjpWDcq GHsislcaWGSbGaeuyQdCLaaiykaaaacqGHRaWkcaWGQbqcfa4aaSaa aOqaaKqzGeGaamiBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqbao aaliaakeaajugibiabew8a1TWaa0baaKqaGeaajugWaiaadshaaKqa GeaajugWaiaaikdaaaaakeaajugibiaadkfalmaaCaaajeaibeqaaK qzadGaaGOmaaaaaaaakeaajugibiabeM8a3jabgkHiTiaadYgacqqH PoWvaaGaey4kaSIaeqyVd42cdaWgaaqcbasaaKqzadGaamyzaiaad6 gaaKqaGeqaaaaaaOGaay5waiaaw2faaKqzGeGaeyypa0JaeyOeI0Ia amOAaiaacIcacaaIXaGaeyOeI0IaamOAaiabew7aLTWaaSbaaKqaGe aajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdGMaeqyYdCNaaiykaiaa c6cacaWGdbWcdaqhaaqcbasaaKqzadGaam4CaaqcbasaaKqzadGaaG Omaaaaaaa@CFAB@   (10)

By taking the approaches ν in ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadMgacaWGUbaajeai beaajugibiablQNiWjablQNiWjabeM8a3baa@442B@  and ν en MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaajeai beaaaaa@3E91@ j(ωlΩ) ω ce 2 ν en j(ωlΩ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabgkHiTiaadQgacaGGOaGaeqyYdCNaeyOeI0IaamiBaiab fM6axjaacMcacqWI6jcCcqWI6jcCjuaGdaWcaaGcbaqcLbsacqaHjp WDlmaaDaaajeaibaqcLbmacaWGJbGaamyzaaqcbasaaKqzadGaaGOm aaaaaOqaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadwgaca WGUbaaleqaaKqzGeGaeyOeI0IaamOAaiaacIcacqaHjpWDcqGHsisl caWGSbGaeuyQdCLaaiykaaaaaaa@5CA2@

The last relation may be written in the simple form,

ω ci 2 ω 2 jω [ λ D 2 ω+ j(1j ε 0 ηω). υ t 2 ω ce 2 ν en j(ωlΩ) +j l 2 υ t 2 R 2 ωlΩ ]=j(1j ε 0 ηω). C s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajuaGdaWcaaGcbaqcLbsacqaHjpWDlmaaDaaajeaibaqcLbmacaWG JbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibiabgkHiTiabeM8a3T WaaWbaaKqaGeqabaqcLbmacaaIYaaaaaGcbaqcLbsacqGHsislcaWG QbGaeqyYdChaaKqbaoaadmaakeaajugibiabeU7aSTWaa0baaKqaGe aajugWaiaadseaaKqaGeaajugWaiaaikdaaaqcLbsacqaHjpWDcqGH RaWkjuaGdaWcaaGcbaqcLbsacaWGQbGaaiikaiaaigdacqGHsislca WGQbGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsa cqaH3oaAcqaHjpWDcaGGPaGaaiOlaiabew8a1TWaa0baaKqaGeaaju gWaiaadshaaKqaGeaajugWaiaaikdaaaaakeaajuaGdaWcaaGcbaqc LbsacqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyzaaqcbasaaK qzadGaaGOmaaaaaOqaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGa amyzaiaad6gaaKqaGeqaaKqzGeGaeyOeI0IaamOAaiaacIcacqaHjp WDcqGHsislcaWGSbGaeuyQdCLaaiykaaaacqGHRaWkcaWGQbqcfa4a aSaaaOqaaKqzGeGaamiBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaK qbaoaaliaakeaajugibiabew8a1TWaa0baaKqaGeaajugWaiaadsha aKqaGeaajugWaiaaikdaaaaakeaajugibiaadkfalmaaCaaajeaibe qaaKqzadGaaGOmaaaaaaaakeaajugibiabeM8a3jabgkHiTiaadYga cqqHPoWvaaaaaaGccaGLBbGaayzxaaqcLbsacqGH9aqpcqGHsislca WGQbGaaiikaiaaigdacqGHsislcaWGQbGaeqyTduwcfa4aaSbaaKqa GeaajugWaiaaicdaaSqabaqcLbsacqaH3oaAcqaHjpWDcaGGPaGaai OlaiaadoealmaaDaaajeaibaqcLbmacaWGZbaajeaibaqcLbmacaaI Yaaaaaaa@B135@

The dispersion relation additional elaboration

Now, the equation (10) with mathematical elaboration (Appendix A) gives the following equation (11),

j υ t 2 ν en (1j ε 0 ηω).(ωlΩ).[ ( ν in jω) 2 + ω ci 2 ]= = C s 2 (1j ε 0 ηω).(ω+j ν in ).[ (ωlΩ)( ω ce 2 + ν en 2 )+j l 2 υ t 2 R 2 ν en ] λ D 2 ω[ ( ν in jω) 2 + ω ci 2 ].[ (ωlΩ)( ω ce 2 + ν en 2 )+j l 2 υ t 2 R 2 ν en ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamOAaiabew8a1TWaa0baaKqaGeaajugWaiaadsha aKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaajeaibaqcLb macaWGLbGaamOBaaqcbasabaqcLbsacaGGOaGaaGymaiabgkHiTiaa dQgacqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibi abeE7aOjabeM8a3jaacMcacaGGUaGaaiikaiabeM8a3jabgkHiTiaa dYgacqqHPoWvcaGGPaGaaiOlaKqbaoaadmaakeaajugibiaacIcacq aH9oGBlmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsa cqGHsislcaWGQbGaeqyYdCNaaiykaSWaaWbaaKqaGeqabaqcLbmaca aIYaaaaKqzGeGaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam4y aiaadMgaaKqaGeaajugWaiaaikdaaaaakiaawUfacaGLDbaajugibi abg2da9aGcbaqcLbsacqGH9aqpcqGHsislcaWGdbWcdaqhaaqcbasa aKqzadGaam4CaaqcbasaaKqzadGaaGOmaaaajugibiaacIcacaaIXa GaeyOeI0IaamOAaiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqa GeqaaKqzGeGaeq4TdGMaeqyYdCNaaiykaiaac6cacaGGOaGaeqyYdC Naey4kaSIaamOAaiabe27aUTWaaSbaaKqaGeaajugWaiaadMgacaWG UbaajeaibeaajugibiaacMcacaGGUaqcfa4aamWaaOqaaKqzGeGaai ikaiabeM8a3jabgkHiTiaadYgacqqHPoWvcaGGPaGaaiikaiabeM8a 3TWaa0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqcLbmacaaIYa aaaKqzGeGaey4kaSIaeqyVd42cdaqhaaqcbasaaKqzadGaamyzaiaa d6gaaKqaGeaajugWaiaaikdaaaqcLbsacaGGPaGaey4kaSIaamOAai aadYgalmaaCaaajeaibeqaaKqzadGaaGOmaaaajuaGdaWccaGcbaqc LbsacqaHfpqDlmaaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmaca aIYaaaaaGcbaqcLbsacaWGsbWcdaahaaqcbasabeaajugWaiaaikda aaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyzaiaad6gaaK qaGeqaaaGccaGLBbGaayzxaaqcLbsacqGHsislaOqaaKqzGeGaeyOe I0Iaeq4UdW2cdaqhaaqcbasaaKqzadGaamiraaqcbasaaKqzadGaaG OmaaaajugibiabeM8a3LqbaoaadmaakeaajugibiaacIcacqaH9oGB lmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsacqGHsi slcaWGQbGaeqyYdCNaaiykaSWaaWbaaKqaGeqabaqcLbmacaaIYaaa aKqzGeGaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadM gaaKqaGeaajugWaiaaikdaaaaakiaawUfacaGLDbaajugibiaac6ca juaGdaWadaGcbaqcLbsacaGGOaGaeqyYdCNaeyOeI0IaamiBaiabfM 6axjaacMcacaGGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaa dwgaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcqaH9oGBlmaaDa aajeaibaqcLbmacaWGLbGaamOBaaqcbasaaKqzadGaaGOmaaaajugi biaacMcacqGHRaWkcaWGQbGaamiBaSWaaWbaaKqaGeqabaqcLbmaca aIYaaaaKqbaoaaliaakeaajugibiabew8a1TWaa0baaKqaGeaajugW aiaadshaaKqaGeaajugWaiaaikdaaaaakeaajugibiaadkfajuaGda ahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqcLbsacqaH9oGBlmaaBaaa jeaibaqcLbmacaWGLbGaamOBaaqcbasabaaakiaawUfacaGLDbaaaa aa@1F6A@   (11)

Which may becomes,

j υ t 2 ν en [ j ε 0 η ω 2 (1+j ε 0 ηlΩ)ω+lΩ ].[ ω 2 +2 ν in jω ω ci 2 ν in 2 ] =[ ω( ω ce 2 + ν en 2 )lΩ( ω ce 2 + ν en 2 )+j l 2 υ t 2 R 2 ν en ]. [ λ D 2 ω 3 +(j ε o η C s 2 +2 λ D 2 ν in j) ω 2 ( C s 2 + C s 2 ε o η ν in + λ D 2 ν in 2 + λ D 2 ω ci 2 )ω C s 2 ν in j ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaamOAaiabew8a1TWaa0baaKqaGeaajugWaiaadsha aKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaajeaibaqcLb macaWGLbGaamOBaaqcbasabaqcfa4aamWaaOqaaKqzGeGaamOAaiab ew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdG MaeqyYdC3cdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqGHsisl caGGOaGaaGymaiabgUcaRiaadQgacqaH1oqzlmaaBaaajeaibaqcLb macaaIWaaajeaibeaajugibiabeE7aOjaadYgacqqHPoWvcaGGPaGa eqyYdCNaey4kaSIaamiBaiabfM6axbGccaGLBbGaayzxaaqcLbsaca GGUaqcfa4aamWaaOqaaKqzGeGaeqyYdC3cdaahaaqcbasabeaajugW aiaaikdaaaqcLbsacqGHRaWkcaaIYaGaeqyVd42cdaWgaaqcbasaaK qzadGaamyAaiaad6gaaKqaGeqaaKqzGeGaamOAaiabeM8a3jabgkHi TiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGPbaajeaibaqcLb macaaIYaaaaKqzGeGaeyOeI0IaeqyVd42cdaqhaaqcbasaaKqzadGa amyAaiaad6gaaKqaGeaajugWaiaaikdaaaaakiaawUfacaGLDbaaae aajugibiabg2da9KqbaoaadmaakeaajugibiabeM8a3jaacIcacqaH jpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyzaaqcbasaaKqzadGaaG OmaaaajugibiabgUcaRiabe27aUTWaa0baaKqaGeaajugWaiaadwga caWGUbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiykaiabgkHiTiaadY gacqqHPoWvcaGGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaa dwgaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcqaH9oGBlmaaDa aajeaibaqcLbmacaWGLbGaamOBaaqcbasaaKqzadGaaGOmaaaajugi biaacMcacqGHRaWkcaWGQbqcfa4aaSaaaOqaaKqzGeGaamiBaSWaaW baaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeqyXdu3cdaqhaaqcbasa aKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOuaS WaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaajugibiabe27aUTWaaSba aKqaGeaajugWaiaadwgacaWGUbaajeaibeaaaOGaay5waiaaw2faaK qzGeGaaiOlaaGcbaqcfa4aamWaaOqaaKqzGeGaeq4UdW2cdaqhaaqc basaaKqzadGaamiraaqcbasaaKqzadGaaGOmaaaajugibiabeM8a3T WaaWbaaKqaGeqabaqcLbmacaaIZaaaaKqzGeGaey4kaSIaaiikaiaa dQgacqaH1oqzlmaaBaaajeaibaqcLbmacaWGVbaajeaibeaajugibi abeE7aOjaadoealmaaDaaajeaibaqcLbmacaWGZbaajeaibaqcLbma caaIYaaaaKqzGeGaey4kaSIaaGOmaiabeU7aSTWaa0baaKqaGeaaju gWaiaadseaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaa jeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsacaWGQbGaaiykai abeM8a3TWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0Ia aiikaiaadoealmaaDaaajeaibaqcLbmacaWGZbaajeaibaqcLbmaca aIYaaaaKqzGeGaey4kaSIaam4qaSWaa0baaKqaGeaajugWaiaadoha aKqaGeaajugWaiaaikdaaaqcLbsacqaH1oqzlmaaBaaajeaibaqcLb macaWGVbaajeaibeaajugibiabeE7aOjabe27aUTWaaSbaaKqaGeaa jugWaiaadMgacaWGUbaajeaibeaajugibiabgUcaRiabeU7aSTWaa0 baaKqaGeaajugWaiaadseaaKqaGeaajugWaiaaikdaaaqcLbsacqaH 9oGBlmaaDaaajeaibaqcLbmacaWGPbGaamOBaaqcbasaaKqzadGaaG OmaaaajugibiabgUcaRiabeU7aSTWaa0baaKqaGeaajugWaiaadsea aKqaGeaajugWaiaaikdaaaqcLbsacqaHjpWDlmaaDaaajeaibaqcLb macaWGJbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibiaacMcacqaH jpWDcqGHsislcaWGdbWcdaqhaaqcbasaaKqzadGaam4CaaqcbasaaK qzadGaaGOmaaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadMga caWGUbaajeaibeaajugibiaadQgaaOGaay5waiaaw2faaaaaaa@4C8D@   (12)

