Submit manuscript...
Open Access Journal of
eISSN: 2641-9335

Mathematical and Theoretical Physics

Research Article Volume 1 Issue 3

Katugampola-type fractional differential equations with delay and impulses

M Janaki,1 K Kanagarajan,1 EM Elsayed2,3

1Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, India
2Department of Mathematics,King Abdulaziz University, Saudi Arabia
3Department of Mathematics, Mansoura University, Egypt

Correspondence: Elsayed EM, Department of Mathematics,Faculty of Science, Mansoura University, Mansoura 35516,Egypt

Received: February 03, 2018 | Published: May 1, 2018

Citation: Janaki M, Elsayed EM, Kanagarajan K. Katugampola-type fractional differential equations with delay and impulses. Open Acc J Math Theor Phy. 2018;1(3):73-77. DOI: 10.15406/oajmtp.2018.01.00012

Download PDF

Abstract

 Our aim in this note is to study the existence of solutions of a Katugampola-type fractional impulsive differential equation with delay. We use successive approximation method to show the existence of solutions. In the end, an example is given to verify the hypothetical results.

Keywords: katugampola fractional derivative, impulsive equations, time delay

Introduction

Because of its wide applicability in biology, medicine and in more and more fields, the theory of fractional differential equations(FDEs) has recently been attracting increasing interest, see for instance1‒8 and references therein. Impulsive differential equations have played an important role in modelling phenomena, especially in describing dynamics of populations subject to abrupt changes as well as other phenomena such as harvesting, diseases, and so forth, some authors have used impulsive differential systems to describe the model since the last century. For the basic theory on impulsive differential equations, the reader can refer to the books9‒12 and the papers.1,13‒16 In addition, some modelling is done via impulsive functional differential equations when these processes involve hereditary phenomena such as biological and social macrosystems. For fractional functional differential equations, the initial value problem, for a class of nonlinear fractional functional differential equations is discussed. For more details, see.17‒24 Motivated by the papers,25,26 the aim of this note is to discuss the existence and uniqueness of solutions of Katugampola-type FDEs with delay and impulses.

Consider the Katugampola-type FDEs with delay and impulse of the form,

( c ρ D 0 + ω (t)=(t, t ),t t k ;t:=[0,T]; Δ( t k )= I k (( t k )),k=1,2,...,m; (t)=ψ(t),t[μ,0], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeqaae aafaqabeWabaaabaWaa0baaKqbafaacaWGJbaabaGaeqyWdihaaKqb akaadseadaqhaaqcfasaaiaaicdajuaGdaahaaqcfasabeaacqGHRa WkaaaabaGaeqyYdChaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKC HTgD1jhaiuaajuaGcqWFOeIwcaaIOaGaamiDaiaaiMcacaaI9aGae8 hdHGKaaGikaiaadshacaaISaGae8hkHO1aaSbaaKqbGeaacaWG0baa beaajuaGcaaIPaGaaGilaiaaysW7caWG0bGaeyiyIKRaamiDamaaBa aajuaibaGaam4AaaqcfayabaGaaG4oaiaaysW7caWG0bGaeyicI4Sa eyyeHeSaaGOoaiaai2dacaaIBbGaaGimaiaaiYcacaWGubGaaGyxai aaiUdaaeaacqqHuoarcqWFOeIwcaaIOaGaamiDamaaBaaajuaibaGa am4AaaqcfayabaGaaGykaiaai2dacaWGjbWaaSbaaKqbGeaacaWGRb aabeaajuaGcaaIOaGae8hkHOLaaGikaiaadshadaWgaaqcfasaaiaa dUgaaKqbagqaaiaaiMcacaaIPaGaaGilaiaaysW7caWGRbGaaGypai aaigdacaaISaGaaGOmaiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGa amyBaiaaiUdaaeaacqWFOeIwcaaIOaGaamiDaiaaiMcacaaI9aGaeq iYdKNaaGikaiaadshacaaIPaGaaGilaiaaysW7caWG0bGaeyicI4Sa aG4waiabgkHiTiabeY7aTjaaiYcacaaIWaGaaGyxaiaaiYcaaaaaca GL7baaaaa@9BE9@ (1)

where is the generalized fractional derivative in Caputo sense, and are given functions satisfying some assumptions that will be specified later.  and represent the right and left limits of  at  respectively, and they satisfy that . If , then for any , define by  for , here  represents the history of the state from time  to present time  and .

The rest of this paper is organized as follows. In Section 2, we give some notations and recall some concepts and preliminary results. In Section 3, the existence and uniqueness of the problem(1) are obtained by successive approximation method. In Section 4, an example is given to demonstrate the effectiveness of the main results.

Preliminaries

 In this section, we recollect several definitions of fractional derivatives and integals from the papers27‒30

Definition The fractional (arbitrary) order integral of the function of order  is defined by

I a ω (t)= a t (ts) ω1 Γ(ω) (s)ds, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaDaaajuaibaGaamyyaaqaaiabeM8a3baatuuDJXwAKzKCHTgD1jha ryqr1ngBPrgigjxyRrxDYbacfaqcfaOae8hdHGKae8hkaGIaamiDai ab=LcaPiaai2dadaWdXaqabKqbGeaacaWGHbaabaGaamiDaaqcfaOa ey4kIipadaWcaaqaaiaaiIcacaWG0bGaeyOeI0Iaam4CaiaaiMcada ahaaqcfasabeaacqaHjpWDcqGHsislcaaIXaaaaaqcfayaaiabfo5a hjaaiIcacqaHjpWDcaaIPaaaaiab=XqiijaaiIcacaWGZbGaaGykai aadsgacaWGZbGaaGilaaaa@61E5@ (2)

 

where Γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC eaaa@37EC@ is the gamma function.

Definition For a function  given on the interval , the Caputo fractional order derivative of , is defined by

( c D a + ω )(t)= 1 Γ(nω) a t (ts) nω1 (n) (s)ds, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikam aaCaaajuaibeqaaiaadogaaaqcfaOaamiramaaDaaajuaibaGaamyy aKqbaoaaCaaajuaibeqaaiabgUcaRaaaaeaacqaHjpWDaaWefv3ySL gzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=Xqiijaa iMcacaaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaeu 4KdCKaaGikaiaad6gacqGHsislcqaHjpWDcaaIPaaaamaapedabeqc fasaaiaadggaaeaacaWG0baajuaGcqGHRiI8aiaaiIcacaWG0bGaey OeI0Iaam4CaiaaiMcadaahaaqabKqbGeaacaWGUbGaeyOeI0IaeqyY dCNaeyOeI0IaaGymaaaajuaGcqWFmecsdaahaaqcfasabeaacaaIOa GaamOBaiaaiMcaaaqcfaOaaGikaiaadohacaaIPaGaamizaiaadoha caaISaaaaa@6E35@  (3)

where n=[ω]+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai aai2dacaaIBbGaeqyYdCNaaGyxaiabgUcaRiaaigdaaaa@3D74@ . Definition 4.3 The generalized left-sided fractional integral of order  is defined by

( ρ I a + ω )(t)= ρ 1ω Γ(ω) a t ( t ρ s ρ ) ω1 s ρ1 (s)ds, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikam aaCaaabeqcfasaaiabeg8aYbaajuaGcaWGjbWaa0baaKqbGeaacaWG Hbqcfa4aaWbaaKqbGeqabaGaey4kaScaaaqaaiabeM8a3baajuaGca aMc8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab =XqiijaaiMcacaaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaacqaHbp GCdaahaaqcfasabeaacaaIXaGaeyOeI0IaeqyYdChaaaqcfayaaiab fo5ahjaaiIcacqaHjpWDcaaIPaaaamaapedabeqcfasaaiaadggaaK qbafaacaWG0baajuaGcqGHRiI8aiaaiIcacaWG0bWaaWbaaeqajuai baGaeqyWdihaaKqbakabgkHiTiaadohadaahaaqabKqbGeaacqaHbp GCaaqcfaOaaGykamaaCaaabeqcfasaaiabeM8a3jabgkHiTiaaigda aaqcfaOaam4CamaaCaaajuaibeqaaiabeg8aYjabgkHiTiaaigdaaa qcfaOaaGPaVlab=XqiijaaiIcacaWGZbGaaGykaiaadsgacaWGZbGa aGilaaaa@7B52@  (4)

for t>a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai aai6dacaWGHbaaaa@392B@ , if the integral exists.

Definition Thegeneralized fractional derivative, corresponding to the generalized fractional integral (4), is defined for 0a<t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimai abgsMiJkaadggacaaI8aGaamiDaaaa@3B98@ , by

( ρ D a + ω )(t)= ρ ωn+1 Γ(n1) ( t 1ρ d dt ) n a t ( t ρ s ρ ) nω1 s ρ1 (s)ds, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikam aaCaaabeqcfasaaiabeg8aYbaajuaGcaWGebWaa0baaKqbGeaacaWG Hbqcfa4aaWbaaKqbGeqabaGaey4kaScaaaqaaiabeM8a3baajuaGca aMc8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab =XqiijaaiMcacaaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaacqaHbp GCdaahaaqcfasabeaacqaHjpWDcqGHsislcaWGUbGaey4kaSIaaGym aaaaaKqbagaacqqHtoWrcaaIOaGaamOBaiabgkHiTiaaigdacaaIPa aaamaabmaabaGaamiDamaaCaaabeqcfasaaiaaigdacqGHsislcqaH bpGCaaqcfa4aaSaaaeaacaWGKbaabaGaamizaiaadshaaaaacaGLOa GaayzkaaWaaWbaaKqbGeqabaGaamOBaaaajuaGdaWdXaqabKqbGeaa caWGHbaabaGaamiDaaqcfaOaey4kIipacaaIOaGaamiDamaaCaaabe qcfasaaiabeg8aYbaajuaGcqGHsislcaWGZbWaaWbaaeqajuaibaGa eqyWdihaaKqbakaaiMcadaahaaqcfasabeaacaWGUbGaeyOeI0Iaeq yYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaKqbGeqabaGaeqyW diNaeyOeI0IaaGymaaaajuaGcaaMc8Uae8hdHGKaaGikaiaadohaca aIPaGaamizaiaadohacaaISaaaaa@8AF6@  (5)

if the integral exists.

Definition The Caputo-type generalized fractional derivative, ρ D a + ω (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaWbaae qajuaibaGaeqyWdihaaKqbakaadseadaqhaaqcfasaaiaadggajuaG daahaaqcfasabeaacqGHRaWkaaaabaGaeqyYdChaaKqbakaaykW7tu uDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hdHGKa aGikaiaadshacaaIPaaaaa@4EE0@  is defined via the above generalized fractional derivative (5) as follows

( c ρ D a + ω )(t)=( ρ D a + ω [ (s) k=0 n1 k (a) k! (μa) k ] )(t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikam aaDaaajuaibaGaam4yaaqaaiabeg8aYbaajuaGcaWGebWaa0baaKqb GeaacaWGHbqcfa4aaWbaaKqbGeqabaGaey4kaScaaaqaaiabeM8a3b aajuaGcaaMc8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNC aGqbaiab=XqiijaaiMcacaaIOaGaamiDaiaaiMcacaaI9aWaaeWaae aadaahaaqabKqbGeaacqaHbpGCaaqcfaOaamiramaaDaaajuaibaGa amyyaKqbaoaaCaaajuaibeqaaiabgUcaRaaaaeaacqaHjpWDaaqcfa 4aamWaaeaacaaMc8Uae8hdHGKaaGikaiaadohacaaIPaGaeyOeI0Ya aabCaeqajuaibaGaam4Aaiaai2dacaaIWaaabaGaamOBaiabgkHiTi aaigdaaKqbakabggHiLdWaaSaaaeaacaaMc8Uae8hdHG0aaWbaaeqa juaibaGaam4AaaaajuaGcaaIOaGaamyyaiaaiMcaaeaacaWGRbGaaG yiaaaacaaIOaGaeqiVd0MaeyOeI0IaamyyaiaaiMcadaahaaqabKqb GeaacaWGRbaaaaqcfaOaay5waiaaw2faaaGaayjkaiaawMcaaiaaiI cacaWG0bGaaGykaiaaiYcaaaa@7E02@  (6)

where n= Re(ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai aai2dadaWbdaqaaiaadkfacaWGLbGaaGikaiabeM8a3jaaiMcaaiaa w6o+caGL5Jpaaaa@4246@ . Definition The generalized fractional derivative in Caputo sense, corresponding to the generalized fractional integral in Caputo sense (6), is defined for 0a<t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimai abgsMiJkaadggacaaI8aGaamiDaaaa@3B98@ , by

( c ρ D a + ω )(t)= ( t 1ρ d dt ) n ( c ρ I a + ω )(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikam aaDaaajuaibaGaam4yaaqaaiabeg8aYbaajuaGcaWGebWaa0baaKqb GeaacaWGHbqcfa4aaWbaaKqbGeqabaGaey4kaScaaaqaaiabeM8a3b aajuaGcaaMc8+efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNC aGqbaiab=XqiijaaiMcacaaIOaGaamiDaiaaiMcacaaI9aWaaeWaae aacaWG0bWaaWbaaKqbGeqabaGaaGymaiabgkHiTiabeg8aYbaajuaG daWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaaaiaawIcacaGLPaaada ahaaqcfasabeaacaWGUbaaaKqbakaaiIcadaqhaaqcfasaaiaadoga aeaacqaHbpGCaaqcfaOaamysamaaDaaajuaibaGaamyyaKqbaoaaCa aajuaibeqaaiabgUcaRaaaaeaacqaHjpWDaaqcfaOaaGPaVlab=Xqi ijaaiMcacaaIOaGaamiDaiaaiMcaaaa@6D55@

= ρ ωn+1 Γ(nω) ( t 1ρ d dt ) n a t ( t ρ s ρ ) nω1 s ρ1 (s)ds. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGypam aalaaabaGaeqyWdi3aaWbaaeqajuaibaGaeqyYdCNaeyOeI0IaamOB aiabgUcaRiaaigdaaaaajuaGbaGaeu4KdCKaaGikaiaad6gacqGHsi slcqaHjpWDcaaIPaaaamaabmaabaGaamiDamaaCaaabeqcfasaaiaa igdacqGHsislcqaHbpGCaaqcfa4aaSaaaeaacaWGKbaabaGaamizai aadshaaaaacaGLOaGaayzkaaWaaWbaaKqbGeqabaGaamOBaaaajuaG daWdXaqabKqbGeaacaWGHbaabaGaamiDaaqcfaOaey4kIipacaaIOa GaamiDamaaCaaabeqcfasaaiabeg8aYbaajuaGcqGHsislcaWGZbWa aWbaaeqajuaibaGaeqyWdihaaKqbakaaiMcadaahaaqcfasabeaaca WGUbGaeyOeI0IaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWba aKqbGeqabaGaeqyWdiNaeyOeI0IaaGymaaaacaaMc8+efv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=XqiijaaiIca caWGZbGaaGykaiaadsgacaWGZbGaaGOlaaaa@7D0A@ (7)

