Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 2

A new approach for solving boundary and initial value problems by coupling the he method and Sawi transform

Sarah Rabie,1 Bachir Nour Kharrat,2 Ghada Joujeh,3 Abd Alulkader Joukhadar1

1Post Graduate student (MSc), Department of Mathematics, Faculty of science, University of Aleppo, Syria
2Department of Mathematics, Faculty of science, University of Aleppo, Syria
3Department of Mechatronics, Faculty of Engineering Electronic, university of Aleppo, Syria

Correspondence: Sarah Rabie, Post Graduate student (MSc), Department of Mathematics, Faculty of science, University of Aleppo, Syria, Tel 0998713128

Received: May 21, 2023 | Published: May 29, 2023

Citation: Rabie S, Kharrat BN, Joujeh G, et al. A new approach for solving boundary and initial value problems by coupling the he method and Sawi transform. Phys Astron Int J. 2023;7(2):141-144. DOI: 10.15406/paij.2023.07.00299

Download PDF

Abstract

This paper discusses and implements a newly developed technique using the He method with Sawi Transform. The main aim is to solve some initial and boundary problems. This combination exhibits an accurate strategy to obtain a precise solution for linear and nonlinear problems. To validate the proposed Hybrid method, a 4- examples are discussed, these including:  Burger’s equation, telegraph equation, Kelin-Gordan equation, Duffing oscillator with cubic nonlinear term. The obtained results improve the exactness and the accuracy of the proposed combinations, and the proposed method is capable to solve a large number of linear and nonlinear initial and boundary value problems.

Keywords: Sawi Transform, Burger’s equation, telegraph equation, Kelin, Gordan equation, Duffing oscillator, He’s Polynomial

Introduction

Burger’s equation was presented for the time by Bateman in 1915.1 It is followed by Hradyesh kumar Mishra and Atulya K. Nagar and it is solved using He-laplace method in 2012,2 then it followed by Mahgoub, MAM and Al Shikhit’s solved using  Mahgoub transform in 2017,3 Mohand, Mohamed Zebir solved it via Mohand transform in 2021,4 then it followed by Sarah Rabie, Bachir Nour Kharrat, Ghada Joujeh, Abd Alulkader Joukhadar, solved using He-Mohand method in 2023.5

In work6 Muhammad Nadeem and fengquanlil using He-laplace method to solve telegraph equation in2019, then it followed by Sarah Rabie, Bachir Nour Kharrat, Ghada Joujeh, Abd Alulkader Joukhadar, solved using He-Mohand method in 2023.5 In 20107 MAJafari and Aminataei followed Homotopy Perturbation method (HPM) to solve Kelin-Gorden equation,then in 20122 Hradyesh kumar Mishra and Atulya K. Nagar and it is solved using He-laplace method.

Duffing oscillator it followed by Durmaz S.Demibag SA Kayamo and it is solved using Energy Balance method in 2010,2012,8,9 then Khan and Mirzabeigy it is solved using Improved accuracy of He’ Balance method in 2014.10

Basic concepts

This section provides review some of the basic concepts, which needed for this paper (Table 1 & 2):

  1. Definition of Sawi transform

Sawi Transform of the function F(t); t>0 was proposed by Mahgoub,11 is given as:

s[ f( t ) ]=R( v )= 1 v 2 0 f( t ) e t v dt   ,t0 , k 1 v k 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaWadaWdaeaapeGaamOzamaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0Jaam Ouamaabmaapaqaa8qacaWG2baacaGLOaGaayzkaaGaeyypa0ZaaSaa a8aabaWdbiaaigdaa8aabaWdbiaadAhapaWaaWbaaSqabeaapeGaaG OmaaaaaaGcdaGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaeyOhIuka n8aabaWdbiabgUIiYdaakiaadAgadaqadaWdaeaapeGaamiDaaGaay jkaiaawMcaaiaadwgapaWaaWbaaSqabeaapeGaeyOeI0YaaSaaa8aa baWdbiaadshaa8aabaWdbiaadAhaaaaaaOGaamizaiaadshacaGGGc GaaiiOaiaacckacaGGSaGaamiDaiabgwMiZkaaicdacaGGGcGaaiil aiaadUgapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaeyizImQaam ODaiabgsMiJkaadUgapaWaaSbaaSqaa8qacaaIYaaapaqabaaaaa@6B5E@   (1)

Where: (S) is Sawi Transform operator.

  1. Some properties of Sawi transform12
  1. linearity property of Sawi Transform: If s{ f( t ) }=R( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGaamOzamaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0Jaam Ouamaabmaapaqaa8qacaWG2baacaGLOaGaayzkaaaaaa@46AE@ and s{ G( t ) }=I( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGaam4ramaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0Jaam ysamaabmaapaqaa8qacaWG2baacaGLOaGaayzkaaaaaa@4686@ then   s{ af( t )+bG( t ) }=as{ f( t ) }+b{ G( t ) }=aR( v )+bI( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGaamyyaiaadAgadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgUcaRiaadkgacaWGhb WaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaiaawUhacaGL9baa cqGH9aqpcaWGHbGaam4Camaacmaapaqaa8qacaWGMbWaaeWaa8aaba WdbiaadshaaiaawIcacaGLPaaaaiaawUhacaGL9baacqGHRaWkcaWG IbWaaiWaa8aabaWdbiaadEeadaqadaWdaeaapeGaamiDaaGaayjkai aawMcaaaGaay5Eaiaaw2haaiabg2da9iaadggacaWGsbWaaeWaa8aa baWdbiaadAhaaiaawIcacaGLPaaacqGHRaWkcaWGIbGaamysamaabm aapaqaa8qacaWG2baacaGLOaGaayzkaaaaaa@6330@
  2. s{ f ( t ) }= R( v ) v f( 0 ) v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGabmOza8aagaqba8qa daqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaGaay5Eaiaaw2haai abg2da9maalaaapaqaa8qacaWGsbWaaeWaa8aabaWdbiaadAhaaiaa wIcacaGLPaaaa8aabaWdbiaadAhaaaGaeyOeI0YaaSaaa8aabaWdbi aadAgadaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaaWdaeaapeGa amODa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@4EAD@
  3. s{ f ( t ) }= R( v ) v 2 f( 0 ) v 3 f ( 0 ) v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGabmOza8aagaGba8qa daqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaGaay5Eaiaaw2haai abg2da9maalaaapaqaa8qacaWGsbWaaeWaa8aabaWdbiaadAhaaiaa wIcacaGLPaaaa8aabaWdbiaadAhapaWaaWbaaSqabeaapeGaaGOmaa aaaaGccqGHsisldaWcaaWdaeaapeGaamOzamaabmaapaqaa8qacaaI WaaacaGLOaGaayzkaaaapaqaa8qacaWG2bWdamaaCaaaleqabaWdbi aaiodaaaaaaOGaeyOeI0YaaSaaa8aabaWdbiqadAgapaGbauaapeWa aeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaaa8aabaWdbiaadAhapa WaaWbaaSqabeaapeGaaGOmaaaaaaaaaa@5681@
  4. s{ f ( n ) ( t ) }= R( v ) v n f( 0 ) v n+1 f ( 0 ) v 2 f n1 ( 0 ) v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGaamOza8aadaahaaWc beqaa8qadaqadaWdaeaapeGaamOBaaGaayjkaiaawMcaaaaakmaabm aapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyyp a0ZaaSaaa8aabaWdbiaadkfadaqadaWdaeaapeGaamODaaGaayjkai aawMcaaaWdaeaapeGaamODa8aadaahaaWcbeqaa8qacaWGUbaaaaaa kiabgkHiTmaalaaapaqaa8qacaWGMbWaaeWaa8aabaWdbiaaicdaai aawIcacaGLPaaaa8aabaWdbiaadAhapaWaaWbaaSqabeaapeGaamOB aiabgUcaRiaaigdaaaaaaOGaeyOeI0YaaSaaa8aabaWdbiqadAgapa GbauaapeWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaaa8aabaWd biaadAhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccqGHsislcqGHMa cVcqGHsisldaWcaaWdaeaapeGaamOza8aadaahaaWcbeqaa8qacaWG UbGaeyOeI0IaaGymaaaakmaabmaapaqaa8qacaaIWaaacaGLOaGaay zkaaaapaqaa8qacaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaaaaaa @6751@
  5. s{ f( t )*G( t ) }= v 2 s{ f( t ) }.s{ G( t ) }= v 2 R( v ).I( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGaamOzamaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaGaaiOkaiaadEeadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2da9iaadAha paWaaWbaaSqabeaapeGaaGOmaaaakiaadohadaGadaWdaeaapeGaam Ozamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaacaGL7bGaayzF aaGaaiOlaiaadohadaGadaWdaeaapeGaam4ramaabmaapaqaa8qaca WG0baacaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0JaamODa8aa daahaaWcbeqaa8qacaaIYaaaaOGaamOuamaabmaapaqaa8qacaWG2b aacaGLOaGaayzkaaGaaiOlaiaadMeadaqadaWdaeaapeGaamODaaGa ayjkaiaawMcaaaaa@6247@

F(t)

s{ f( t ) }=R( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGaamOzamaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0Jaam Ouamaabmaapaqaa8qacaWG2baacaGLOaGaayzkaaaaaa@46AE@

1

1 v =0! v 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG2baa aiabg2da9iaaicdacaGGHaGaamODa8aadaahaaWcbeqaa8qacqGHsi slcaaIXaaaaaaa@42B2@
t 1=1! v 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaaigdacqGH9aqpcaaIXaGaaiyiaiaadAhapaWa aWbaaSqabeaapeGaaGimaaaaaaa@407C@
t2 2!v
tn n! v n1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaad6gacaGGHaGaamODa8aadaahaaWcbeqaa8qa caWGUbGaeyOeI0IaaGymaaaaaaa@40D4@
eat 1 v( 1av ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG2bWa aeWaa8aabaWdbiaaigdacqGHsislcaWGHbGaamODaaGaayjkaiaawM caaaaaaaa@428F@

sin (at)

a 1+ a 2 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGHbaapaqaa8qacaaIXaGa ey4kaSIaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamODa8aada ahaaWcbeqaa8qacaaIYaaaaaaaaaa@4226@
cos (at) 1 v( 1+ a 2 v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG2bWa aeWaa8aabaWdbiaaigdacqGHRaWkcaWGHbWdamaaCaaaleqabaWdbi aaikdaaaGccaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaakiaawIca caGLPaaaaaaaaa@44A8@