Order -arrangement according to  forces

The last equation (12) may be written,

[ υ t 2 ν en . ε 0 η+( ω ce 2 + ν en 2 ). λ D 2 ]. ω 4 + +[ j2 υ t 2 ν en ε 0 η. ν in j υ t 2 ν en (1+j ε 0 ηlΩ)j( ω ce 2 + ν en 2 ).( ε 0 η C s 2 +2 λ D 2 ν in ) +lΩ( ω ce 2 + ν en 2 ) λ D 2 j l 2 υ t 2 R 2 ν en λ D 2 ]. ω 3 + +[ υ t 2 ν en ε 0 η( ω ci 2 + ν in 2 )+2 υ t 2 ν(1+j ε 0 ηlΩ). ν in +j υ t 2 ν en .lΩ+ ( ω ce 2 + ν en 2 )( C s 2 + C s 2 ε 0 η ν in + λ D 2 ν in 2 + λ D 2 ω ci 2 )+ +jlΩ( ω ce 2 + ν en 2 )( ε 0 η C s 2 +2 λ D 2 ν in )+ l 2 υ t 2 R 2 . ν en ( ε 0 η C s 2 +2 λ D 2 ν in ) ]. ω 2 + +[ j υ t 2 ν en (1+j ε 0 ηlΩ).( ω ci 2 + ν in 2 )2 υ t 2 . ν en lΩ. ν in +j( ω ce 2 + ν en 2 ) C s 2 ν in lΩ( ω ce 2 + ν en 2 )( C s 2 + C s 2 ε 0 η ν in + λ D 2 ν in 2 + λ D 2 ω ci 2 )+ j l 2 υ t 2 R 2 ν en ( C s 2 + C s 2 ε 0 η ν in + λ D 2 ν in 2 + λ D 2 ω ci 2 ) ].ω+ +[ j υ t 2 ν en .lΩ( ω ci 2 + ν in 2 )jlΩ( ω ce 2 + ν en 2 ). C s 2 ν in l 2 υ t 2 R 2 ν en . C s 2 ν in ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeyOeI0scfa4aamWaaOqaaKqzGeGaeqyXdu3cdaqh aaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaajugibiabe2 7aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiaa c6cacqaH1oqzjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibi abeE7aOjabgUcaRiaacIcacqaHjpWDlmaaDaaajeaibaqcLbmacaWG JbGaamyzaaqcbasaaKqzadGaaGOmaaaajugibiabgUcaRiabe27aUT Waa0baaKqaGeaajugWaiaadwgacaWGUbaajeaibaqcLbmacaaIYaaa aKqzGeGaaiykaiaac6cacqaH7oaBlmaaDaaajeaibaqcLbmacaWGeb aajeaibaqcLbmacaaIYaaaaaGccaGLBbGaayzxaaqcLbsacaGGUaGa eqyYdC3cdaahaaqcbasabeaajugWaiaaisdaaaqcLbsacqGHRaWkaO qaaKqzGeGaey4kaSscfa4aamWaaKqzGeabaeqakeaajugibiabgkHi TiaadQgacaaIYaGaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaaqcba saaKqzadGaaGOmaaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaa dwgacaWGUbaajeaibeaajugibiabew7aLLqbaoaaBaaajeaibaqcLb macaaIWaaaleqaaKqzGeGaeq4TdGMaaiOlaiabe27aUTWaaSbaaKqa GeaajugWaiaadMgacaWGUbaajeaibeaajugibiabgkHiTiaadQgacq aHfpqDlmaaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmacaaIYaaa aKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGe qaaKqzGeGaaiikaiaaigdacqGHRaWkcaWGQbGaeqyTdu2cdaWgaaqc basaaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcaWGSbGaeuyQdC LaaiykaiabgkHiTiaadQgacaGGOaGaeqyYdC3cdaqhaaqcbasaaKqz adGaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcq aH9oGBlmaaDaaajeaibaqcLbmacaWGLbGaamOBaaqcbasaaKqzadGa aGOmaaaajugibiaacMcacaGGUaGaaiikaiabew7aLTWaaSbaaKqaGe aajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdGMaam4qaSWaa0baaKqa GeaajugWaiaadohaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkca aIYaGaeq4UdW2cdaqhaaqcbasaaKqzadGaamiraaqcbasaaKqzadGa aGOmaaaajugibiabe27aULqbaoaaBaaajeaibaqcLbmacaWGPbGaam OBaaWcbeaajugibiaacMcaaOqaaKqzGeGaey4kaSIaamiBaiabfM6a xjaacIcacqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyzaaqcba saaKqzadGaaGOmaaaajugibiabgUcaRiabe27aUTWaa0baaKqaGeaa jugWaiaadwgacaWGUbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiykai abeU7aSTWaa0baaKqaGeaajugWaiaadseaaKqaGeaajugWaiaaikda aaqcLbsacqGHsislcaWGQbqcfa4aaSaaaOqaaKqzGeGaamiBaSWaaW baaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeqyXdu3cdaqhaaqcbasa aKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOuaS WaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaajugibiabe27aUTWaaSba aKqaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiabeU7aSTWaa0 baaKqaGeaajugWaiaadseaaKqaGeaajugWaiaaikdaaaaaaOGaay5w aiaaw2faaKqzGeGaaiOlaiabeM8a3TWaaWbaaKqaGeqabaqcLbmaca aIZaaaaKqzGeGaey4kaScakeaajugibiabgUcaRKqbaoaadmaajugi bqaabeGcbaqcLbsacqaHfpqDlmaaDaaajeaibaqcLbmacaWG0baaje aibaqcLbmacaaIYaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGa amyzaiaad6gaaKqaGeqaaKqzGeGaeqyTdu2cdaWgaaqcbasaaKqzad GaaGimaaqcbasabaqcLbsacqaH3oaAcaGGOaGaeqyYdC3cdaqhaaqc basaaKqzadGaam4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacq GHRaWkcqaH9oGBlmaaDaaajeaibaqcLbmacaWGPbGaamOBaaqcbasa aKqzadGaaGOmaaaajugibiaacMcacqGHRaWkcaaIYaGaeqyXdu3cda qhaaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaajugibiab e27aUjaacIcacaaIXaGaey4kaSIaamOAaiabew7aLTWaaSbaaKqaGe aajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdGMaamiBaiabfM6axjaa cMcacaGGUaGaeqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6gaaK qaGeqaaKqzGeGaey4kaSIaamOAaiabew8a1TWaa0baaKqaGeaajugW aiaadshaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaaje aibaqcLbmacaWGLbGaamOBaaqcbasabaqcLbsacaGGUaGaamiBaiab fM6axjabgUcaRaGcbaqcLbsacaGGOaGaeqyYdC3cdaqhaaqcbasaaK qzadGaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWk cqaH9oGBlmaaDaaajeaibaqcLbmacaWGLbGaamOBaaqcbasaaKqzad GaaGOmaaaajugibiaacMcacaGGOaGaam4qaSWaa0baaKqaGeaajugW aiaadohaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaWGdbqcfa 4aa0baaKqaGeaajugWaiaadohaaKqaGeaajugWaiaaikdaaaqcLbsa cqaH1oqzjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibiabeE 7aOjabe27aULqbaoaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasa baqcLbsacqGHRaWkcqaH7oaBjuaGdaqhaaqcbasaaKqzadGaamiraa qcbasaaKqzadGaaGOmaaaajugibiabe27aULqbaoaaDaaajeaibaqc LbmacaWGPbGaamOBaaqcbasaaKqzadGaaGOmaaaajugibiabgUcaRi abeU7aSLqbaoaaDaaajeaibaqcLbmacaWGebaajeaibaqcLbmacaaI YaaaaKqzGeGaeqyYdCxcfa4aa0baaKqaGeaajugWaiaadogacaWGPb aajeaibaqcLbmacaaIYaaaaKqzGeGaaiykaiabgUcaRaGcbaqcLbsa cqGHRaWkcaWGQbGaamiBaiabfM6axjaacIcacqaHjpWDjuaGdaqhaa qcbasaaKqzadGaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsa cqGHRaWkcqaH9oGBjuaGdaqhaaqcbasaaKqzadGaamyzaiaad6gaaK qaGeaajugWaiaaikdaaaqcLbsacaGGPaGaaiikaiabew7aLLqbaoaa BaaajeaibaqcLbmacaaIWaaajeaibeaajugibiabeE7aOjaadoeaju aGdaqhaaqcbasaaKqzadGaam4CaaqcbasaaKqzadGaaGOmaaaajugi biabgUcaRiaaikdacqaH7oaBjuaGdaqhaaqcbasaaKqzadGaamiraa qcbasaaKqzadGaaGOmaaaajugibiabe27aULqbaoaaBaaajeaibaqc LbmacaWGPbGaamOBaaqcbasabaqcLbsacaGGPaGaey4kaSscfa4aaS aaaOqaaKqzGeGaamiBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqz GeGaeqyXduxcfa4aa0baaKqaGeaajugWaiaadshaaKqaGeaajugWai aaikdaaaaakeaajugibiaadkfajuaGdaahaaWcbeqcbasaaKqzadGa aGOmaaaaaaqcLbsacaGGUaGaeqyVd4wcfa4aaSbaaKqaGeaajugWai aadwgacaWGUbaajeaibeaajugibiaacIcacqaH1oqzjuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaajugibiabeE7aOjaadoeajuaGdaqhaa qcbasaaKqzadGaam4CaaqcbasaaKqzadGaaGOmaaaajugibiabgUca RiaaikdacqaH7oaBjuaGdaqhaaqcbasaaKqzadGaamiraaqcbasaaK qzadGaaGOmaaaajugibiabe27aULqbaoaaBaaajeaibaqcLbmacaWG PbGaamOBaaqcbasabaqcLbsacaGGPaaaaOGaay5waiaaw2faaKqzGe GaaiOlaiabeM8a3TWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaey4k aScakeaajugibiabgUcaRKqbaoaadmaajugibqaabeGcbaqcLbsaca WGQbGaeqyXduxcfa4aa0baaKqaGeaajugWaiaadshaaKqaGeaajugW aiaaikdaaaqcLbsacqaH9oGBjuaGdaWgaaqcbasaaKqzadGaamyzai aad6gaaKqaGeqaaKqzGeGaaiikaiaaigdacqGHRaWkcaWGQbGaeqyT duwcfa4aaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdG MaamiBaiabfM6axjaacMcacaGGUaGaaiikaiabeM8a3LqbaoaaDaaa jeaibaqcLbmacaWGJbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibi abgUcaRiabe27aULqbaoaaDaaajeaibaqcLbmacaWGPbGaamOBaaqc basaaKqzadGaaGOmaaaajugibiaacMcacqGHsislcaaIYaGaeqyXdu xcfa4aa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaaqc LbsacaGGUaGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadwgacaWGUb aajeaibeaajugibiaadYgacqqHPoWvcaGGUaGaeqyVd4wcfa4aaSba aKqaGeaajugWaiaadMgacaWGUbaajeaibeaajugibiabgUcaRiaadQ gacaGGOaGaeqyYdCxcfa4aa0baaKqaGeaajugWaiaadogacaWGLbaa jeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeqyVd4wcfa4aa0baaK qaGeaajugWaiaadwgacaWGUbaajeaibaqcLbmacaaIYaaaaKqzGeGa aiykaiaadoeajuaGdaqhaaqcbasaaKqzadGaam4CaaqcbasaaKqzad GaaGOmaaaajugibiabe27aULqbaoaaBaaajeaibaqcLbmacaWGPbGa amOBaaqcbasabaaakeaajugibiabgkHiTiaadYgacqqHPoWvcaGGOa GaeqyYdCxcfa4aa0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqc LbmacaaIYaaaaKqzGeGaey4kaSIaeqyVd4wcfa4aa0baaKqaGeaaju gWaiaadwgacaWGUbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiykaiaa cIcacaWGdbqcfa4aa0baaKqaGeaajugWaiaadohaaKqaGeaajugWai aaikdaaaqcLbsacqGHRaWkcaWGdbqcfa4aa0baaKqaGeaajugWaiaa dohaaKqaGeaajugWaiaaikdaaaqcLbsacqaH1oqzjuaGdaWgaaqcba saaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcqaH9oGBjuaGdaWg aaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqaaKqzGeGaey4kaSIaeq 4UdWwcfa4aa0baaKqaGeaajugWaiaadseaaKqaGeaajugWaiaaikda aaqcLbsacqaH9oGBjuaGdaqhaaqcbasaaKqzadGaamyAaiaad6gaaK qaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcqaH7oaBjuaGdaqhaaqc basaaKqzadGaamiraaqcbasaaKqzadGaaGOmaaaajugibiabeM8a3L qbaoaaDaaajeaibaqcLbmacaWGJbGaamyAaaqcbasaaKqzadGaaGOm aaaajugibiaacMcacqGHRaWkaOqaaKqzGeGaamOAaKqbaoaalaaake aajugibiaadYgajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaajugi biabew8a1LqbaoaaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmaca aIYaaaaaGcbaqcLbsacaWGsbqcfa4aaWbaaKqaGeqabaqcLbmacaaI Yaaaaaaajugibiabe27aULqbaoaaBaaajeaibaqcLbmacaWGLbGaam OBaaqcbasabaqcLbsacaGGOaGaam4qaKqbaoaaDaaajeaibaqcLbma caWGZbaajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaam4qaKqbao aaDaaajeaibaqcLbmacaWGZbaajeaibaqcLbmacaaIYaaaaKqzGeGa eqyTduwcfa4aaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq 4TdGMaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadMgacaWGUbaajeai beaajugibiabgUcaRiabeU7aSLqbaoaaDaaajeaibaqcLbmacaWGeb aajeaibaqcLbmacaaIYaaaaKqzGeGaeqyVd4wcfa4aa0baaKqaGeaa jugWaiaadMgacaWGUbaajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaS Iaeq4UdWwcfa4aa0baaKqaGeaajugWaiaadseaaKqaGeaajugWaiaa ikdaaaqcLbsacqaHjpWDjuaGdaqhaaqcbasaaKqzadGaam4yaiaadM gaaKqaGeaajugWaiaaikdaaaqcLbsacaGGPaaaaOGaay5waiaaw2fa aKqzGeGaaiOlaiabeM8a3jabgUcaRaGcbaqcLbsacqGHRaWkjuaGda WadaGcbaqcLbsacqGHsislcaWGQbGaeqyXduxcfa4aa0baaKqaGeaa jugWaiaadshaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBjuaGda WgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaaiOlaiaa dYgacqqHPoWvcaGGOaGaeqyYdCxcfa4aa0baaKqaGeaajugWaiaado gacaWGPbaajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeqyVd4wc fa4aa0baaKqaGeaajugWaiaadMgacaWGUbaajeaibaqcLbmacaaIYa aaaKqzGeGaaiykaiabgkHiTiaadQgacaWGSbGaeuyQdCLaaiikaiab eM8a3LqbaoaaDaaajeaibaqcLbmacaWGJbGaamyzaaqcbasaaKqzad GaaGOmaaaajugibiabgUcaRiabe27aULqbaoaaDaaajeaibaqcLbma caWGLbGaamOBaaqcbasaaKqzadGaaGOmaaaajugibiaacMcacaGGUa Gaam4qaKqbaoaaDaaajeaibaqcLbmacaWGZbaajeaibaqcLbmacaaI YaaaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadMgacaWGUb aajeaibeaajugibiabgkHiTKqbaoaalaaakeaajugibiaadYgajuaG daahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHfpqDjuaGdaqhaa qcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGa amOuaKqbaoaaCaaajeaibeqaaKqzadGaaGOmaaaaaaqcLbsacqaH9o GBjuaGdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGa aiOlaiaadoeajuaGdaqhaaqcbasaaKqzadGaam4CaaqcbasaaKqzad GaaGOmaaaajugibiabe27aULqbaoaaBaaajeaibaqcLbmacaWGPbGa amOBaaqcbasabaaakiaawUfacaGLDbaajugibiabg2da9iaaicdaaa aa@CEC9@