Remark In Caputo sense, the Katugampola fractional derivative operator c ρ D t ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0baaK qbGeaacaWGJbaabaGaeqyWdihaaKqbakaadseadaqhaaqcfasaaiaa dshaaeaacqaHjpWDaaaaaa@3DE9@  is a left inverse of the integral operator c ρ I t ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0baaK qbGeaacaWGJbaabaGaeqyWdihaaKqbakaadMeadaqhaaqcfasaaiaa dshaaeaacqaHjpWDaaaaaa@3DEE@  but in general is not a right inverse,

c ρ D t ω ( I t ω (t) )=(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0baaK qbGeaacaWGJbaabaGaeqyWdihaaKqbakaadseadaqhaaqcfasaaiaa dshaaeaacqaHjpWDaaqcfa4aaeWaaeaacaWGjbWaa0baaKqbGeaaca WG0baabaGaeqyYdChaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKC HTgD1jhaiuaajuaGcqWFOeIwcaaIOaGaamiDaiaaiMcaaiaawIcaca GLPaaacaaI9aGae8hkHOLaaGikaiaadshacaaIPaaaaa@5706@

and the following holds

c ρ I t ω ( I t ω (t) )=(t) k=0 n1 ( t ρ a) k k! (k) (a),t[a,b]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0baae aacaWGJbaabaGaeqyWdihaaiaadMeadaqhaaqcfasaaiaadshaaeaa cqaHjpWDaaqcfa4aaeWaaeaacaWGjbWaa0baaKqbGeaacaWG0baaba GaeqyYdChaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jha iuaajuaGcqWFOeIwcaaIOaGaamiDaiaaiMcaaiaawIcacaGLPaaaca aI9aGae8hkHOLaaGikaiaadshacaaIPaGaeyOeI0YaaabCaeqajuai baGaam4Aaiaai2dacaaIWaaabaGaamOBaiabgkHiTiaaigdaaKqbak abggHiLdWaaSaaaeaacaaIOaGaamiDamaaCaaabeqcfasaaiabeg8a YbaajuaGcqGHsislcaWGHbGaaGykamaaCaaabeqcfasaaiaadUgaaa aajuaGbaGaam4AaiaaigcaaaGae8hkHO1aaWbaaeqajuaibaGaaGik aiaadUgacaaIPaaaaKqbakaaiIcacaWGHbGaaGykaiaaiYcacaaMe8 UaamiDaiabgIGiolaaiUfacaWGHbGaaGilaiaadkgacaaIDbGaaGOl aaaa@79E4@  (8)

For readers’ understanding, we introduce the following notations for the following lemma and theorem. Let

We denote  exist and . Obviously,is a Banach space with the norm

Lemma 4.8 Assume that  A function  is a solution of the initial value problem

( c ρ D 0 + ω (t)=(t),t t k ,tJ:=[0,T]; Δ( t k )= I k (( t k )),k=1,2,...,m; (t)=ψ(t),t[μ,0] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeqaae aafaqabeWabaaabaWaa0baaKqbGeaacaWGJbaabaGaeqyWdihaaKqb akaadseadaqhaaqcfasaaiaaicdajuaGdaahaaqcfasabeaacqGHRa WkaaaabaGaeqyYdChaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKC HTgD1jhaiuaajuaGcqWFOeIwcaaIOaGaamiDaiaaiMcacaaI9aGae8 hdHGKaaGikaiaadshacaaIPaGaaGilaiaaysW7caWG0bGaeyiyIKRa amiDamaaBaaajuaibaGaam4AaaqabaqcfaOaaGilaiaaysW7caWG0b GaeyicI4Sae8xcWRKaaGOoaiaai2dacaaIBbGaaGimaiaaiYcacaWG ubGaaGyxaiaaiUdaaeaacqqHuoarcqWFOeIwcaaIOaGaamiDamaaBa aajuaibaGaam4AaaqcfayabaGaaGykaiaai2dacaWGjbWaaSbaaKqb GeaacaWGRbaajuaGbeaacaaIOaGae8hkHOLaaGikaiaadshadaWgaa qcfasaaiaadUgaaeqaaKqbakaaiMcacaaIPaGaaGilaiaaysW7caWG RbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIUaGaaGOlaiaai6 cacaaISaGaamyBaiaaiUdaaeaacqWFOeIwcaaIOaGaamiDaiaaiMca caaI9aGaeqiYdKNaaGikaiaadshacaaIPaGaaGilaiaaysW7caWG0b GaeyicI4SaaG4waiabgkHiTiabeY7aTjaaiYcacaaIWaGaaGyxaaaa aiaawUhaaaaa@9799@  (9)

if and only if MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaykW7 aaa@43F8@  satisfies the following integral equation

(t)=( ψ(t),t[μ,0]; ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 (s)ds+ j=1 k I j (( t j )) + i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s)ds,t( t k , t k+1 ],k=0,1,2,...,m. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaykW7 caaIOaGaamiDaiaaiMcacaaI9aWaaeqaaeaafaqabeWabaaabaGaeq iYdKNaaGikaiaadshacaaIPaGaaGilaiaaywW7caWG0bGaeyicI4Sa aG4waiabgkHiTiabeY7aTjaaiYcacaaIWaGaaGyxaiaaiUdaaeaada Wcaaqaaiabeg8aYnaaCaaajuaibeqaaiaaigdacqGHsislcqaHjpWD aaaajuaGbaGaeu4KdCKaaGikaiabeM8a3jaaiMcaaaWaa8qmaeqaba GaamiDamaaBaaajuaibaGaam4AaaqcfayabaaabaGaamiDaaGaey4k IipacaaIOaGaamiDamaaCaaabeqcfasaaiabeg8aYbaajuaGcqGHsi slcaWGZbWaaWbaaKqbGeqabaGaeqyWdihaaKqbakaaiMcadaahaaqc fasabeaacqaHjpWDcqGHsislcaaIXaaaaKqbakaadohadaahaaqcfa sabeaacqaHbpGCcqGHsislcaaIXaaaaKqbakab=XqiijaaiIcacaWG ZbGaaGykaiaadsgacaWGZbGaey4kaSYaaabCaeqajuaibaGaamOAai aai2dacaaIXaaabaGaam4AaaqcfaOaeyyeIuoacaWGjbWaaSbaaKqb GeaacaWGQbaajuaGbeaacaaIOaGae8hkHOLaaGikaiaadshadaWgaa qcfasaaiaadQgaaKqbagqaaiaaiMcacaaIPaGaaGzbVdqaaiabgUca RmaaqahabeqcfasaaiaadMgacaaI9aGaaGimaaqaaiaadUgacqGHsi slcaaIXaaajuaGcqGHris5amaalaaabaGaeqyWdi3aaWbaaKqbGeqa baGaaGymaiabgkHiTiabeM8a3baaaKqbagaacqqHtoWrcaaIOaGaeq yYdCNaaGykaaaadaWdXaqabeaacaWG0bWaaSbaaKqbGeaacaWGPbaa beaaaKqbagaacaWG0bWaaSbaaKqbGeaacaWGPbGaey4kaSIaaGymaa qabaaajuaGcqGHRiI8aiaaiIcacaWG0bWaa0baaKqbGeaacaWGPbGa ey4kaSIaaGymaaqaaiabeg8aYbaajuaGcqGHsislcaWGZbWaaWbaae qajuaibaGaeqyWdihaaKqbakaaiMcadaahaaqabKqbGeaacqaHjpWD cqGHsislcaaIXaaaaKqbakaadohadaahaaqabKqbGeaacqaHbpGCcq GHsislcaaIXaaaaKqbakab=XqiijaaiIcacaWGZbGaaGykaiaadsga caWGZbGaaGilaiaaywW7caWG0bGaeyicI48aaKamaeaacaWG0bWaaS baaKqbGeaacaWGRbaajuaGbeaacaaISaGaamiDamaaBaaajuaibaGa am4AaiabgUcaRiaaigdaaKqbagqaaaGaayjkaiaaw2faaiaaiYcaca aMe8Uaam4Aaiaai2dacaaIWaGaaGilaiaaigdacaaISaGaaGOmaiaa iYcacaaIUaGaaGOlaiaai6cacaaISaGaamyBaiaai6cacaaMf8oaaa Gaay5Eaaaaaa@E741@ (10)

Proof. Assume that MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAbaa@426D@  satisfies (9). One can see, from Remark 2.7 and ψ(0)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK NaaGikaiaaicdacaaIPaGaaGypaiaaicdacaaMc8Uaaiilaaaa@3E2D@ that

(t)= ρ 1ω Γ(ω) 0 t ( t ρ s ρ ) ω1 s ρ1 (s)ds,fort J 0 =[ t 0 , t 1 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaiIca caWG0bGaaGykaiaai2dadaWcaaqaaiabeg8aYnaaCaaabeqcfasaai aaigdacqGHsislcqaHjpWDaaaajuaGbaGaeu4KdCKaaGikaiabeM8a 3jaaiMcaaaWaa8qmaeqajuaibaGaaGimaaqaaiaadshaaKqbakabgU IiYdGaaGikaiaadshadaahaaqabKqbGeaacqaHbpGCaaqcfaOaeyOe I0Iaam4CamaaCaaabeqcfasaaiabeg8aYbaajuaGcaaIPaWaaWbaaK qbGeqabaGaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaKqb GeqabaGaeqyWdiNaeyOeI0IaaGymaaaajuaGcqWFmecscaaIOaGaam 4CaiaaiMcacaWGKbGaam4CaiaaiYcacaaMe8UaaGjcVlaadAgacaWG VbGaamOCaiaayIW7caaMe8UaamiDaiabgIGiolab=La8knaaBaaaju aibaGae8hmaadabeaajuaGcaaI9aGaaG4waiaadshadaWgaaqcfasa aiaaicdaaeqaaKqbakaaiYcacaWG0bWaaSbaaKqbGeaacaaIXaaabe aajuaGcaaIDbGaaGOlaaaa@8609@

In view of ( t 1 + )( t 1 )= I 1 ( ( t 1 ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAnaabmaa baGaamiDamaaDaaajuaibaGaaGymaaqaaiabgUcaRaaaaKqbakaawI cacaGLPaaacqGHsislcqWFOeIwdaqadaqaaiaadshadaqhaaqcfasa aiaaigdaaeaacqGHsislaaaajuaGcaGLOaGaayzkaaGaaGypaiaadM eadaWgaaqcfasaaiaaigdaaKqbagqaamaabmaabaGae8hkHO1aaeWa aeaacaWG0bWaaSbaaKqbGeaacaaIXaaajuaGbeaaaiaawIcacaGLPa aaaiaawIcacaGLPaaacaaMc8Uaaiilaaaa@5ABA@  we get that

( t 1 + )= I 1 ( ( t 1 ) )+ ρ 1ω Γ(ω) 0 t 1 ( t 1 ρ s ρ ) ω1 s ρ1 (s)ds. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAnaabmaa baGaamiDamaaDaaajuaibaGaaGymaaqaaiabgUcaRaaaaKqbakaawI cacaGLPaaacaaI9aGaamysamaaBaaajuaibaGaaGymaaqabaqcfa4a aeWaaeaacqWFOeIwdaqadaqaaiaadshadaWgaaqcfasaaiaaigdaae qaaaqcfaOaayjkaiaawMcaaaGaayjkaiaawMcaaiabgUcaRmaalaaa baGaeqyWdi3aaWbaaeqajuaibaGaaGymaiabgkHiTiabeM8a3baaaK qbagaacqqHtoWrcaaIOaGaeqyYdCNaaGykaaaadaWdXaqabKqbGeaa caaIWaaabaGaamiDaKqbaoaaBaaajuaibaGaaGymaaqabaaajuaGcq GHRiI8aiaaiIcacaWG0bWaa0baaKqbGeaacaaIXaaabaGaeqyWdiha aKqbakabgkHiTiaadohadaahaaqabKqbGeaacqaHbpGCaaqcfaOaaG ykamaaCaaajuaibeqaaiabeM8a3jabgkHiTiaaigdaaaqcfaOaam4C amaaCaaajuaibeqaaiabeg8aYjabgkHiTiaaigdaaaqcfaOae8hdHG KaaGikaiaadohacaaIPaGaamizaiaadohacaaIUaaaaa@7CD5@

It follows that, for t( t 1 , t 2 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgIGiolaaiIcacaWG0bWaaSbaaKqbGeaacaaIXaaabeaajuaGcaaI SaGaamiDamaaBaaajuaibaGaaGOmaaqabaqcfaOaaGyxaiaaykW7ca GGSaaaaa@42AE@  

(t)=( t 1 + )+ ρ 1ω Γ(ω) t 1 t ( t ρ s ρ ) ω1 s ρ1 (s)ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaiIca caWG0bGaaGykaiaai2dacqWFOeIwdaqadaqaaiaadshadaqhaaqcfa saaiaaigdaaeaacqGHRaWkaaaajuaGcaGLOaGaayzkaaGaey4kaSYa aSaaaeaacqaHbpGCdaahaaqabeaacaaIXaGaeyOeI0IaeqyYdChaaa qaaiabfo5ahjaaiIcacqaHjpWDcaaIPaaaamaapedabeqcfasaaiaa dshajuaGdaWgaaqcfasaaiaaigdaaeqaaaqaaiaadshaaKqbakabgU IiYdGaaGikaiaadshadaahaaqabKqbGeaacqaHbpGCaaqcfaOaeyOe I0Iaam4CamaaCaaabeqcfasaaiabeg8aYbaajuaGcaaIPaWaaWbaaK qbGeqabaGaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaeqa juaibaGaeqyWdiNaeyOeI0IaaGymaaaajuaGcqWFmecscaaIOaGaam 4CaiaaiMcacaWGKbGaam4Caaaa@753A@

= ρ 1ω Γ(ω) t 1 t ( t ρ s ρ ) ω1 s ρ1 (s)ds+ ρ 1ω Γ(ω) 0 t 1 ( t 1 ρ s ρ ) ω1 s ρ1 (s)ds+ I 1 ( ( t 1 ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGypam aalaaabaGaeqyWdi3aaWbaaeqajuaibaGaaGymaiabgkHiTiabeM8a 3baaaKqbagaacqqHtoWrcaaIOaGaeqyYdCNaaGykaaaadaWdXaqabK qbGeaacaWG0bqcfa4aaSbaaKqbGeaacaaIXaaabeaaaeaacaWG0baa juaGcqGHRiI8aiaaiIcacaWG0bWaaWbaaeqajuaibaGaeqyWdihaaK qbakabgkHiTiaadohadaahaaqabKqbGeaacqaHbpGCaaqcfaOaaGyk amaaCaaabeqcfasaaiabeM8a3jabgkHiTiaaigdaaaqcfaOaam4Cam aaCaaabeqcfasaaiabeg8aYjabgkHiTiaaigdaaaWefv3ySLgzgjxy RrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=XqiijaaiIcaca WGZbGaaGykaiaadsgacaWGZbGaey4kaSYaaSaaaeaacqaHbpGCdaah aaqabKqbGeaacaaIXaGaeyOeI0IaeqyYdChaaaqcfayaaiabfo5ahj aaiIcacqaHjpWDcaaIPaaaamaapedabeqcfasaaiaaicdaaeaacaWG 0bqcfa4aaSbaaKqbGeaacaaIXaaabeaaaKqbakabgUIiYdGaaGikai aadshadaqhaaqcfasaaiaaigdaaeaacqaHbpGCaaqcfaOaeyOeI0Ia am4CamaaCaaabeqcfasaaiabeg8aYbaajuaGcaaIPaWaaWbaaKqbGe qabaGaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaeqajuai baGaeqyWdiNaeyOeI0IaaGymaaaajuaGcqWFmecscaaIOaGaam4Cai aaiMcacaWGKbGaam4CaiabgUcaRiaadMeadaWgaaqcfasaaiaaigda aeqaaKqbaoaabmaabaGae8hkHO1aaeWaaeaacaWG0bWaaSbaaKqbGe aacaaIXaaabeaaaKqbakaawIcacaGLPaaaaiaawIcacaGLPaaacaaI Uaaaaa@A0EF@