Table 1 Shows the Sawi of some elementary functions

R(v)

f( t )= s 1 { R( v ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadAgadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaiabg2da9iaadohapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaa aakmaacmaapaqaa8qacaWGsbWaaeWaa8aabaWdbiaadAhaaiaawIca caGLPaaaaiaawUhacaGL9baaaaa@48AC@
1/v

1

1

t
v t 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacaWG0bWdamaaCaaaleqabaWd biaaikdaaaaak8aabaWdbiaaikdaaaaaaa@3E6F@
vn-1 t n n! MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacaWG0bWdamaaCaaaleqabaWd biaad6gaaaaak8aabaWdbiaad6gacaGGHaaaaaaa@3F82@
1 v( 1av ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG2bWa aeWaa8aabaWdbiaaigdacqGHsislcaWGHbGaamODaaGaayjkaiaawM caaaaaaaa@428F@ e at MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwgapaWaaWbaaSqabeaapeGaamyyaiaadsha aaaaaa@3E6F@
1 1+ a 2 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIXaGa ey4kaSIaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaamODa8aada ahaaWcbeqaa8qacaaIYaaaaaaaaaa@41FB@ sin( at ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qaciGGZbGaaiyAaiaac6gadaqa daWdaeaapeGaamyyaiaadshaaiaawIcacaGLPaaaa8aabaWdbiaadg gaaaaaaa@42ED@
1 v( 1+ a 2 v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG2bWa aeWaa8aabaWdbiaaigdacqGHRaWkcaWGHbWdamaaCaaaleqabaWdbi aaikdaaaGccaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaakiaawIca caGLPaaaaaaaaa@44A8@ cos( at ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaabogacaqGVbGaae4Camaabmaapaqaa8qacaWG HbGaamiDaaGaayjkaiaawMcaaaaa@41AF@

Table 2 Gives the Sawi Transform of some elementary functions

Analysis of the proposed combined method

In order to explain the proposed method let’s consider the following nonlinear functional equation:

L( u( x ) )+N( u( x ) )=g( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadYeadaqadaWdaeaapeGaamyDamaabmaapaqa a8qacaWG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaSIaam Otamaabmaapaqaa8qacaWG1bWaaeWaa8aabaWdbiaadIhaaiaawIca caGLPaaaaiaawIcacaGLPaaacqGH9aqpcaWGNbWaaeWaa8aabaWdbi aadIhaaiaawIcacaGLPaaaaaa@4D05@   (2)

Where:

L and N are linear and nonlinear operator respectively.

g(x): is analytical function.

taking the Sawi Transform of equation (2) and obtain:

s{ L( u( x ) )+N( u( x ) )g( x ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGaamitamaabmaapaqa a8qacaWG1bWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaiaawI cacaGLPaaacqGHRaWkcaWGobWaaeWaa8aabaWdbiaadwhadaqadaWd aeaapeGaamiEaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiabgkHiTi aadEgadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaGaay5Eaiaa w2haaiabg2da9iaaicdaaaa@51F4@   (3)

Then multiplying the (3) equation with lag range multiplier, say λ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBdaqadaWdaeaapeGaamODaaGaayjkaiaawMcaaaaa@3A6E@ , we get:

λ( v )s{ L( u( x ) )+N( u( x ) )g( x ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSnaabmaapaqaa8qacaWG2baacaGLOaGa ayzkaaGaam4Camaacmaapaqaa8qacaWGmbWaaeWaa8aabaWdbiaadw hadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaGaayjkaiaawMca aiabgUcaRiaad6eadaqadaWdaeaapeGaamyDamaabmaapaqaa8qaca WG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyOeI0Iaam4zamaa bmaapaqaa8qacaWG4baacaGLOaGaayzkaaaacaGL7bGaayzFaaGaey ypa0JaaGimaaaa@564B@   (4)

Therefore, the recurrence relation becomes:

u n+1 ( x,v )= u n ( x,v )+λ( v ){ s{ L( u n ( x ) ) }+s{ N( u ˜ n ( x ) )g( x ) } } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaai aawIcacaGLPaaacqGH9aqpcaWG1bWdamaaBaaaleaapeGaamOBaaWd aeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaaiaawIcaca GLPaaacqGHRaWkcqaH7oaBdaqadaWdaeaapeGaamODaaGaayjkaiaa wMcaamaacmaapaqaa8qacaWGZbWaaiWaa8aabaWdbiaadYeadaqada WdaeaapeGaamyDa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqa daWdaeaapeGaamiEaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay 5Eaiaaw2haaiabgUcaRiaadohadaGadaWdaeaapeGaamOtamaabmaa paqaa8qaceWG1bWdayaaiaWaaSbaaSqaa8qacaWGUbaapaqabaGcpe WaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaiaawIcacaGLPaaa cqGHsislcaWGNbWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaai aawUhacaGL9baaaiaawUhacaGL9baaaaa@6DE7@   (5)

Taking the variation of equation (5) results in:

δ u n+1 ( x,v )=δ u n ( x,v )+λ( v )δ{ s{ L( u n ( x ) ) }+s{ N( u ˜ n ( x ) )g( x ) } } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaadwhapaWaaSbaaSqaa8qacaWGUbGa ey4kaSIaaGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilai aadAhaaiaawIcacaGLPaaacqGH9aqpcqaH0oazcaWG1bWdamaaBaaa leaapeGaamOBaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilai aadAhaaiaawIcacaGLPaaacqGHRaWkcqaH7oaBdaqadaWdaeaapeGa amODaaGaayjkaiaawMcaaiabes7aKnaacmaapaqaa8qacaWGZbWaai Waa8aabaWdbiaadYeadaqadaWdaeaapeGaamyDa8aadaWgaaWcbaWd biaad6gaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawM caaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabgUcaRiaadohadaGa daWdaeaapeGaamOtamaabmaapaqaa8qaceWG1bWdayaaiaWaaSbaaS qaa8qacaWGUbaapaqabaGcpeWaaeWaa8aabaWdbiaadIhaaiaawIca caGLPaaaaiaawIcacaGLPaaacqGHsislcaWGNbWaaeWaa8aabaWdbi aadIhaaiaawIcacaGLPaaaaiaawUhacaGL9baaaiaawUhacaGL9baa aaa@72D6@   (6)

To identify the value of Lagrange multiplier λ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBdaqadaWdaeaapeGaamODaaGaayjkaiaawMcaaaaa@3A6E@ with the help of Sawi Transform, it is revealed that u ˜ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWG1bWdayaaiaWaaSbaaSqaa8qacaWGUbaapaqabaaaaa@386D@  is a restricted variable, i,e, δ u ˜ n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjqadwhapaGbaGaadaWgaaWcbaWdbiaa d6gaa8aabeaak8qacqGH9aqpcaaIWaaaaa@412F@

taking the inverse of Sawi Transform of equation (5) this results in:

u n+1 (X,t)= u n (X,t)+ s 1 {λ( v ){s{L( u n (X)}}+s{N( u ˜ n (X)}g(X)}} MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhadaWgaaWcbaGaamOBaiabgUcaRiaaigda aeqaaOGaaiikaiaadIfacaGGSaGaamiDaiaacMcacqGH9aqpcaWG1b WaaSbaaSqaaiaad6gaaeqaaOGaaiikaiaadIfacaGGSaGaamiDaiaa cMcacqGHRaWkcaWGZbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaai 4EaiaabU7adaqadaWdaeaapeGaaeODaaGaayjkaiaawMcaaiaacUha caWGZbGaai4EaiaadYeacaGGOaGaamyDamaaBaaaleaacaWGUbaabe aakiaacIcacaWGybGaaiykaiaac2hacaGG9bGaey4kaSIaam4Caiaa cUhacaWGobGaaiikaiqadwhapaGbaGaadaWgaaWcbaWdbiaad6gaa8 aabeaak8qacaGGOaGaamiwaiaacMcacaGG9bGaeyOeI0Iaam4zaiaa cIcacaWGybGaaiykaiaac2hacaGG9baaaa@6D78@   (7)

Test examples

The following section presents a descriptive examples of the proposed method.

Consider Burger’s equation:

u t = u xx u u x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWG0baapaqabaGc peGaeyypa0JaamyDa8aadaWgaaWcbaWdbiaadIhacaWG4baapaqaba GcpeGaeyOeI0IaamyDaiaadwhapaWaaSbaaSqaa8qacaWG4baapaqa baaaaa@4667@   (8)

With initial condition of:

u( x,0 )=1 2 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhadaqadaWdaeaapeGaamiEaiaacYcacaaI WaaacaGLOaGaayzkaaGaeyypa0JaaGymaiabgkHiTmaalaaapaqaa8 qacaaIYaaapaqaa8qacaWG4baaaaaa@4518@   (9)

taking the sawi transform of equation (8):

s{ u t u xx +u u x }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGaamyDa8aadaWgaaWc baWdbiaadshaa8aabeaak8qacqGHsislcaWG1bWdamaaBaaaleaape GaamiEaiaadIhaa8aabeaak8qacqGHRaWkcaWG1bGaamyDa8aadaWg aaWcbaWdbiaadIhaa8aabeaaaOWdbiaawUhacaGL9baacqGH9aqpca aIWaaaaa@4B65@   (10)

Multiplying the equation (10) with λ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSnaabmaapaqaa8qacaWG2baacaGLOaGa ayzkaaaaaa@3FB1@ results in:

λ( v )s{ u t u xx +u u x }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSnaabmaapaqaa8qacaWG2baacaGLOaGa ayzkaaGaam4Camaacmaapaqaa8qacaWG1bWdamaaBaaaleaapeGaam iDaaWdaeqaaOWdbiabgkHiTiaadwhapaWaaSbaaSqaa8qacaWG4bGa amiEaaWdaeqaaOWdbiabgUcaRiaadwhacaWG1bWdamaaBaaaleaape GaamiEaaWdaeqaaaGcpeGaay5Eaiaaw2haaiabg2da9iaaicdaaaa@4FBC@

The recurrence relation takes the form:

u n+1 ( x,v )= u n ( x,v )+λ( v )s{ u n t 2 u n x 2 + u n u n x } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaai aawIcacaGLPaaacqGH9aqpcaWG1bWdamaaBaaaleaapeGaamOBaaWd aeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaaiaawIcaca GLPaaacqGHRaWkcqaH7oaBdaqadaWdaeaapeGaamODaaGaayjkaiaa wMcaaiaadohadaGadaWdaeaapeWaaSaaa8aabaWdbiabgkGi2kaadw hapaWaaSbaaSqaa8qacaWGUbaapaqabaaakeaapeGaeyOaIyRaamiD aaaacqGHsisldaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbi aaikdaaaGccaWG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcbaWd biabgkGi2kaadIhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccqGHRa WkcaWG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbmaalaaapaqa a8qacqGHciITcaWG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcba WdbiabgkGi2kaadIhaaaaacaGL7bGaayzFaaaaaa@6D3B@   (11)

taking the variation of equation (11):

