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Introduction
Burger’s equation was presented for the time by Bateman in 1915.1 

It is followed by Hradyesh kumar Mishra and Atulya K. Nagar and 
it is solved using He-laplace method in 2012,2 then it followed by 
Mahgoub, MAM and Al Shikhit’s solved using  Mahgoub transform 
in 2017,3 Mohand, Mohamed Zebir solved it via Mohand transform in 
2021,4 then it followed by Sarah Rabie, Bachir Nour Kharrat, Ghada 
Joujeh, Abd Alulkader Joukhadar, solved using He-Mohand method 
in 2023.5

In work6 Muhammad Nadeem and fengquanlil using He-laplace 
method to solve telegraph equation in2019, then it followed by Sarah 
Rabie, Bachir Nour Kharrat, Ghada Joujeh, Abd Alulkader Joukhadar, 
solved using He-Mohand method in 2023.5 In 20107 MAJafari and 
Aminataei followed Homotopy Perturbation method (HPM) to solve 
Kelin-Gorden equation,then in 20122 Hradyesh kumar Mishra and 
Atulya K. Nagar and it is solved using He-laplace method.

Duffing oscillator it followed by Durmaz S.Demibag SA Kayamo 
and it is solved using Energy Balance method in 2010,2012,8,9 then 
Khan and Mirzabeigy it is solved using Improved accuracy of He’ 
Balance method in 2014.10

Basic concepts
This section provides review some of the basic concepts, which 

needed for this paper:

A. Definition of Sawi transform

Sawi Transform of the function F(t); t>0 was proposed by 
Mahgoub,11 is given as:
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Where: ( s ) is Sawi Transform operator.

B. Some properties of Sawi transform12

1. linearity property of Sawi Transform:
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Table 1 Shows the Sawi of some elementary functions
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Table 2 Gives the Sawi Transform of some elementary functions

R(v)
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Analysis of the proposed combined method
In order to explain the proposed method let’s consider the following 

nonlinear functional equation:

( )( ) ( )( ) ( )L u x N u x g x+ =                                                        (2)

Where: 

L and N are linear and nonlinear operator respectively.

 g(x): is analytical function.

 taking the Sawi Transform of equation (2) and obtain:

( )( ) ( )( ) ( ){ } 0s L u x N u x g x+ - =                                                    (3)

Then multiplying the (3) equation with lag range multiplier, say 
( )vλ , we get:

( ) ( )( ) ( )( ) ( ){ } 0v s L u x N u x g xl + - =                                          (4)

Therefore, the recurrence relation becomes:

( ) ( ) ( ) ( )( ){ } ( )( ) ( ){ }{ }1 , ,n n n nu x v u x v v s L u x s N u x g xl+ = + + -

              (5)

Taking the variation of equation (5) results in:

( ) ( ) ( ) ( )( ){ } ( )( ) ( ){ }{ }1 , ,n n n nu x v u x v v s L u x s N u x g xd d l d+ = + + -           (6)

To identify the value of Lagrange multiplier ( )vλ   with the help 
of Sawi Transform, it is revealed that nu   is a restricted variable, i,e, 

0nud =  taking the inverse of Sawi Transform of equation (5) this 
results in:

( ) ( ) ( ) ( )( ){ } ( )( ) ( ){ }{ }{ }1
n 1 n n nu x, t u x, t së v s L u x s N u x g x-
+ = + + -              (7)

Test examples
The following section presents a descriptive examples of the 

proposed method.

Consider Burger’s equation:

t xx xu u uu= -                                                                    (8)

With initial condition of:
( ) 2,0 1u x

x
= -                                                                               (9)

taking the sawi transform of equation (8):

{ } 0t xx xs u u uu- + =                                                            (10)

Multiplying the equation (10) with ( )vl results in:

( ) { } 0t xx xv s u u uul - + =

The recurrence relation takes the form:
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 taking the variation of equation (11):
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Taking the inverse Sawi Ttransform of equation (12):
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Applying He’s polynomial formula, yields:
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Equating highest power of p will result in:
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Hence the series solution can expressed as:
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 Consider the following Telegraph’s equation:

 
1 4
3 3xx tt tu u u u= + +                                                                     (13)

With initial conditions:

( ) ( ),0 1       ,0 3x
tu x e u x= + =-                                                      (14)

and boundary conditions:

( ) ( )30, 1       0, 1t
xu t e u t-= + =                                                   (15)

Taking the Sawi Transform of equation (13):
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Multiplying the equation (16)with ( )vl :

( )  
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                                                 (17)

The recurrence relation takes the form:
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Taking the variation of equation (18):
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Taking the inverse Sawi Transform of equation (19):
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Applying He’s polynomial formula, yields:
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Hence the series solution can expressed as:
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 Consider the following Kelin-Gorden equation:
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With initial conditions:
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Taking the Sawi Transform of equation (21):
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Multiplying the equation (23) with  ( )vλ  :
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The recurrence relation takes the form:
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Taking the variation of equation (25):

( ) ( ) ( )
2

`
1 2 2 3 2

1 1 1, ,0 ,0 s
x

n
n n n n n n

uu u u x v u x u x u
v v v

d d ld ld+

ì üì ü ï ïæ öï ï ¶ï ï ï ï÷ç= + - - + +÷í ý í ýç ÷÷çï ï ï ïè ø ¶ï ïî þ ï ïî þ





1 2
1

n n nu u u
v

d d l d+ = +

in turn gives the value ofl becomes as follows:

2
10 1
v

l= +

2vl=-

Which: nu is a restricted variable 0nud = and 1 0n

n

u
u

d
d

+ = using the 

value of ( ) 2v vl =- ,will result in:
2 2

2
1 2 2 s    

t x
n n

n n n
u uu u v u+

ì üï ï¶ ¶ï ï= - + +í ýï ï¶ ¶ï ïî þ
                                                        (26)

Taking the inverse of Sawi Transform of equation (26):
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Consider Duffing oscillator with cubic nonlinear term:
3 0u u ue+ +¢ =¢                                                                            (27)

With initial conditions:

( ) ( )0       0 0u A u¢= =                                                                           (28)
3 2 2 0u u u u ue w w+ + + -¢ =¢

( ) ( ) ( )2 3 20  28   ;u u g u g u u u uw e w+ + = = + -¢¢

taking the Sawi Transform of equation (27):

( ){ }2 0s u u g uw+¢ + =¢                                                                         (29)

Multiplying the equation (29) with ( )vλ   result in:

( ) ( ){ }2 0 v s u u g ul w+ + =¢¢                                                                   (30)
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The recurrence relation takes the form:
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Taking the variation of equation (31):
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Taking the inverse Sawi Transform of equation (32):
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Applying He’s polynomial formula, yields:
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Equating highest power of p will result in:
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No secular-term in (33) requires that:
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Conclusion
For most of the applications which have been studied in literature, 

the present study has provided more precise solutions with fewer 
iteration, compared to other methods. For future research work, it 
is recommended to combines He-Sawi method with other integral 
transform such as: Foks, Abood, sumdu and Elzaki.
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