A separation of real and imaginaries parts is making in the next,

[ υ t 2 ν en . ε 0 η+ ω ce 2 . λ D 2 ]. ω 4 + +[ lΩ{ υ t 2 ν en ε 0 η+ ω ce 2 λ D 2 } { υ t 2 ν en (2 ε 0 η ν in +1)+ ω ce 2 ( ε 0 η C s 2 +2 λ D 2 ν in )+ l 2 υ t 2 R 2 ν en λ D 2 }.j ]. ω 3 + +[ { υ t 2 ν en ε 0 η( ω ci 2 + ν in 2 )+2 υ t 2 ν en ν in + ω ce 2 [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ω ci 2 + ν in 2 ) ]+ + l 2 υ t 2 R 2 ν en ( ε 0 η C s 2 +2 λ D 2 ν in ) }+ +{ 2 υ t 2 ν en ε 0 ηlΩ ν in + υ t 2 ν en lΩ+lΩ ω ce 2 .( ε 0 η C s 2 +2 λ D 2 ν in ) }j ]. ω 2 + +[ { υ t 2 ν en ε 0 ηlΩ( ω ci 2 + ν in 2 )2 υ t 2 . ν en lΩ. ν in lΩ. ω ce 2 [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ν in 2 + ω ci 2 ) ] }+ +{ υ t 2 ν en ( ω ci 2 + ν in 2 )+ ω ce 2 . C s 2 ν in + l 2 υ t 2 R 2 ν en [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ν in 2 + ω ci 2 ) ] }j ].ω+ +[ l 2 υ t 2 R 2 ν en . C s 2 ν in { υ t 2 ν en lΩ( ω ci 2 + ν in 2 )+lΩ ω ce 2 C s 2 ν in }j ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeyOeI0scfa4aamWaaOqaaKqzGeGaeqyXdu3cdaqh aaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaajugibiabe2 7aULqbaoaaBaaajeaibaqcLbmacaWGLbGaamOBaaWcbeaajugibiaa c6cacqaH1oqzjuaGdaWgaaqcbasaaKqzadGaaGimaaWcbeaajugibi abeE7aOjabgUcaRiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWG LbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiOlaiabeU7aSTWaa0baaK qaGeaajugWaiaadseaaKqaGeaajugWaiaaikdaaaaakiaawUfacaGL Dbaajugibiaac6cacqaHjpWDlmaaCaaajeaibeqaaKqzadGaaGinaa aajugibiabgUcaRaGcbaqcLbsacqGHRaWkjuaGdaWadaqcLbsaeaqa bOqaaKqzGeGaamiBaiabfM6axLqbaoaacmaakeaajugibiabew8a1T Waa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaaqcLbsa cqaH9oGBlmaaBaaabaqcLbmacaWGLbGaamOBaaWcbeaajugibiabew 7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdGMa ey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadwgaaKqaGe aajugWaiaaikdaaaqcLbsacqaH7oaBlmaaDaaajeaibaqcLbmacaWG ebaajeaibaqcLbmacaaIYaaaaaGccaGL7bGaayzFaaqcLbsacqGHsi slaOqaaKqzGeGaeyOeI0scfa4aaiWaaOqaaKqzGeGaeqyXdu3cdaqh aaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaajugibiabe2 7aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiaa cIcacaaIYaGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaaqcbasaba qcLbsacqaH3oaAcqaH9oGBlmaaBaaajeaibaqcLbmacaWGPbGaamOB aaqcbasabaqcLbsacqGHRaWkcaaIXaGaaiykaiabgUcaRiabeM8a3T Waa0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqcLbmacaaIYaaa aKqzGeGaaiikaiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGe qaaKqzGeGaeq4TdGMaam4qaSWaa0baaKqaGeaajugWaiaadohaaKqa GeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaIYaGaeq4UdW2cdaqhaa qcbasaaKqzadGaamiraaqcbasaaKqzadGaaGOmaaaajugibiabe27a UTWaaSbaaKqaGeaajugWaiaadMgacaWGUbaajeaibeaajugibiaacM cacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGSbWcdaahaaqcbasabeaa jugWaiaaikdaaaqcLbsacqaHfpqDlmaaDaaajeaibaqcLbmacaWG0b aajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaWGsbWcdaahaaqcbasa beaajugWaiaaikdaaaaaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaaju gWaiaadwgacaWGUbaaleqaaKqzGeGaeq4UdW2cdaqhaaqcbasaaKqz adGaamiraaqcbasaaKqzadGaaGOmaaaaaOGaay5Eaiaaw2haaKqzGe GaaiOlaiaadQgaaaGccaGLBbGaayzxaaqcLbsacaGGUaGaeqyYdC3c daahaaqcbasabeaajugWaiaaiodaaaqcLbsacqGHRaWkaOqaaKqzGe Gaey4kaSscfa4aamWaaKqzGeabaeqakeaajuaGdaGadaqcLbsaeaqa bOqaaKqzGeGaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaaqcbasaaK qzadGaaGOmaaaajugibiabe27aULqbaoaaBaaaleaajugibiaadwga caWGUbaaleqaaKqzGeGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaa qcbasabaqcLbsacqaH3oaAcaGGOaGaeqyYdC3cdaqhaaqcbasaaKqz adGaam4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcq aH9oGBlmaaDaaajeaibaqcLbmacaWGPbGaamOBaaqcbasaaKqzadGa aGOmaaaajugibiaacMcacqGHRaWkcaaIYaGaeqyXdu3cdaqhaaqcba saaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaajugibiabe27aUTWa aSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiabe27aUT WaaSbaaKqaGeaajugWaiaadMgacaWGUbaajeaibeaajugibiabgUca RiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqcLb macaaIYaaaaKqbaoaadmaakeaajugibiaadoealmaaDaaajeaibaqc LbmacaWGZbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiikaiaaigdacq GHRaWkcqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biabeE7aOjabe27aULqbaoaaBaaajeaibaqcLbmacaWGPbGaamOBaa WcbeaajugibiaacMcacqGHRaWkcqaH7oaBlmaaDaaajeaibaqcLbma caWGebaajeaibaqcLbmacaaIYaaaaKqzGeGaaiikaiabeM8a3TWaa0 baaKqaGeaajugWaiaadogacaWGPbaajeaibaqcLbmacaaIYaaaaKqz GeGaey4kaSIaeqyVd42cdaqhaaqcbasaaKqzadGaamyAaiaad6gaaK qaGeaajugWaiaaikdaaaqcLbsacaGGPaaakiaawUfacaGLDbaajugi biabgUcaRaGcbaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGSb WcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHfpqDlmaaDaaa jeaibaqcLbmacaWG0baajeaibaqcLbmacaaIYaaaaaGcbaqcLbsaca WGsbqcfa4aaWbaaSqabKqaGeaajugWaiaaikdaaaaaaKqzGeGaeqyV d42cdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaai ikaiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGa eq4TdGMaam4qaSWaa0baaKqaGeaajugWaiaadohaaKqaGeaajugWai aaikdaaaqcLbsacqGHRaWkcaaIYaGaeq4UdW2cdaqhaaqcbasaaKqz adGaamiraaqcbasaaKqzadGaaGOmaaaajugibiabe27aUTWaaSbaaK qaGeaajugWaiaadMgacaWGUbaajeaibeaajugibiaacMcaaaGccaGL 7bGaayzFaaqcLbsacqGHRaWkaOqaaKqzGeGaey4kaSscfa4aaiWaaO qaaKqzGeGaaGOmaiabew8a1LqbaoaaDaaajeaibaqcLbmacaWG0baa jeaibaqcLbmacaaIYaaaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaaju gWaiaadwgacaWGUbaajeaibeaajugibiabew7aLLqbaoaaBaaajeai baqcLbmacaaIWaaaleqaaKqzGeGaeq4TdGMaamiBaiabfM6axjabe2 7aULqbaoaaBaaajeaibaqcLbmacaWGPbGaamOBaaWcbeaajugibiab gUcaRiabew8a1LqbaoaaDaaajeaibaqcLbmacaWG0baajeaibaqcLb macaaIYaaaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadwga caWGUbaajeaibeaajugibiaadYgacqqHPoWvcqGHRaWkcaWGSbGaeu yQdCLaeqyYdCxcfa4aa0baaKqaGeaajugWaiaadogacaWGLbaajeai baqcLbmacaaIYaaaaKqzGeGaaiOlaiaacIcacqaH1oqzjuaGdaWgaa qcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcaWGdbqcfa4a a0baaKqaGeaajugWaiaadohaaKqaGeaajugWaiaaikdaaaqcLbsacq GHRaWkcaaIYaGaeq4UdWwcfa4aa0baaKqaGeaajugWaiaadseaaKqa GeaajugWaiaaikdaaaqcLbsacqaH9oGBjuaGdaWgaaqcbasaaKqzad GaamyAaiaad6gaaKqaGeqaaKqzGeGaaiykaaGccaGL7bGaayzFaaqc LbsacaWGQbaaaOGaay5waiaaw2faaKqzGeGaaiOlaiabeM8a3Lqbao aaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabgUcaRaGcbaqcLbsa cqGHRaWkjuaGdaWadaqcLbsaeaqabOqaaKqbaoaacmaakeaajugibi abgkHiTiabew8a1LqbaoaaDaaajeaibaqcLbmacaWG0baajeaibaqc LbmacaaIYaaaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadw gacaWGUbaajeaibeaajugibiabew7aLLqbaoaaBaaajeaibaqcLbma caaIWaaaleqaaKqzGeGaeq4TdGMaamiBaiabfM6axjaacIcacqaHjp WDjuaGdaqhaaqcbasaaKqzadGaam4yaiaadMgaaKqaGeaajugWaiaa ikdaaaqcLbsacqGHRaWkcqaH9oGBjuaGdaqhaaqcbasaaKqzadGaam yAaiaad6gaaKqaGeaajugWaiaaikdaaaqcLbsacaGGPaGaeyOeI0Ia aGOmaiabew8a1LqbaoaaDaaajeaibaqcLbmacaWG0baajeaibaqcLb macaaIYaaaaKqzGeGaaiOlaiabe27aULqbaoaaBaaajeaibaqcLbma caWGLbGaamOBaaqcbasabaqcLbsacaWGSbGaeuyQdCLaaiOlaiabe2 7aUTWaaSbaaKazba4=baqcLbmacaWGPbGaamOBaaqcKfaG=hqaaKqz GeGaeyOeI0IaamiBaiabfM6axjaac6cacqaHjpWDjuaGdaqhaaqcba saaKqzadGaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcfa4aamWa aOqaaKqzGeGaam4qaKqbaoaaDaaajeaibaqcLbmacaWGZbaajeaiba qcLbmacaaIYaaaaKqzGeGaaiikaiaaigdacqGHRaWkcqaH1oqzjuaG daWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcqaH9o GBjuaGdaWgaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqaaKqzGeGa aiykaiabgUcaRiabeU7aSLqbaoaaDaaajeaibaqcLbmacaWGebaaje aibaqcLbmacaaIYaaaaKqzGeGaaiikaiabe27aULqbaoaaDaaajeai baqcLbmacaWGPbGaamOBaaqcbasaaKqzadGaaGOmaaaajugibiabgU caRiabeM8a3LqbaoaaDaaajeaibaqcLbmacaWGJbGaamyAaaqcbasa aKqzadGaaGOmaaaajugibiaacMcaaOGaay5waiaaw2faaaGaay5Eai aaw2haaKqzGeGaey4kaScakeaajugibiabgUcaRKqbaoaacmaakeaa jugibiabew8a1LqbaoaaDaaajeaibaqcLbmacaWG0baajeaibaqcLb macaaIYaaaaKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadwga caWGUbaajeaibeaajugibiaacIcacqaHjpWDjuaGdaqhaaqcbasaaK qzadGaam4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWk cqaH9oGBjuaGdaqhaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeaaju gWaiaaikdaaaqcLbsacaGGPaGaey4kaSIaeqyYdCxcfa4aa0baaKqa GeaajugWaiaadogacaWGLbaajeaibaqcLbmacaaIYaaaaKqzGeGaai OlaiaadoeajuaGdaqhaaqcbasaaKqzadGaam4CaaqcbasaaKqzadGa aGOmaaaajugibiabe27aULqbaoaaBaaajeaibaqcLbmacaWGPbGaam OBaaqcbasabaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGSbqc fa4aaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeqyXduxcfa4aa0 baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaaaakeaajugi biaadkfajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaaaaqcLbsacq aH9oGBjuaGdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqb aoaadmaakeaajugibiaadoeajuaGdaqhaaqcbasaaKqzadGaam4Caa qcbasaaKqzadGaaGOmaaaajugibiaacIcacaaIXaGaey4kaSIaeqyT duwcfa4aaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdG MaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadMgacaWGUbaajeaibeaa jugibiaacMcacqGHRaWkcqaH7oaBjuaGdaqhaaqcbasaaKqzadGaam iraaqcbasaaKqzadGaaGOmaaaajugibiaacIcacqaH9oGBjuaGdaqh aaqcbasaaKqzadGaamyAaiaad6gaaKqaGeaajugWaiaaikdaaaqcLb sacqGHRaWkcqaHjpWDjuaGdaqhaaqcbasaaKqzadGaam4yaiaadMga aKqaGeaajugWaiaaikdaaaqcLbsacaGGPaaakiaawUfacaGLDbaaai aawUhacaGL9baajugibiaadQgaaaGccaGLBbGaayzxaaqcLbsacaGG UaGaeqyYdCNaey4kaScakeaajugibiabgUcaRKqbaoaadmaakeaaju gibiabgkHiTKqbaoaalaaakeaajugibiaadYgajuaGdaahaaqcbasa beaajugWaiaaikdaaaqcLbsacqaHfpqDjuaGdaqhaaqcbasaaKqzad GaamiDaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOuaKqbaoaa CaaajeaibeqaaKqzadGaaGOmaaaaaaqcLbsacqaH9oGBjuaGdaWgaa qcbasaaKqzadGaamyzaiaad6gaaSqabaqcLbsacaGGUaGaam4qaKqb aoaaDaaajeaibaqcLbmacaWGZbaajeaibaqcLbmacaaIYaaaaKqzGe GaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadMgacaWGUbaajeaibeaa jugibiabgkHiTKqbaoaacmaakeaajugibiabew8a1LqbaoaaDaaaje aibaqcLbmacaWG0baajeaibaqcLbmacaaIYaaaaKqzGeGaeqyVd4wc fa4aaSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiaadY gacqqHPoWvcaGGOaGaeqyYdCxcfa4aa0baaKqaGeaajugWaiaadoga caWGPbaajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeqyVd4wcfa 4aa0baaKqaGeaajugWaiaadMgacaWGUbaajeaibaqcLbmacaaIYaaa aKqzGeGaaiykaiabgUcaRiaadYgacqqHPoWvcqaHjpWDjuaGdaqhaa qcbasaaKqzadGaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsa caWGdbqcfa4aa0baaKqaGeaajugWaiaadohaaKqaGeaajugWaiaaik daaaqcLbsacqaH9oGBjuaGdaWgaaqcbasaaKqzadGaamyAaiaad6ga aKqaGeqaaaGccaGL7bGaayzFaaqcLbsacaWGQbaakiaawUfacaGLDb aajugibiabg2da9iaaicdaaaaa@A58D@   (13)

The growth rate calculation

By taking the approaches below,

ω= ω r + ω i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3jabg2da9iabeM8a3TWaaSbaaKqaGeaajugWaiaa dkhaaKqaGeqaaKqzGeGaey4kaSIaeqyYdC3cdaWgaaqcbasaaKqzad GaamyAaaqcbasabaqcLbsacaWGQbaaaa@47EB@ , ω 2 ω r 2 +2 ω r ω i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa eyisISRaeqyYdC3cdaqhaaqcbasaaKqzadGaamOCaaqcbasaaKqzad GaaGOmaaaajugibiabgUcaRiaaikdacqaHjpWDlmaaBaaajeaibaqc LbmacaWGYbaajeaibeaajugibiabeM8a3TWaaSbaaKqaGeaajugWai aadMgaaKqaGeqaaKqzGeGaamOAaaaa@530E@ , ω 3 ω r 3 +3 ω r 2 ω i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaaWbaaKqaGeqabaqcLbmacaaIZaaaaKqzGeGa eyisISRaeqyYdC3cdaqhaaqcbasaaKqzadGaamOCaaqcbasaaKqzad GaaG4maaaajugibiabgUcaRiaaiodacqaHjpWDlmaaDaaajeaibaqc LbmacaWGYbaajeaibaqcLbmacaaIYaaaaKqzGeGaeqyYdC3cdaWgaa qcbasaaKqzadGaamyAaaqcbasabaqcLbsacaWGQbaaaa@54FC@ , ω 4 ω r 4 +4 ω r 3 ω i j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaaWbaaKqaGeqabaqcLbmacaaI0aaaaKqzGeGa eyisISRaeqyYdC3cdaqhaaqcbasaaKqzadGaamOCaaqcbasaaKqzad GaaGinaaaajugibiabgUcaRiaaisdacqaHjpWDlmaaDaaajeaibaqc LbmacaWGYbaajeaibaqcLbmacaaIZaaaaKqzGeGaeqyYdC3cdaWgaa qcbasaaKqzadGaamyAaaqcbasabaqcLbsacaWGQbaaaa@5500@

And putting them into the last equation (13), we may be to define the real part and the imaginary part of its. So, we have the following.