δ u n+1 ( x,v )=δ u n ( x,v )+λ( v )δ{ 1 v u n ( x,v ) 1 v 2 u ˜ n ' ( x,0 ) }+λδs{ 2 u ˜ n x 2 + u n u ˜ n x } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaadwhapaWaaSbaaSqaa8qacaWGUbGa ey4kaSIaaGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilai aadAhaaiaawIcacaGLPaaacqGH9aqpcqaH0oazcaWG1bWdamaaBaaa leaapeGaamOBaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilai aadAhaaiaawIcacaGLPaaacqGHRaWkcqaH7oaBdaqadaWdaeaapeGa amODaaGaayjkaiaawMcaaiabes7aKnaacmaapaqaa8qadaWcaaWdae aapeGaaGymaaWdaeaapeGaamODaaaacaWG1bWdamaaBaaaleaapeGa amOBaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaai aawIcacaGLPaaacqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGa amODa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiqadwhapaGbaGaada qhaaWcbaWdbiaad6gaa8aabaWdbiaacEcaaaGcdaqadaWdaeaapeGa amiEaiaacYcacaaIWaaacaGLOaGaayzkaaaacaGL7bGaayzFaaGaey 4kaSIaeq4UdWMaeqiTdqMaam4Camaacmaapaqaa8qacqGHsisldaWc aaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikdaaaGcceWG1b WdayaaiaWaaSbaaSqaa8qacaWGUbaapaqabaaakeaapeGaeyOaIyRa amiEa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRiaadwhapa WaaSbaaSqaa8qacaWGUbaapaqabaGcpeWaaSaaa8aabaWdbiabgkGi 2kqadwhapaGbaGaadaWgaaWcbaWdbiaad6gaa8aabeaaaOqaa8qacq GHciITcaWG4baaaaGaay5Eaiaaw2haaaaa@8661@

δ u n+1 ( x,v )=δ u n ( x,v )+λ 1 v δ u n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaadwhapaWaaSbaaSqaa8qacaWGUbGa ey4kaSIaaGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilai aadAhaaiaawIcacaGLPaaacqGH9aqpcqaH0oazcaWG1bWdamaaBaaa leaapeGaamOBaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilai aadAhaaiaawIcacaGLPaaacqGHRaWkcqaH7oaBdaWcaaWdaeaapeGa aGymaaWdaeaapeGaamODaaaacqaH0oazcaWG1bWdamaaBaaaleaape GaamOBaaWdaeqaaaaa@572F@

In turn gives the value of λ becomes as follows:

0=1+ 1 v λ λ=v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaaGimaiabg2da9iaaigdacqGHRaWkdaWc aaWdaeaapeGaaGymaaWdaeaapeGaamODaaaacqaH7oaBaeaacqaH7o aBcqGH9aqpcqGHsislcaWG2baaaaa@4718@

Which: u ˜ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiqadwhapaGbaGaadaWgaaWcbaWdbiaad6gaa8aa beaaaaa@3DB0@ is a restricted variable δ u ˜ n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjqadwhapaGbaGaadaWgaaWcbaWdbiaa d6gaa8aabeaak8qacqGH9aqpcaaIWaaaaa@412F@ and δ u n+1 δ u n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacqaH0oazcaWG1bWdamaaBaaa leaapeGaamOBaiabgUcaRiaaigdaa8aabeaaaOqaa8qacqaH0oazca WG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaaaak8qacqGH9aqpcaaI Waaaaa@46F2@ using the value of λ=v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSjabg2da9iabgkHiTiaadAhaaaa@3FFC@ , will result in:

u n+1 ( x,v )= u n ( x,v )vs{ u n t 2 u n x 2 + u n u n x } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaai aawIcacaGLPaaacqGH9aqpcaWG1bWdamaaBaaaleaapeGaamOBaaWd aeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaaiaawIcaca GLPaaacqGHsislcaWG2bGaam4Camaacmaapaqaa8qadaWcaaWdaeaa peGaeyOaIyRaamyDa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOqaa8 qacqGHciITcaWG0baaaiabgkHiTmaalaaapaqaa8qacqGHciITpaWa aWbaaSqabeaapeGaaGOmaaaakiaadwhapaWaaSbaaSqaa8qacaWGUb aapaqabaaakeaapeGaeyOaIyRaamiEa8aadaahaaWcbeqaa8qacaaI YaaaaaaakiabgUcaRiaadwhapaWaaSbaaSqaa8qacaWGUbaapaqaba GcpeWaaSaaa8aabaWdbiabgkGi2kaadwhapaWaaSbaaSqaa8qacaWG UbaapaqabaaakeaapeGaeyOaIyRaamiEaaaaaiaawUhacaGL9baaaa a@69EA@   (12)

Taking the inverse Sawi Ttransform of equation (12):

u n+1 ( x,t )= u n ( x,t ) s 1 { v s{ 2 u n x 2 + u n u n x } } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadshaai aawIcacaGLPaaacqGH9aqpcaWG1bWdamaaBaaaleaapeGaamOBaaWd aeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcaca GLPaaacqGHsislcaWGZbWdamaaCaaaleqabaWdbiabgkHiTiaaigda aaGcdaGadaWdaeaapeGaamODaiaacckacaWGZbWaaiWaa8aabaWdbi abgkHiTmaalaaapaqaa8qacqGHciITpaWaaWbaaSqabeaapeGaaGOm aaaakiaadwhapaWaaSbaaSqaa8qacaWGUbaapaqabaaakeaapeGaey OaIyRaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRiaa dwhapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeWaaSaaa8aabaWdbi abgkGi2kaadwhapaWaaSbaaSqaa8qacaWGUbaapaqabaaakeaapeGa eyOaIyRaamiEaaaaaiaawUhacaGL9baaaiaawUhacaGL9baaaaa@69FB@

Applying He’s polynomial formula, yields:

u 0 +p u 1 +..= u n p s 1 { vs{ ( 2 u 0 x 2 + u 0 u 0 x )+p( 2 u 1 x 2 + u 1 u 0 x + u 0 u 1 x )+. } } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaey4kaSIaamiCaiaadwhapaWaaSbaaSqaa8qacaaIXaaapaqaba GcpeGaey4kaSIaaiOlaiaac6cacqGH9aqpcaWG1bWdamaaBaaaleaa peGaamOBaaWdaeqaaOWdbiabgkHiTiaadchacaWGZbWdamaaCaaale qabaWdbiabgkHiTiaaigdaaaGcdaGadaWdaeaapeGaamODaiaadoha daGadaWdaeaapeWaaeWaa8aabaWdbiabgkHiTmaalaaapaqaa8qacq GHciITpaWaaWbaaSqabeaapeGaaGOmaaaakiaadwhapaWaaSbaaSqa a8qacaaIWaaapaqabaaakeaapeGaeyOaIyRaamiEa8aadaahaaWcbe qaa8qacaaIYaaaaaaakiabgUcaRiaadwhapaWaaSbaaSqaa8qacaaI WaaapaqabaGcpeWaaSaaa8aabaWdbiabgkGi2kaadwhapaWaaSbaaS qaa8qacaaIWaaapaqabaaakeaapeGaeyOaIyRaamiEaaaaaiaawIca caGLPaaacqGHRaWkcaWGWbWaaeWaa8aabaWdbiabgkHiTmaalaaapa qaa8qacqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaakiaadwhapaWa aSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaeyOaIyRaamiEa8aada ahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRiaadwhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeWaaSaaa8aabaWdbiabgkGi2kaadwhapa WaaSbaaSqaa8qacaaIWaaapaqabaaakeaapeGaeyOaIyRaamiEaaaa cqGHRaWkcaWG1bWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaala aapaqaa8qacqGHciITcaWG1bWdamaaBaaaleaapeGaaGymaaWdaeqa aaGcbaWdbiabgkGi2kaadIhaaaaacaGLOaGaayzkaaGaey4kaSIaey OjGWRaaiOlaaGaay5Eaiaaw2haaaGaay5Eaiaaw2haaaaa@88C6@

Equating highest power of p will result in:

u 0 =1 2 x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyypa0JaaGymaiabgkHiTmaalaaapaqaa8qacaaIYaaapaqaa8 qacaWG4baaaaaa@4237@

u 1 = s 1 { vs{ ( 2 u 0 x 2 + u 0 u 0 x ) } }= 2 x 2 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyypa0JaeyOeI0Iaam4Ca8aadaahaaWcbeqaa8qacqGHsislca aIXaaaaOWaaiWaa8aabaWdbiaadAhacaWGZbWaaiWaa8aabaWdbmaa bmaapaqaa8qacqGHsisldaWcaaWdaeaapeGaeyOaIy7damaaCaaale qabaWdbiaaikdaaaGccaWG1bWdamaaBaaaleaapeGaaGimaaWdaeqa aaGcbaWdbiabgkGi2kaadIhapaWaaWbaaSqabeaapeGaaGOmaaaaaa GccqGHRaWkcaWG1bWdamaaBaaaleaapeGaaGimaaWdaeqaaOWdbmaa laaapaqaa8qacqGHciITcaWG1bWdamaaBaaaleaapeGaaGimaaWdae qaaaGcbaWdbiabgkGi2kaadIhaaaaacaGLOaGaayzkaaaacaGL7bGa ayzFaaaacaGL7bGaayzFaaGaeyypa0JaeyOeI0YaaSaaa8aabaWdbi aaikdaa8aabaWdbiaadIhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGc caWG0baaaa@6307@

u 2 = s 1 { vs{ ( 2 u 1 x 2 + u 1 u 0 x + u 0 u 1 x ) } }= 2 x 3 t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaeyypa0JaeyOeI0Iaam4Ca8aadaahaaWcbeqaa8qacqGHsislca aIXaaaaOWaaiWaa8aabaWdbiaadAhacaWGZbWaaiWaa8aabaWdbmaa bmaapaqaa8qacqGHsisldaWcaaWdaeaapeGaeyOaIy7damaaCaaale qabaWdbiaaikdaaaGccaWG1bWdamaaBaaaleaapeGaaGymaaWdaeqa aaGcbaWdbiabgkGi2kaadIhapaWaaWbaaSqabeaapeGaaGOmaaaaaa GccqGHRaWkcaWG1bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbmaa laaapaqaa8qacqGHciITcaWG1bWdamaaBaaaleaapeGaaGimaaWdae qaaaGcbaWdbiabgkGi2kaadIhaaaGaey4kaSIaamyDa8aadaWgaaWc baWdbiaaicdaa8aabeaak8qadaWcaaWdaeaapeGaeyOaIyRaamyDa8 aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacqGHciITcaWG4baa aaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaGaay5Eaiaaw2haaiabg2 da9iabgkHiTmaalaaapaqaa8qacaaIYaaapaqaa8qacaWG4bWdamaa CaaaleqabaWdbiaaiodaaaaaaOGaamiDa8aadaahaaWcbeqaa8qaca aIYaaaaaaa@6D3E@