In consequence, we can see, by means of ( t 2 + )=( t 2 )+ I 2 ( ( t 2 ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAnaabmaa baGaamiDamaaDaaajuaibaGaaGOmaaqaaiabgUcaRaaaaKqbakaawI cacaGLPaaacaaI9aGae8hkHO1aaeWaaeaacaWG0bWaa0baaKqbGeaa caaIYaaabaGaeyOeI0caaaqcfaOaayjkaiaawMcaaiabgUcaRiaadM eadaWgaaqcfasaaiaaikdaaeqaaKqbaoaabmaabaGae8hkHO1aaeWa aeaacaWG0bWaaSbaaKqbGeaacaaIYaaajuaGbeaaaiaawIcacaGLPa aaaiaawIcacaGLPaaacaaMc8Uaaiilaaaa@5AB3@

that

( t 2 + )= i=0 1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s)ds+ j=1 2 I j (( t j )), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAnaabmaa baGaamiDamaaDaaajuaibaGaaGOmaaqaaiabgUcaRaaaaKqbakaawI cacaGLPaaacaaI9aWaaabCaeqajuaibaGaamyAaiaai2dacaaIWaaa baGaaGymaaqcfaOaeyyeIuoadaWcaaqaaiabeg8aYnaaCaaabeqcfa saaiaaigdacqGHsislcqaHjpWDaaaajuaGbaGaeu4KdCKaaGikaiab eM8a3jaaiMcaaaWaa8qmaeqajuaibaGaamiDaKqbaoaaBaaajuaiba GaamyAaaqabaaabaGaamiDaKqbaoaaBaaajuaibaGaamyAaiabgUca RiaaigdaaeqaaaqcfaOaey4kIipacaaIOaGaamiDamaaDaaajuaiba GaamyAaiabgUcaRiaaigdaaeaacqaHbpGCaaqcfaOaeyOeI0Iaam4C amaaCaaabeqcfasaaiabeg8aYbaajuaGcaaIPaWaaWbaaKqbGeqaba GaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaeqajuaibaGa eqyWdiNaeyOeI0IaaGymaaaajuaGcqWFOeIwcaaIOaGaam4CaiaaiM cacaWGKbGaam4CaiabgUcaRmaaqahabeqcfasaaiaadQgacaaI9aGa aGymaaqaaiaaikdaaKqbakabggHiLdGaamysamaaBaaajuaibaGaam OAaaqcfayabaGaaGikaiab=HsiAjaaiIcacaWG0bWaaSbaaKqbGeaa caWGQbaajuaGbeaacaaIPaGaaGykaiaaiYcaaaa@8EF1@

which implies that for t( t 2 , t 3 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgIGiolaaiIcacaWG0bWaaSbaaKqbGeaacaaIYaaajuaGbeaacaaI SaGaamiDamaaBaaajuaibaGaaG4maaqcfayabaGaaGyxaiaaykW7ca GGSaaaaa@42B0@

(t)= ρ 1ω Γ(ω) t 2 t ( t ρ s ρ ) ω1 s ρ1 (s)ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaiIca caWG0bGaaGykaiaai2dadaWcaaqaaiabeg8aYnaaCaaajuaibeqaai aaigdacqGHsislcqaHjpWDaaaajuaGbaGaeu4KdCKaaGikaiabeM8a 3jaaiMcaaaWaa8qmaeqajuaibaGaamiDaKqbaoaaBaaajuaibaGaaG OmaaqabaaabaGaamiDaaqcfaOaey4kIipacaaIOaGaamiDamaaCaaa beqcfasaaiabeg8aYbaajuaGcqGHsislcaWGZbWaaWbaaeqajuaiba GaeqyWdihaaKqbakaaiMcadaahaaqabKqbGeaacqaHjpWDcqGHsisl caaIXaaaaKqbakaadohadaahaaqcfasabeaacqaHbpGCcqGHsislca aIXaaaaKqbakab=XqiijaaykW7caaIOaGaam4CaiaaiMcacaWGKbGa am4Caaaa@707B@

(t)= ρ 1ω Γ(ω) t 2 t ( t ρ s ρ ) ω1 s ρ1 (s)ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaiIca caWG0bGaaGykaiaai2dadaWcaaqaaiabeg8aYnaaCaaajuaibeqaai aaigdacqGHsislcqaHjpWDaaaajuaGbaGaeu4KdCKaaGikaiabeM8a 3jaaiMcaaaWaa8qmaeqajuaibaGaamiDaKqbaoaaBaaajuaibaGaaG OmaaqabaaabaGaamiDaaqcfaOaey4kIipacaaIOaGaamiDamaaCaaa beqcfasaaiabeg8aYbaajuaGcqGHsislcaWGZbWaaWbaaeqajuaiba GaeqyWdihaaKqbakaaiMcadaahaaqabKqbGeaacqaHjpWDcqGHsisl caaIXaaaaKqbakaadohadaahaaqcfasabeaacqaHbpGCcqGHsislca aIXaaaaKqbakab=XqiijaaykW7caaIOaGaam4CaiaaiMcacaWGKbGa am4Caaaa@707B@

Repeating the above process, the solution (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaykW7 caaIOaGaamiDaiaaiMcaaaa@4656@  for t( t k , t k+1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgIGiolaaiIcacaWG0bWaaSbaaKqbGeaacaWGRbaajuaGbeaacaaI SaGaamiDamaaBaaajuaibaGaam4AaiabgUcaRiaaigdaaKqbagqaai aai2faaaa@4279@  can be written as

(t)= ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 (s)ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaykW7 caaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaacqaHbpGCdaahaaqabK qbGeaacaaIXaGaeyOeI0IaeqyYdChaaaqcfayaaiabfo5ahjaaiIca cqaHjpWDcaaIPaaaamaapedabeqcfasaaiaadshajuaGdaWgaaqcfa saaiaadUgaaeqaaaqaaiaadshaaKqbakabgUIiYdGaaGikaiaadsha daahaaqabKqbGeaacqaHbpGCaaqcfaOaeyOeI0Iaam4CamaaCaaabe qcfasaaiabeg8aYbaajuaGcaaIPaWaaWbaaKqbGeqabaGaeqyYdCNa eyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaKqbGeqabaGaeqyWdiNaey OeI0IaaGymaaaajuaGcqWFmecscaaIOaGaam4CaiaaiMcacaWGKbGa am4Caaaa@70AF@

+ i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s)ds+ j=1 k I j (( t j )). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadMgacaaI9aGaaGimaaqaaiaadUga cqGHsislcaaIXaaajuaGcqGHris5amaalaaabaGaeqyWdi3aaWbaaK qbGeqabaGaaGymaiabgkHiTiabeM8a3baaaKqbagaacqqHtoWrcaaI OaGaeqyYdCNaaGykaaaadaWdXaqabKqbGeaacaWG0bqcfa4aaSbaaK qbGeaacaWGPbaabeaaaeaacaWG0bqcfa4aaSbaaKqbGeaacaWGPbGa ey4kaSIaaGymaaqabaaajuaGcqGHRiI8aiaaiIcacaWG0bWaa0baaK qbGeaacaWGPbGaey4kaSIaaGymaaqaaiabeg8aYbaajuaGcqGHsisl caWGZbWaaWbaaeqajuaibaGaeqyWdihaaKqbakaaiMcadaahaaqabK qbGeaacqaHjpWDcqGHsislcaaIXaaaaKqbakaadohadaahaaqcfasa beaacqaHbpGCcqGHsislcaaIXaaaamrr1ngBPrMrYf2A0vNCaeHbfv 3ySLgzGyKCHTgD1jhaiuaajuaGcqWFmecscaaIOaGaam4CaiaaiMca caWGKbGaam4CaiabgUcaRmaaqahabeqcfasaaiaadQgacaaI9aGaaG ymaaqaaiaadUgaaKqbakabggHiLdGaamysamaaBaaajuaibaGaamOA aaqcfayabaGaaGikaiab=HsiAjaaiIcacaWG0bWaaSbaaKqbafaaca WGQbaajuaGbeaacaaIPaGaaGykaiaai6caaaa@8C79@

Conversely, if MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAbaa@426D@  is a solution of (10), one can obtain by a direct computation, that c ρ D 0 + ω (t)=(t), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0baaK qbGeaacaWGJbaabaGaeqyWdihaaKqbakaadseadaqhaaqcfasaaiaa icdajuaGdaahaaqcfasabeaacqGHRaWkaaaabaGaeqyYdChaamrr1n gBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaajuaGcqWFOeIw caaIOaGaamiDaiaaiMcacaaI9aGae8hdHGKaaGikaiaadshacaaIPa GaaGPaVlaacYcaaaa@5499@ t t k , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgcMi5kaadshadaWgaaqcfasaaiaadUgaaKqbagqaaiaaykW7caGG Saaaaa@3E45@ t[0,T], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgIGiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGPaVlaaykW7 caGGSaaaaa@40DC@ and Δ( t k )=( t k + )( t k )= I k ( ( t k ) ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq 0efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=Hsi AjaaiIcacaWG0bWaaSbaaKqbGeaacaWGRbaabeaajuaGcaaIPaGaaG ypaiab=HsiAnaabmaabaGaamiDamaaDaaajuaibaGaam4Aaaqaaiab gUcaRaaaaKqbakaawIcacaGLPaaacqGHsislcqWFOeIwdaqadaqaai aadshadaqhaaqcfasaaiaadUgaaeaacqGHsislaaaajuaGcaGLOaGa ayzkaaGaaGypaiaadMeadaWgaaqcfasaaiaadUgaaKqbagqaamaabm aabaGae8hkHO1aaeWaaeaacaWG0bWaaSbaaKqbGeaacaWGRbaajuaG beaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacaaMc8Uaaiilaaaa@630E@  where

( t k + )= i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s)ds+ j=1 k I j (( t j )), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaiIca caWG0bWaa0baaKqbGeaacaWGRbaabaGaey4kaScaaKqbakaaiMcaca aI9aWaaabCaeqajuaibaGaamyAaiaai2dacaaIWaaabaGaam4Aaiab gkHiTiaaigdaaKqbakabggHiLdWaaSaaaeaacqaHbpGCdaahaaqabK qbGeaacaaIXaGaeyOeI0IaeqyYdChaaaqcfayaaiabfo5ahjaaiIca cqaHjpWDcaaIPaaaamaapedabeqcfasaaiaadshajuaGdaWgaaqcfa saaiaadMgaaeqaaaqaaiaadshajuaGdaWgaaqcfasaaiaadMgacqGH RaWkcaaIXaaabeaaaKqbakabgUIiYdGaaGikaiaadshadaqhaaqcfa saaiaadMgacqGHRaWkcaaIXaaabaGaeqyWdihaaKqbakabgkHiTiaa dohadaahaaqcfasabeaacqaHbpGCaaqcfaOaaGykamaaCaaajuaibe qaaiabeM8a3jabgkHiTiaaigdaaaqcfaOaam4CamaaCaaajuaibeqa aiabeg8aYjabgkHiTiaaigdaaaqcfaOae8hdHGKaaGikaiaadohaca aIPaGaamizaiaadohacqGHRaWkdaaeWbqabKqbGeaacaWGQbGaaGyp aiaaigdaaeaacaWGRbaajuaGcqGHris5aiaadMeadaWgaaqcfasaai aadQgaaKqbagqaaiaaiIcacqWFOeIwcaaIOaGaamiDamaaBaaajuaq baGaamOAaaqcfayabaGaaGykaiaaiMcacaaISaaaaa@9104@

and

( t k )= ρ 1ω Γ(ω) t k1 t k ( t k ρ s ρ ) ω1 s ρ1 (s)ds+ i=0 k2 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s)ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaiIca caWG0bWaa0baaKqbGeaacaWGRbaabaGaeyOeI0caaKqbakaaiMcaca aI9aWaaSaaaeaacqaHbpGCdaahaaqcfasabeaacaaIXaGaeyOeI0Ia eqyYdChaaaqcfayaaiabfo5ahjaaiIcacqaHjpWDcaaIPaaaamaape dabeqcfasaaiaadshajuaGdaWgaaqcfasaaiaadUgacqGHsislcaaI XaaabeaaaeaacaWG0bqcfa4aaSbaaKqbGeaacaWGRbaabeaaaKqbak abgUIiYdGaaGikaiaadshadaqhaaqcfasaaiaadUgaaeaacqaHbpGC aaqcfaOaeyOeI0Iaam4CamaaCaaabeqcfasaaiabeg8aYbaajuaGca aIPaWaaWbaaKqbGeqabaGaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWG ZbWaaWbaaKqbGeqabaGaeqyWdiNaeyOeI0IaaGymaaaajuaGcqWFme cscaaIOaGaam4CaiaaiMcacaWGKbGaam4CaiabgUcaRmaaqahabeqc fasaaiaadMgacaaI9aGaaGimaaqaaiaadUgacqGHsislcaaIYaaaju aGcqGHris5amaalaaabaGaeqyWdi3aaWbaaeqajuaibaGaaGymaiab gkHiTiabeM8a3baaaKqbagaacqqHtoWrcaaIOaGaeqyYdCNaaGykaa aadaWdXaqabKqbGeaacaWG0bqcfa4aaSbaaKqbGeaacaWGPbaabeaa aeaacaWG0bqcfa4aaSbaaKqbGeaacaWGPbGaey4kaSIaaGymaaqaba aajuaGcqGHRiI8aiaaiIcacaWG0bWaa0baaKqbGeaacaWGPbGaey4k aSIaaGymaaqaaiabeg8aYbaajuaGcqGHsislcaWGZbWaaWbaaeqaju aibaGaeqyWdihaaKqbakaaiMcadaahaaqcfasabeaacqaHjpWDcqGH sislcaaIXaaaaKqbakaadohadaahaaqcfasabeaacqaHbpGCcqGHsi slcaaIXaaaaKqbakab=XqiijaaiIcacaWGZbGaaGykaiaadsgacaWG Zbaaaa@AE98@

+ j=1 k1 I j (( t j )). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaadUga cqGHsislcaaIXaaajuaGcqGHris5aiaadMeadaWgaaqcfasaaiaadQ gaaKqbagqaaiaaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxy RrxDYbacfaGae8hkHOLaaGikaiaadshadaWgaaqcfasaaiaadQgaaK qbagqaaiaaiMcacaaIPaGaaGOlaaaa@55AE@

This completes the proof.