Real Part

The real part is,

[ υ t 2 ν en . ε 0 η+ ω ce 2 . λ D 2 ]. ω r 4 +lΩ[ υ t 2 ν en ε 0 η+ ω ce 2 λ D 2 ] ω r 3 +3 ω r 2 ω i [ υ t 2 ν en (2 ε 0 η ν in +1)+ ω ce 2 ( ε 0 η C s 2 +2 λ D 2 ν in )+ l 2 υ t 2 R 2 ν en λ D 2 ] +[ υ t 2 ν en ε 0 η( ω ci 2 + ν in 2 )+2 υ t 2 ν en ν in + ω ce 2 [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ω ci 2 + ν in 2 ) ]+ l 2 υ t 2 R 2 ν en ( ε 0 η C s 2 +2 λ D 2 ν in ) ]. ω r 2 [ 2 υ t 2 ν en ε 0 ηlΩ ν in + υ t 2 ν en lΩ+lΩ ω ce 2 .( ε 0 η C s 2 +2 λ D 2 ν in ) ].2 ω r ω i +[ υ t 2 ν en ε 0 ηlΩ( ω ci 2 + ν in 2 )2 υ t 2 . ν en lΩ. ν in lΩ. ω ce 2 [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ν in 2 + ω ci 2 ) ] ] ω r [ υ t 2 ν en ( ω ci 2 + ν in 2 )+ ω ce 2 . C s 2 ν in + l 2 υ t 2 R 2 ν en [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ν in 2 + ω ci 2 ) ] ]. ω i l 2 υ t 2 R 2 ν en . C s 2 ν in =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeyOeI0scfa4aamWaaOqaaKqzGeGaeqyXdu3cdaqh aaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaajugibiabe2 7aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiaa c6cacqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibi abeE7aOjabgUcaRiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWG LbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiOlaiabeU7aSTWaa0baaK qaGeaajugWaiaadseaaKqaGeaajugWaiaaikdaaaaakiaawUfacaGL Dbaajugibiaac6cacqaHjpWDlmaaDaaajeaibaqcLbmacaWGYbaaje aibaqcLbmacaaI0aaaaKqzGeGaey4kaSIaamiBaiabfM6axLqbaoaa dmaakeaajugibiabew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGe aajugWaiaaikdaaaqcLbsacqaH9oGBjuaGdaWgaaqcbasaaKqzadGa amyzaiaad6gaaSqabaqcLbsacqaH1oqzjuaGdaWgaaqcbasaaKqzad GaaGimaaWcbeaajugibiabeE7aOjabgUcaRiabeM8a3TWaa0baaKqa GeaajugWaiaadogacaWGLbaajeaibaqcLbmacaaIYaaaaKqzGeGaeq 4UdW2cdaqhaaqcbasaaKqzadGaamiraaqcbasaaKqzadGaaGOmaaaa aOGaay5waiaaw2faaKqzGeGaeqyYdC3cdaqhaaqcbasaaKqzadGaam OCaaqcbasaaKqzadGaaG4maaaaaOqaaKqzGeGaey4kaSIaaG4maiab eM8a3TWaa0baaKqaGeaajugWaiaadkhaaKqaGeaajugWaiaaikdaaa qcLbsacqaHjpWDlmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajuaG daWadaGcbaqcLbsacqaHfpqDlmaaDaaajeaibaqcLbmacaWG0baaje aibaqcLbmacaaIYaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGa amyzaiaad6gaaKqaGeqaaKqzGeGaaiikaiaaikdacqaH1oqzlmaaBa aajeaibaqcLbmacaaIWaaajeaibeaajugibiabeE7aOjabe27aUTWa aSbaaKqaGeaajugWaiaadMgacaWGUbaajeaibeaajugibiabgUcaRi aaigdacaGGPaGaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam4y aiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacaGGOaGaeqyTdu2cda WgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcaWGdbWc daqhaaqcbasaaKqzadGaam4CaaqcbasaaKqzadGaaGOmaaaajugibi abgUcaRiaaikdacqaH7oaBlmaaDaaajeaibaqcLbmacaWGebaajeai baqcLbmacaaIYaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaam yAaiaad6gaaKqaGeqaaKqzGeGaaiykaiabgUcaRKqbaoaalaaakeaa jugibiaadYgalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabew 8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaaaa keaajugibiaadkfalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaqcLb sacqaH9oGBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqcbasabaqc LbsacqaH7oaBlmaaDaaajeaibaqcLbmacaWGebaajeaibaqcLbmaca aIYaaaaaGccaGLBbGaayzxaaaabaqcLbsacqGHRaWkjuaGdaWadaGc baqcLbsacqaHfpqDlmaaDaaajeaibaqcLbmacaWG0baajeaibaqcLb macaaIYaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyzaiaa d6gaaKqaGeqaaKqzGeGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaa qcbasabaqcLbsacqaH3oaAcaGGOaGaeqyYdC3cdaqhaaqcbasaaKqz adGaam4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcq aH9oGBlmaaDaaajeaibaqcLbmacaWGPbGaamOBaaqcbasaaKqzadGa aGOmaaaajugibiaacMcacqGHRaWkcaaIYaGaeqyXdu3cdaqhaaqcba saaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaajugibiabe27aUTWa aSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiabe27aUT WaaSbaaKqaGeaajugWaiaadMgacaWGUbaajeaibeaajugibiabgUca RiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqcLb macaaIYaaaaKqbaoaadmaakeaajugibiaadoealmaaDaaajeaibaqc LbmacaWGZbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiikaiaaigdacq GHRaWkcqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugi biabeE7aOjabe27aUTWaaSbaaKqaGeaajugWaiaadMgacaWGUbaaje aibeaajugibiaacMcacqGHRaWkcqaH7oaBlmaaDaaajeaibaqcLbma caWGebaajeaibaqcLbmacaaIYaaaaKqzGeGaaiikaiabeM8a3TWaa0 baaKqaGeaajugWaiaadogacaWGPbaajeaibaqcLbmacaaIYaaaaKqz GeGaey4kaSIaeqyVd42cdaqhaaqcbasaaKqzadGaamyAaiaad6gaaK qaGeaajugWaiaaikdaaaqcLbsacaGGPaaakiaawUfacaGLDbaajugi biabgUcaRKqbaoaalaaakeaajugibiaadYgalmaaCaaajeaibeqaaK qzadGaaGOmaaaajugibiabew8a1TWaa0baaKqaGeaajugWaiaadsha aKqaGeaajugWaiaaikdaaaaakeaajugibiaadkfalmaaCaaajeaibe qaaKqzadGaaGOmaaaaaaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbma caWGLbGaamOBaaqcbasabaqcLbsacaGGOaGaeqyTdu2cdaWgaaqcba saaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcaWGdbWcdaqhaaqc basaaKqzadGaam4CaaqcbasaaKqzadGaaGOmaaaajugibiabgUcaRi aaikdacqaH7oaBlmaaDaaajeaibaqcLbmacaWGebaajeaibaqcLbma caaIYaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6 gaaKqaGeqaaKqzGeGaaiykaaGccaGLBbGaayzxaaqcLbsacaGGUaGa eqyYdC3cdaqhaaqcbasaaKqzadGaamOCaaqcbasaaKqzadGaaGOmaa aaaOqaaKqzGeGaeyOeI0scfa4aamWaaOqaaKqzGeGaaGOmaiabew8a 1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaaqcLb sacqaH9oGBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqcbasabaqc LbsacqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibi abeE7aOjaadYgacqqHPoWvcqaH9oGBlmaaBaaajeaibaqcLbmacaWG PbGaamOBaaqcbasabaqcLbsacqGHRaWkcqaHfpqDlmaaDaaajeaiba qcLbmacaWG0baajeaibaqcLbmacaaIYaaaaKqzGeGaeqyVd42cdaWg aaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaamiBaiabfM 6axjabgUcaRiaadYgacqqHPoWvcqaHjpWDlmaaDaaajeaibaqcLbma caWGJbGaamyzaaqcbasaaKqzadGaaGOmaaaajugibiaac6cacaGGOa GaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaH 3oaAcaWGdbWcdaqhaaqcbasaaKqzadGaam4CaaqcbasaaKqzadGaaG OmaaaajugibiabgUcaRiaaikdacqaH7oaBlmaaDaaajeaibaqcLbma caWGebaajeaibaqcLbmacaaIYaaaaKqzGeGaeqyVd42cdaWgaaqcba saaKqzadGaamyAaiaad6gaaKqaGeqaaKqzGeGaaiykaaGccaGLBbGa ayzxaaqcLbsacaGGUaGaaGOmaiabeM8a3LqbaoaaBaaajeaibaqcLb macaWGYbaaleqaaKqzGeGaeqyYdCxcfa4aaSbaaKqaGeaajugWaiaa dMgaaSqabaaakeaajugibiabgUcaRKqbaoaadmaakeaajugibiabgk HiTiabew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaa ikdaaaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaa qcbasabaqcLbsacqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaajeai beaajugibiabeE7aOjaadYgacqqHPoWvcaGGOaGaeqyYdC3cdaqhaa qcbasaaKqzadGaam4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsa cqGHRaWkcqaH9oGBlmaaDaaajeaibaqcLbmacaWGPbGaamOBaaqcba saaKqzadGaaGOmaaaajugibiaacMcacqGHsislcaaIYaGaeqyXdu3c daqhaaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaajugibi aac6cacqaH9oGBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqcbasa baqcLbsacaWGSbGaeuyQdCLaaiOlaiabe27aUTWaaSbaaKqaGeaaju gWaiaadMgacaWGUbaajeaibeaajugibiabgkHiTiaadYgacqqHPoWv caGGUaGaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadwgaaKqaGe aajugWaiaaikdaaaqcfa4aamWaaOqaaKqzGeGaam4qaSWaa0baaKqa GeaajugWaiaadohaaKqaGeaajugWaiaaikdaaaqcLbsacaGGOaGaaG ymaiabgUcaRiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqa aKqzGeGaeq4TdGMaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadMgaca WGUbaaleqaaKqzGeGaaiykaiabgUcaRiabeU7aSTWaa0baaKqaGeaa jugWaiaadseaaKqaGeaajugWaiaaikdaaaqcLbsacaGGOaGaeqyVd4 2cdaqhaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeaajugWaiaaikda aaqcLbsacqGHRaWkcqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaam yAaaqcbasaaKqzadGaaGOmaaaajugibiaacMcaaOGaay5waiaaw2fa aaGaay5waiaaw2faaKqzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaam OCaaqcbasabaaakeaajugibiabgkHiTKqbaoaadmaakeaajugibiab ew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaa qcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqcbasa baqcLbsacaGGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadM gaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcqaH9oGBlmaaDaaa jeaibaqcLbmacaWGPbGaamOBaaqcbasaaKqzadGaaGOmaaaajugibi aacMcacqGHRaWkcqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyz aaqcbasaaKqzadGaaGOmaaaajugibiaac6cacaWGdbWcdaqhaaqcba saaKqzadGaam4CaaqcbasaaKqzadGaaGOmaaaajugibiabe27aUTWa aSbaaKqaGeaajugWaiaadMgacaWGUbaajeaibeaajugibiabgUcaRK qbaoaalaaakeaajugibiaadYgalmaaCaaajeaibeqaaKqzadGaaGOm aaaajugibiabew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaaju gWaiaaikdaaaaakeaajugibiaadkfajuaGdaahaaWcbeqcbasaaKqz adGaaGOmaaaaaaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWGLb GaamOBaaqcbasabaqcfa4aamWaaOqaaKqzGeGaam4qaSWaa0baaKqa GeaajugWaiaadohaaKqaGeaajugWaiaaikdaaaqcLbsacaGGOaGaaG ymaiabgUcaRiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqa aKqzGeGaeq4TdGMaeqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6 gaaKqaGeqaaKqzGeGaaiykaiabgUcaRiabeU7aSTWaa0baaKqaGeaa jugWaiaadseaaKqaGeaajugWaiaaikdaaaqcLbsacaGGOaGaeqyVd4 2cdaqhaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeaajugWaiaaikda aaqcLbsacqGHRaWkcqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaam yAaaqcbasaaKqzadGaaGOmaaaajugibiaacMcaaOGaay5waiaaw2fa aaGaay5waiaaw2faaKqzGeGaaiOlaiabeM8a3TWaaSbaaKqaGeaaju gWaiaadMgaaKqaGeqaaKqzGeGaeyOeI0scfa4aaSaaaOqaaKqzGeGa amiBaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeqyXdu 3cdaqhaaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaaaOqa aKqzGeGaamOuaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaaaaju gibiabe27aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaa jugibiaac6cacaWGdbWcdaqhaaqcbasaaKqzadGaam4CaaqcbasaaK qzadGaaGOmaaaajugibiabe27aULqbaoaaBaaajeaibaqcLbmacaWG PbGaamOBaaWcbeaajugibiabg2da9iaaicdaaaaa@4F87@

 Imaginary Part

The imaginary part is as well,

4 ω r 3 ω i [ υ t 2 ν en . ε 0 η+ ω ce 2 . λ D 2 ]+lΩ( υ t 2 ν en ε 0 η+ λ D 2 ω ce 2 ).3 ω r 2 ω i [ υ t 2 ν en (2 ε 0 η ν in +1)+ ω ce 2 ( ε 0 η C s 2 +2 λ D 2 ν in )+ l 2 υ t 2 R 2 ν en λ ] ω r 3 +[ υ t 2 ν en ε 0 η( ω ci 2 + ν in 2 )+2 υ t 2 ν en ν in + + ω ce 2 [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ω ci 2 + ν in 2 ) ]+ l 2 υ t 2 R 2 ν en ( ε 0 η C s 2 +2 λ D 2 ν in ) ].2 ω r ω i +[ 2 υ t 2 ν en ε 0 ηlΩ ν in + υ t 2 ν en lΩ+lΩ ω ce 2 .( ε 0 η C s 2 +2 λ D 2 ν in ]. ω r 2 +[ υ t 2 ν en ε 0 ηlΩ( ω ci 2 + ν in 2 )2 υ t 2 . ν en lΩ. ν in lΩ. ω ce 2 [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ν in 2 + ω ci 2 ) ] ] ω i +[ υ t 2 ν en ( ω ci 2 + ν in 2 )+ ω ce 2 . C s 2 ν in + l 2 υ t 2 R 2 ν en [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ν in 2 + ω ci 2 ) ] ] ω r [ υ t 2 ν en lΩ( ω ci 2 + ν in 2 )+lΩ ω ce 2 C s 2 ν in ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeyOeI0IaaGinaiabeM8a3TWaa0baaKqaGeaajugW aiaadkhaaKqaGeaajugWaiaaiodaaaqcLbsacqaHjpWDlmaaBaaaje aibaqcLbmacaWGPbaajeaibeaajuaGdaWadaGcbaqcLbsacqaHfpqD lmaaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmacaaIYaaaaKqzGe GaeqyVd42cdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqz GeGaaiOlaiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaK qzGeGaeq4TdGMaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam4y aiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacaGGUaGaeq4UdW2cda qhaaqcbasaaKqzadGaamiraaqcbasaaKqzadGaaGOmaaaaaOGaay5w aiaaw2faaKqzGeGaey4kaSIaamiBaiabfM6axjaacIcacqaHfpqDlm aaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmacaaIYaaaaKqzGeGa eqyVd4wcfa4aaSbaaKqaGeaajugWaiaadwgacaWGUbaaleqaaKqzGe GaeqyTduwcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqaH 3oaAcqGHRaWkcqaH7oaBlmaaDaaajeaibaqcLbmacaWGebaajeaiba qcLbmacaaIYaaaaKqzGeGaeqyYdC3cdaqhaaqcbasaaKqzadGaam4y aiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacaGGPaGaaiOlaiaaio dacqaHjpWDlmaaDaaajeaibaqcLbmacaWGYbaajeaibaqcLbmacaaI YaaaaKqzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaamyAaaqcbasaba aakeaajugibiabgkHiTKqbaoaadmaakeaajugibiabew8a1TWaa0ba aKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9o GBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqcbasabaqcLbsacaGG OaGaaGOmaiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaK qzGeGaeq4TdGMaeqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6ga aKqaGeqaaKqzGeGaey4kaSIaaGymaiaacMcacqGHRaWkcqaHjpWDlm aaDaaajeaibaqcLbmacaWGJbGaamyzaaqcbasaaKqzadGaaGOmaaaa jugibiaacIcacqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaajeaibe aajugibiabeE7aOjaadoealmaaDaaajeaibaqcLbmacaWGZbaajeai baqcLbmacaaIYaaaaKqzGeGaey4kaSIaaGOmaiabeU7aSTWaa0baaK qaGeaajugWaiaadseaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGB lmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsacaGGPa Gaey4kaSscfa4aaSaaaOqaaKqzGeGaamiBaSWaaWbaaKqaGeqabaqc LbmacaaIYaaaaKqzGeGaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaa qcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOuaKqbaoaaCaaaleqa jeaibaqcLbmacaaIYaaaaaaajugibiabe27aULqbaoaaBaaajeaiba qcLbmacaWGLbGaamOBaaWcbeaajugibiabeU7aSbGccaGLBbGaayzx aaqcLbsacqaHjpWDlmaaDaaajeaibaqcLbmacaWGYbaajeaibaqcLb macaaIZaaaaaGcbaqcLbsacqGHRaWkjuaGdaWadaqcLbsaeaqabOqa aKqzGeGaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaaqcbasaaKqzad GaaGOmaaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadwgacaWG Ubaajeaibeaajugibiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaK qaGeqaaKqzGeGaeq4TdGMaaiikaiabeM8a3TWaa0baaKqaGeaajugW aiaadogacaWGPbaajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeq yVd42cdaqhaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeaajugWaiaa ikdaaaqcLbsacaGGPaGaey4kaSIaaGOmaiabew8a1TWaa0baaKqaGe aajugWaiaadshaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaa BaaajeaibaqcLbmacaWGLbGaamOBaaqcbasabaqcLbsacqaH9oGBlm aaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsacqGHRaWk aOqaaKqzGeGaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yai aadwgaaKqaGeaajugWaiaaikdaaaqcfa4aamWaaOqaaKqzGeGaam4q aSWaa0baaKqaGeaajugWaiaadohaaKqaGeaajugWaiaaikdaaaqcLb sacaGGOaGaaGymaiabgUcaRiabew7aLTWaaSbaaKqaGeaajugWaiaa icdaaKqaGeqaaKqzGeGaeq4TdGMaeqyVd42cdaWgaaqcbasaaKqzad GaamyAaiaad6gaaKqaGeqaaKqzGeGaaiykaiabgUcaRiabeU7aSTWa a0baaKqaGeaajugWaiaadseaaKqaGeaajugWaiaaikdaaaqcLbsaca GGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadMgaaKqaGeaa jugWaiaaikdaaaqcLbsacqGHRaWkcqaH9oGBlmaaDaaajeaibaqcLb macaWGPbGaamOBaaqcbasaaKqzadGaaGOmaaaajugibiaacMcaaOGa ay5waiaaw2faaKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaamiBaS WaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeqyXdu3cdaqhaaqc basaaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaam OuaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaajugibiabe27aUTWa aSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiaacIcacq aH1oqzlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiabeE7a OjaadoealmaaDaaajeaibaqcLbmacaWGZbaajeaibaqcLbmacaaIYa aaaKqzGeGaey4kaSIaaGOmaiabeU7aSTWaa0baaKqaGeaajugWaiaa dseaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaajeaiba qcLbmacaWGPbGaamOBaaqcbasabaqcLbsacaGGPaaaaOGaay5waiaa w2faaKqzGeGaaiOlaiaaikdacqaHjpWDlmaaBaaajeaibaqcLbmaca WGYbaajeaibeaajugibiabeM8a3TWaaSbaaKqaGeaajugWaiaadMga aKqaGeqaaaGcbaqcLbsacqGHRaWkjuaGdaWadaGcbaqcLbsacaaIYa GaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOm aaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaaje aibeaajugibiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqa aKqzGeGaeq4TdGMaamiBaiabfM6axjabe27aUTWaaSbaaKqaGeaaju gWaiaadMgacaWGUbaajeaibeaajugibiabgUcaRiabew8a1TWaa0ba aKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9o GBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqcbasabaqcLbsacaWG SbGaeuyQdCLaey4kaSIaamiBaiabfM6axjabeM8a3TWaa0baaKqaGe aajugWaiaadogacaWGLbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiOl aiaacIcacqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaaju gibiabeE7aOjaadoealmaaDaaajeaibaqcLbmacaWGZbaajeaibaqc LbmacaaIYaaaaKqzGeGaey4kaSIaaGOmaiabeU7aSTWaa0baaKqaGe aajugWaiaadseaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaa BaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaaakiaawUfacaGLDb aajugibiaac6cacqaHjpWDlmaaDaaajeaibaqcLbmacaWGYbaajeai baqcLbmacaaIYaaaaaGcbaqcLbsacqGHRaWkjuaGdaWadaGcbaqcLb sacqGHsislcqaHfpqDlmaaDaaajeaibaqcLbmacaWG0baajeaibaqc LbmacaaIYaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyzai aad6gaaKqaGeqaaKqzGeGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGim aaqcbasabaqcLbsacqaH3oaAcaWGSbGaeuyQdCLaaiikaiabeM8a3T Waa0baaKqaGeaajugWaiaadogacaWGPbaajeaibaqcLbmacaaIYaaa aKqzGeGaey4kaSIaeqyVd42cdaqhaaqcbasaaKqzadGaamyAaiaad6 gaaKqaGeaajugWaiaaikdaaaqcLbsacaGGPaGaeyOeI0IaaGOmaiab ew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaa qcLbsacaGGUaGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadwgacaWG UbaaleqaaKqzGeGaamiBaiabfM6axjaac6cacqaH9oGBjuaGdaWgaa qcbasaaKqzadGaamyAaiaad6gaaSqabaqcLbsacqGHsislcaWGSbGa euyQdCLaaiOlaiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGLb aajeaibaqcLbmacaaIYaaaaKqbaoaadmaakeaajugibiaadoealmaa DaaajeaibaqcLbmacaWGZbaajeaibaqcLbmacaaIYaaaaKqzGeGaai ikaiaaigdacqGHRaWkcqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaa jeaibeaajugibiabeE7aOjabe27aUTWaaSbaaKqaGeaajugWaiaadM gacaWGUbaajeaibeaajugibiaacMcacqGHRaWkcqaH7oaBlmaaDaaa jeaibaqcLbmacaWGebaajeaibaqcLbmacaaIYaaaaKqzGeGaaiikai abe27aUTWaa0baaKqaGeaajugWaiaadMgacaWGUbaajeaibaqcLbma caaIYaaaaKqzGeGaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam 4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacaGGPaaakiaawUfa caGLDbaaaiaawUfacaGLDbaajugibiabeM8a3TWaaSbaaKqaGeaaju gWaiaadMgaaKqaGeqaaaGcbaqcLbsacqGHRaWkjuaGdaWadaGcbaqc LbsacqaHfpqDlmaaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmaca aIYaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyzaiaad6ga aKqaGeqaaKqzGeGaaiikaiabeM8a3TWaa0baaKqaGeaajugWaiaado gacaWGPbaajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeqyVd42c daqhaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeaajugWaiaaikdaaa qcLbsacaGGPaGaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam4y aiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacaGGUaGaam4qaSWaa0 baaKqaGeaajugWaiaadohaaKqaGeaajugWaiaaikdaaaqcLbsacqaH 9oGBlmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsacq GHRaWkjuaGdaWcaaGcbaqcLbsacaWGSbWcdaahaaqcbasabeaajugW aiaaikdaaaqcLbsacqaHfpqDlmaaDaaajeaibaqcLbmacaWG0baaje aibaqcLbmacaaIYaaaaaGcbaqcLbsacaWGsbqcfa4aaWbaaSqabKqa GeaajugWaiaaikdaaaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzad Gaamyzaiaad6gaaKqaGeqaaKqbaoaadmaakeaajugibiaadoealmaa DaaajeaibaqcLbmacaWGZbaajeaibaqcLbmacaaIYaaaaKqzGeGaai ikaiaaigdacqGHRaWkcqaH1oqzjuaGdaWgaaqcbasaaKqzadGaaGim aaWcbeaajugibiabeE7aOjabe27aULqbaoaaBaaajeaibaqcLbmaca WGPbGaamOBaaWcbeaajugibiaacMcacqGHRaWkcqaH7oaBlmaaDaaa jeaibaqcLbmacaWGebaajeaibaqcLbmacaaIYaaaaKqzGeGaaiikai abe27aUTWaa0baaKqaGeaajugWaiaadMgacaWGUbaajeaibaqcLbma caaIYaaaaKqzGeGaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam 4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacaGGPaaakiaawUfa caGLDbaaaiaawUfacaGLDbaajugibiabeM8a3TWaaSbaaKqaGeaaju gWaiaadkhaaKqaGeqaaaGcbaqcLbsacqGHsisljuaGdaWadaGcbaqc LbsacqaHfpqDlmaaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmaca aIYaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyzaiaad6ga aKqaGeqaaKqzGeGaamiBaiabfM6axjaacIcacqaHjpWDlmaaDaaaje aibaqcLbmacaWGJbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibiab gUcaRiabe27aUTWaa0baaKqaGeaajugWaiaadMgacaWGUbaajeaiba qcLbmacaaIYaaaaKqzGeGaaiykaiabgUcaRiaadYgacqqHPoWvcqaH jpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyzaaqcbasaaKqzadGaaG OmaaaajugibiaadoealmaaDaaajeaibaqcLbmacaWGZbaajeaibaqc LbmacaaIYaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyAai aad6gaaKqaGeqaaaGccaGLBbGaayzxaaqcLbsacqGH9aqpcaaIWaaa aaa@6849@