Hence the series solution can expressed as:

u( x,t )= u 0 + u 1 +=1 2 x 2 x 3 t 2 =1 2 xt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhadaqadaWdaeaapeGaamiEaiaacYcacaWG 0baacaGLOaGaayzkaaGaeyypa0JaamyDa8aadaWgaaWcbaWdbiaaic daa8aabeaak8qacqGHRaWkcaWG1bWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabgUcaRiabgAci8kabg2da9iaaigdacqGHsisldaWcaa WdaeaapeGaaGOmaaWdaeaapeGaamiEaaaacqGHsisldaWcaaWdaeaa peGaaGOmaaWdaeaapeGaamiEa8aadaahaaWcbeqaa8qacaaIZaaaaa aakiaadshapaWaaWbaaSqabeaapeGaaGOmaaaakiabgkHiTiabgAci 8kabg2da9iaaigdacqGHsisldaWcaaWdaeaapeGaaGOmaaWdaeaape GaamiEaiabgkHiTiaadshaaaaaaa@5D28@

Consider the following Telegraph’s equation:

u xx = 1 3 u tt  + 4 3 u t +u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWG4bGaamiEaaWd aeqaaOWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaaIZa aaaiaadwhapaWaaSbaaSqaa8qacaWG0bGaamiDaiaacckaa8aabeaa k8qacqGHRaWkdaWcaaWdaeaapeGaaGinaaWdaeaapeGaaG4maaaaca WG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabgUcaRiaadwha aaa@4D00@   (13)

With initial conditions:

u( x,0 )= e x +1        u t ( x,0 )=3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhadaqadaWdaeaapeGaamiEaiaacYcacaaI WaaacaGLOaGaayzkaaGaeyypa0Jaamyza8aadaahaaWcbeqaa8qaca WG4baaaOGaey4kaSIaaGymaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaWG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaO Wdbmaabmaapaqaa8qacaWG4bGaaiilaiaaicdaaiaawIcacaGLPaaa cqGH9aqpcqGHsislcaaIZaaaaa@5665@   (14)

and boundary conditions:

u( 0,t )= e 3t +1        u x ( 0,t )=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhadaqadaWdaeaapeGaaGimaiaacYcacaWG 0baacaGLOaGaayzkaaGaeyypa0Jaamyza8aadaahaaWcbeqaa8qacq GHsislcaaIZaGaamiDaaaakiabgUcaRiaaigdacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaamyDa8aadaWgaaWcbaWdbi aadIhaa8aabeaak8qadaqadaWdaeaapeGaaGimaiaacYcacaWG0baa caGLOaGaayzkaaGaeyypa0JaaGymaaaa@5718@   (15)

Taking the Sawi Transform of equation (13):

s{ u xx + 1 3 u tt  + 4 3 u t +u }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGaeyOeI0IaamyDa8aa daWgaaWcbaWdbiaadIhacaWG4baapaqabaGcpeGaey4kaSYaaSaaa8 aabaWdbiaaigdaa8aabaWdbiaaiodaaaGaamyDa8aadaWgaaWcbaWd biaadshacaWG0bGaaiiOaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8 qacaaI0aaapaqaa8qacaaIZaaaaiaadwhapaWaaSbaaSqaa8qacaWG 0baapaqabaGcpeGaey4kaSIaamyDaaGaay5Eaiaaw2haaiabg2da9i aaicdaaaa@52D1@   (16)

Multiplying the equation (16)with λ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSnaabmaapaqaa8qacaWG2baacaGLOaGa ayzkaaaaaa@3FB1@ :

λ( v )s{ u xx + 1 3 u tt  + 4 3 u t +u }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSnaabmaapaqaa8qacaWG2baacaGLOaGa ayzkaaGaam4Camaacmaapaqaa8qacqGHsislcaWG1bWdamaaBaaale aapeGaamiEaiaadIhaa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGa aGymaaWdaeaapeGaaG4maaaacaWG1bWdamaaBaaaleaapeGaamiDai aadshacaGGGcaapaqabaGcpeGaey4kaSYaaSaaa8aabaWdbiaaisda a8aabaWdbiaaiodaaaGaamyDa8aadaWgaaWcbaWdbiaadshaa8aabe aak8qacqGHRaWkcaWG1baacaGL7bGaayzFaaGaeyypa0JaaGimaaaa @5728@   (17)

The recurrence relation takes the form:

u n+1 ( x,v )= u n ( x,v )+λ( v )s[ 1 3 2 u n t 2 2 u n x 2 + u n + 4 3 u n t ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaai aawIcacaGLPaaacqGH9aqpcaWG1bWdamaaBaaaleaapeGaamOBaaWd aeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaaiaawIcaca GLPaaacqGHRaWkcqaH7oaBdaqadaWdaeaapeGaamODaaGaayjkaiaa wMcaaiaadohadaWadaWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aaba WdbiaaiodaaaWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qa caaIYaaaaOGaamyDa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOqaa8 qacqGHciITcaWG0bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaeyOe I0YaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaO GaamyDa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOqaa8qacqGHciIT caWG4bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSIaamyDa8 aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacqGHRaWkdaWcaaWdaeaa peGaaGinaaWdaeaapeGaaG4maaaadaWcaaWdaeaapeGaeyOaIyRaam yDa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOqaa8qacqGHciITcaWG 0baaaaGaay5waiaaw2faaaaa@738D@   (18)

Taking the variation of equation (18):

δ u n+1 =δ u n +λ( v )δs[ 1 3 2 u n t 2 2 u n x 2 + u n + 4 3 u n t ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaadwhapaWaaSbaaSqaa8qacaWGUbGa ey4kaSIaaGymaaWdaeqaaOWdbiabg2da9iabes7aKjaadwhapaWaaS baaSqaa8qacaWGUbaapaqabaGcpeGaey4kaSIaeq4UdW2aaeWaa8aa baWdbiaadAhaaiaawIcacaGLPaaacqaH0oazcaWGZbWaamWaa8aaba Wdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaaIZaaaamaalaaapaqa a8qacqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaakiaadwhapaWaaS baaSqaa8qacaWGUbaapaqabaaakeaapeGaeyOaIyRaamiDa8aadaah aaWcbeqaa8qacaaIYaaaaaaakiabgkHiTmaalaaapaqaa8qacqGHci ITpaWaaWbaaSqabeaapeGaaGOmaaaakiaadwhapaWaaSbaaSqaa8qa caWGUbaapaqabaaakeaapeGaeyOaIyRaamiEa8aadaahaaWcbeqaa8 qacaaIYaaaaaaakiabgUcaRiaadwhapaWaaSbaaSqaa8qacaWGUbaa paqabaGcpeGaey4kaSYaaSaaa8aabaWdbiaaisdaa8aabaWdbiaaio daaaWaaSaaa8aabaWdbiabgkGi2kaadwhapaWaaSbaaSqaa8qacaWG UbaapaqabaaakeaapeGaeyOaIyRaamiDaaaaaiaawUfacaGLDbaaaa a@6FDC@

δ u n+1 =δ u n + λδ 3 { ( 1 v 2   u n ( x,v ) 1 v 2 u ˜ ' n ( x,0 ) ` 1 v 3 u ˜ n ( x,0 ) ) }+λδs{ 2 u ˜ n x 2 + u ˜ n + 4 3 u ˜ n t } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaadwhapaWaaSbaaSqaa8qacaWGUbGa ey4kaSIaaGymaaWdaeqaaOWdbiabg2da9iabes7aKjaadwhapaWaaS baaSqaa8qacaWGUbaapaqabaGcpeGaey4kaSYaaSaaa8aabaWdbiab eU7aSjabes7aKbWdaeaapeGaaG4maaaadaGadaWdaeaapeWaaeWaa8 aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG2bWdamaaCaaa leqabaWdbiaaikdaaaaaaOGaaiiOaiaadwhapaWaaSbaaSqaa8qaca WGUbaapaqabaGcpeWaaeWaa8aabaWdbiaadIhacaGGSaGaamODaaGa ayjkaiaawMcaaiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qaca WG2bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGabmyDa8aagaaca8qa caGGNaWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbmaabmaapaqaa8 qacaWG4bGaaiilaiaaicdaaiaawIcacaGLPaaapaWaaWbaaSqabeaa peGaaiiyaaaakiabgkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qaca WG2bWdamaaCaaaleqabaWdbiaaiodaaaaaaOGabmyDa8aagaacamaa BaaaleaapeGaamOBaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaai ilaiaaicdaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL 9baacqGHRaWkcqaH7oaBcqaH0oazcaqGZbWaaiWaa8aabaWdbiabgk HiTmaalaaapaqaa8qacqGHciITpaWaaWbaaSqabeaapeGaaGOmaaaa kiqadwhapaGbaGaadaWgaaWcbaWdbiaad6gaa8aabeaaaOqaa8qacq GHciITcaWG4bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSIa bmyDa8aagaacamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabgUcaRm aalaaapaqaa8qacaaI0aaapaqaa8qacaaIZaaaamaalaaapaqaa8qa cqGHciITceWG1bWdayaaiaWaaSbaaSqaa8qacaWGUbaapaqabaaake aapeGaeyOaIyRaamiDaaaaaiaawUhacaGL9baaaaa@8E95@

δ u n+1 =δ u n +λ 1 3 v 2 δ u n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjaadwhapaWaaSbaaSqaa8qacaWGUbGa ey4kaSIaaGymaaWdaeqaaOWdbiabg2da9iabes7aKjaadwhapaWaaS baaSqaa8qacaWGUbaapaqabaGcpeGaey4kaSIaeq4UdW2aaSaaa8aa baWdbiaaigdaa8aabaWdbiaaiodacaWG2bWdamaaCaaaleqabaWdbi aaikdaaaaaaOGaeqiTdqMaamyDa8aadaWgaaWcbaWdbiaad6gaa8aa beaaaaa@505E@

In turn gives the value of becomes as follows:

0=1+λ 1 3 v 2 λ=3 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaaGimaiabg2da9iaaigdacqGHRaWkcqaH 7oaBdaWcaaWdaeaapeGaaGymaaWdaeaapeGaaG4maiaadAhapaWaaW baaSqabeaapeGaaGOmaaaaaaaakeaacqaH7oaBcqGH9aqpcqGHsisl caaIZaGaamODa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaa@4AAC@

Which: u ˜ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiqadwhapaGbaGaadaWgaaWcbaWdbiaad6gaa8aa beaaaaa@3DB0@ is a restricted variable δ u ˜ n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjqadwhapaGbaGaadaWgaaWcbaWdbiaa d6gaa8aabeaak8qacqGH9aqpcaaIWaaaaa@412F@ and δ u n+1 δ u n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacqaH0oazcaWG1bWdamaaBaaa leaapeGaamOBaiabgUcaRiaaigdaa8aabeaaaOqaa8qacqaH0oazca WG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaaaak8qacqGH9aqpcaaI Waaaaa@46F2@ using the value of λ( v )=3 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSnaabmaapaqaa8qacaWG2baacaGLOaGa ayzkaaGaeyypa0JaeyOeI0IaaG4maiaadAhapaWaaWbaaSqabeaape GaaGOmaaaaaaa@4464@ in equation (18),will result in:

u n+1 ( x,v )= u n ( x,v )3 v 2 s[ 1 3 2 u n t 2 2 u n x 2 + u n + 4 3 u n t ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaai aawIcacaGLPaaacqGH9aqpcaWG1bWdamaaBaaaleaapeGaamOBaaWd aeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadAhaaiaawIcaca GLPaaacqGHsislcaaIZaGaamODa8aadaahaaWcbeqaa8qacaaIYaaa aOGaam4Camaadmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaape GaaG4maaaadaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaa ikdaaaGccaWG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcbaWdbi abgkGi2kaadshapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccqGHsisl daWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikdaaaGcca WG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcbaWdbiabgkGi2kaa dIhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccqGHRaWkcaWG1bWdam aaBaaaleaapeGaamOBaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qa caaI0aaapaqaa8qacaaIZaaaamaalaaapaqaa8qacqGHciITcaWG1b WdamaaBaaaleaapeGaamOBaaWdaeqaaaGcbaWdbiabgkGi2kaadsha aaaacaGLBbGaayzxaaaaaa@720B@   (19)

Taking the inverse Sawi Transform of equation (19):

u n+1 ( x,t )= u n ( x,t ) s 1 [3 v 2 s[ 2 u n x 2 + u n + 4 3 u n t ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadshaai aawIcacaGLPaaacqGH9aqpcaWG1bWdamaaBaaaleaapeGaamOBaaWd aeqaaOWdbmaabmaapaqaa8qacaWG4bGaaiilaiaadshaaiaawIcaca GLPaaacqGHsislcaWGZbWdamaaCaaaleqabaWdbiabgkHiTiaaigda aaGccaGGBbGaaG4maiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaaki aadohadaWadaWdaeaapeGaeyOeI0YaaSaaa8aabaWdbiabgkGi2+aa daahaaWcbeqaa8qacaaIYaaaaOGaamyDa8aadaWgaaWcbaWdbiaad6 gaa8aabeaaaOqaa8qacqGHciITcaWG4bWdamaaCaaaleqabaWdbiaa ikdaaaaaaOGaey4kaSIaamyDa8aadaWgaaWcbaWdbiaad6gaa8aabe aak8qacqGHRaWkdaWcaaWdaeaapeGaaGinaaWdaeaapeGaaG4maaaa daWcaaWdaeaapeGaeyOaIyRaamyDa8aadaWgaaWcbaWdbiaad6gaa8 aabeaaaOqaa8qacqGHciITcaWG0baaaaGaay5waiaaw2faaaaa@6B9D@   (20)

Applying He’s polynomial formula, yields:

u 0 +p u 1 + p 2 u 2 +  = u n p s 1 {3 v 2 s{ ( 2 u 0 x 2 + u 0 + 4 3 u 0 t ) +p( 2 u 1 x 2 + u 1 + 4 3 u 1 t ) + p 2 ( 2 u 2 x 2 + u 2 + 4 3 u 2 t )+ } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamyDa8aadaWgaaWcbaWdbiaaicdaa8aa beaak8qacqGHRaWkcaWGWbGaamyDa8aadaWgaaWcbaWdbiaaigdaa8 aabeaak8qacqGHRaWkcaWGWbWdamaaCaaaleqabaWdbiaaikdaaaGc caWG1bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRiabgA ci8cqaaiaacckacqGH9aqpcaWG1bWdamaaBaaaleaapeGaamOBaaWd aeqaaOWdbiabgkHiTiaadchacaqGZbWdamaaCaaaleqabaWdbiabgk HiTiaaigdaaaGccaGG7bGaaG4maiaadAhapaWaaWbaaSqabeaapeGa aGOmaaaakiaabohadaGadaWdaqaabeqaa8qadaqadaWdaeaapeGaey OeI0YaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaa aOGaamyDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOqaa8qacqGHci ITcaWG4bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSIaamyD a8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWkdaWcaaWdae aapeGaaGinaaWdaeaapeGaaG4maaaadaWcaaWdaeaapeGaeyOaIyRa amyDa8aadaWgaaWcbaWdbiaaicdaa8aabeaaaOqaa8qacqGHciITca WG0baaaaGaayjkaiaawMcaaaqaaiabgUcaRiaadchadaqadaWdaeaa peGaeyOeI0YaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qaca aIYaaaaOGaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qa cqGHciITcaWG4bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaS IaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHRaWkdaWc aaWdaeaapeGaaGinaaWdaeaapeGaaG4maaaadaWcaaWdaeaapeGaey OaIyRaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacqGH ciITcaWG0baaaaGaayjkaiaawMcaaaqaaiabgUcaRiaadchapaWaaW baaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacqGHsisldaWcaaWd aeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikdaaaGccaWG1bWdam aaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiabgkGi2kaadIhapaWa aWbaaSqabeaapeGaaGOmaaaaaaGccqGHRaWkcaWG1bWdamaaBaaale aapeGaaGOmaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacaaI0aaa paqaa8qacaaIZaaaamaalaaapaqaa8qacqGHciITcaWG1bWdamaaBa aaleaapeGaaGOmaaWdaeqaaaGcbaWdbiabgkGi2kaadshaaaaacaGL OaGaayzkaaGaey4kaSIaeyOjGWlaaiaawUhacaGL9baaaaaa@A4BB@

Equating highest power of p will result in:

p 0 : u 0 = e x +13t p 1 : u 1 = s 1 { 3 v 2 s{ ( 2 u 0 x 2 + u 0 + 4 3 u 0 t ) } }= 9 t 2 2 + 3 t 3 2 p 2 : u 2 = s 1 { 3 v 2 s{ ( 2 u 1 x 2 + u 1 + 4 3 u 1 t ) } }=6 t 3 21 8 t 4 9 40 t 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamiCa8aadaahaaWcbeqaa8qacaaIWaaa aOGaaiOoaiaadwhapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaey ypa0Jaamyza8aadaahaaWcbeqaa8qacaWG4baaaOGaey4kaSIaaGym aiabgkHiTiaaiodacaWG0baabaGaamiCa8aadaahaaWcbeqaa8qaca aIXaaaaOGaaiOoaiaadwhapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaeyypa0JaeyOeI0Iaae4Ca8aadaahaaWcbeqaa8qacqGHsislca aIXaaaaOWaaiWaa8aabaWdbiaaiodacaWG2bWdamaaCaaaleqabaWd biaaikdaaaGccaqGZbWaaiWaa8aabaWdbmaabmaapaqaa8qacqGHsi sldaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaaikdaaaGc caWG1bWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcbaWdbiabgkGi2k aadIhapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccqGHRaWkcaWG1bWd amaaBaaaleaapeGaaGimaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8 qacaaI0aaapaqaa8qacaaIZaaaamaalaaapaqaa8qacqGHciITcaWG 1bWdamaaBaaaleaapeGaaGimaaWdaeqaaaGcbaWdbiabgkGi2kaads haaaaacaGLOaGaayzkaaaacaGL7bGaayzFaaaacaGL7bGaayzFaaGa eyypa0ZaaSaaa8aabaWdbiaaiMdacaWG0bWdamaaCaaaleqabaWdbi aaikdaaaaak8aabaWdbiaaikdaaaGaey4kaSYaaSaaa8aabaWdbiaa iodacaWG0bWdamaaCaaaleqabaWdbiaaiodaaaaak8aabaWdbiaaik daaaaabaGaamiCa8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiOoaiaa dwhapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaeyOeI0 Iaae4Ca8aadaahaaWcbeqaa8qacqGHsislcaaIXaaaaOWaaiWaa8aa baWdbiaaiodacaWG2bWdamaaCaaaleqabaWdbiaaikdaaaGccaqGZb WaaiWaa8aabaWdbmaabmaapaqaa8qacqGHsisldaWcaaWdaeaapeGa eyOaIy7damaaCaaaleqabaWdbiaaikdaaaGccaWG1bWdamaaBaaale aapeGaaGymaaWdaeqaaaGcbaWdbiabgkGi2kaadIhapaWaaWbaaSqa beaapeGaaGOmaaaaaaGccqGHRaWkcaWG1bWdamaaBaaaleaapeGaaG ymaaWdaeqaaOWdbiabgUcaRmaalaaapaqaa8qacaaI0aaapaqaa8qa caaIZaaaamaalaaapaqaa8qacqGHciITcaWG1bWdamaaBaaaleaape GaaGymaaWdaeqaaaGcbaWdbiabgkGi2kaadshaaaaacaGLOaGaayzk aaaacaGL7bGaayzFaaaacaGL7bGaayzFaaGaeyypa0JaeyOeI0IaaG OnaiaadshapaWaaWbaaSqabeaapeGaaG4maaaakiabgkHiTmaalaaa paqaa8qacaaIYaGaaGymaaWdaeaapeGaaGioaaaacaWG0bWdamaaCa aaleqabaWdbiaaisdaaaGccqGHsisldaWcaaWdaeaapeGaaGyoaaWd aeaapeGaaGinaiaaicdaaaGaamiDa8aadaahaaWcbeqaa8qacaaI1a aaaaaaaa@B2DD@