Existence and uniqueness results

Initially, set C 0 ={ v|v(J,),v(0)=0 }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qam aaBaaajuaibaGaaGimaaqcfayabaGaaGypamaacmaabaGaamODaiaa iYhacaWG2bGaeyicI48efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf 2A0vNCaGqbaiab=1sidjaaykW7caaIOaGae8xcWRKaaGPaVlaaiYca cqWIDesOcaaIPaGaaGilaiaaysW7caWG2bGaaGikaiaaicdacaaIPa GaaGypaiaaicdaaiaawUhacaGL9baacaaMc8UaaiOlaaaa@5DB6@  For each, v C 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODai abgIGiolaadoeadaWgaaqcfasaaiaaicdaaeqaaaaa@3AD4@ ,we denote by v ¯ (t)=v(t),0tTand v ¯ (t)=0,μt0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmODay aaraGaaGikaiaadshacaaIPaGaaGypaiaadAhacaaIOaGaamiDaiaa iMcacaaISaGaaGjbVlaaicdacqGHKjYOcaWG0bGaeyizImQaamivai aaysW7caaMi8Uaamyyaiaad6gacaWGKbGaaGjcVlaaysW7ceWG2bGb aebacaaIOaGaamiDaiaaiMcacaaI9aGaaGimaiaaiYcacaaMe8Uaey OeI0IaeqiVd0MaeyizImQaamiDaiabgsMiJkaaicdacaaIUaaaaa@5EF9@ the function defined by

v ¯ (t)=v(t),0tTand v ¯ (t)=0,μt0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmODay aaraGaaGikaiaadshacaaIPaGaaGypaiaadAhacaaIOaGaamiDaiaa iMcacaaISaGaaGjbVlaaicdacqGHKjYOcaWG0bGaeyizImQaamivai aaysW7caaMi8Uaamyyaiaad6gacaWGKbGaaGjcVlaaysW7ceWG2bGb aebacaaIOaGaamiDaiaaiMcacaaI9aGaaGimaiaaiYcacaaMe8Uaey OeI0IaeqiVd0MaeyizImQaamiDaiabgsMiJkaaicdacaaIUaaaaa@5EF9@  (11)

If MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAbaa@426D@ is a solution of (1), then (.) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaiIca caaIUaGaaGykaaaa@448A@ can be decomposed as (t)= v ¯ (t)+ϕ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAjaaiIca caWG0bGaaGykaiaai2daceWG2bGbaebacaaIOaGaamiDaiaaiMcacq GHRaWkcqaHvpGzcaaIOaGaamiDaiaaiMcaaaa@4E0B@ for μtT, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaeqiVd0MaeyizImQaamiDaiabgsMiJkaadsfacaaMc8Uaaiilaaaa @409E@ which implies that t = v ¯ t + ϕ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAnaaBaaa juaibaGaamiDaaqcfayabaGaaGypaiqadAhagaqeamaaBaaajuaiba GaamiDaaqcfayabaGaey4kaSIaeqy1dy2aaSbaaKqbGeaacaWG0baa juaGbeaaaaa@4C73@  for 0tT, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimai abgsMiJkaadshacqGHKjYOcaWGubGaaGPaVlaacYcaaaa@3EB5@ where

ϕ(t)=0,0tT,andϕ(t)=ψ(t),μt0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy MaaGikaiaadshacaaIPaGaaGypaiaaicdacaaISaGaaGjbVlaaicda cqGHKjYOcaWG0bGaeyizImQaamivaiaaiYcacaaMi8Uaamyyaiaad6 gacaWGKbGaaGjcVlaaysW7cqaHvpGzcaaIOaGaamiDaiaaiMcacaaI 9aGaeqiYdKNaaGikaiaadshacaaIPaGaaGilaiaaysW7cqGHsislcq aH8oqBcqGHKjYOcaWG0bGaeyizImQaaGimaiaai6caaaa@605F@  (12)

Therefore, the problem (1) can be transformed into the following fixed point problem of the operator N: 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtai aaiQdatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGa e8xlHmKaaGPaVpaaBaaajuaibaGaaGimaaqcfayabaGaeyOKH4QaeS yhHeQaaiilaaaa@4B21@

Nv(t)= ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 (s, v ¯ s + ϕ s )ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtai aadAhacaaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaacqaHbpGCdaah aaqabKqbGeaacaaIXaGaeyOeI0IaeqyYdChaaaqcfayaaiabfo5ahj aaiIcacqaHjpWDcaaIPaaaamaapedabeqcfasaaiaadshajuaGdaWg aaqcfasaaiaadUgaaeqaaaqaaiaadshaaKqbakabgUIiYdGaaGikai aadshadaahaaqabKqbGeaacqaHbpGCaaqcfaOaeyOeI0Iaam4Camaa Caaabeqcfasaaiabeg8aYbaajuaGcaaIPaWaaWbaaeqajuaibaGaeq yYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaKqbGeqabaGaeqyW diNaeyOeI0IaaGymaaaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigj xyRrxDYbacfaqcfaOae8hdHGKaaGikaiaadohacaaISaGabmODayaa raWaaSbaaKqbGeaacaWGZbaajuaGbeaacqGHRaWkcqaHvpGzdaWgaa qcfasaaiaadohaaKqbagqaaiaaiMcacaWGKbGaam4Caaaa@77E7@

+ i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s, v ¯ s + ϕ s )ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadMgacaaI9aGaaGimaaqaaiaadUga cqGHsislcaaIXaaajuaGcqGHris5amaalaaabaGaeqyWdi3aaWbaae qajuaibaGaaGymaiabgkHiTiabeM8a3baaaKqbagaacqqHtoWrcaaI OaGaeqyYdCNaaGykaaaadaWdXaqabeaacaWG0bWaaSbaaKqbGeaaca WGPbaabeaaaKqbagaacaWG0bWaaSbaaKqbGeaacaWGPbGaey4kaSIa aGymaaqabaaajuaGcqGHRiI8aiaaiIcacaWG0bWaa0baaKqbGeaaca WGPbGaey4kaSIaaGymaaqaaiabeg8aYbaajuaGcqGHsislcaWGZbWa aWbaaeqajuaibaGaeqyWdihaaKqbakaaiMcadaahaaqabKqbGeaacq aHjpWDcqGHsislcaaIXaaaaKqbakaadohadaahaaqcfasabeaacqaH bpGCcqGHsislcaaIXaaaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGy KCHTgD1jhaiuaajuaGcqWFmecscaaIOaGaam4CaiaaiYcaceWG2bGb aebadaWgaaqcfauaaiaadohaaKqbagqaaiabgUcaRiabew9aMnaaBa aajuaibaGaam4CaaqcfayabaGaaGykaiaadsgacaWGZbaaaa@82A7@

+ j=1 k I j ( v ¯ ( t j )),t( t k , t k+1 ],k=0,1,2,...,m. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaadUga aKqbakabggHiLdGaamysamaaBaaajuaibaGaamOAaaqabaqcfaOaaG ikaiqadAhagaqeaiaaiIcacaWG0bWaaSbaaKqbGeaacaWGQbaajuaG beaacaaIPaGaaGykaiaaiYcacaaMe8UaamiDaiabgIGiolaaiIcaca WG0bWaaSbaaKqbGeaacaWGRbaajuaGbeaacaaISaGaamiDamaaBaaa juaibaGaam4AaiabgUcaRiaaigdaaeqaaKqbakaai2facaaISaGaaG jbVlaadUgacaaI9aGaaGimaiaaiYcacaaIXaGaaGilaiaaikdacaaI SaGaaGOlaiaai6cacaaIUaGaaGilaiaad2gacaaIUaaaaa@6385@ (13)

Now, let us present our main results.

Theorem For the functions (J×,) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=XqiijabgIGi olab=1sidjaaiIcacqWFjaVscqGHxdaTtuuDJXwAK1uy0HMmaeXbfv 3ySLgzG0uy0HgiuD3BaGGbaiab+1risjaaiYcacqGFDeIucaaIPaaa aa@56A0@  and I k : MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysam aaBaaajuaibaGaam4AaaqcfayabaGaaGOoamrr1ngBPrwtHrhAYaqe guuDJXwAKbstHrhAGq1DVbacfaGae8xhHiLaeyOKH4Qae8xhHifaaa@479D@ , assume the following conditions hold • There exists a continuous function α:[0,T] + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGOoaiaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaeyOKH46efv3y SLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFDeIudaahaa qabKqbGeaacqGHRaWkaaaaaa@4AD3@  satisfying | (t, p t )(t, q t ) |α(t)sup s[0,t] | p(s)q(s) |,p,q,t[0,T]; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hd HGKaaGikaiaadshacaaISaGaamiCamaaBaaajuaibaGaamiDaaqcfa yabaGaaGykaiabgkHiTiab=XqiijaaiIcacaWG0bGaaGilaiaadgha daWgaaqcfasaaiaadshaaeqaaKqbakaaiMcaaiaawEa7caGLiWoacq GHKjYOcqaHXoqycaaIOaGaamiDaiaaiMcacaaMi8Uaam4Caiaadwha caWGWbqcfaIaaGjcVNqbaoaaBaaajuaibaGaam4CaiabgIGiolaaiU facaaIWaGaaGilaiaadshacaaIDbaabeaajuaGdaabdaqaaiaadcha caaIOaGaam4CaiaaiMcacqGHsislcaWGXbGaaGikaiaadohacaaIPa aacaGLhWUaayjcSdGaaGilaiaaysW7caWGWbGaaGilaiaadghacqGH iiIZtuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaGGbaiab+1 risjaaiYcacaaMe8UaamiDaiabgIGiolaaiUfacaaIWaGaaGilaiaa dsfacaaIDbGaaG4oaaaa@8C7B@

 • There exists a constant L k >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaBaaajuaibaGaam4AaaqcfayabaGaaGOpaiaaicdaaaa@3AA4@  such that | I k (p) I k (q) | L k | pq |,k=1,2,...,m; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWGjbWaaSbaaKqbGeaacaWGRbaabeaajuaGcaaIOaGaamiCaiaa iMcacqGHsislcaWGjbWaaSbaaKqbGeaacaWGRbaajuaGbeaacaaIOa GaamyCaiaaiMcaaiaawEa7caGLiWoacqGHKjYOcaWGmbWaaSbaaKqb GeaacaWGRbaabeaajuaGdaabdaqaaiaadchacqGHsislcaWGXbaaca GLhWUaayjcSdGaaGilaiaaysW7caWGRbGaaGypaiaaigdacaaISaGa aGOmaiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGaamyBaiaaykW7ca GG7aaaaa@5BC2@

i=1 m+1 α i T ρω ρ ω Γ(ω+1) + j=1 m L j <1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCae qajuaibaGaamyAaiaai2dacaaIXaaabaGaamyBaiabgUcaRiaaigda aKqbakabggHiLdWaaSaaaeaacqaHXoqydaWgaaqcfasaaiaadMgaaK qbagqaaiaadsfadaahaaqcfasabeaacqaHbpGCcqaHjpWDaaaajuaG baGaeqyWdi3aaWbaaeqajuaibaGaeqyYdChaaKqbakabfo5ahjaaiI cajuaicqaHjpWDcqGHRaWkcaaIXaqcfaOaaGykaaaacqGHRaWkdaae WbqabKqbGeaacaWGQbGaaGypaiaaigdaaeaacaWGTbaajuaGcqGHri s5aiaadYeadaWgaaqcfasaaiaadQgaaKqbagqaaiaaiYdacaaIXaGa aGilaaaa@5E86@ where α k = t( t k , t k+1 ) sup α(t); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde 2aaSbaaKqbGeaacaWGRbaabeaajuaGcaaI9aWaa0baaeaacaWG0bGa eyicI4SaaGikaiaadshadaWgaaqcfasaaiaadUgaaKqbagqaaiaaiY cacaWG0bWaaSbaaKqbGeaacaWGRbGaey4kaSIaaGymaaqabaqcfaOa aGykaaqaaiaayIW7caWGZbGaamyDaiaadchacaaMi8oaaiabeg7aHj aaiIcacaWG0bGaaGykaiaaykW7caGG7aaaaa@52EA@ • There exists a constant M>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytai aai6dacaaIWaaaaa@38D8@  such that | (t, ϕ t ) |M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hd HGKaaGikaiaadshacaaISaGaeqy1dy2aaSbaaKqbGeaacaWG0baaju aGbeaacaaIPaaacaGLhWUaayjcSdGaeyizImQaamytaaaa@4E9A@ , where ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy1dy gaaa@384C@  is defined in (12).