Considering that the below approach ω r ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaaSbaaKqaGeaajugWaiaadkhaaKqaGeqaaKqz GeGaeyyrIaKaeqyYdChaaa@414F@ is valid, then the imaginary part is written,

4 ω 3 ω i [ υ t 2 ν en . ε 0 η+ ω ce 2 . λ D 2 ]+lΩ( υ t 2 ν en ε 0 η+ λ D 2 ω ce 2 ).3 ω 2 ω i +[ υ t 2 ν en ε 0 η( ω ci 2 + ν in 2 )+2 υ t 2 ν en ν in + + ω ce 2 [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ω ci 2 + ν in 2 ) ]+ l 2 υ t 2 R 2 ν en ( ε 0 η C s 2 +2 λ D 2 ν in ) ].2ω ω i +[ υ t 2 ν en ε 0 ηlΩ( ω ci 2 + ν in 2 )2 υ t 2 . ν en lΩ. ν in lΩ. ω ce 2 [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ν in 2 + ω ci 2 ) ] ]. ω i = =[ υ t 2 ν en (2 ε 0 η ν in +1)+ ω ce 2 ( ε 0 η C s 2 +2 λ D 2 ν in )+ l 2 υ t 2 R 2 ν en λ D 2 ] ω 3 [ 2 υ t 2 ν en ε 0 ηlΩ ν in + υ t 2 ν en lΩ+lΩ ω ce 2 .( ε 0 η C s 2 +2 λ D 2 ν in ]. ω 2 [ υ t 2 ν en ( ω ci 2 + ν in 2 )+ ω ce 2 . C s 2 ν in + l 2 υ t 2 R 2 ν en [ C s 2 (1+ ε 0 η ν in )+ λ D 2 ( ν in 2 + ω ci 2 ) ] ]ω +[ υ t 2 ν en lΩ( ω ci 2 + ν in 2 )+lΩ ω ce 2 C s 2 ν in ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeyOeI0IaaGinaiabeM8a3TWaaWbaaKqaGeqabaqc LbmacaaIZaaaaKqzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaamyAaa qcbasabaqcfa4aamWaaOqaaKqzGeGaeqyXdu3cdaqhaaqcbasaaKqz adGaamiDaaqcbasaaKqzadGaaGOmaaaajugibiabe27aULqbaoaaBa aajeaibaqcLbmacaWGLbGaamOBaaWcbeaajugibiaac6cacqaH1oqz lmaaBaaajeaibaqcLbmacaaIWaaajeaibeaajugibiabeE7aOjabgU caRiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqc LbmacaaIYaaaaKqzGeGaaiOlaiabeU7aSTWaa0baaKqaGeaajugWai aadseaaKqaGeaajugWaiaaikdaaaaakiaawUfacaGLDbaajugibiab gUcaRiaadYgacqqHPoWvcaGGOaGaeqyXdu3cdaqhaaqcbasaaKqzad GaamiDaaqcbasaaKqzadGaaGOmaaaajugibiabe27aUTWaaSbaaKqa GeaajugWaiaadwgacaWGUbaajeaibeaajugibiabew7aLTWaaSbaaK qaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdGMaey4kaSIaeq4U dW2cdaqhaaqcbasaaKqzadGaamiraaqcbasaaKqzadGaaGOmaaaaju gibiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqc LbmacaaIYaaaaKqzGeGaaiykaiaac6cacaaIZaGaeqyYdC3cdaahaa qcbasabeaajugWaiaaikdaaaqcLbsacqaHjpWDjuaGdaWgaaqcbasa aKqzadGaamyAaaWcbeaaaOqaaKqzGeGaey4kaSscfa4aamWaaKqzGe abaeqakeaajugibiabew8a1TWaa0baaKqaGeaajugWaiaadshaaKqa GeaajugWaiaaikdaaaqcLbsacqaH9oGBjuaGdaWgaaqcbasaaKqzad Gaamyzaiaad6gaaSqabaqcLbsacqaH1oqzjuaGdaWgaaqcbasaaKqz adGaaGimaaWcbeaajugibiabeE7aOjaacIcacqaHjpWDlmaaDaaaje aibaqcLbmacaWGJbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibiab gUcaRiabe27aUTWaa0baaKqaGeaajugWaiaadMgacaWGUbaajeaiba qcLbmacaaIYaaaaKqzGeGaaiykaiabgUcaRiaaikdacqaHfpqDlmaa DaaajeaibaqcLbmacaWG0baajeaibaqcLbmacaaIYaaaaKqzGeGaeq yVd42cdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGa eqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqaaKqzGe Gaey4kaScakeaajugibiabgUcaRiabeM8a3TWaa0baaKqaGeaajugW aiaadogacaWGLbaajeaibaqcLbmacaaIYaaaaKqbaoaadmaakeaaju gibiaadoealmaaDaaajeaibaqcLbmacaWGZbaajeaibaqcLbmacaaI YaaaaKqzGeGaaiikaiaaigdacqGHRaWkcqaH1oqzlmaaBaaajeaiba qcLbmacaaIWaaajeaibeaajugibiabeE7aOjabe27aUTWaaSbaaKqa GeaajugWaiaadMgacaWGUbaajeaibeaajugibiaacMcacqGHRaWkcq aH7oaBlmaaDaaajeaibaqcLbmacaWGebaajeaibaqcLbmacaaIYaaa aKqzGeGaaiikaiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGPb aajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeqyVd42cdaqhaaqc basaaKqzadGaamyAaiaad6gaaKqaGeaajugWaiaaikdaaaqcLbsaca GGPaaakiaawUfacaGLDbaajugibiabgUcaRKqbaoaalaaakeaajugi biaadYgalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiabew8a1T Waa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaaaakeaa jugibiaadkfalmaaCaaajeaibeqaaKqzadGaaGOmaaaaaaqcLbsacq aH9oGBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqcbasabaqcLbsa caGGOaGaeqyTduwcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLb sacqaH3oaAcaWGdbWcdaqhaaqcbasaaKqzadGaam4CaaqcbasaaKqz adGaaGOmaaaajugibiabgUcaRiaaikdacqaH7oaBlmaaDaaajeaiba qcLbmacaWGebaajeaibaqcLbmacaaIYaaaaKqzGeGaeqyVd42cdaWg aaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqaaKqzGeGaaiykaaaaki aawUfacaGLDbaajugibiaac6cacaaIYaGaeqyYdCNaeqyYdC3cdaWg aaqcbasaaKqzadGaamyAaaqcbasabaaakeaajugibiabgUcaRKqbao aadmaakeaajugibiabgkHiTiabew8a1TWaa0baaKqaGeaajugWaiaa dshaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaajeaiba qcLbmacaWGLbGaamOBaaqcbasabaqcLbsacqaH1oqzjuaGdaWgaaqc basaaKqzadGaaGimaaWcbeaajugibiabeE7aOjaadYgacqqHPoWvca GGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadMgaaKqaGeaa jugWaiaaikdaaaqcLbsacqGHRaWkcqaH9oGBlmaaDaaajeaibaqcLb macaWGPbGaamOBaaqcbasaaKqzadGaaGOmaaaajugibiaacMcacqGH sislcaaIYaGaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaaqcbasaaK qzadGaaGOmaaaajugibiaac6cacqaH9oGBlmaaBaaajeaibaqcLbma caWGLbGaamOBaaqcbasabaqcLbsacaWGSbGaeuyQdCLaaiOlaiabe2 7aUTWaaSbaaKqaGeaajugWaiaadMgacaWGUbaajeaibeaajugibiab gkHiTiaadYgacqqHPoWvcaGGUaGaeqyYdC3cdaqhaaqcbasaaKqzad Gaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcfa4aamWaaOqaaKqz GeGaam4qaSWaa0baaKqaGeaajugWaiaadohaaKqaGeaajugWaiaaik daaaqcLbsacaGGOaGaaGymaiabgUcaRiabew7aLTWaaSbaaKqaGeaa jugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdGMaeqyVd42cdaWgaaqcba saaKqzadGaamyAaiaad6gaaKqaGeqaaKqzGeGaaiykaiabgUcaRiab eU7aSTWaa0baaKqaGeaajugWaiaadseaaKqaGeaajugWaiaaikdaaa qcLbsacaGGOaGaeqyVd42cdaqhaaqcbasaaKqzadGaamyAaiaad6ga aKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcqaHjpWDlmaaDaaaje aibaqcLbmacaWGJbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibiaa cMcaaOGaay5waiaaw2faaaGaay5waiaaw2faaKqzGeGaaiOlaiabeM 8a3TWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqzGeGaeyypa0da keaajugibiabg2da9Kqbaoaadmaakeaajugibiabew8a1TWaa0baaK qaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGB lmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqcbasabaqcLbsacaGGOa GaaGOmaiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqz GeGaeq4TdGMaeqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6gaaK qaGeqaaKqzGeGaey4kaSIaaGymaiaacMcacqGHRaWkcqaHjpWDlmaa DaaajeaibaqcLbmacaWGJbGaamyzaaqcbasaaKqzadGaaGOmaaaaju gibiaacIcacqaH1oqzlmaaBaaajeaibaqcLbmacaaIWaaajeaibeaa jugibiabeE7aOjaadoealmaaDaaajeaibaqcLbmacaWGZbaajeaiba qcLbmacaaIYaaaaKqzGeGaey4kaSIaaGOmaiabeU7aSTWaa0baaKqa GeaajugWaiaadseaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlm aaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsacaGGPaGa ey4kaSscfa4aaSaaaOqaaKqzGeGaamiBaSWaaWbaaKqaGeqabaqcLb macaaIYaaaaKqzGeGaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaaqc basaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOuaSWaaWbaaKqaGeqaba qcLbmacaaIYaaaaaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaa dwgacaWGUbaajeaibeaajugibiabeU7aSTWaa0baaKqaGeaajugWai aadseaaKqaGeaajugWaiaaikdaaaaakiaawUfacaGLDbaajugibiab eM8a3TWaaWbaaKqaGeqabaqcLbmacaaIZaaaaaGcbaqcLbsacqGHsi sljuaGdaWadaGcbaqcLbsacaaIYaGaeqyXdu3cdaqhaaqcbasaaKqz adGaamiDaaqcbasaaKqzadGaaGOmaaaajugibiabe27aULqbaoaaBa aajeaibaqcLbmacaWGLbGaamOBaaWcbeaajugibiabew7aLTWaaSba aKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdGMaamiBaiabfM 6axjabe27aUTWaaSbaaKqaGeaajugWaiaadMgacaWGUbaajeaibeaa jugibiabgUcaRiabew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGe aajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWG LbGaamOBaaqcbasabaqcLbsacaWGSbGaeuyQdCLaey4kaSIaamiBai abfM6axjabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGLbaajeai baqcLbmacaaIYaaaaKqzGeGaaiOlaiaacIcacqaH1oqzlmaaBaaaje aibaqcLbmacaaIWaaajeaibeaajugibiabeE7aOjaadoealmaaDaaa jeaibaqcLbmacaWGZbaajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaS IaaGOmaiabeU7aSTWaa0baaKqaGeaajugWaiaadseaaKqaGeaajugW aiaaikdaaaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWGPbGaam OBaaqcbasabaaakiaawUfacaGLDbaajugibiaac6cacqaHjpWDlmaa CaaajeaibeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaeyOeI0scfa4aam WaaOqaaKqzGeGaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaaqcbasa aKqzadGaaGOmaaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadw gacaWGUbaajeaibeaajugibiaacIcacqaHjpWDlmaaDaaajeaibaqc LbmacaWGJbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibiabgUcaRi abe27aUTWaa0baaKqaGeaajugWaiaadMgacaWGUbaajeaibaqcLbma caaIYaaaaKqzGeGaaiykaiabgUcaRiabeM8a3TWaa0baaKqaGeaaju gWaiaadogacaWGLbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiOlaiaa doealmaaDaaajeaibaqcLbmacaWGZbaajeaibaqcLbmacaaIYaaaaK qzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqa aKqzGeGaey4kaSscfa4aaSaaaOqaaKqzGeGaamiBaSWaaWbaaKqaGe qabaqcLbmacaaIYaaaaKqzGeGaeqyXdu3cdaqhaaqcbasaaKqzadGa amiDaaqcbasaaKqzadGaaGOmaaaaaOqaaKqzGeGaamOuaSWaaWbaaK qaGeqabaqcLbmacaaIYaaaaaaajugibiabe27aUTWaaSbaaKqaGeaa jugWaiaadwgacaWGUbaajeaibeaajuaGdaWadaGcbaqcLbsacaWGdb WcdaqhaaqcbasaaKqzadGaam4CaaqcbasaaKqzadGaaGOmaaaajugi biaacIcacaaIXaGaey4kaSIaeqyTdu2cdaWgaaqcbasaaKqzadGaaG imaaqcbasabaqcLbsacqaH3oaAcqaH9oGBlmaaBaaajeaibaqcLbma caWGPbGaamOBaaqcbasabaqcLbsacaGGPaGaey4kaSIaeq4UdW2cda qhaaqcbasaaKqzadGaamiraaqcbasaaKqzadGaaGOmaaaajugibiaa cIcacqaH9oGBlmaaDaaajeaibaqcLbmacaWGPbGaamOBaaqcbasaaK qzadGaaGOmaaaajugibiabgUcaRiabeM8a3TWaa0baaKqaGeaajugW aiaadogacaWGPbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiykaaGcca GLBbGaayzxaaaacaGLBbGaayzxaaqcLbsacqaHjpWDaOqaaKqzGeGa ey4kaSscfa4aamWaaOqaaKqzGeGaeqyXdu3cdaqhaaqcbasaaKqzad GaamiDaaqcbasaaKqzadGaaGOmaaaajugibiabe27aUTWaaSbaaKqa GeaajugWaiaadwgacaWGUbaajeaibeaajugibiaadYgacqqHPoWvca GGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadMgaaKqaGeaa jugWaiaaikdaaaqcLbsacqGHRaWkcqaH9oGBlmaaDaaajeaibaqcLb macaWGPbGaamOBaaqcbasaaKqzadGaaGOmaaaajugibiaacMcacqGH RaWkcaWGSbGaeuyQdCLaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yai aadwgaaKqaGeaajugWaiaaikdaaaqcLbsacaWGdbWcdaqhaaqcbasa aKqzadGaam4CaaqcbasaaKqzadGaaGOmaaaajugibiabe27aUTWaaS baaKqaGeaajugWaiaadMgacaWGUbaajeaibeaaaOGaay5waiaaw2fa aaaaaa@5C96@