Hence the series solution can expressed as:

u( x,t )= u 0 + u 1 + u 2 += e x +13t+ 9 t 2 2 9 t 3 2 + 27 8 t 4 += e x + e 3t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhadaqadaWdaeaapeGaamiEaiaacYcacaWG 0baacaGLOaGaayzkaaGaeyypa0JaamyDa8aadaWgaaWcbaWdbiaaic daa8aabeaak8qacqGHRaWkcaWG1bWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabgUcaRiaadwhapaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaey4kaSIaeyOjGWRaeyypa0Jaamyza8aadaahaaWcbeqaa8qa caWG4baaaOGaey4kaSIaaGymaiabgkHiTiaaiodacaWG0bGaey4kaS YaaSaaa8aabaWdbiaaiMdacaWG0bWdamaaCaaaleqabaWdbiaaikda aaaak8aabaWdbiaaikdaaaGaeyOeI0YaaSaaa8aabaWdbiaaiMdaca WG0bWdamaaCaaaleqabaWdbiaaiodaaaaak8aabaWdbiaaikdaaaGa ey4kaSYaaSaaa8aabaWdbiaaikdacaaI3aaapaqaa8qacaaI4aaaai aadshapaWaaWbaaSqabeaapeGaaGinaaaakiabgUcaRiabgAci8kab g2da9iaadwgapaWaaWbaaSqabeaapeGaamiEaaaakiabgUcaRiaadw gapaWaaWbaaSqabeaapeGaeyOeI0IaaG4maiaadshaaaaaaa@6D44@

Consider the following Kelin-Gorden equation:

2 u t 2 +u+ 2 u x 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacqGHciITpaWaaWbaaSqabeaa peGaaGOmaaaakiaadwhaa8aabaWdbiabgkGi2kaabshapaWaaWbaaS qabeaapeGaaGOmaaaaaaGccqGHRaWkcaWG1bGaey4kaSYaaSaaa8aa baWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaOGaamyDaaWdae aapeGaeyOaIyRaaeiEa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiab g2da9iaaicdaaaa@4E3A@   (21)

With initial conditions:

u( x,0 )= e x +x u t ( x,0 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamyDamaabmaapaqaa8qacaWG4bGaaiil aiaaicdaaiaawIcacaGLPaaacqGH9aqpcaWGLbWdamaaCaaaleqaba WdbiabgkHiTiaadIhaaaGccqGHRaWkcaWG4baabaWaaSaaa8aabaWd biabgkGi2kaadwhaa8aabaWdbiabgkGi2kaadshaaaWaaeWaa8aaba WdbiaadIhacaGGSaGaaGimaaGaayjkaiaawMcaaiabg2da9iaaicda aaaa@5155@   (22)

Taking the Sawi Transform of equation (21):

S{ 2 u t 2 +u+ 2 u x 2   }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaabofadaGadaWdaeaapeWaaSaaa8aabaWdbiab gkGi2+aadaahaaWcbeqaa8qacaaIYaaaaOGaamyDaaWdaeaapeGaey OaIyRaaeiDa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRiaa dwhacqGHRaWkdaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbi aaikdaaaGccaWG1baapaqaa8qacqGHciITcaqG4bWdamaaCaaaleqa baWdbiaaikdaaaaaaOGaaiiOaaGaay5Eaiaaw2haaiabg2da9iaaic daaaa@5284@   (23)

Multiplying the equation (23) with   λ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBdaqadaWdaeaapeGaamODaaGaayjkaiaawMcaaaaa@3A6E@ :

λ( v ) s{ 2 u t 2 +u+ 2 u x 2   }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSnaabmaapaqaa8qacaWG2baacaGLOaGa ayzkaaGaaeiOaiaabohadaGadaWdaeaapeWaaSaaa8aabaWdbiabgk Gi2+aadaahaaWcbeqaa8qacaaIYaaaaOGaamyDaaWdaeaapeGaeyOa IyRaaeiDa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiabgUcaRiaadw hacqGHRaWkdaWcaaWdaeaapeGaeyOaIy7damaaCaaaleqabaWdbiaa ikdaaaGccaWG1baapaqaa8qacqGHciITcaqG4bWdamaaCaaaleqaba WdbiaaikdaaaaaaOGaaiiOaaGaay5Eaiaaw2haaiabg2da9iaaicda aaa@581E@   (24)

The recurrence relation takes the form:   

u n+1 = u n +λ s{ 2 u n t 2 + u n + 2 u n x 2   } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbiabg2da9iaadwhapaWaaSbaaSqaa8qacaWGUb aapaqabaGcpeGaey4kaSIaeq4UdWMaaeiOaiaabohadaGadaWdaeaa peWaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaO GaamyDa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOqaa8qacqGHciIT caqG0bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSIaamyDa8 aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacqGHRaWkdaWcaaWdaeaa peGaeyOaIy7damaaCaaaleqabaWdbiaaikdaaaGccaWG1bWdamaaBa aaleaapeGaamOBaaWdaeqaaaGcbaWdbiabgkGi2kaabIhapaWaaWba aSqabeaapeGaaGOmaaaaaaGccaGGGcaacaGL7bGaayzFaaaaaa@5FF9@   (25)

Taking the variation of equation (25):

δ u n+1 =δ u n +λδ{ ( 1 v 2 u n ( x,v ) 1 v 2 u n ( x,0 ) 1 v 3 u n ( x,0 ) ` ) }+λδs{ u ˜ n + 2 u ˜ n x 2 } δ u n+1 =δ u n +λ 1 v 2 δ u n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaeqiTdqMaamyDa8aadaWgaaWcbaWdbiaa d6gacqGHRaWkcaaIXaaapaqabaGcpeGaeyypa0JaeqiTdqMaamyDa8 aadaWgaaWcbaWdbiaad6gaa8aabeaak8qacqGHRaWkcqaH7oaBcqaH 0oazdaGadaWdaeaapeWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXa aapaqaa8qacaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaamyD a8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqadaWdaeaapeGaam iEaiaacYcacaWG2baacaGLOaGaayzkaaGaeyOeI0YaaSaaa8aabaWd biaaigdaa8aabaWdbiaadAhapaWaaWbaaSqabeaapeGaaGOmaaaaaa GccaWG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbmaabmaapaqa a8qacaWG4bGaaiilaiaaicdaaiaawIcacaGLPaaacqGHsisldaWcaa WdaeaapeGaaGymaaWdaeaapeGaamODa8aadaahaaWcbeqaa8qacaaI ZaaaaaaakiaadwhapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeWaae Waa8aabaWdbiaadIhacaGGSaGaaGimaaGaayjkaiaawMcaa8aadaah aaWcbeqaa8qacaGGGbaaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaa Gaey4kaSIaeq4UdWMaeqiTdqMaae4Camaacmaapaqaa8qaceWG1bWd ayaaiaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaey4kaSYaaSaaa8 aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaOGabmyDa8aa gaacamaaBaaaleaapeGaamOBaaWdaeqaaaGcbaWdbiabgkGi2kaabI hapaWaaWbaaSqabeaapeGaaGOmaaaaaaaakiaawUhacaGL9baaaeaa cqaH0oazcaWG1bWdamaaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8 aabeaak8qacqGH9aqpcqaH0oazcaWG1bWdamaaBaaaleaapeGaamOB aaWdaeqaaOWdbiabgUcaRiabeU7aSnaalaaapaqaa8qacaaIXaaapa qaa8qacaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaeqiTdqMa amyDa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaaaa@95CE@

in turn gives the value of λ becomes as follows:

0=1+λ 1 v 2 λ= v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaaGimaiabg2da9iaaigdacqGHRaWkcqaH 7oaBdaWcaaWdaeaapeGaaGymaaWdaeaapeGaamODa8aadaahaaWcbe qaa8qacaaIYaaaaaaaaOqaaiabeU7aSjabg2da9iabgkHiTiaadAha paWaaWbaaSqabeaapeGaaGOmaaaaaaaa@4932@

Which: u ˜ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiqadwhapaGbaGaadaWgaaWcbaWdbiaad6gaa8aa beaaaaa@3DB0@ is a restricted variable δ u ˜ n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjqadwhapaGbaGaadaWgaaWcbaWdbiaa d6gaa8aabeaak8qacqGH9aqpcaaIWaaaaa@412F@ and δ u n+1 δ u n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacqaH0oazcaWG1bWdamaaBaaa leaapeGaamOBaiabgUcaRiaaigdaa8aabeaaaOqaa8qacqaH0oazca WG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaaaak8qacqGH9aqpcaaI Waaaaa@46F2@ using the value of λ( v )= v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSnaabmaapaqaa8qacaWG2baacaGLOaGa ayzkaaGaeyypa0JaeyOeI0IaamODa8aadaahaaWcbeqaa8qacaaIYa aaaaaa@43A7@ , will result in:

u n+1 = u n v 2  s{     2 u n t 2 + u n + 2 u n x 2 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbiabg2da9iaadwhapaWaaSbaaSqaa8qacaWGUb aapaqabaGcpeGaeyOeI0IaamODa8aadaahaaWcbeqaa8qacaaIYaaa aOGaaeiOaiaabohadaGadaWdaeaapeGaaiiOaiaacckacaGGGcWaaS aaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaOGaamyD a8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOqaa8qacqGHciITcaqG0b WdamaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSIaamyDa8aadaWg aaWcbaWdbiaad6gaa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaey OaIy7damaaCaaaleqabaWdbiaaikdaaaGccaWG1bWdamaaBaaaleaa peGaamOBaaWdaeqaaaGcbaWdbiabgkGi2kaabIhapaWaaWbaaSqabe aapeGaaGOmaaaaaaaakiaawUhacaGL9baaaaa@62A5@   (26)

Taking the inverse of Sawi Transform of equation (26):

u n+1 = u n s 1 { v 2 s{     2 u n t 2 + u n + 2 u n x 2 } } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbiabg2da9iaadwhapaWaaSbaaSqaa8qacaWGUb aapaqabaGcpeGaeyOeI0Iaae4Ca8aadaahaaWcbeqaa8qacqGHsisl caaIXaaaaOWaaiWaa8aabaWdbiaadAhapaWaaWbaaSqabeaapeGaaG OmaaaakiaabohadaGadaWdaeaapeGaaiiOaiaacckacaGGGcWaaSaa a8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYaaaaOGaamyDa8 aadaWgaaWcbaWdbiaad6gaa8aabeaaaOqaa8qacqGHciITcaqG0bWd amaaCaaaleqabaWdbiaaikdaaaaaaOGaey4kaSIaamyDa8aadaWgaa WcbaWdbiaad6gaa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaeyOa Iy7damaaCaaaleqabaWdbiaaikdaaaGccaWG1bWdamaaBaaaleaape GaamOBaaWdaeqaaaGcbaWdbiabgkGi2kaabIhapaWaaWbaaSqabeaa peGaaGOmaaaaaaaakiaawUhacaGL9baaaiaawUhacaGL9baaaaa@66C6@