Proof
To complete the proof, we shall use the method of successive approximations. Define a sequence of functions v n :[0,T], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODam aaBaaajuaibaGaamOBaaqcfayabaGaaGOoaiaaiUfacaaIWaGaaGil aiaadsfacaaIDbGaeyOKH4QaeSyhHeQaaGPaVlaacYcaaaa@43C0@ n=1,2,... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai aai2dacaaIXaGaaGilaiaaikdacaaISaGaaGOlaiaai6cacaaIUaaa aa@3D49@  as follows:

v 0 (t)=0, v n (t)=N v n1 (t). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODam aaBaaajuaibaGaaGimaaqcfayabaGaaGikaiaadshacaaIPaGaaGyp aiaaicdacaaISaGaaGjbVlaadAhadaWgaaqcfasaaiaad6gaaKqbag qaaiaaiIcacaWG0bGaaGykaiaai2dacaWGobGaamODamaaBaaajuai baGaamOBaiabgkHiTiaaigdaaKqbagqaaiaaiIcacaWG0bGaaGykai aai6caaaa@4D84@ (14)

Since v 0 (t)=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODam aaBaaajuaibaGaaGimaaqcfayabaGaaGikaiaadshacaaIPaGaaGyp aiaaicdacaaMc8Uaaiilaaaa@3F30@ it is easy to see from(11) that ( v ¯ 0 ) s =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaae aaceWG2bGbaebadaWgaaqcfasaaiaaicdaaKqbagqaaaGaayjkaiaa wMcaamaaBaaajuaibaGaam4CaaqabaqcfaOaaGypaiaaicdaaaa@3E0D@  for s[0,T]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4Cai abgIGiolaaiUfacaaIWaGaaGilaiaadsfacaaIDbGaaGPaVlaac6ca aaa@3F52@  Thus we have,

| v 1 (t) v 0 (t) | ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 | (s,ϕ(s)) |ds+ j=1 k I j (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWG2bWaaSbaaKqbGeaacaaIXaaabeaajuaGcaaIOaGaamiDaiaa iMcacqGHsislcaWG2bWaaSbaaKqbGeaacaaIWaaajuaGbeaacaaIOa GaamiDaiaaiMcaaiaawEa7caGLiWoacqGHKjYOdaWcaaqaaiabeg8a YnaaCaaabeqcfasaaiaaigdacqGHsislcqaHjpWDaaaajuaGbaGaeu 4KdCKaaGikaiabeM8a3jaaiMcaaaWaa8qmaeqabaGaamiDamaaBaaa juaibaGaam4AaaqcfayabaaabaGaamiDaaGaey4kIipacaaIOaGaam iDamaaCaaabeqcfasaaiabeg8aYbaajuaGcqGHsislcaWGZbWaaWba aeqajuaibaGaeqyWdihaaKqbakaaiMcadaahaaqcfasabeaacqaHjp WDcqGHsislcaaIXaaaaKqbakaadohadaahaaqabKqbGeaacqaHbpGC cqGHsislcaaIXaaaaKqbaoaaemaabaWefv3ySLgzgjxyRrxDYbqegu uDJXwAKbIrYf2A0vNCaGqbaiab=XqiijaaiIcacaWGZbGaaGilaiab ew9aMjaaiIcacaWGZbGaaGykaiaaiMcaaiaawEa7caGLiWoacaWGKb Gaam4CaiabgUcaRmaaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqa aiaadUgaaKqbakabggHiLdGaamysamaaBaaajuaibaGaamOAaaqcfa yabaGaaGikaiaaicdacaaIPaaaaa@8DA0@

+ i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 | (s,ϕ(s)) |ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadMgacaaI9aGaaGimaaqaaiaadUga cqGHsislcaaIXaaajuaGcqGHris5amaalaaabaGaeqyWdi3aaWbaae qajuaibaGaaGymaiabgkHiTiabeM8a3baaaKqbagaacqqHtoWrcaaI OaGaeqyYdCNaaGykaaaadaWdXaqabeaacaWG0bWaaSbaaKqbGeaaca WGPbaajuaGbeaaaeaacaWG0bWaaSbaaKqbGeaacaWGPbGaey4kaSIa aGymaaqabaaajuaGcqGHRiI8aiaaiIcacaWG0bWaa0baaKqbGeaaca WGPbGaey4kaSIaaGymaaqaaiabeg8aYbaajuaGcqGHsislcaWGZbWa aWbaaKqbGeqabaGaeqyWdihaaKqbakaaiMcadaahaaqcfasabeaacq aHjpWDcqGHsislcaaIXaaaaKqbakaadohadaahaaqcfasabeaacqaH bpGCcqGHsislcaaIXaaaaKqbaoaaemaabaWefv3ySLgzgjxyRrxDYb qeguuDJXwAKbIrYf2A0vNCaGqbaiab=XqiijaaiIcacaWGZbGaaGil aiabew9aMjaaiIcacaWGZbGaaGykaiaaiMcaaiaawEa7caGLiWoaca WGKbGaam4Caaaa@8267@

M( t ρω t k ρω ) ρ ω Γ(ω+1) + i=1 k M( t i ρω t i1 ρω ) ρ ω Γ(ω+1) + j=1 k | I j (0) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaSaaaeaacaWGnbGaaGikaiaadshadaahaaqabKqbGeaacqaHbpGC cqaHjpWDaaqcfaOaeyOeI0IaamiDamaaDaaajuaibaGaam4Aaaqaai abeg8aYjabeM8a3baajuaGcaaIPaaabaGaeqyWdi3aaWbaaKqbGeqa baGaeqyYdChaaKqbakabfo5ahjaaiIcacqaHjpWDcqGHRaWkcaaIXa GaaGykaaaacqGHRaWkdaaeWbqabKqbGeaacaWGPbGaaGypaiaaigda aeaacaWGRbaajuaGcqGHris5amaalaaabaGaamytaiaaiIcacaWG0b Waa0baaKqbGeaacaWGPbaabaGaeqyWdiNaeqyYdChaaKqbakabgkHi TiaadshadaqhaaqcfasaaiaadMgacqGHsislcaaIXaaabaGaeqyWdi NaeqyYdChaaKqbakaaiMcaaeaacqaHbpGCdaahaaqcfasabeaacqaH jpWDaaqcfaOaeu4KdCKaaGikaiabeM8a3jabgUcaRiaaigdacaaIPa aaaiabgUcaRmaaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaa dUgaaKqbakabggHiLdWaaqWaaeaacaWGjbWaaSbaaKqbGeaacaWGQb aajuaGbeaacaaIOaGaaGimaiaaiMcaaiaawEa7caGLiWoaaaa@8417@

i=1 m+1 M( t i ρω t i1 ρω ) ρ ω Γ(ω+1) + j=1 k | I j (0) |:= N 0 ,k=1,2,..,m, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaabCaeqajuaibaGaamyAaiaai2dacaaIXaaabaGaamyBaiabgUca RiaaigdaaKqbakabggHiLdWaaSaaaeaacaWGnbGaaGikaiaadshada qhaaqcfasaaiaadMgaaeaacqaHbpGCcqaHjpWDaaqcfaOaeyOeI0Ia amiDamaaDaaajuaibaGaamyAaiabgkHiTiaaigdaaeaacqaHbpGCcq aHjpWDaaqcfaOaaGykaaqaaiabeg8aYnaaCaaabeqcfasaaiabeM8a 3baajuaGcqqHtoWrcaaIOaGaeqyYdCNaey4kaSIaaGymaiaaiMcaaa Gaey4kaSYaaabCaeqajuaibaGaamOAaiaai2dacaaIXaaabaGaam4A aaqcfaOaeyyeIuoadaabdaqaaiaadMeadaWgaaqcfasaaiaadQgaae qaaKqbakaaiIcacaaIWaGaaGykaaGaay5bSlaawIa7aiaaiQdacaaI 9aGaamOtamaaBaaajuaibaGaaGimaaqcfayabaGaaGilaiaaysW7ca WGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYcacaaIUaGaaGOlaiaa iYcacaWGTbGaaGilaaaa@79E6@

it follows that v 1 (t) v 0 (t) N 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aacaWG2bWaaSbaaKqbGeaacaaIXaaajuaGbeaacaaIOaGaamiDaiaa iMcacqGHsislcaWG2bWaaSbaaKqbGeaacaaIWaaabeaajuaGcaaIOa GaamiDaiaaiMcaaiaawMa7caGLkWoacqGHKjYOcaWGobWaaSbaaKqb GeaacaaIWaaabeaajuaGcaaIUaaaaa@4950@ Furthermore,

| v n (t) v n1 (t) | ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 | (s,( v ¯ n1 ) s + ϕ s )(s,( v ¯ n2 ) s + ϕ s ) |ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWG2bWaaSbaaKqbGeaacaWGUbaajuaGbeaacaaIOaGaamiDaiaa iMcacqGHsislcaWG2bWaaSbaaKqbGeaacaWGUbGaeyOeI0IaaGymaa qabaqcfaOaaGikaiaadshacaaIPaaacaGLhWUaayjcSdGaeyizIm6a aSaaaeaacqaHbpGCdaahaaqabKqbGeaacaaIXaGaeyOeI0IaeqyYdC haaaqcfayaaiabfo5ahjaaiIcacqaHjpWDcaaIPaaaamaapedabeqa aiaadshadaWgaaqcfasaaiaadUgaaKqbagqaaaqaaiaadshaaiabgU IiYdGaaGikaiaadshadaahaaqabKqbGeaacqaHbpGCaaqcfaOaeyOe I0Iaam4CamaaCaaabeqcfasaaiabeg8aYbaajuaGcaaIPaWaaWbaae qajuaibaGaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaeqa juaibaGaeqyWdiNaeyOeI0IaaGymaaaajuaGdaabdaqaamrr1ngBPr MrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFmecscaaIOaGa am4CaiaaiYcacaaIOaGabmODayaaraWaaSbaaKqbGeaacaWGUbGaey OeI0IaaGymaaqabaqcfaOaaGykamaaBaaajuaibaGaam4Caaqcfaya baGaey4kaSIaeqy1dy2aaSbaaKqbGeaacaWGZbaabeaajuaGcaaIPa GaeyOeI0Iae8hdHGKaaGikaiaadohacaaISaGaaGikaiqadAhagaqe amaaBaaajuaibaGaamOBaiabgkHiTiaaikdaaKqbagqaaiaaiMcada WgaaqcfasaaiaadohaaeqaaKqbakabgUcaRiabew9aMnaaBaaajuai baGaam4CaaqcfayabaGaaGykaaGaay5bSlaawIa7aiaadsgacaWGZb aaaa@9D34@

+ i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 | (s,( v ¯ n1 ) s + ϕ s )(s,( v ¯ n2 ) s + ϕ s ) |ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadMgacaaI9aGaaGimaaqaaiaadUga cqGHsislcaaIXaaajuaGcqGHris5amaalaaabaGaeqyWdi3aaWbaae qajuaibaGaaGymaiabgkHiTiabeM8a3baaaKqbagaacqqHtoWrcaaI OaGaeqyYdCNaaGykaaaadaWdXaqabeaacaWG0bWaaSbaaKqbGeaaca WGPbaabeaaaKqbagaacaWG0bWaaSbaaKqbGeaacaWGPbGaey4kaSIa aGymaaqabaaajuaGcqGHRiI8aiaaiIcacaWG0bWaa0baaKqbGeaaca WGPbGaey4kaSIaaGymaaqaaiabeg8aYbaajuaGcqGHsislcaWGZbWa aWbaaeqajuaibaGaeqyWdihaaKqbakaaiMcadaahaaqabKqbGeaacq aHjpWDcqGHsislcaaIXaaaaKqbakaadohadaahaaqcfasabeaacqaH bpGCcqGHsislcaaIXaaaaKqbaoaaemaabaWefv3ySLgzgjxyRrxDYb qeguuDJXwAKbIrYf2A0vNCaGqbaiab=XqiijaaiIcacaWGZbGaaGil aiaaiIcaceWG2bGbaebadaWgaaqcfasaaiaad6gacqGHsislcaaIXa aajuaGbeaacaaIPaWaaSbaaKqbGeaacaWGZbaajuaGbeaacqGHRaWk cqaHvpGzdaWgaaqcfasaaiaadohaaeqaaKqbakaaiMcacqGHsislcq WFmecscaaIOaGaam4CaiaaiYcacaaIOaGabmODayaaraWaaSbaaKqb GeaacaWGUbGaeyOeI0IaaGOmaaqcfayabaGaaGykamaaBaaajuaiba Gaam4CaaqcfayabaGaey4kaSIaeqy1dy2aaSbaaKqbGeaacaWGZbaa beaajuaGcaaIPaaacaGLhWUaayjcSdGaamizaiaadohaaaa@9BC5@

+ j=1 k | I j ( v ¯ n1 )( t j ) I j ( v ¯ n2 )( t j ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaadUga aKqbakabggHiLdWaaqWaaeaacaWGjbWaaSbaaKqbGeaacaWGQbaaju aGbeaacaaIOaGabmODayaaraWaaSbaaKqbGeaacaWGUbGaeyOeI0Ia aGymaaqcfayabaGaaGykaiaaiIcacaWG0bWaaSbaaKqbGeaacaWGQb aajuaGbeaacaaIPaGaeyOeI0IaamysamaaBaaajuaibaGaamOAaaqa baqcfaOaaGikaiqadAhagaqeamaaBaaajuaibaGaamOBaiabgkHiTi aaikdaaKqbagqaaiaaiMcacaaIOaGaamiDamaaBaaajuaibaGaamOA aaqcfayabaGaaGykaaGaay5bSlaawIa7aaaa@5CB4@

ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 α (s) x[0,s] sup | v ¯ n1 (x) v ¯ n2 (x) |ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaSaaaeaacqaHbpGCdaahaaqabKqbGeaacaaIXaGaeyOeI0IaeqyY dChaaaqcfayaaiabfo5ahjaaiIcacqaHjpWDcaaIPaaaamaapedabe qaaiaadshadaWgaaqcfasaaiaadUgaaKqbagqaaaqaaiaadshaaiab gUIiYdGaaGikaiaadshadaahaaqabKqbGeaacqaHbpGCaaqcfaOaey OeI0Iaam4CamaaCaaabeqcfasaaiabeg8aYbaajuaGcaaIPaWaaWba aKqbGeqabaGaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaK qbGeqabaGaeqyWdiNaeyOeI0IaaGymaaaajuaGcqaHXoqycaaIOaGa am4CaiaaiMcadaqhaaqcfasaaiaadIhacqGHiiIZcaaIBbGaaGimai aaiYcacaWGZbGaaGyxaaqaaiaaysW7caaMi8Uaam4CaiaadwhacaWG WbGaaGjcVdaajuaGdaabdaqaaiqadAhagaqeamaaBaaajuaibaGaam OBaiabgkHiTiaaigdaaKqbagqaaiaaiIcacaWG4bGaaGykaiabgkHi TiqadAhagaqeamaaBaaajuaibaGaamOBaiabgkHiTiaaikdaaeqaaK qbakaaiIcacaWG4bGaaGykaaGaay5bSlaawIa7aiaadsgacaWGZbaa aa@82C7@

+ i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 α (s) x[0,s] sup | v ¯ n1 (x) v ¯ n2 (x) |ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadMgacaaI9aGaaGimaaqaaiaadUga cqGHsislcaaIXaaajuaGcqGHris5amaalaaabaGaeqyWdi3aaWbaae qajuaibaGaaGymaiabgkHiTiabeM8a3baaaKqbagaacqqHtoWrcaaI OaGaeqyYdCNaaGykaaaadaWdXaqabeaacaWG0bWaaSbaaKqbGeaaca WGPbaabeaaaKqbagaacaWG0bWaaSbaaKqbGeaacaWGPbGaey4kaSIa aGymaaqabaaajuaGcqGHRiI8aiaaiIcacaWG0bWaa0baaKqbGeaaca WGPbGaey4kaSIaaGymaaqaaiabeg8aYbaajuaGcqGHsislcaWGZbWa aWbaaeqajuaibaGaeqyWdihaaKqbakaaiMcadaahaaqcfasabeaacq aHjpWDcqGHsislcaaIXaaaaKqbakaadohadaahaaqcfasabeaacqaH bpGCcqGHsislcaaIXaaaaKqbakabeg7aHjaaiIcacaWGZbGaaGykam aaDaaajuaibaGaamiEaiabgIGiolaaiUfacaaIWaGaaGilaiaadoha caaIDbaabaGaaGjcVlaadohacaWG1bGaamiCaiaayIW7aaqcfa4aaq WaaeaaceWG2bGbaebadaWgaaqcfasaaiaad6gacqGHsislcaaIXaaa juaGbeaacaaIOaGaamiEaiaaiMcacqGHsislceWG2bGbaebadaWgaa qcfasaaiaad6gacqGHsislcaaIYaaabeaajuaGcaaIOaGaamiEaiaa iMcaaiaawEa7caGLiWoacaWGKbGaam4Caaaa@8FD4@