 By putting,

ω 2 ω i [ υ t 2 ν en ε 0 η+ ω ce 2 λ D 2 ](3lΩ4ω) ω 2 ω i λ D 2 ( ω pe 2 ν en ε 0 η+ ω ce 2 )(3lΩ4ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa eqyYdC3cdaWgaaqcbasaaKqzadGaamyAaaqcbasabaqcfa4aamWaaO qaaKqzGeGaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaaqcbasaaKqz adGaaGOmaaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadwgaca WGUbaajeaibeaajugibiabew7aLTWaaSbaaKqaGeaajugWaiaaicda aKqaGeqaaKqzGeGaeq4TdGMaey4kaSIaeqyYdC3cdaqhaaqcbasaaK qzadGaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacqaH7oaB lmaaDaaajeaibaqcLbmacaWGebaajeaibaqcLbmacaaIYaaaaaGcca GLBbGaayzxaaqcLbsacaGGOaGaaG4maiaadYgacqqHPoWvcqGHsisl caaI0aGaeqyYdCNaaiykaiabgwKiajabeM8a3TWaaWbaaKqaGeqaba qcLbmacaaIYaaaaKqzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaamyA aaqcbasabaqcLbsacqaH7oaBlmaaDaaajeaibaqcLbmacaWGebaaje aibaqcLbmacaaIYaaaaKqzGeGaaiikaiabeM8a3TWaa0baaKqaGeaa jugWaiaadchacaWGLbaajeaibaqcLbmacaaIYaaaaKqzGeGaeqyVd4 2cdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaeqyT du2cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcq GHRaWkcqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyzaaqcbasa aKqzadGaaGOmaaaajugibiaacMcacaGGOaGaaG4maiaadYgacqqHPo WvcqGHsislcaaI0aGaeqyYdCNaaiykaaaa@A742@ ,

the last relation becomes,

ω 2 ω i λ D 2 ( ω pe 2 ν en ε 0 η+ ω ce 2 )(3lΩ4ω) +[ υ t 2 ν en ( ε 0 η ω ci 2 +2 ν in )+ ω ce 2 λ D 2 [ ω pi 2 (1+ ε 0 η ν in )+ ω ci 2 ]+ l 2 υ t 2 R 2 ν en λ D 2 ( ω pi 2 ε 0 η+2 ν in ) ].2ω ω i +[ υ t 2 ν en lΩ( ε 0 η ω ci 2 +2 ν in )lΩ ω ce 2 . λ D 2 [ ω pi 2 (1+ ε 0 η ν in )+ ω ci 2 ] ]. ω i = =[ υ t 2 ν en (2 ε 0 η ν in +1)+ ω ce 2 λ D 2 ( ε 0 η ω pi 2 +2 ν in )+ l 2 υ t 2 R 2 ν en λ D 2 ]. ω 3 [ υ t 2 ν en lΩ(2 ε 0 η ν in +1)+lΩ ω ce 2 . λ D 2 ( ε 0 η ω pi 2 +2 ν in ) ]. ω 2 [ υ t 2 ν en ω ci 2 + ω ce 2 C s 2 ν in + l 2 υ t 2 R 2 ν en λ D 2 [ ω pi 2 (1+ ε 0 η ν in )+ ω ci 2 ] ].ω+lΩ[ υ t 2 ν en ω ci 2 + ω ce 2 C s 2 ν in ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeqyYdC3cdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacqaHjpWDlmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugibi abeU7aSTWaa0baaKqaGeaajugWaiaadseaaKqaGeaajugWaiaaikda aaqcLbsacaGGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaamiCaiaadw gaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaajeaibaqc LbmacaWGLbGaamOBaaqcbasabaqcLbsacqaH1oqzlmaaBaaajeaiba qcLbmacaaIWaaajeaibeaajugibiabeE7aOjabgUcaRiabeM8a3TWa a0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqcLbmacaaIYaaaaK qzGeGaaiykaiaacIcacaaIZaGaamiBaiabfM6axjabgkHiTiaaisda cqaHjpWDcaGGPaaakeaajugibiabgUcaRKqbaoaadmaakeaajugibi abew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikda aaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqcba sabaqcLbsacaGGOaGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaaqc basabaqcLbsacqaH3oaAcqaHjpWDlmaaDaaajeaibaqcLbmacaWGJb GaamyAaaqcbasaaKqzadGaaGOmaaaajugibiabgUcaRiaaikdacqaH 9oGBlmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsaca GGPaGaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadwga aKqaGeaajugWaiaaikdaaaqcLbsacqaH7oaBlmaaDaaajeaibaqcLb macaWGebaajeaibaqcLbmacaaIYaaaaKqbaoaadmaakeaajugibiab eM8a3TWaa0baaKqaGeaajugWaiaadchacaWGPbaajeaibaqcLbmaca aIYaaaaKqzGeGaaiikaiaaigdacqGHRaWkcqaH1oqzlmaaBaaajeai baqcLbmacaaIWaaajeaibeaajugibiabeE7aOjabe27aUTWaaSbaaK qaGeaajugWaiaadMgacaWGUbaajeaibeaajugibiaacMcacqGHRaWk cqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyAaaqcbasaaKqzad GaaGOmaaaaaOGaay5waiaaw2faaKqzGeGaey4kaSscfa4aaSaaaOqa aKqzGeGaamiBaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaeq yXdu3cdaqhaaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOmaaaa aOqaaKqzGeGaamOuaSWaaWbaaKqaGeqabaqcLbmacaaIYaaaaaaaju gibiabe27aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaa jugibiabeU7aSTWaa0baaKqaGeaajugWaiaadseaaKqaGeaajugWai aaikdaaaqcLbsacaGGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaamiC aiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacqaH1oqzlmaaBaaaje aibaqcLbmacaaIWaaajeaibeaajugibiabeE7aOjabgUcaRiaaikda cqaH9oGBlmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLb sacaGGPaaakiaawUfacaGLDbaajugibiaac6cacaaIYaGaeqyYdCNa eqyYdC3cdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaakeaajugibi abgUcaRKqbaoaadmaakeaajugibiabgkHiTiabew8a1TWaa0baaeaa jugWaiaadshaaSqaaKqzadGaaGOmaaaajugibiabe27aUTWaaSbaaK qaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiaadYgacqqHPoWv caGGOaGaeqyTduwcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLb sacqaH3oaAcqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyAaaqc basaaKqzadGaaGOmaaaajugibiabgUcaRiaaikdacqaH9oGBlmaaBa aajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsacaGGPaGaeyOe I0IaamiBaiabfM6axjabeM8a3TWaa0baaKqaGeaajugWaiaadogaca WGLbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiOlaiabeU7aSTWaa0ba aKqaGeaajugWaiaadseaaKqaGeaajugWaiaaikdaaaqcfa4aamWaaO qaaKqzGeGaeqyYdC3cdaqhaaqcbasaaKqzadGaamiCaiaadMgaaKqa GeaajugWaiaaikdaaaqcLbsacaGGOaGaaGymaiabgUcaRiabew7aLT WaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdGMaeqyV d42cdaWgaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqaaKqzGeGaai ykaiabgUcaRiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGPbaa jeaibaqcLbmacaaIYaaaaaGccaGLBbGaayzxaaaacaGLBbGaayzxaa qcLbsacaGGUaGaeqyYdCxcfa4aaSbaaKqaGeaajugWaiaadMgaaSqa baqcLbsacqGH9aqpaOqaaKqzGeGaeyypa0tcfa4aamWaaOqaaKqzGe GaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaaqcbasaaKqzadGaaGOm aaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaaje aibeaajugibiaacIcacaaIYaGaeqyTdu2cdaWgaaqcbasaaKqzadGa aGimaaqcbasabaqcLbsacqaH3oaAcqaH9oGBlmaaBaaajeaibaqcLb macaWGPbGaamOBaaqcbasabaqcLbsacqGHRaWkcaaIXaGaaiykaiab gUcaRiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGLbaajeaiba qcLbmacaaIYaaaaKqzGeGaeq4UdW2cdaqhaaqcbasaaKqzadGaamir aaqcbasaaKqzadGaaGOmaaaajugibiaacIcacqaH1oqzlmaaBaaaje aibaqcLbmacaaIWaaajeaibeaajugibiabeE7aOjabeM8a3TWaa0ba aKqaGeaajugWaiaadchacaWGPbaajeaibaqcLbmacaaIYaaaaKqzGe Gaey4kaSIaaGOmaiabe27aUTWaaSbaaKqaGeaajugWaiaadMgacaWG UbaajeaibeaajugibiaacMcacqGHRaWkjuaGdaWcaaGcbaqcLbsaca WGSbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaHfpqDlmaa DaaajeaibaqcLbmacaWG0baajeaibaqcLbmacaaIYaaaaaGcbaqcLb sacaWGsbWcdaahaaqcbasabeaajugWaiaaikdaaaaaaKqzGeGaeqyV d42cdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaeq 4UdW2cdaqhaaqcbasaaKqzadGaamiraaqcbasaaKqzadGaaGOmaaaa aOGaay5waiaaw2faaKqzGeGaaiOlaiabeM8a3TWaaWbaaKqaGeqaba qcLbmacaaIZaaaaaGcbaqcLbsacqGHsisljuaGdaWadaGcbaqcLbsa cqaHfpqDlmaaDaaajeaibaqcLbmacaWG0baajeaibaqcLbmacaaIYa aaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqa GeqaaKqzGeGaamiBaiabfM6axjaacIcacaaIYaGaeqyTdu2cdaWgaa qcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcqaH9oGBlmaa BaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsacqGHRaWkca aIXaGaaiykaiabgUcaRiaadYgacqqHPoWvcqaHjpWDlmaaDaaajeai baqcLbmacaWGJbGaamyzaaqcbasaaKqzadGaaGOmaaaajugibiaac6 cacqaH7oaBlmaaDaaajeaibaqcLbmacaWGebaajeaibaqcLbmacaaI YaaaaKqzGeGaaiikaiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaK qaGeqaaKqzGeGaeq4TdGMaeqyYdC3cdaqhaaqcbasaaKqzadGaamiC aiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaIYaGaeq yVd42cdaWgaaqcbasaaKqzadGaamyAaiaad6gaaKqaGeqaaKqzGeGa aiykaaGccaGLBbGaayzxaaqcLbsacaGGUaGaeqyYdC3cdaahaaqcba sabeaajugWaiaaikdaaaaakeaajugibiabgkHiTKqbaoaadmaakeaa jugibiabew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaajugWai aaikdaaaqcLbsacqaH9oGBjuaGdaWgaaqcbasaaKqzadGaamyzaiaa d6gaaSqabaqcLbsacqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaam yAaaqcbasaaKqzadGaaGOmaaaajugibiabgUcaRiabeM8a3TWaa0ba aKqaGeaajugWaiaadogacaWGLbaajeaibaqcLbmacaaIYaaaaKqzGe Gaam4qaSWaa0baaKqaGeaajugWaiaadohaaKqaGeaajugWaiaaikda aaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcba sabaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLbsacaWGSbWcdaahaaqc basabeaajugWaiaaikdaaaqcLbsacqaHfpqDlmaaDaaajeaibaqcLb macaWG0baajeaibaqcLbmacaaIYaaaaaGcbaqcLbsacaWGsbWcdaah aaqcbasabeaajugWaiaaikdaaaaaaKqzGeGaeqyVd42cdaWgaaqcba saaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaeq4UdW2cdaqhaaqc basaaKqzadGaamiraaqcbasaaKqzadGaaGOmaaaajuaGdaWadaGcba qcLbsacqaHjpWDlmaaDaaajeaibaqcLbmacaWGWbGaamyAaaqcbasa aKqzadGaaGOmaaaajugibiaacIcacaaIXaGaey4kaSIaeqyTdu2cda WgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcqaH9oGB lmaaBaaajeaibaqcLbmacaWGPbGaamOBaaqcbasabaqcLbsacaGGPa Gaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadMgaaKqa GeaajugWaiaaikdaaaaakiaawUfacaGLDbaaaiaawUfacaGLDbaaju gibiaac6cacqaHjpWDcqGHRaWkcaWGSbGaeuyQdCvcfa4aamWaaOqa aKqzGeGaeqyXdu3cdaqhaaqcbasaaKqzadGaamiDaaqcbasaaKqzad GaaGOmaaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadwgacaWG UbaajeaibeaajugibiabeM8a3TWaa0baaKqaGeaajugWaiaadogaca WGPbaajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeqyYdC3cdaqh aaqcbasaaKqzadGaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcLb sacaWGdbWcdaqhaaqcbasaaKqzadGaam4CaaqcbasaaKqzadGaaGOm aaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadMgacaWGUbaaje aibeaaaOGaay5waiaaw2faaaaaaa@C6E8@