Applying He’s polynomial formula, yields:

u 0 +p u 1 + p 2 u 2 += u n p s 1 { v 2 s{  (    u 0 + 2 u 0 x 2 )+p( u 1 + 2 u 1 x 2 )+... } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaey4kaSIaamiCaiaadwhapaWaaSbaaSqaa8qacaaIXaaapaqaba GcpeGaey4kaSIaamiCa8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyD a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkcqGHMacVcq GH9aqpcaWG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabgkHi TiaadchacaqGZbWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGcca GG7bGaamODa8aadaahaaWcbeqaa8qacaaIYaaaaOGaae4Camaacmaa paqaa8qacaGGGcWaaeWaa8aabaWdbiaacckacaGGGcGaamyDa8aada WgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGa eyOaIy7damaaCaaaleqabaWdbiaaikdaaaGccaWG1bWdamaaBaaale aapeGaaGimaaWdaeqaaaGcbaWdbiabgkGi2kaabIhapaWaaWbaaSqa beaapeGaaGOmaaaaaaaakiaawIcacaGLPaaacqGHRaWkcaWGWbWaae Waa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGa ey4kaSYaaSaaa8aabaWdbiabgkGi2+aadaahaaWcbeqaa8qacaaIYa aaaOGaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8qacqGH ciITcaqG4bWdamaaCaaaleqabaWdbiaaikdaaaaaaaGccaGLOaGaay zkaaGaey4kaSIaaiOlaiaac6cacaGGUaaacaGL7bGaayzFaaaaaa@79B9@

Equating highest power of p will result in:

u 0 = e x +x u 1 =x t 2 2 u 2 =x 1 4! t 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamyDa8aadaWgaaWcbaWdbiaaicdaa8aa beaak8qacqGH9aqpcaWGLbWdamaaCaaaleqabaWdbiabgkHiTiaadI haaaGccqGHRaWkcaWG4baabaGaamyDa8aadaWgaaWcbaWdbiaaigda a8aabeaak8qacqGH9aqpcqGHsislcaWG4bWaaSaaa8aabaWdbiaads hapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaaGOmaaaaaeaa caWG1bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9iaadI hadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGinaiaacgcaaaGaamiD a8aadaahaaWcbeqaa8qacaaI0aaaaaaaaa@5463@

Hence the series solution can expressed as:

u( t )= u 0 + u 1 + u 2 + u 3 += e x +xx t 2 2 +x 1 4! t 4 = e x +xcos( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaiabg2da9iaadwhapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpe Gaey4kaSIaamyDa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH RaWkcaWG1bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRi aadwhapaWaaSbaaSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIaeyOj GWRaeyypa0Jaamyza8aadaahaaWcbeqaa8qacqGHsislcaWG4baaaO Gaey4kaSIaamiEaiabgkHiTiaadIhadaWcaaWdaeaapeGaamiDa8aa daahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qacaaIYaaaaiabgUcaRi aadIhadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGinaiaacgcaaaGa amiDa8aadaahaaWcbeqaa8qacaaI0aaaaOGaeyypa0Jaamyza8aada ahaaWcbeqaa8qacqGHsislcaWG4baaaOGaey4kaSIaamiEaiaadoga caWGVbGaam4Camaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@6AA1@

Consider Duffing oscillator with cubic nonlinear term:

u +u+ε u 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiqadwhapaGbayaapeGaey4kaSIaamyDaiabgUca Riabew7aLjaadwhapaWaaWbaaSqabeaapeGaaG4maaaakiabg2da9i aaicdaaaa@44B2@   (27)

With initial conditions:

u( 0 )=A       u ( 0 )=0 u +u+ε u 3 + ω 2 u ω 2 u=0 u + ω 2 u+g( u )=0  ( 28 )  ;g( u )=u+ε u 3 ω 2 u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamyDamaabmaapaqaa8qacaaIWaaacaGL OaGaayzkaaGaeyypa0JaamyqaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaiiOaiqadwhapaGbauaapeWaaeWaa8aabaWdbiaaicdaaiaa wIcacaGLPaaacqGH9aqpcaaIWaaabaGabmyDa8aagaGba8qacqGHRa WkcaWG1bGaey4kaSIaeqyTduMaamyDa8aadaahaaWcbeqaa8qacaaI ZaaaaOGaey4kaSIaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaGcca WG1bGaeyOeI0IaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaGccaWG 1bGaeyypa0JaaGimaaqaaiqadwhapaGbayaapeGaey4kaSIaeqyYdC 3damaaCaaaleqabaWdbiaaikdaaaGccaWG1bGaey4kaSIaam4zamaa bmaapaqaa8qacaWG1baacaGLOaGaayzkaaGaeyypa0JaaGimaiaacc kacaGGGcWaaeWaa8aabaWdbiaaikdacaaI4aaacaGLOaGaayzkaaGa aiiOaiaacckacaGG7aGaam4zamaabmaapaqaa8qacaWG1baacaGLOa GaayzkaaGaeyypa0JaamyDaiabgUcaRiabew7aLjaadwhapaWaaWba aSqabeaapeGaaG4maaaakiabgkHiTiabeM8a39aadaahaaWcbeqaa8 qacaaIYaaaaOGaamyDaaaaaa@82F2@   (28)

taking the Sawi Transform of equation (27):

s{ u + ω 2 u+g( u ) }=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadohadaGadaWdaeaapeGabmyDa8aagaGba8qa cqGHRaWkcqaHjpWDpaWaaWbaaSqabeaapeGaaGOmaaaakiaadwhacq GHRaWkcaWGNbWaaeWaa8aabaWdbiaadwhaaiaawIcacaGLPaaaaiaa wUhacaGL9baacqGH9aqpcaaIWaaaaa@4AB3@   (29)

Multiplying the equation (29) with λ( v ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBdaqadaWdaeaapeGaamODaaGaayjkaiaawMcaaaaa@3A6E@ result in:

λ( v )s{ u + ω 2 u+g( u ) }=0  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSnaabmaapaqaa8qacaWG2baacaGLOaGa ayzkaaGaam4Camaacmaapaqaa8qaceWG1bWdayaagaWdbiabgUcaRi abeM8a39aadaahaaWcbeqaa8qacaaIYaaaaOGaamyDaiabgUcaRiaa dEgadaqadaWdaeaapeGaamyDaaGaayjkaiaawMcaaaGaay5Eaiaaw2 haaiabg2da9iaaicdacaGGGcaaaa@502E@   (30)

The recurrence relation takes the form:

u n+1 ( v )= u n ( v )+λ S{ d 2 u n d t 2 + ω 2 u n +g( u ˜ n ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG2baacaGLOaGaayzkaa Gaeyypa0JaamyDa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqa daWdaeaapeGaamODaaGaayjkaiaawMcaaiabgUcaRiabeU7aSjaacc kacaWGtbWaaiWaa8aabaWdbmaalaaapaqaa8qacaWGKbWdamaaCaaa leqabaWdbiaaikdaaaGccaWG1bWdamaaBaaaleaapeGaamOBaaWdae qaaaGcbaWdbiaadsgacaWG0bWdamaaCaaaleqabaWdbiaaikdaaaaa aOGaey4kaSIaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaGccaWG1b WdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiabgUcaRiaadEgadaqa daWdaeaapeGabmyDa8aagaacamaaBaaaleaapeGaamOBaaWdaeqaaa GcpeGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@626E@   (31)

Taking the variation of equation (31):

δ u n+1 ( v )=δ u n ( v )+λ δ{ 1 v 2 u n 1 v 3 u ˜ n ( 0 ) 1 v 2 u n ˜ '( 0 )+ ω 2 u n }+sλδ{g( u ˜ n ) } δ u n+1 ( v )=δ u n ( v )+λ{ 1 v 2 + ω 2 }δ u n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaeqiTdqMaamyDa8aadaWgaaWcbaWdbiaa d6gacqGHRaWkcaaIXaaapaqabaGcpeWaaeWaa8aabaWdbiaadAhaai aawIcacaGLPaaacqGH9aqpcqaH0oazcaWG1bWdamaaBaaaleaapeGa amOBaaWdaeqaaOWdbmaabmaapaqaa8qacaWG2baacaGLOaGaayzkaa Gaey4kaSIaeq4UdWMaaiiOaiabes7aKnaacmaapaqaa8qadaWcaaWd aeaapeGaaGymaaWdaeaapeGaamODa8aadaahaaWcbeqaa8qacaaIYa aaaaaakiaadwhapaWaaSbaaSqaa8qacaWGUbaapaqabaGcpeGaeyOe I0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadAhapaWaaWbaaSqabe aapeGaaG4maaaaaaGcceWG1bWdayaaiaWaaSbaaSqaa8qacaWGUbaa paqabaGcpeWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaacqGHsi sldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamODa8aadaahaaWcbeqa a8qacaaIYaaaaaaak8aadaaiaaqaa8qacaWG1bWdamaaBaaaleaape GaamOBaaWdaeqaaaGccaGLdmaapeGaai4jamaabmaapaqaa8qacaaI WaaacaGLOaGaayzkaaGaey4kaSIaeqyYdC3damaaCaaaleqabaWdbi aaikdaaaGccaWG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaOWdbiaa c2hacqGHRaWkcaWGZbGaeq4UdWMaeqiTdqMaai4EaiaadEgadaqada WdaeaapeGabmyDa8aagaacamaaBaaaleaapeGaamOBaaWdaeqaaaGc peGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiabes7aKjaadwhapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaOWdbmaabmaa paqaa8qacaWG2baacaGLOaGaayzkaaGaeyypa0JaeqiTdqMaamyDa8 aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqadaWdaeaapeGaamOD aaGaayjkaiaawMcaaiabgUcaRiabeU7aSnaacmaapaqaa8qadaWcaa WdaeaapeGaaGymaaWdaeaapeGaamODa8aadaahaaWcbeqaa8qacaaI YaaaaaaakiabgUcaRiabeM8a39aadaahaaWcbeqaa8qacaaIYaaaaa GccaGL7bGaayzFaaGaeqiTdqMaamyDa8aadaWgaaWcbaWdbiaad6ga a8aabeaaaaaa@9D9B@

In turn gives the value of λ becomes as follows:

λ= v 2 v 2 ω 2 +1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSjabg2da9iabgkHiTmaalaaapaqaa8qa caWG2bWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadAhapa WaaWbaaSqabeaapeGaaGOmaaaakiabeM8a39aadaahaaWcbeqaa8qa caaIYaaaaOGaey4kaSIaaGymaaaaaaa@47E5@