+ j=1 k I j | v ¯ n1 ( t j ) v ¯ n2 ( t j ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaadUga aKqbakabggHiLdGaamysamaaBaaajuaibaGaamOAaaqabaqcfa4aaq WaaeaaceWG2bGbaebadaWgaaqcfasaaiaad6gacqGHsislcaaIXaaa beaajuaGcaaIOaGaamiDamaaBaaajuaibaGaamOAaaqcfayabaGaaG ykaiabgkHiTiqadAhagaqeamaaBaaajuaibaGaamOBaiabgkHiTiaa ikdaaKqbagqaaiaaiIcacaWG0bWaaSbaaKqbGeaacaWGQbaajuaGbe aacaaIPaaacaGLhWUaayjcSdaaaa@5750@

( α k ( t ρω t k ρω ) Γ(ω+1) + i=1 k α i ( t i ρω t i1 ρω ) Γ(ω+1) + j=1 k L j ). v n1 v n2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaeWaaeaacqaHXoqydaWgaaqcfasaaiaadUgaaKqbagqaamaalaaa baGaaGikaiaadshadaahaaqabKqbGeaacqaHbpGCcqaHjpWDaaqcfa OaeyOeI0IaamiDamaaDaaajuaibaGaam4Aaaqaaiabeg8aYjabeM8a 3baajuaGcaaIPaaabaGaeu4KdCKaaGikaiabeM8a3jabgUcaRiaaig dacaaIPaaaaiabgUcaRmaaqahabeqcfasaaiaadMgacaaI9aGaaGym aaqaaiaadUgaaKqbakabggHiLdGaeqySde2aaSbaaKqbGeaacaWGPb aabeaajuaGdaWcaaqaaiaaiIcacaWG0bWaa0baaKqbGeaacaWGPbaa baGaeqyWdiNaeqyYdChaaKqbakabgkHiTiaadshadaqhaaqcfasaai aadMgacqGHsislcaaIXaaabaGaeqyWdiNaeqyYdChaaKqbakaaiMca aeaacqqHtoWrcaaIOaGaeqyYdCNaey4kaSIaaGymaiaaiMcaaaGaey 4kaSYaaabCaeqajuaibaGaamOAaiaai2dacaaIXaaabaGaam4Aaaqc faOaeyyeIuoacaWGmbWaaSbaaKqbGeaacaWGQbaajuaGbeaaaiaawI cacaGLPaaacaaIUaWaauWaaeaacaWG2bWaaSbaaKqbGeaacaWGUbGa eyOeI0IaaGymaaqabaqcfaOaeyOeI0IaamODamaaBaaajuaibaGaam OBaiabgkHiTiaaikdaaKqbagqaaaGaayzcSlaawQa7aaaa@8A71@

( i=1 m+1 α i T ωρ ρ ω Γ(ω+1) + j=1 m L j ). v n1 v n2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaeWaaeaadaaeWbqabKqbGeaacaWGPbGaaGypaiaaigdaaeaacaWG TbGaey4kaSIaaGymaaqcfaOaeyyeIuoacqaHXoqydaWgaaqcfasaai aadMgaaeqaaKqbaoaalaaabaGaamivamaaCaaabeqcfasaaiabeM8a 3jabeg8aYbaaaKqbagaacqaHbpGCdaahaaqabKqbGeaacqaHjpWDaa qcfaOaeu4KdCKaaGikaiabeM8a3jabgUcaRiaaigdacaaIPaaaaiab gUcaRmaaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaad2gaaK qbakabggHiLdGaamitamaaBaaajuaibaGaamOAaaqcfayabaaacaGL OaGaayzkaaGaaGOlamaafmaabaGaamODamaaBaaajuaibaGaamOBai abgkHiTiaaigdaaeqaaKqbakabgkHiTiaadAhadaWgaaqcfasaaiaa d6gacqGHsislcaaIYaaajuaGbeaaaiaawMa7caGLkWoaaaa@6C84@

:= N 1 v n1 v n2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOoai aai2dacaWGobWaaSbaaKqbGeaacaaIXaaabeaajuaGdaqbdaqaaiaa dAhadaWgaaqcfasaaiaad6gacqGHsislcaaIXaaajuaGbeaacqGHsi slcaWG2bWaaSbaaKqbGeaacaWGUbGaeyOeI0IaaGOmaaqabaaajuaG caGLjWUaayPcSdGaaGilaaaa@482B@ (15)

  which implies that v n v n1 N 1 v n1 v n2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aacaWG2bWaaSbaaKqbGeaacaWGUbaajuaGbeaacqGHsislcaWG2bWa aSbaaKqbGeaacaWGUbGaeyOeI0IaaGymaaqcfayabaaacaGLjWUaay PcSdGaeyizImQaamOtamaaBaaajuaibaGaaGymaaqabaqcfa4aauWa aeaacaWG2bWaaSbaaKqbGeaacaWGUbGaeyOeI0IaaGymaaqabaqcfa OaeyOeI0IaamODamaaBaaajuaibaGaamOBaiabgkHiTiaaikdaaKqb agqaaaGaayzcSlaawQa7aaaa@52F1@ with N 1 <1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtam aaBaaajuaibaGaaGymaaqabaqcfaOaaGipaiaaigdacaaMc8UaaiOl aaaa@3CAD@  Note that for any r>n>0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aai6dacaWGUbGaaGOpaiaaicdacaaMc8Uaaiilaaaa@3CF3@ we have v r v n v n+1 v n + v n+2 v n+1 +...+ v r v r1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aacaWG2bWaaSbaaKqbGeaacaWGYbaajuaGbeaacqGHsislcaWG2bWa aSbaaKqbGeaacaWGUbaabeaaaKqbakaawMa7caGLkWoacqGHKjYOda qbdaqaaiaadAhadaWgaaqcfasaaiaad6gacqGHRaWkcaaIXaaabeaa juaGcqGHsislcaWG2bWaaSbaaKqbGeaacaWGUbaajuaGbeaaaiaawM a7caGLkWoacqGHRaWkdaqbdaqaaiaadAhadaWgaaqcfasaaiaad6ga cqGHRaWkcaaIYaaajuaGbeaacqGHsislcaWG2bWaaSbaaKqbGeaaca WGUbGaey4kaSIaaGymaaqabaaajuaGcaGLjWUaayPcSdGaey4kaSIa aGOlaiaai6cacaaIUaGaey4kaSYaauWaaeaacaWG2bWaaSbaaKqbGe aacaWGYbaabeaajuaGcqGHsislcaWG2bWaaSbaaKqbGeaacaWGYbGa eyOeI0IaaGymaaqcfayabaaacaGLjWUaayPcSdaaaa@6A3B@

( N 1 n + N 1 n+1 +...+ N 1 r1 ) v 1 v 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaeWaaeaacaWGobWaa0baaKqbGeaacaaIXaaabaGaamOBaaaajuaG cqGHRaWkcaWGobWaa0baaKqbGeaacaaIXaaabaGaamOBaiabgUcaRi aaigdaaaqcfaOaey4kaSIaaGOlaiaai6cacaaIUaGaey4kaSIaamOt amaaDaaajuaibaGaaGymaaqaaiaadkhacqGHsislcaaIXaaaaaqcfa OaayjkaiaawMcaamaafmaabaGaamODamaaBaaajuaibaGaaGymaaqa baqcfaOaeyOeI0IaamODamaaBaaajuaibaGaaGimaaqabaaajuaGca GLjWUaayPcSdaaaa@552F@

v r v n N 1 n 1 N 1 v 1 v 0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aacaWG2bWaaSbaaKqbGeaacaWGYbaajuaGbeaacqGHsislcaWG2bWa aSbaaKqbGeaacaWGUbaajuaGbeaaaiaawMa7caGLkWoacqGHKjYOda Wcaaqaaiaad6eadaqhaaqcfasaaiaaigdaaeaacaWGUbaaaaqcfaya aiaaigdacqGHsislcaWGobWaaSbaaKqbGeaacaaIXaaabeaaaaqcfa 4aauWaaeaacaWG2bWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGHsisl caWG2bWaaSbaaKqbGeaacaaIWaaajuaGbeaaaiaawMa7caGLkWoaca aIUaaaaa@535A@  (16)

for sufficiently large numbers r,n, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCai aaiYcacaWGUbGaaiilaaaa@39D4@ it follows from the above inequalities with N 1 <1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOtam aaBaaajuaibaGaaGymaaqcfayabaGaaGipaiaaigdaaaa@3A70@  that v r v n 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aacaWG2bWaaSbaaKqbGeaacaWGYbaajuaGbeaacqGHsislcaWG2bWa aSbaaKqbGeaacaWGUbaajuaGbeaaaiaawMa7caGLkWoacqGHsgIRca aIWaGaaiOlaaaa@438B@  Thus, { v n (t) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiWaae aacaWG2bWaaSbaaKqbGeaacaWGUbaajuaGbeaacaaIOaGaamiDaiaa iMcaaiaawUhacaGL9baaaaa@3DDE@ is a Cauchy sequence in P(J). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=9a8qjab=1si djaaiIcacqWFjaVscaaIPaGaaiOlaaaa@480E@  Since P(J) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=9a8qjab=1si djaaiIcacqWFjaVscaaIPaaaaa@475C@  is a complete Banach space, then v n v 0(n), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aauWaae aacaWG2bWaaSbaaKqbGeaacaWGUbaajuaGbeaacqGHsislcaWG2baa caGLjWUaayPcSdGaeyOKH4QaaGimaiaaywW7caaIOaGaamOBaiabgk ziUkabg6HiLkaaiMcacaGGSaaaaa@48F9@ for some vP(J), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODai abgIGioprr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaa cqWFpapucqWFTeYqcaaIOaGae8xcWRKaaGykaiaaykW7caGGSaaaaa@4C16@ which means that v n (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODam aaBaaajuaqbaGaamOBaaqcfayabaGaaGikaiaadshacaaIPaaaaa@3BCD@  is uniformly convergent to v(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODai aaiIcacaWG0bGaaGykaaaa@39DD@  with respect to t. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai aac6caaaa@382F@   In what follows, we shall show that v(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODai aaiIcacaWG0bGaaGykaaaa@39DD@ is a solution of the equation (1). Observe that

| ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 (s,( v ¯ n ) s + ϕ s )ds ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 (s,( v ¯ s + ϕ s ))ds | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aadaWcaaqaaiabeg8aYnaaCaaabeqcfasaaiaaigdacqGHsislcqaH jpWDaaaajuaGbaGaeu4KdCKaaGikaiabeM8a3jaaiMcaaaWaa8qmae qabaGaamiDamaaBaaajuaibaGaam4AaaqcfayabaaabaGaamiDaaGa ey4kIipacaaIOaGaamiDamaaCaaabeqcfasaaiabeg8aYbaajuaGcq GHsislcaWGZbWaaWbaaKqbGeqabaGaeqyWdihaaKqbakaaiMcadaah aaqabKqbGeaacqaHjpWDcqGHsislcaaIXaaaaKqbakaadohadaahaa qcfasabeaacqaHbpGCcqGHsislcaaIXaaaamrr1ngBPrMrYf2A0vNC aeHbfv3ySLgzGyKCHTgD1jhaiuaajuaGcqWFmecscaaIOaGaam4Cai aaiYcacaaIOaGabmODayaaraWaaSbaaKqbGeaacaWGUbaajuaGbeaa caaIPaWaaSbaaKqbGeaacaWGZbaabeaajuaGcqGHRaWkcqaHvpGzda WgaaqcfasaaiaadohaaeqaaKqbakaaiMcacaWGKbGaam4CaiabgkHi TmaalaaabaGaeqyWdi3aaWbaaeqajuaibaGaaGymaiabgkHiTiabeM 8a3baaaKqbagaacqqHtoWrcaaIOaGaeqyYdCNaaGykaaaadaWdXaqa beaacaWG0bWaaSbaaKqbGeaacaWGRbaajuaGbeaaaeaacaWG0baacq GHRiI8aiaaiIcacaWG0bWaaWbaaeqajuaibaGaeqyWdihaaKqbakab gkHiTiaadohadaahaaqabKqbGeaacqaHbpGCaaqcfaOaaGykamaaCa aajuaibeqaaiabeM8a3jabgkHiTiaaigdaaaqcfaOaam4CamaaCaaa beqcfasaaiabeg8aYjabgkHiTiaaigdaaaqcfaOae8hdHGKaaGikai aadohacaaISaGaaGikaiqadAhagaqeamaaBaaajuaibaGaam4Caaqa baqcfaOaey4kaSIaeqy1dy2aaSbaaKqbGeaacaWGZbaajuaGbeaaca aIPaGaaGykaiaadsgacaWGZbaacaGLhWUaayjcSdaaaa@ABD4@

ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 | (s,( v ¯ n ) s + ϕ s )(s,( v ¯ s + ϕ s )) |ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaSaaaeaacqaHbpGCdaahaaqabKqbGeaacaaIXaGaeyOeI0IaeqyY dChaaaqcfayaaiabfo5ahjaaiIcacqaHjpWDcaaIPaaaamaapedabe qaaiaadshadaWgaaqcfasaaiaadUgaaKqbagqaaaqaaiaadshaaiab gUIiYdGaaGikaiaadshadaahaaqabKqbGeaacqaHbpGCaaqcfaOaey OeI0Iaam4CamaaCaaabeqcfasaaiabeg8aYbaajuaGcaaIPaWaaWba aKqbGeqabaGaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaae qajuaibaGaeqyWdiNaeyOeI0IaaGymaaaajuaGdaabdaqaamrr1ngB PrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFmecscaaIOa Gaam4CaiaaiYcacaaIOaGabmODayaaraWaaSbaaKqbGeaacaWGUbaa juaGbeaacaaIPaWaaSbaaKqbGeaacaWGZbaabeaajuaGcqGHRaWkcq aHvpGzdaWgaaqcfasaaiaadohaaKqbagqaaiaaiMcacqGHsislcqWF mecscaaIOaGaam4CaiaaiYcacaaIOaGabmODayaaraWaaSbaaKqbGe aacaWGZbaajuaGbeaacqGHRaWkcqaHvpGzdaWgaaqcfasaaiaadoha aKqbagqaaiaaiMcacaaIPaaacaGLhWUaayjcSdGaamizaiaadohaaa a@880A@

ρ 1ω Γ(ω) t k t α(t)( t ρ s ρ ) ω1 s ρ1 x[0,s] sup | v ¯ n (x) v ¯ (x) |ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaSaaaeaacqaHbpGCdaahaaqabKqbGeaacaaIXaGaeyOeI0IaeqyY dChaaaqcfayaaiabfo5ahjaaiIcacqaHjpWDcaaIPaaaamaapedabe qaaiaadshadaWgaaqcfasaaiaadUgaaKqbagqaaaqaaiaadshaaiab gUIiYdGaeqySdeMaaGikaiaadshacaaIPaGaaGikaiaadshadaahaa qabKqbGeaacqaHbpGCaaqcfaOaeyOeI0Iaam4CamaaCaaabeqcfasa aiabeg8aYbaajuaGcaaIPaWaaWbaaKqbGeqabaGaeqyYdCNaeyOeI0 IaaGymaaaajuaGcaWGZbWaaWbaaeqajuaibaGaeqyWdiNaeyOeI0Ia aGymaaaajuaGcaaMe8+aa0baaKqbGeaacaWG4bGaeyicI4SaaG4wai aaicdacaaISaGaam4Caiaai2faaeaacaaMi8Uaam4CaiaadwhacaWG WbGaaGjcVdaajuaGdaabdaqaaiqadAhagaqeamaaBaaajuaibaGaam OBaaqcfayabaGaaGikaiaadIhacaaIPaGaeyOeI0IabmODayaaraGa aGikaiaadIhacaaIPaaacaGLhWUaayjcSdGaamizaiaadohaaaa@7DA7@