Which by using suitable mathematical elaboration (Appendix B), we results with,

ω 2 ω i ( ω pe 2 ν en ε 0 η+ ω ce 2 )(3lΩ4ω) +[ ν en ε 0 η ω pe 2 ( ω ci 2 + l 2 υ t 2 R 2 ω pi 2 ω pe 2 )+ ω ce 2 ( ω pi 2 + ω ci 2 ) ].2ω ω i [ ω pe 2 ω ci 2 ν en ε 0 η+ ω ce 2 .( ω pi 2 +ω) ].lΩ ω i = =[ ν en ω pe 2 (1+ l 2 λ D 2 R 2 )+ ω ce 2 ω pi 2 ε 0 η ]. ω 3 lΩ.( ω pe 2 ν en + ω ce 2 . ω pi 2 ε 0 η). ω 2 ν en ω pe 2 [ ω ci 2 + l 2 λ D 2 R 2 ( ω pi 2 + ω ci 2 ) ].ω+lΩ. ω pe 2 ω ci 2 ν en MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeqyYdC3cdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacqaHjpWDlmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugibi aacIcacqaHjpWDlmaaDaaajeaibaqcLbmacaWGWbGaamyzaaqcbasa aKqzadGaaGOmaaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadw gacaWGUbaajeaibeaajugibiabew7aLTWaaSbaaKqaGeaajugWaiaa icdaaKqaGeqaaKqzGeGaeq4TdGMaey4kaSIaeqyYdC3cdaqhaaqcba saaKqzadGaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacaGG PaGaaiikaiaaiodacaWGSbGaeuyQdCLaeyOeI0IaaGinaiabeM8a3j aacMcaaOqaaKqzGeGaey4kaSscfa4aamWaaOqaaKqzGeGaeqyVd42c daWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaeqyTdu wcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqcLbsacqaH3oaAcqaH jpWDlmaaDaaajeaibaqcLbmacaWGWbGaamyzaaqcbasaaKqzadGaaG OmaaaajugibiaacIcacqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGa amyAaaqcbasaaKqzadGaaGOmaaaajugibiabgUcaRKqbaoaalaaake aajugibiaadYgalmaaCaaajeaibeqaaKqzadGaaGOmaaaajugibiab ew8a1TWaa0baaKqaGeaajugWaiaadshaaKqaGeaajugWaiaaikdaaa aakeaajugibiaadkfajuaGdaahaaWcbeqcbasaaKqzadGaaGOmaaaa aaqcfa4aaSaaaOqaaKqzGeGaeqyYdC3cdaqhaaqcbasaaKqzadGaam iCaiaadMgaaKqaGeaajugWaiaaikdaaaaakeaajugibiabeM8a3TWa a0baaKqaGeaajugWaiaadchacaWGLbaajeaibaqcLbmacaaIYaaaaa aajugibiaacMcacqGHRaWkcqaHjpWDlmaaDaaajeaibaqcLbmacaWG JbGaamyzaaqcbasaaKqzadGaaGOmaaaajugibiaacIcacqaHjpWDlm aaDaaajeaibaqcLbmacaWGWbGaamyAaaqcbasaaKqzadGaaGOmaaaa jugibiabgUcaRiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGPb aajeaibaqcLbmacaaIYaaaaKqzGeGaaiykaaGccaGLBbGaayzxaaqc LbsacaGGUaGaaGOmaiabeM8a3jabeM8a3TWaaSbaaKqaGeaajugWai aadMgaaKqaGeqaaaGcbaqcLbsacqGHsisljuaGdaWadaGcbaqcLbsa cqaHjpWDlmaaDaaajeaibaqcLbmacaWGWbGaamyzaaqcbasaaKqzad GaaGOmaaaajugibiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWG PbaajeaibaqcLbmacaaIYaaaaKqzGeGaeqyVd42cdaWgaaqcbasaaK qzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaeqyTdu2cdaWgaaqcbasa aKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcqGHRaWkcqaHjpWDlm aaDaaajeaibaqcLbmacaWGJbGaamyzaaqcbasaaKqzadGaaGOmaaaa jugibiaac6cacaGGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaamiCai aadMgaaKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkcqaHjpWDjuga biaaysW7jugibiaacMcaaOGaay5waiaaw2faaKqzGeGaaiOlaiaadY gacqqHPoWvcqaHjpWDlmaaBaaajeaibaqcLbmacaWGPbaajeaibeaa jugibiabg2da9aGcbaqcLbsacqGH9aqpjuaGdaWadaGcbaqcLbsacq aH9oGBlmaaBaaajeaibaqcLbmacaWGLbGaamOBaaqcbasabaqcLbsa cqaHjpWDlmaaDaaajeaibaqcLbmacaWGWbGaamyzaaqcbasaaKqzad GaaGOmaaaajugibiaacIcacaaIXaGaey4kaSscfa4aaSaaaOqaaKqz GeGaamiBaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaeq 4UdW2cdaqhaaqcbasaaKqzadGaamiraaqcbasaaKqzadGaaGOmaaaa aOqaaKqzGeGaamOuaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaa aajugibiaacMcacqGHRaWkcqaHjpWDlmaaDaaajeaibaqcLbmacaWG JbGaamyzaaqcbasaaKqzadGaaGOmaaaajugibiabeM8a3TWaa0baaK qaGeaajugWaiaadchacaWGPbaajeaibaqcLbmacaaIYaaaaKqzGeGa eqyTdu2cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaH3o aAaOGaay5waiaaw2faaKqzGeGaaiOlaiabeM8a3TWaaWbaaKqaGeqa baqcLbmacaaIZaaaaKqzGeGaeyOeI0IaamiBaiabfM6axjaac6caca GGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaamiCaiaadwgaaKqaGeaa jugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaajeaibaqcLbmacaWGLb GaamOBaaqcbasabaqcLbsacqGHRaWkcqaHjpWDlmaaDaaajeaibaqc LbmacaWGJbGaamyzaaqcbasaaKqzadGaaGOmaaaajugibiaac6cacq aHjpWDlmaaDaaajeaibaqcLbmacaWGWbGaamyAaaqcbasaaKqzadGa aGOmaaaajugibiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGe qaaKqzGeGaeq4TdGMaaiykaiaac6cacqaHjpWDlmaaCaaajeaibeqa aKqzadGaaGOmaaaaaOqaaKqzGeGaeyOeI0IaeqyVd42cdaWgaaqcba saaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaeqyYdC3cdaqhaaqc basaaKqzadGaamiCaiaadwgaaKqaGeaajugWaiaaikdaaaqcfa4aam WaaOqaaKqzGeGaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadMga aKqaGeaajugWaiaaikdaaaqcLbsacqGHRaWkjuaGdaWcaaGcbaqcLb sacaWGSbWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacqaH7oaB lmaaDaaajeaibaqcLbmacaWGebaajeaibaqcLbmacaaIYaaaaaGcba qcLbsacaWGsbWcdaahaaqcbasabeaajugWaiaaikdaaaaaaKqzGeGa aiikaiabeM8a3TWaa0baaKqaGeaajugWaiaadchacaWGPbaajeaiba qcLbmacaaIYaaaaKqzGeGaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqz adGaam4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacaGGPaaaki aawUfacaGLDbaajugibiaac6cacqaHjpWDcqGHRaWkcaWGSbGaeuyQ dCLaaiOlaiabeM8a3TWaa0baaKqaGeaajugWaiaadchacaWGLbaaje aibaqcLbmacaaIYaaaaKqzGeGaeqyYdC3cdaqhaaqcbasaaKqzadGa am4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBa aajeaibaqcLbmacaWGLbGaamOBaaqcbasabaaaaaa@DA6B@

By using the approach λ D 2 R 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeU7aSTWaa0baaKqaGeaajugWaiaadseaaKqaGeaajugW aiaaikdaaaqcLbsacqWI6jcCcqWI6jcCcaWGsbqcfa4aaWbaaSqabK qaGeaajugWaiaaikdaaaaaaa@46D3@ , and then, λ D 2 R 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake GabaaobKqbaoaaliaakeaajugibiabeU7aSTWaa0baaKqaGeaajugW aiaadseaaKqaGeaajugWaiaaikdaaaaakeaajugibiaadkfammaaCa aajqwaa+FabeaajugOaiaaikdaaaaaaKqzGeGaeyOKH4QaaGimaaaa @48D5@ . The last becomes,

ω 2 ω i ( ω pe 2 ν en ε 0 η+ ω ce 2 )(3lΩ4ω) +[ ν en ε 0 η ω pe 2 ω ci 2 + ω ce 2 ( ω pi 2 + ω ci 2 ) ].2ω ω i [ ω pe 2 ω ci 2 ν en ε 0 η+ ω ce 2 .( ω pi 2 + ω ci 2 ) ].lΩ ω i = =[ ν en ω pe 2 + ω ce 2 ω pi 2 ε 0 η ]. ω 3 lΩ.( ω pe 2 ν en + ω ce 2 . ω pi 2 ε 0 η). ω 2 ν en ω pe 2 ω ci 2 .ω+lΩ. ω pe 2 ω ci 2 ν en MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeqyYdC3cdaahaaqcbasabeaajugWaiaaikdaaaqc LbsacqaHjpWDlmaaBaaajeaibaqcLbmacaWGPbaajeaibeaajugibi aacIcacqaHjpWDlmaaDaaajeaibaqcLbmacaWGWbGaamyzaaqcbasa aKqzadGaaGOmaaaajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadw gacaWGUbaajeaibeaajugibiabew7aLTWaaSbaaKqaGeaajugWaiaa icdaaKqaGeqaaKqzGeGaeq4TdGMaey4kaSIaeqyYdC3cdaqhaaqcba saaKqzadGaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacaGG PaGaaiikaiaaiodacaWGSbGaeuyQdCLaeyOeI0IaaGinaiabeM8a3j aacMcaaOqaaKqzGeGaey4kaSscfa4aamWaaOqaaKqzGeGaeqyVd42c daWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaeqyTdu 2cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacqaH3oaAcqaH jpWDlmaaDaaajeaibaqcLbmacaWGWbGaamyzaaqcbasaaKqzadGaaG OmaaaajugibiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGPbaa jeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaeqyYdC3cdaqhaaqcba saaKqzadGaam4yaiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacaGG OaGaeqyYdC3cdaqhaaqcbasaaKqzadGaamiCaiaadMgaaKqaGeaaju gWaiaaikdaaaqcLbsacqGHRaWkcqaHjpWDlmaaDaaajeaibaqcLbma caWGJbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibiaacMcaaOGaay 5waiaaw2faaKqzGeGaaiOlaiaaikdacqaHjpWDcqaHjpWDlmaaBaaa jeaibaqcLbmacaWGPbaajeaibeaaaOqaaKqzGeGaeyOeI0scfa4aam WaaOqaaKqzGeGaeqyYdC3cdaqhaaqcbasaaKqzadGaamiCaiaadwga aKqaGeaajugWaiaaikdaaaqcLbsacqaHjpWDlmaaDaaajeaibaqcLb macaWGJbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibiabe27aUTWa aSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiabew7aLT WaaSbaaKqaGeaajugWaiaaicdaaKqaGeqaaKqzGeGaeq4TdGMaey4k aSIaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadwgaaKqaGeaaju gWaiaaikdaaaqcLbsacaGGUaGaaiikaiabeM8a3TWaa0baaKqaGeaa jugWaiaadchacaWGPbaajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaS IaeqyYdC3cdaqhaaqcbasaaKqzadGaam4yaiaadMgaaKqaGeaajugW aiaaikdaaaqcLbsacaGGPaaakiaawUfacaGLDbaajugibiaac6caca WGSbGaeuyQdCLaeqyYdC3cdaWgaaqcbasaaKqzadGaamyAaaqcbasa baqcLbsacqGH9aqpaOqaaKqzGeGaeyypa0tcfa4aamWaaOqaaKqzGe GaeqyVd42cdaWgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqz GeGaeqyYdC3cdaqhaaqcbasaaKqzadGaamiCaiaadwgaaKqaGeaaju gWaiaaikdaaaqcLbsacqGHRaWkcqaHjpWDlmaaDaaajeaibaqcLbma caWGJbGaamyzaaqcbasaaKqzadGaaGOmaaaajugibiabeM8a3TWaa0 baaKqaGeaajugWaiaadchacaWGPbaajeaibaqcLbmacaaIYaaaaKqz GeGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaaqcbasabaqcLbsacq aH3oaAaOGaay5waiaaw2faaKqzGeGaaiOlaiabeM8a3LqbaoaaCaaa leqajeaibaqcLbmacaaIZaaaaKqzGeGaeyOeI0IaamiBaiabfM6axj aac6cacaGGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaamiCaiaadwga aKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaajeaibaqcLb macaWGLbGaamOBaaqcbasabaqcLbsacqGHRaWkcqaHjpWDlmaaDaaa jeaibaqcLbmacaWGJbGaamyzaaqcbasaaKqzadGaaGOmaaaajugibi aac6cacqaHjpWDlmaaDaaajeaibaqcLbmacaWGWbGaamyAaaqcbasa aKqzadGaaGOmaaaajugibiabew7aLTWaaSbaaKqaGeaajugWaiaaic daaKqaGeqaaKqzGeGaeq4TdGMaaiykaiaac6cacqaHjpWDlmaaCaaa jeaibeqaaKqzadGaaGOmaaaaaOqaaKqzGeGaeyOeI0IaeqyVd42cda WgaaqcbasaaKqzadGaamyzaiaad6gaaKqaGeqaaKqzGeGaeqyYdC3c daqhaaqcbasaaKqzadGaamiCaiaadwgaaKqaGeaajugWaiaaikdaaa qcLbsacqaHjpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyAaaqcbasa aKqzadGaaGOmaaaajugibiaac6cacqaHjpWDcqGHRaWkcaWGSbGaeu yQdCLaaiOlaiabeM8a3TWaa0baaKqaGeaajugWaiaadchacaWGLbaa jeaibaqcLbmacaaIYaaaaKqzGeGaeqyYdC3cdaqhaaqcbasaaKqzad Gaam4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaa BaaajeaibaqcLbmacaWGLbGaamOBaaqcbasabaaaaaa@82BF@

or

ω i [ ω 2 ( ω pe 2 ν en ε 0 η+ ω ce 2 )(3lΩ4ω)+ ω ci 2 (2ωlΩ)[ ν en ε 0 η ω pe 2 + ( m i m e ) 2 ( ω pi 2 + ω ci 2 ) ] ]= = ω pe 2 .(ωlΩ).[ ω 2 ( ν en + ω ce 2 ε 0 η m e m i )+ ν en ω ci 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeqyYdC3cdaWgaaqcbasaaKqzadGaamyAaaqcbasa baqcfa4aamWaaOqaaKqzGeGaeqyYdC3cdaahaaqcbasabeaajugWai aaikdaaaqcLbsacaGGOaGaeqyYdC3cdaqhaaqcbasaaKqzadGaamiC aiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacqaH9oGBlmaaBaaaje aibaqcLbmacaWGLbGaamOBaaqcbasabaqcLbsacqaH1oqzlmaaBaaa jeaibaqcLbmacaaIWaaajeaibeaajugibiabeE7aOjabgUcaRiabeM 8a3TWaa0baaKqaGeaajugWaiaadogacaWGLbaajeaibaqcLbmacaaI YaaaaKqzGeGaaiykaiaacIcacaaIZaGaamiBaiabfM6axjabgkHiTi aaisdacqaHjpWDcaGGPaGaey4kaSIaeqyYdC3cdaqhaaqcbasaaKqz adGaam4yaiaadMgaaKqaGeaajugWaiaaikdaaaqcLbsacaGGOaGaaG OmaiabeM8a3jabgkHiTiaadYgacqqHPoWvcaGGPaqcfa4aamWaaOqa aKqzGeGaeqyVd4wcfa4aaSbaaKqaGeaajugWaiaadwgacaWGUbaale qaaKqzGeGaeqyTduwcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaqc LbsacqaH3oaAcqaHjpWDlmaaDaaajeaibaqcLbmacaWGWbGaamyzaa qcbasaaKqzadGaaGOmaaaajugibiabgUcaRiaacIcajuaGdaWcaaGc baqcLbsacaWGTbWcdaWgaaqcbasaaKqzadGaamyAaaqcbasabaaake aajugibiaad2galmaaBaaajeaibaqcLbmacaWGLbaajeaibeaaaaqc LbsacaGGPaWcdaahaaqcbasabeaajugWaiaaikdaaaqcLbsacaGGOa GaeqyYdC3cdaqhaaqcbasaaKqzadGaamiCaiaadMgaaKqaGeaajugW aiaaikdaaaqcLbsacqGHRaWkcqaHjpWDlmaaDaaajeaibaqcLbmaca WGJbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibiaacMcaaOGaay5w aiaaw2faaaGaay5waiaaw2faaKqzGeGaeyypa0dakeaajugibiabg2 da9iabeM8a3TWaa0baaKqaGeaajugWaiaadchacaWGLbaajeaibaqc LbmacaaIYaaaaKqzGeGaaiOlaiaacIcacqaHjpWDcqGHsislcaWGSb GaeuyQdCLaaiykaiaac6cajuaGdaWadaGcbaqcLbsacqaHjpWDlmaa CaaajeaibeqaaKqzadGaaGOmaaaajugibiaacIcacqaH9oGBlmaaBa aajeaibaqcLbmacaWGLbGaamOBaaqcbasabaqcLbsacqGHRaWkcqaH jpWDlmaaDaaajeaibaqcLbmacaWGJbGaamyzaaqcbasaaKqzadGaaG Omaaaajugibiabew7aLTWaaSbaaKqaGeaajugWaiaaicdaaKqaGeqa aKqzGeGaeq4TdGwcfa4aaSaaaOqaaKqzGeGaamyBaKqbaoaaBaaaje aibaqcLbmacaWGLbaaleqaaaGcbaqcLbsacaWGTbWcdaWgaaqcbasa aKqzadGaamyAaaqcbasabaaaaKqzGeGaaiykaiabgUcaRiabe27aUT WaaSbaaKqaGeaajugWaiaadwgacaWGUbaajeaibeaajugibiabeM8a 3TWaa0baaKqaGeaajugWaiaadogacaWGPbaajeaibaqcLbmacaaIYa aaaaGccaGLBbGaayzxaaaaaaa@FC50@