Notice that u ˜ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiqadwhapaGbaGaadaWgaaWcbaWdbiaad6gaa8aa beaaaaa@3DB0@ is a restricted variable δ u ˜ n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabes7aKjqadwhapaGbaGaadaWgaaWcbaWdbiaa d6gaa8aabeaak8qacqGH9aqpcaaIWaaaaa@412F@ and δ u n+1 δ u n =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbmaalaaapaqaa8qacqaH0oazcaWG1bWdamaaBaaa leaapeGaamOBaiabgUcaRiaaigdaa8aabeaaaOqaa8qacqaH0oazca WG1bWdamaaBaaaleaapeGaamOBaaWdaeqaaaaak8qacqGH9aqpcaaI Waaaaa@46F2@ using the value of λ= v 2 v 2 ω 2 +1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiabeU7aSjabg2da9iabgkHiTmaalaaapaqaa8qa caWG2bWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadAhapa WaaWbaaSqabeaapeGaaGOmaaaakiabeM8a39aadaahaaWcbeqaa8qa caaIYaaaaOGaey4kaSIaaGymaaaaaaa@47E5@ in equation (31):

u n+1 ( v )= u n ( v ) v 2 v 2 ω 2 +1  s{ u +u+ε u 3 } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG2baacaGLOaGaayzkaa Gaeyypa0JaamyDa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqa daWdaeaapeGaamODaaGaayjkaiaawMcaaiabgkHiTmaalaaapaqaa8 qacaWG2bWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWdbiaadAha paWaaWbaaSqabeaapeGaaGOmaaaakiabeM8a39aadaahaaWcbeqaa8 qacaaIYaaaaOGaey4kaSIaaGymaaaacaGGGcGaam4Camaacmaapaqa a8qaceWG1bWdayaagaWdbiabgUcaRiaadwhacqGHRaWkcqaH1oqzca WG1bWdamaaCaaaleqabaWdbiaaiodaaaaakiaawUhacaGL9baaaaa@5DDA@   (32)

Taking the inverse Sawi Transform of equation (32):

u n+1 ( t )= u n ( t ) s 1 { v 2 v 2 ω 2 +1  S{ u +u+ε u 3 } } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaWGUbGaey4kaSIa aGymaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaa Gaeyypa0JaamyDa8aadaWgaaWcbaWdbiaad6gaa8aabeaak8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaiabgkHiTiaadohapaWaaW baaSqabeaapeGaeyOeI0IaaGymaaaakmaacmaapaqaa8qadaWcaaWd aeaapeGaamODa8aadaahaaWcbeqaa8qacaaIYaaaaaGcpaqaa8qaca WG2bWdamaaCaaaleqabaWdbiaaikdaaaGccqaHjpWDpaWaaWbaaSqa beaapeGaaGOmaaaakiabgUcaRiaaigdaaaGaaiiOaiaadofadaGada WdaeaapeGabmyDa8aagaGba8qacqGHRaWkcaWG1bGaey4kaSIaeqyT duMaamyDa8aadaahaaWcbeqaa8qacaaIZaaaaaGccaGL7bGaayzFaa aacaGL7bGaayzFaaaaaa@62FC@

Applying He’s polynomial formula, yields:

u 0 +p u 1 +..= u n ( t )p{ s 1 { v 2 v 2 ω 2 +1  s{ ( u 0 '' + u 0 +ε u 0 3 ) +p( u 1 '' + u 1 +3ε u 0 2 u 1 )+ } } } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaake aaqaaaaaaaaaWdbiaadwhapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaey4kaSIaamiCaiaadwhapaWaaSbaaSqaa8qacaaIXaaapaqaba GcpeGaey4kaSIaaiOlaiaac6cacqGH9aqpcaWG1bWdamaaBaaaleaa peGaamOBaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaay zkaaGaeyOeI0IaamiCamaacmaapaqaa8qacaWGZbWdamaaCaaaleqa baWdbiabgkHiTiaaigdaaaGcdaGadaWdaeaapeWaaSaaa8aabaWdbi aadAhapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaamODa8aa daahaaWcbeqaa8qacaaIYaaaaOGaeqyYdC3damaaCaaaleqabaWdbi aaikdaaaGccqGHRaWkcaaIXaaaaiaacckacaWGZbWaaiWaa8aaeaqa beaapeWaaeWaa8aabaWdbiaadwhapaWaa0baaSqaa8qacaaIWaaapa qaa8qacaGGNaGaai4jaaaakiabgUcaRiaadwhapaWaaSbaaSqaa8qa caaIWaaapaqabaGcpeGaey4kaSIaeqyTduMaamyDa8aadaqhaaWcba Wdbiaaicdaa8aabaWdbiaaiodaaaaakiaawIcacaGLPaaaaeaacqGH RaWkcaWGWbWaaeWaa8aabaWdbiaadwhapaWaa0baaSqaa8qacaaIXa aapaqaa8qacaGGNaGaai4jaaaakiabgUcaRiaadwhapaWaaSbaaSqa a8qacaaIXaaapaqabaGcpeGaey4kaSIaaG4maiabew7aLjaadwhapa Waa0baaSqaa8qacaaIWaaapaqaa8qacaaIYaaaaOGaamyDa8aadaWg aaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkcq GHMacVaaGaay5Eaiaaw2haaaGaay5Eaiaaw2haaaGaay5Eaiaaw2ha aaaa@830C@

Equating highest power of p will result in:

u 0 =A cos( ωt ) u 1 = 1 8 1 ω 2 (cos( ωt )ε A 3 ( 1+ cos 2 ( ωt ) )+ A 8ω ( 4+4 ω 2 3ε A 2 )tsin( ωt ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeGaamyDa8aadaWgaaWcbaWdbiaaicdaa8aa beaak8qacqGH9aqpcaWGbbGaaiiOaiaabogacaqGVbGaae4Camaabm aapaqaa8qacqaHjpWDcaWG0baacaGLOaGaayzkaaaabaGaamyDa8aa daWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpdaWcaaWdaeaape GaaGymaaWdaeaapeGaaGioaaaadaWcaaWdaeaapeGaaGymaaWdaeaa peGaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaaaaOGaaiikaiGaco gacaGGVbGaai4Camaabmaapaqaa8qacqaHjpWDcaWG0baacaGLOaGa ayzkaaGaeqyTduMaamyqa8aadaahaaWcbeqaa8qacaaIZaaaaOWaae Waa8aabaWdbiabgkHiTiaaigdacqGHRaWkciGGJbGaai4Baiaacoha paWaaWbaaSqabeaapeGaaGOmaaaakmaabmaapaqaa8qacqaHjpWDca WG0baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaSYaaSaaa8aa baWdbiaadgeaa8aabaWdbiaaiIdacqaHjpWDaaWaaeWaa8aabaWdbi abgkHiTiaaisdacqGHRaWkcaaI0aGaeqyYdC3damaaCaaaleqabaWd biaaikdaaaGccqGHsislcaaIZaGaeqyTduMaamyqa8aadaahaaWcbe qaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaamiDaiGacohacaGGPbGa aiOBamaabmaapaqaa8qacqaHjpWDcaWG0baacaGLOaGaayzkaaaaaa a@8248@   (33)

No secular-term in (33) requires that:

A 8ω ( 4+4 ω 2 3ε A 2 )=0 4+4 ω 2 3ε A 2 =0 ω= 1+ 3 4 ε A 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D aebbfv3ySLgzGueE0jxyaibaiKI8Vzc9v8qqaqFD0xXdHaVhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakq aabeqaaabaaaaaaaaapeWaaSaaa8aabaWdbiaadgeaa8aabaWdbiaa iIdacqaHjpWDaaWaaeWaa8aabaWdbiabgkHiTiaaisdacqGHRaWkca aI0aGaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaI ZaGaeqyTduMaamyqa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGLOa GaayzkaaGaeyypa0JaaGimaaqaaiabgkHiTiaaisdacqGHRaWkcaaI 0aGaeqyYdC3damaaCaaaleqabaWdbiaaikdaaaGccqGHsislcaaIZa GaeqyTduMaamyqa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0Ja aGimaaqaaiabeM8a3jabg2da9maakaaapaqaa8qacaaIXaGaey4kaS YaaSaaa8aabaWdbiaaiodaa8aabaWdbiaaisdaaaGaeqyTduMaamyq a8aadaahaaWcbeqaa8qacaaIYaaaaaqabaaaaaa@64B0@

Conclusion

For most of the applications which have been studied in literature, the present study has provided more precise solutions with fewer iteration, compared to other methods. For future research work, it is recommended to combines He-Sawi method with other integral transform such as: Foks, Abood, sumdu and Elzaki.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Bateman. Some recent researches on the motion of fluids. Mon Wea Rev. 1915;(43):163–170.
  2. Mahgoub MAM, Alshikh AA. An application of new transform “Mahgoub Transform” to partial differential equations. Mathematical Theory and Modeling. 2017;7(1):2017.
  3. Hradyesh Kumar Mishra, Atulya K. Nagar , He–Laplace Method for Linear and Nonlinear Partial Differential Equations . 2012.
  4. SalimaA Mohamed Zebir, Mohand M. Abdelrahim . Application of Homotopy Perturbation Method for SolvingBurgers Equations , IOSR Journal of Mathematics. 2021;17(1):42–47.
  5. Sarah Rabie, Bachir Nour Kharrat, Ghada Joujeh, et al. Development He Method by combination With Mohand Transform. Journal of Aleppo univ. Basic Science Series No163,2023.
  6. Muhammad Nadeem, Fengquan Li. He–Laplace method for nonlinear vibration systems and nonlinear wave equations, Journal of Low Frequency Noise, Vibration and Active Control 2019.
  7. M A Jafari, A Aminataei. Improved homotopy perturbation method. International Mathematical Forum. 2010;5(29-32):29–32.
  8. Durmaz S, Demirbag SA, Kaya MO. High order He’s energy balance method based on collocation method. Int JNonlinear Sci Numer Simul. 2010;11:1–5.
  9. Durmaz S, Kaya MO. High–order energy balance method to nonlinear oscillators. J Appl Math. 2012:518684.
  10. Khan Y, Mirzabeigy A. Improved accuracy of He’s energy balance method for analysis of conservative nonlinear oscillator. 2014.
  11. Mahgoub, Mohand M Abdelrahim. The new integral transform ''Sawi Transform. Advances in Theoretical and Applied Mathematics. 2019;14(1):81–87.
  12. Gyanvendra Pratap Singh, Sudhanshu Aggarwal. Sawi Transform for Population Growth and Decay Problems, International Journal of Latest Technology in Engineering, Management & Applied Science.
Creative Commons Attribution License

©2023 Rabie, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.