= ρ 1ω Γ(ω) t k t α(t)( t ρ s ρ ) ω1 s ρ1 x[0,s] sup | v n (x)v(x) |ds. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGypam aalaaabaGaeqyWdi3aaWbaaeqajuaibaGaaGymaiabgkHiTiabeM8a 3baaaKqbagaacqqHtoWrcaaIOaGaeqyYdCNaaGykaaaadaWdXaqabe aacaWG0bWaaSbaaKqbGeaacaWGRbaajuaGbeaaaeaacaWG0baacqGH RiI8aiabeg7aHjaaiIcacaWG0bGaaGykaiaaiIcacaWG0bWaaWbaae qajuaibaGaeqyWdihaaKqbakabgkHiTiaadohadaahaaqabKqbGeaa cqaHbpGCaaqcfaOaaGykamaaCaaajuaibeqaaiabeM8a3jabgkHiTi aaigdaaaqcfaOaam4CamaaCaaajuaibeqaaiabeg8aYjabgkHiTiaa igdaaaqcfaOaaGjbVpaaDaaajuaibaGaamiEaiabgIGiolaaiUfaca aIWaGaaGilaiaadohacaaIDbaabaGaaGjcVlaadohacaWG1bGaamiC aiaayIW7aaqcfa4aaqWaaeaacaWG2bWaaSbaaKqbGeaacaWGUbaaju aGbeaacaaIOaGaamiEaiaaiMcacqGHsislcaWG2bGaaGikaiaadIha caaIPaaacaGLhWUaayjcSdGaamizaiaadohacaaIUaaaaa@7D41@

Since v n (t)v(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODam aaBaaajuaibaGaamOBaaqcfayabaGaaGikaiaadshacaaIPaGaeyOK H4QaamODaiaaiIcacaWG0bGaaGykaaaa@40F3@  as n+, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai abgkziUkabgUcaRiabg6HiLkaacYcaaaa@3C67@ for any ε>0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyTdu MaaGOpaiaaicdacaGGSaaaaa@3A5D@ there exists a sufficiently large number n 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBam aaBaaajuaibaGaaGimaaqcfayabaGaaGOpaiaaicdaaaa@3A90@  such that for all n> n 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai aai6dacaWGUbWaaSbaaKqbGeaacaaIWaaajuaGbeaacaaMc8Uaaiil aaaa@3D04@  we have

| v n (x)v(x) |<min{ ρ ω Γ(ω+1) i=0 m α i T ρω ε, 1 j=1 m L j ε }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWG2bWaaSbaaKqbGeaacaWGUbaajuaGbeaacaaIOaGaamiEaiaa iMcacqGHsislcaWG2bGaaGikaiaadIhacaaIPaaacaGLhWUaayjcSd GaaGipaiaayIW7caWGTbGaamyAaiaad6gacaaMi8+aaiWaaeaadaWc aaqaaiabeg8aYnaaCaaabeqcfasaaiabeM8a3baajuaGcqqHtoWrca aIOaGaeqyYdCNaey4kaSIaaGymaiaaiMcaaeaadaaeWbqabKqbGeaa caWGPbGaaGypaiaaicdaaeaacaWGTbaajuaGcqGHris5aiabeg7aHn aaBaaajuaibaGaamyAaaqabaqcfaOaamivamaaCaaabeqcfasaaiab eg8aYjabeM8a3baaaaqcfaOaeqyTduMaaGilamaalaaabaGaaGymaa qaamaaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaad2gaaKqb akabggHiLdGaamitamaaBaaajuaibaGaamOAaaqabaaaaKqbakabew 7aLbGaay5Eaiaaw2haaiaai6caaaa@741F@

Therefore,

| ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 (s,( v ¯ n ) s + ϕ s )ds ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 (s,( v ¯ s + ϕ s ))ds |<ε, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aadaWcaaqaaiabeg8aYnaaCaaabeqcfasaaiaaigdacqGHsislcqaH jpWDaaaajuaGbaGaeu4KdCKaaGikaiabeM8a3jaaiMcaaaWaa8qmae qabaGaamiDamaaBaaajuaibaGaam4AaaqcfayabaaabaGaamiDaaGa ey4kIipacaaIOaGaamiDamaaCaaabeqcfasaaiabeg8aYbaajuaGcq GHsislcaWGZbWaaWbaaeqajuaibaGaeqyWdihaaKqbakaaiMcadaah aaqcfasabeaacqaHjpWDcqGHsislcaaIXaaaaKqbakaadohadaahaa qcfasabeaacqaHbpGCcqGHsislcaaIXaaaamrr1ngBPrMrYf2A0vNC aeHbfv3ySLgzGyKCHTgD1jhaiuaajuaGcqWFmecscaaIOaGaam4Cai aaiYcacaaIOaGabmODayaaraWaaSbaaKqbGeaacaWGUbaajuaGbeaa caaIPaWaaSbaaKqbGeaacaWGZbaabeaajuaGcqGHRaWkcqaHvpGzda WgaaqcfasaaiaadohaaKqbagqaaiaaiMcacaWGKbGaam4CaiabgkHi TmaalaaabaGaeqyWdi3aaWbaaeqajuaibaGaaGymaiabgkHiTiabeM 8a3baaaKqbagaacqqHtoWrcaaIOaGaeqyYdCNaaGykaaaadaWdXaqa beaacaWG0bWaaSbaaKqbGeaacaWGRbaajuaGbeaaaeaacaWG0baacq GHRiI8aiaaiIcacaWG0bWaaWbaaeqajuaqbaGaeqyWdihaaKqbakab gkHiTiaadohadaahaaqabKqbGeaacqaHbpGCaaqcfaOaaGykamaaCa aajuaibeqaaiabeM8a3jabgkHiTiaaigdaaaqcfaOaam4CamaaCaaa juaibeqaaiabeg8aYjabgkHiTiaaigdaaaqcfaOae8hdHGKaaGikai aadohacaaISaGaaGikaiqadAhagaqeamaaBaaajuaibaGaam4Caaqc fayabaGaey4kaSIaeqy1dy2aaSbaaKqbGeaacaWGZbaabeaajuaGca aIPaGaaGykaiaadsgacaWGZbaacaGLhWUaayjcSdGaaGipaiabew7a LjaaiYcaaaa@AF17@ (17)

 

| i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s,( v ¯ n ) s + ϕ s )ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqqaae aadaaeWbqabKqbGeaacaWGPbGaaGypaiaaicdaaeaacaWGRbGaeyOe I0IaaGymaaqcfaOaeyyeIuoadaWcaaqaaiabeg8aYnaaCaaabeqcfa saaiaaigdacqGHsislcqaHjpWDaaaajuaGbaGaeu4KdCKaaGikaiab eM8a3jaaiMcaaaWaa8qmaeqabaGaamiDamaaBaaajuaibaGaamyAaa qabaaajuaGbaGaamiDamaaBaaajuaibaGaamyAaiabgUcaRiaaigda aKqbagqaaaGaey4kIipacaaIOaGaamiDamaaDaaajuaibaGaamyAai abgUcaRiaaigdaaeaacqaHbpGCaaqcfaOaeyOeI0Iaam4CamaaCaaa beqcfasaaiabeg8aYbaajuaGcaaIPaWaaWbaaKqbGeqabaGaeqyYdC NaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaeqajuaibaGaeqyWdiNa eyOeI0IaaGymaaaatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRr xDYbacfaqcfaOae8hdHGKaaGikaiaadohacaaISaGaaGikaiqadAha gaqeamaaBaaajuaibaGaamOBaaqabaqcfaOaaGykamaaBaaajuaiba Gaam4CaaqcfayabaGaey4kaSIaeqy1dy2aaSbaaKqbGeaacaWGZbaa beaajuaGcaaIPaGaamizaiaadohaaiaawEa7aaaa@84E0@

i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s,( v ¯ s + φ s ))ds| MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGzbVpaaei aabaGaaGzbVlabgkHiTmaaqahabeWcbaGaamyAaiaai2dacaaIWaaa baGaam4AaiabgkHiTiaaigdaa0GaeyyeIuoakmaalaaabaGaeqyWdi 3aaWbaaSqabeaacaaIXaGaeyOeI0IaeqyYdChaaaGcbaGaeu4KdCKa aGikaiabeM8a3jaaiMcaaaWaa8qmaeqaleaacaWG0bWaaSbaaeaaca WGPbaabeaaaeaacaWG0bWaaSbaaeaacaWGPbGaey4kaSIaaGymaaqa baaaniabgUIiYdGccaaIOaGaamiDamaaDaaaleaacaWGPbGaey4kaS IaaGymaaqaaiabeg8aYbaakiabgkHiTiaadohadaahaaWcbeqaaiab eg8aYbaakiaaiMcadaahaaWcbeqaaiabeM8a3jabgkHiTiaaigdaaa GccaWGZbWaaWbaaSqabeaacqaHbpGCcqGHsislcaaIXaaaaOGaeSy= =7MaaGikaiaadohacaaISaGaaGikamaanaaabaGaamODaaaadaWgaa WcbaGaam4CaaqabaGccqGHRaWkcqaHgpGAdaWgaaWcbaGaam4Caaqa baGccaaIPaGaaGykaiaadsgacaWGZbaacaGLiWoaaaa@773B@

i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 | (s,( v ¯ n ) s + ϕ s )(s,( v ¯ s + ϕ s )) |ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaabCaeqajuaibaGaamyAaiaai2dacaaIWaaabaGaam4AaiabgkHi TiaaigdaaKqbakabggHiLdWaaSaaaeaacqaHbpGCdaahaaqabKqbGe aacaaIXaGaeyOeI0IaeqyYdChaaaqcfayaaiabfo5ahjaaiIcacqaH jpWDcaaIPaaaamaapedabeqaaiaadshadaWgaaqcfasaaiaadMgaae qaaaqcfayaaiaadshadaWgaaqcfasaaiaadMgacqGHRaWkcaaIXaaa beaaaKqbakabgUIiYdGaaGikaiaadshadaqhaaqcfasaaiaadMgacq GHRaWkcaaIXaaabaGaeqyWdihaaKqbakabgkHiTiaadohadaahaaqa bKqbGeaacqaHbpGCaaqcfaOaaGykamaaCaaajuaibeqaaiabeM8a3j abgkHiTiaaigdaaaqcfaOaam4CamaaCaaabeqcfasaaiabeg8aYjab gkHiTiaaigdaaaqcfa4aaqWaaeaatuuDJXwAKzKCHTgD1jharyqr1n gBPrgigjxyRrxDYbacfaGae8hdHGKaaGikaiaadohacaaISaGaaGik aiqadAhagaqeamaaBaaajuaibaGaamOBaaqcfayabaGaaGykamaaBa aajuaibaGaam4CaaqabaqcfaOaey4kaSIaeqy1dy2aaSbaaKqbGeaa caWGZbaajuaGbeaacaaIPaGaeyOeI0Iae8hdHGKaaGikaiaadohaca aISaGaaGikaiqadAhagaqeamaaBaaajuaibaGaam4CaaqcfayabaGa ey4kaSIaeqy1dy2aaSbaaKqbGeaacaWGZbaajuaGbeaacaaIPaGaaG ykaaGaay5bSlaawIa7aiaadsgacaWGZbaaaa@95E9@

i=0 k1 α( t i ) ( t i ρ t i1 ρ ) ω ρ ω Γ(ω+1) x[0,s] sup | v n (x)v(x) |ds<ε. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaabCaeqajuaibaGaamyAaiaai2dacaaIWaaabaGaam4AaiabgkHi TiaaigdaaKqbakabggHiLdGaeqySdeMaaGikaiaadshadaWgaaqcfa saaiaadMgaaeqaaKqbakaaiMcadaWcaaqaaiaaiIcacaWG0bWaa0ba aKqbGeaacaWGPbaabaGaeqyWdihaaKqbakabgkHiTiaadshadaqhaa qcfasaaiaadMgacqGHsislcaaIXaaabaGaeqyWdihaaKqbakaaiMca daahaaqcfasabeaacqaHjpWDaaaajuaGbaGaeqyWdi3aaWbaaKqbGe qabaGaeqyYdChaaaaajuaGcqqHtoWrcaaIOaGaeqyYdCNaey4kaSIa aGymaiaaiMcacaaMe8+aa0baaKqbGeaacaWG4bGaeyicI4SaaG4wai aaicdacaaISaGaam4Caiaai2faaeaacaaMi8Uaam4CaiaadwhacaWG WbGaaGjcVdaajuaGdaabdaqaaiaadAhadaWgaaqcfasaaiaad6gaaK qbagqaaiaaiIcacaWG4bGaaGykaiabgkHiTiaadAhacaaIOaGaamiE aiaaiMcaaiaawEa7caGLiWoacaWGKbGaam4CaiaaiYdacqaH1oqzca aIUaaaaa@8118@  (18)

and

| j=1 k I j ( v ¯ n ( t j )) j=1 k I j ( v ¯ ( t j )) | j=1 k L j | v ¯ n ( t j ) v ¯ ( t j ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aadaaeWbqabKqbGeaacaWGQbGaaGypaiaaigdaaeaacaWGRbaajuaG cqGHris5aiaadMeadaWgaaqcfasaaiaadQgaaKqbagqaaiaaiIcace WG2bGbaebadaWgaaqcfasaaiaad6gaaKqbagqaaiaaiIcacaWG0bWa aSbaaKqbGeaacaWGQbaajuaGbeaacaaIPaGaaGykaiabgkHiTmaaqa habeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaadUgaaKqbakabggHi LdGaamysamaaBaaajuaibaGaamOAaaqabaqcfaOaaGikaiqadAhaga qeaiaaiIcacaWG0bWaaSbaaKqbGeaacaWGQbaajuaGbeaacaaIPaGa aGykaaGaay5bSlaawIa7aiabgsMiJoaaqahabeqcfasaaiaadQgaca aI9aGaaGymaaqaaiaadUgaaKqbakabggHiLdGaamitamaaBaaajuai baGaamOAaaqcfayabaWaaqWaaeaaceWG2bGbaebadaWgaaqcfasaai aad6gaaKqbagqaaiaaiIcacaWG0bWaaSbaaKqbGeaacaWGQbaabeaa juaGcaaIPaGaeyOeI0IabmODayaaraGaaGikaiaadshadaWgaaqcfa saaiaadQgaaeqaaKqbakaaiMcaaiaawEa7caGLiWoaaaa@765E@