If the last equation is solved for the factor, then is taken the following,

ε 0 η. ω pe 2 .{ ν ω i .[ ω 2 (3lΩ4ω)+ ω ci 2 .(2ωlΩ) ] ω ci ω ce . ω 2 (ωlΩ) }= = ω i ω ce 2 .[ ω 2 (4ω3lΩ)(2ωlΩ).( ω pi 2 + ω ci 2 ) ]+ ω pe 2 .ν.(ωlΩ).( ω 2 + ω ci 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakq aabeqaaKqzGeGaeqyTdu2cdaWgaaqcbasaaKqzadGaaGimaaqcbasa baqcLbsacqaH3oaAcaGGUaGaeqyYdC3cdaqhaaqcbasaaKqzadGaam iCaiaadwgaaKqaGeaajugWaiaaikdaaaqcLbsacaGGUaqcfa4aaiWa aOqaaKqzGeGaeqyVd4MaeqyYdC3cdaWgaaqcbasaaKqzadGaamyAaa qcbasabaqcLbsacaGGUaqcfa4aamWaaOqaaKqzGeGaeqyYdC3cdaah aaqcbasabeaajugWaiaaikdaaaqcLbsacaGGOaGaaG4maiaadYgacq qHPoWvcqGHsislcaaI0aGaeqyYdCNaaiykaiabgUcaRiabeM8a3TWa a0baaKqaGeaajugWaiaadogacaWGPbaajeaibaqcLbmacaaIYaaaaK qzGeGaaiOlaiaacIcacaaIYaGaeqyYdCNaeyOeI0IaamiBaiabfM6a xjaacMcaaOGaay5waiaaw2faaKqzGeGaeyOeI0IaeqyYdC3cdaWgaa qcbasaaKqzadGaam4yaiaadMgaaKqaGeqaaKqzGeGaeqyYdC3cdaWg aaqcbasaaKqzadGaam4yaiaadwgaaKqaGeqaaKqzGeGaaiOlaiabeM 8a3TWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGaaiikaiabeM8a 3jabgkHiTiaadYgacqqHPoWvcaGGPaaakiaawUhacaGL9baajugibi abg2da9aGcbaqcLbsacqGH9aqpcqaHjpWDlmaaBaaajeaibaqcLbma caWGPbaajeaibeaajugibiabeM8a3TWaa0baaKqaGeaajugWaiaado gacaWGLbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiOlaKqbaoaadmaa keaajugibiabeM8a3LqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaK qzGeGaaiikaiaaisdacqaHjpWDcqGHsislcaaIZaGaamiBaiabfM6a xjaacMcacqGHsislcaGGOaGaaGOmaiabeM8a3jabgkHiTiaadYgacq qHPoWvcaGGPaGaaiOlaiaacIcacqaHjpWDlmaaDaaajeaibaqcLbma caWGWbGaamyAaaqcbasaaKqzadGaaGOmaaaajugibiabgUcaRiabeM 8a3TWaa0baaKqaGeaajugWaiaadogacaWGPbaajeaibaqcLbmacaaI YaaaaKqzGeGaaiykaaGccaGLBbGaayzxaaqcLbsacqGHRaWkcqaHjp WDlmaaDaaajeaibaqcLbmacaWGWbGaamyzaaqcbasaaKqzadGaaGOm aaaajugibiaac6cacqaH9oGBcaGGUaGaaiikaiabeM8a3jabgkHiTi aadYgacqqHPoWvcaGGPaGaaiOlaiaacIcacqaHjpWDlmaaCaaajeai beqaaKqzadGaaGOmaaaajugibiabgUcaRiabeM8a3TWaa0baaKqaGe aajugWaiaadogacaWGPbaajeaibaqcLbmacaaIYaaaaKqzGeGaaiyk aaaaaa@EB41@   (14)

From which we may to calculate its value.

Conclusion & discussion

By inserting in the equation (14) the typical experimental values it is may to calculate the resistance factor  and compare its value with the standard values which are given from the bibliography. So, the factor  operates as criterion for the resistive waves; existence.

In the present instance there are the values,

ω pe 2 =3x 10 19 sec 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaa0baaKqaGeaajugWaiaadchacaWGLbaajeai baqcLbmacaaIYaaaaKqzGeGaeyypa0JaaG4maiaadIhacaaIXaGaaG imaSWaaWbaaKqaGeqabaqcLbmacaaIXaGaaGyoaaaajugibiGacoha caGGLbGaai4yaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaaaa aa@4EE0@ , ν en =1x 10 5 sec 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabe27aUTWaaSbaaKqaGeaajugWaiaadwgacaWGUbaajeai beaajugibiabg2da9iaaigdacaWG4bGaaGymaiaaicdalmaaCaaaje aibeqaaKqzadGaaGynaaaajugibiGacohacaGGLbGaai4yaSWaaWba aKqaGeqabaqcLbmacqGHsislcaaIXaaaaaaa@4C1C@

ω pi 2 =4x 10 14 sec 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaa0baaKqaGeaajugWaiaadchacaWGPbaajeai baqcLbmacaaIYaaaaKqzGeGaeyypa0JaaGinaiaadIhacaaIXaGaaG imaSWaaWbaaKqaGeqabaqcLbmacaaIXaGaaGinaaaajugibiGacoha caGGLbGaai4yaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaaaa aa@4EE0@ , ω 2 =1x 10 10 sec 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaaWbaaKqaGeqabaqcLbmacaaIYaaaaKqzGeGa eyypa0JaaGymaiaadIhacaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLb macaaIXaGaaGimaaaajugibiGacohacaGGLbGaai4yaSWaaWbaaKqa GeqabaqcLbmacqGHsislcaaIYaaaaaaa@4B9E@

ω ce 2 =2.25x 10 20 sec 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGLbaajeai baqcLbmacaaIYaaaaKqzGeGaeyypa0JaaGOmaiaac6cacaaIYaGaaG ynaiaadIhacaaIXaGaaGimaSWaaWbaaKqaGeqabaqcLbmacaaIYaGa aGimaaaajugibiGacohacaGGLbGaai4yaSWaaWbaaKqaGeqabaqcLb macqGHsislcaaIYaaaaaaa@50F7@ , ωlΩ=1x 10 5 sec 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3jabgkHiTiaadYgacqqHPoWvcqGH9aqpcaaIXaGa amiEaiaaigdacaaIWaWcdaahaaqcbasabeaajugWaiaaiwdaaaqcLb saciGGZbGaaiyzaiaacogalmaaCaaajeaibeqaaKqzadGaeyOeI0Ia aGymaaaaaaa@4B83@

ω ci 2 =4x 10 10 sec 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaa0baaKqaGeaajugWaiaadogacaWGPbaajeai baqcLbmacaaIYaaaaKqzGeGaeyypa0JaaGinaiaadIhacaaIXaGaaG imaSWaaWbaaKqaGeqabaqcLbmacaaIXaGaaGimaaaajugibiGacoha caGGLbGaai4yaSWaaWbaaKqaGeqabaqcLbmacqGHsislcaaIYaaaaa aa@4ECF@ , ω i 1 100 ω= 10 3 sec 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeM8a3TWaaSbaaKqaGeaajugWaiaadMgaaKqaGeqaaKqz GeGaeyyrIaucfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacaaIXa GaaGimaiaaicdaaaGaeqyYdCNaeyypa0JaaGymaiaaicdalmaaCaaa jeaibeqaaKqzadGaaG4maaaajugibiGacohacaGGLbGaai4yaSWaaW baaKqaGeqabaqcLbmacqGHsislcaaIXaaaaaaa@5142@

Inserting into equation (14) it is resulted with the value, η 10 4 Ω.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE7aOjabgwKiajaaigdacaaIWaWcdaahaaqcbasabeaa jugWaiaaisdaaaqcLbsacqqHPoWvcaGGUaGaamyBaaaa@43A6@

In the next it is estimate the value by the Spitzer form -theory, η=6.53x 10 3 lnΛ T 3 2 Ω.cm=65.3 lnΛ Τ 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE7aOjabg2da9iaaiAdacaGGUaGaaGynaiaaiodacaWG 4bGaaGymaiaaicdalmaaCaaajeaibeqaaKqzadGaaG4maaaajuaGda WcaaGcbaqcLbsaciGGSbGaaiOBaiabfU5ambGcbaqcLbsacaWGubqc fa4aaWbaaSqabKqaGeaalmaaliaajeaibaqcLbmacaaIZaaajeaiba qcLbmacaaIYaaaaaaaaaqcLbsacqqHPoWvcaGGUaGaam4yaiaad2ga cqGH9aqpcaaI2aGaaGynaiaac6cacaaIZaqcfa4aaSaaaOqaaKqzGe GaciiBaiaac6gacqqHBoataOqaaKqzGeGaeuiPdqvcfa4aaWbaaSqa bKqaGeaalmaaliaajeaibaqcLbmacaaIZaaajeaibaqcLbmacaaIYa aaaaaaaaaaaa@6346@

and is resulted with the value, η 10 5 Ω.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE7aOjabgwKiajaaigdacaaIWaWcdaahaaqcbasabeaa jugWaiabgkHiTiaaiwdaaaqcLbsacqqHPoWvcaGGUaGaamyBaaaa@4494@

In addition, by using the formula η= 1 σ 0 = m e ν en n e e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE7aOjabg2da9KqbaoaalaaakeaajugibiaaigdaaOqa aKqzGeGaeq4Wdmxcfa4aaSbaaKqaGeaajugWaiaaicdaaSqabaaaaK qzGeGaeyypa0tcfa4aaSaaaOqaaKqzGeGaamyBaKqbaoaaBaaajeai baqcLbmacaWGLbaaleqaaKqzGeGaeqyVd42cdaWgaaqcbasaaKqzad Gaamyzaiaad6gaaKqaGeqaaaGcbaqcLbsacaWGUbWcdaWgaaqcbasa aKqzadGaamyzaaqcbasabaqcLbsacaWGLbWcdaahaaqcbasabeaaju gWaiaaikdaaaaaaaaa@5784@  and is ended with η=4x 10 4 Ω.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE7aOjabg2da9iaaisdacaWG4bGaaGymaiaaicdalmaa CaaajeaibeqaaKqzadGaeyOeI0IaaGinaaaajugibiabfM6axjaac6 cacaWGTbaaaa@4621@

From the equation of motion for electrons is produced that,

η n 0 e 2 m e ν en η=3x 10 4 Ω.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE7aOLqbaoaalaaakeaajugibiaad6galmaaBaaajeai baqcLbmacaaIWaaajeaibeaajugibiaadwgalmaaCaaajeaibeqaaK qzadGaaGOmaaaaaOqaaKqzGeGaamyBaSWaaSbaaKqaGeaajugWaiaa dwgaaKqaGeqaaaaajugibiabgIKi7kabe27aUTWaaSbaaKqaGeaaju gWaiaadwgacaWGUbaajeaibeaajugibiabgkDiElabeE7aOjabg2da 9iaaiodacaWG4bGaaGymaiaaicdalmaaCaaajeaibeqaaKqzadGaey OeI0IaaGinaaaajugibiabfM6axjaac6cacaWGTbaaaa@5EAA@   as well.

Finally, if we use the Spitzer equation as it formed from the Wesson,

η S =2.8x 10 8 / T 3 2 Ω.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE7aOLqbaoaaBaaajeaibaqcLbmacaWGtbaaleqaaKqz GeGaeyypa0JaaGOmaiaac6cacaaI4aGaamiEaiaaigdacaaIWaWcda ahaaqcbasabeaajugWaiabgkHiTiaaiIdaaaqcLbsacaGGVaGaamiv aSWaaWbaaKqaGeqabaWcdaWccaqcbasaaKqzadGaaG4maaqcbasaaK qzadGaaGOmaaaaaaqcLbsacqqHPoWvcaGGUaGaamyBaaaa@51C8@  with T e KeV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiaadsfalmaaBaaajeaibaqcLbmacaWGLbaajeaibeaajugi biabgkziUkaadUeacaWGLbGaamOvaaaa@41D0@  and, lnΛ=17 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiGacYgacaGGUbGaeu4MdWKaeyypa0JaaGymaiaaiEdaaaa@3F29@  

it is taken out η S =6x 10 4 Ω.m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaake aajugibiabeE7aOLqbaoaaBaaajeaibaqcLbmacaWGtbaaleqaaKqz GeGaeyypa0JaaGOnaiaadIhacaaIXaGaaGimaSWaaWbaaKqaGeqaba qcLbmacqGHsislcaaI0aaaaKqzGeGaeuyQdCLaaiOlaiaad2gaaaa@499C@ .

By this comparison it is concluded that the examined waves is far away from to be considered and identified as resistive one.

Acknowledgments

The authors wish to thank all the previous and present members of the Plasma Laboratory of NCSR "Demokritos" for their assistance in the completion of the present study. Special thanks to Jenny and Christina for their offer to proofread the manuscript and their help with the editing of the paper and the use of the English language.

Conflicts of interest

Authors declare there is no conflict of interest.

References

  1. Roberts KV, Taylor JB. Gravitational Resistive Instability of an Incompressible plasma in a sheared Magnetic Field. The Physics of Fluids. 1965;8(2):315–322.
  2. Chen FF. ‘Universal’ Overstability of a Resistive Inhomogeneous Plasma. The Physics of Fluids. 1965;8(7):1323–1333.
  3. Saito S, Hatta Y. Measurements of Growth and Damping Rate of Resistive Instability in Gaseous Plasma. Journal of Physical Society of Japan. 1969;26(1):175–181.
  4. Shivamoggi KB. Resistive Instabilities in plasma. Astrophysics and Space Science. 1985;114(1):15–22.
  5. Litvak AA, Fisch JN. Resistive instabilities in Hall current plasma discharge. Physics of Plasmas. 2001;8(2):648–651.
  6. Spitzer L. Physics of Fully Ionised Gases. Interscience Publishers, New York, USA. 1962.
  7. Tanenbaun BS. Plasma physics. McGraw-Hill Education, USA. 1967.
  8. Krall N, Trivelpiece A. Principles of Plasma Physics. McGraw-Hill Kogakusha, Tokyo, Japan. 1973.
  9. Lieberman M, Lichtenberg A. Principles of Plasma Discharges and Materials Processing. Wiley and Sons, New York, USA. 1994.
  10. Wesson J. Tokamaks. 2nd edn, Clarendon Press-Oxford, UK. 1997.
  11. Coppi B, Greene J, Johnson J. Resistive Instabilities in a diffuse linear pinch. Nuclear Fusion. 1966;6(2):101–119.
  12. Shukla PK. Nonlinear waves and structures in dusty plasmas. Physics of Plasmas. 2003;10(5):1619–1627.
  13. Vranjes J, Pandey BP, Poedts S. Collisional instability of the drift wave in multi-component plasmas. Planetary and Space Science. 2006;54(7):695–700.
  14. Bashir MF, Vranjes J. Drift wave stabilized by an additional streaming ion or plasma population. Physical Review E. 2015;91(3):033–113.
  15. Melrose DB. Reactive and resistive nonlinear instabilities. Journal of Plasma Physics. 1986;36(2):269–279.
  16. Sharapov SE, Alper B, Berk HL, et al. Energetic particle instabilities in fusion plasma. Nuclear Fusion. 2013;53(10):104022–104033.
  17. Mazzucato E. Electromagnetic Waves for Thermonuclear Fusion Research. Princeton Plasma Physics Laboratory, USA. 2014.
  18. Anastassiades JA, Karatzas TN. Transfer of energy to light ions from the ion‐acoustic‐wave instability developed in a heavy‐ion plasma. Journal of Applied Physics. 1973;44(10).
  19. Anastassiades JA, Sideris E. Energy losses due to an ion-acoustic wave in a plasma. Journal of Applied Physics. 1980;51(11).
  20. Anastassiades JA, Xaplanteris LC. Drift Wave Instability in the Presence of an RF-Field in a Magnetized Plasma. Journal of Physical Society of Japan. 1983;52:492–500.
  21. Xaplanteris LC. Effects of Low-Frequency Instability on Hall Conductivity in Plasma: Applications to Astrophysics and Space Physics. Astrophysics and Space Science. 1987;136(1):171–181.
  22. Xaplanteris LC. Effects of Low-Frequency Instability on Hall Conductivity in Plasma. Astrophysics and Space Science. 1987;139(2):233–242.
  23. Xaplanteris LC. Collisional instability into a rare magnetized plasma. An experimental model for magnetospheric and space plasma study. Journal of Plasma Physics. 2009;75(3):395–406.
Creative Commons Attribution License

©2018 Xaplanteris, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.