= j=1 k L j | v n ( t j )v( t j ) |<ε. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGypam aaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaadUgaaKqbakab ggHiLdGaamitamaaBaaajuaibaGaamOAaaqcfayabaWaaqWaaeaaca WG2bWaaSbaaKqbGeaacaWGUbaajuaGbeaacaaIOaGaamiDamaaBaaa juaibaGaamOAaaqcfayabaGaaGykaiabgkHiTiaadAhacaaIOaGaam iDamaaBaaajuaibaGaamOAaaqabaqcfaOaaGykaaGaay5bSlaawIa7 aiaaiYdacqaH1oqzcaaIUaaaaa@537E@ (19)

  In consequence, we can see that for a sufficiently large number n> n 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOBai aai6dacaWGUbWaaSbaaKqbGeaacaaIWaaabeaacaaMc8Uaaiilaaaa @3C76@  

| v(t)Nv(t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWG2bGaaGikaiaadshacaaIPaGaeyOeI0IaamOtaiaadAhacaaI OaGaamiDaiaaiMcaaiaawEa7caGLiWoaaaa@4218@

| v(t) v n+1 (t) |+| v n+1 (t)N v n (t) |+| N v n (t)Nv(t) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaqWaaeaacaWG2bGaaGikaiaadshacaaIPaGaeyOeI0IaamODamaa BaaajuaibaGaamOBaiabgUcaRiaaigdaaeqaaKqbakaaiIcacaWG0b GaaGykaaGaay5bSlaawIa7aiabgUcaRmaaemaabaGaamODamaaBaaa juaibaGaamOBaiabgUcaRiaaigdaaeqaaKqbakaaiIcacaWG0bGaaG ykaiabgkHiTiaad6eacaWG2bWaaSbaaKqbGeaacaWGUbaajuaGbeaa caaIOaGaamiDaiaaiMcaaiaawEa7caGLiWoacqGHRaWkdaabdaqaai aad6eacaWG2bWaaSbaaKqbGeaacaWGUbaajuaGbeaacaaIOaGaamiD aiaaiMcacqGHsislcaWGobGaamODaiaaiIcacaWG0bGaaGykaaGaay 5bSlaawIa7aaaa@6733@

| v(t) v n+1 (t) |+| v n+1 (t) [ ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 (s,( v ¯ n ) s + ϕ s )ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaqWaaeaacaWG2bGaaGikaiaadshacaaIPaGaeyOeI0IaamODamaa BaaajuaibaGaamOBaiabgUcaRiaaigdaaeqaaKqbakaaiIcacaWG0b GaaGykaaGaay5bSlaawIa7aiabgUcaRmaaeeaabaGaamODamaaBaaa juaibaGaamOBaiabgUcaRiaaigdaaeqaaKqbakaaiIcacaWG0bGaaG ykaiabgkHiTmaadeaabaWaaSaaaeaacqaHbpGCdaahaaqabKqbGeaa caaIXaGaeyOeI0IaeqyYdChaaaqcfayaaiabfo5ahjaaiIcacqaHjp WDcaaIPaaaamaapedabeqaaiaadshadaWgaaqcfasaaiaadUgaaKqb agqaaaqaaiaadshaaiabgUIiYdGaaGikaiaadshadaahaaqabKqbGe aacqaHbpGCaaqcfaOaeyOeI0Iaam4CamaaCaaabeqcfasaaiabeg8a YbaajuaGcaaIPaWaaWbaaKqbGeqabaGaeqyYdCNaeyOeI0IaaGymaa aajuaGcaWGZbWaaWbaaKqbGeqabaGaeqyWdiNaeyOeI0IaaGymaaaa tuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaqcfaOae8 hdHGKaaGikaiaadohacaaISaGaaGikaiqadAhagaqeamaaBaaajuai baGaamOBaaqabaqcfaOaaGykamaaBaaajuaibaGaam4Caaqcfayaba Gaey4kaSIaeqy1dy2aaSbaaKqbGeaacaWGZbaabeaajuaGcaaIPaGa amizaiaadohaaiaawUfaaaGaay5bSdaaaa@9074@

+ i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s,( v ¯ n ) s + ϕ s )ds+ j=1 k I j ( v ¯ n ( t j )) ]| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVp aaeiaabaWaamGaaeaacqGHRaWkdaaeWbqabKqbGeaacaWGPbGaaGyp aiaaicdaaeaacaWGRbGaeyOeI0IaaGymaaqcfaOaeyyeIuoadaWcaa qaaiabeg8aYnaaCaaabeqcfasaaiaaigdacqGHsislcqaHjpWDaaaa juaGbaGaeu4KdCKaaGikaiabeM8a3jaaiMcaaaWaa8qmaeqabaGaam iDamaaBaaajuaibaGaamyAaaqabaaajuaGbaGaamiDamaaBaaajuai baGaamyAaiabgUcaRiaaigdaaeqaaaqcfaOaey4kIipacaaIOaGaam iDamaaDaaajuaibaGaamyAaiabgUcaRiaaigdaaeaacqaHbpGCaaqc faOaeyOeI0Iaam4CamaaCaaabeqcfasaaiabeg8aYbaajuaGcaaIPa WaaWbaaeqajuaibaGaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWa aWbaaKqbGeqabaGaeqyWdiNaeyOeI0IaaGymaaaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaqcfaOae8hdHGKaaGikaiaa dohacaaISaGaaGikaiqadAhagaqeamaaBaaajuaibaGaamOBaaqcfa yabaGaaGykamaaBaaajuaibaGaam4CaaqabaqcfaOaey4kaSIaeqy1 dy2aaSbaaKqbGeaacaWGZbaajuaGbeaacaaIPaGaamizaiaadohacq GHRaWkdaaeWbqabKqbGeaacaWGQbGaaGypaiaaigdaaeaacaWGRbaa juaGcqGHris5aiaadMeadaWgaaqcfasaaiaadQgaaeqaaKqbakaaiI caceWG2bGbaebadaWgaaqcfasaaiaad6gaaeqaaKqbakaaiIcacaWG 0bWaaSbaaKqbGeaacaWGQbaabeaajuaGcaaIPaGaaGykaaGaayzxaa aacaGLiWoaaaa@9A86@

+| i=0 k1 ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 (s,( v ¯ n ) s + ϕ s )ds ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 (s, v ¯ s + ϕ s )ds | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4kaS YaaqWaaeaadaaeWbqabKqbGeaacaWGPbGaaGypaiaaicdaaeaacaWG RbGaeyOeI0IaaGymaaqcfaOaeyyeIuoadaWcaaqaaiabeg8aYnaaCa aabeqcfasaaiaaigdacqGHsislcqaHjpWDaaaajuaGbaGaeu4KdCKa aGikaiabeM8a3jaaiMcaaaWaa8qmaeqabaGaamiDamaaBaaajuaiba Gaam4AaaqcfayabaaabaGaamiDaaGaey4kIipacaaIOaGaamiDamaa Caaabeqcfauaaiabeg8aYbaajuaGcqGHsislcaWGZbWaaWbaaeqaju aibaGaeqyWdihaaKqbakaaiMcadaahaaqabKqbGeaacqaHjpWDcqGH sislcaaIXaaaaKqbakaadohadaahaaqcfasabeaacqaHbpGCcqGHsi slcaaIXaaaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jha iuaajuaGcqWFmecscaaIOaGaam4CaiaaiYcacaaIOaGabmODayaara WaaSbaaKqbGeaacaWGUbaabeaajuaGcaaIPaWaaSbaaKqbGeaacaWG ZbaajuaGbeaacqGHRaWkcqaHvpGzdaWgaaqcfasaaiaadohaaKqbag qaaiaaiMcacaWGKbGaam4CaiabgkHiTmaalaaabaGaeqyWdi3aaWba aeqajuaibaGaaGymaiabgkHiTiabeM8a3baaaKqbagaacqqHtoWrca aIOaGaeqyYdCNaaGykaaaadaWdXaqabeaacaWG0bWaaSbaaKqbGeaa caWGRbaajuaGbeaaaeaacaWG0baacqGHRiI8aiaaiIcacaWG0bWaaW baaeqajuaibaGaeqyWdihaaKqbakabgkHiTiaadohadaahaaqabKqb GeaacqaHbpGCaaqcfaOaaGykamaaCaaajuaibeqaaiabeM8a3jabgk HiTiaaigdaaaqcfaOaam4CamaaCaaabeqcfasaaiabeg8aYjabgkHi TiaaigdaaaqcfaOae8hdHGKaaGikaiaadohacaaISaGabmODayaara WaaSbaaKqbGeaacaWGZbaajuaGbeaacqGHRaWkcqaHvpGzdaWgaaqc fasaaiaadohaaKqbagqaaiaaiMcacaWGKbGaam4CaaGaay5bSlaawI a7aaaa@B35F@

+| i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s,( v ¯ n ) s + ϕ s )ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaey4kaS YaaqqaaeaadaaeWbqabKqbGeaacaWGPbGaaGypaiaaicdaaeaacaWG RbGaeyOeI0IaaGymaaqcfaOaeyyeIuoadaWcaaqaaiabeg8aYnaaCa aabeqcfasaaiaaigdacqGHsislcqaHjpWDaaaajuaGbaGaeu4KdCKa aGikaiabeM8a3jaaiMcaaaWaa8qmaeqabaGaamiDamaaBaaajuaiba GaamyAaaqabaaajuaGbaGaamiDamaaBaaajuaibaGaamyAaiabgUca RiaaigdaaKqbagqaaaGaey4kIipacaaIOaGaamiDamaaDaaajuaiba GaamyAaiabgUcaRiaaigdaaeaacqaHbpGCaaqcfaOaeyOeI0Iaam4C amaaCaaabeqcfasaaiabeg8aYbaajuaGcaaIPaWaaWbaaKqbGeqaba GaeqyYdCNaeyOeI0IaaGymaaaajuaGcaWGZbWaaWbaaeqajuaibaGa eqyWdiNaeyOeI0IaaGymaaaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbacfaqcfaOae8hdHGKaaGikaiaadohacaaISaGaaGik aiqadAhagaqeamaaBaaajuaibaGaamOBaaqcfayabaGaaGykamaaBa aajuaibaGaam4CaaqabaqcfaOaey4kaSIaeqy1dy2aaSbaaKqbGeaa caWGZbaajuaGbeaacaaIPaGaamizaiaadohaaiaawEa7aaaa@85C2@

i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 (s, v ¯ s + ϕ s )ds|+| j=1 k I j ( v ¯ n ( t j )) j=1 k I j ( v ¯ ( t j )) |. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVp aaeiaabaGaeyOeI0YaaabCaeqajuaibaGaamyAaiaai2dacaaIWaaa baGaam4AaiabgkHiTiaaigdaaKqbakabggHiLdWaaSaaaeaacqaHbp GCdaahaaqcfasabeaacaaIXaGaeyOeI0IaeqyYdChaaaqcfayaaiab fo5ahjaaiIcacqaHjpWDcaaIPaaaamaapedabeqaaiaadshadaWgaa qcfasaaiaadMgaaeqaaaqcfayaaiaadshadaWgaaqcfasaaiaadMga cqGHRaWkcaaIXaaajuaGbeaaaiabgUIiYdGaaGikaiaadshadaqhaa qcfasaaiaadMgacqGHRaWkcaaIXaaabaGaeqyWdihaaKqbakabgkHi TiaadohadaahaaqcfasabeaacqaHbpGCaaqcfaOaaGykamaaCaaabe qcfasaaiabeM8a3jabgkHiTiaaigdaaaqcfaOaam4CamaaCaaajuai beqaaiabeg8aYjabgkHiTiaaigdaaaWefv3ySLgzgjxyRrxDYbqegu uDJXwAKbIrYf2A0vNCaGqbaKqbakab=XqiijaaiIcacaWGZbGaaGil aiqadAhagaqeamaaBaaajuaibaGaam4CaaqabaqcfaOaey4kaSIaeq y1dy2aaSbaaKqbGeaacaWGZbaabeaajuaGcaaIPaGaamizaiaadoha aiaawIa7aiabgUcaRmaaemaabaWaaabCaeqajuaibaGaamOAaiaai2 dacaaIXaaabaGaam4AaaqcfaOaeyyeIuoacaWGjbWaaSbaaKqbGeaa caWGQbaajuaGbeaacaaIOaGabmODayaaraWaaSbaaKqbGeaacaWGUb aajuaGbeaacaaIOaGaamiDamaaBaaajuaibaGaamOAaaqcfayabaGa aGykaiaaiMcacqGHsisldaaeWbqabKqbGeaacaWGQbGaaGypaiaaig daaeaacaWGRbaajuaGcqGHris5aiaadMeadaWgaaqcfasaaiaadQga aKqbagqaaiaaiIcaceWG2bGbaebacaaIOaGaamiDamaaBaaajuaiba GaamOAaaqcfayabaGaaGykaiaaiMcaaiaawEa7caGLiWoacaaIUaaa aa@AAA9@

Thus, in view of the convergence of the two previous and (17)-??, one obtains that | v(t)Nv(t) |0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWG2bGaaGikaiaadshacaaIPaGaeyOeI0IaamOtaiaadAhacaaI OaGaamiDaiaaiMcaaiaawEa7caGLiWoacqGHsgIRcaaIWaaaaa@44BF@ , which implies that v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODaa aa@377F@  is a solution of (1). Finally, we prove the uniqueness of the solution. Assume that v 1 , v 2 :[0,T] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamODam aaBaaajuaibaGaaGymaaqabaqcfaOaaGilaiaadAhadaWgaaqcfasa aiaaikdaaKqbagqaaiaaiQdacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaiabgkziUkabl2riHcaa@4497@  are two solutions of (1). Note that

| v 1 (t) v 2 (t) | ρ 1ω Γ(ω) t k t ( t ρ s ρ ) ω1 s ρ1 α (s) x[0,s] sup | v ¯ 1 (x) v ¯ 2 (x) |ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWG2bWaaSbaaKqbGeaacaaIXaaabeaajuaGcaaIOaGaamiDaiaa iMcacqGHsislcaWG2bWaaSbaaKqbGeaacaaIYaaajuaGbeaacaaIOa GaamiDaiaaiMcaaiaawEa7caGLiWoacqGHKjYOdaWcaaqaaiabeg8a YnaaCaaabeqcfasaaiaaigdacqGHsislcqaHjpWDaaaajuaGbaGaeu 4KdCKaaGikaiabeM8a3jaaiMcaaaWaa8qmaeqabaGaamiDamaaBaaa juaibaGaam4AaaqcfayabaaabaGaamiDaaGaey4kIipacaaIOaGaam iDamaaCaaabeqcfasaaiabeg8aYbaajuaGcqGHsislcaWGZbWaaWba aeqajuaibaGaeqyWdihaaKqbakaaiMcadaahaaqcfasabeaacqaHjp WDcqGHsislcaaIXaaaaKqbakaadohadaahaaqcfasabeaacqaHbpGC cqGHsislcaaIXaaaaKqbakabeg7aHjaaiIcacaWGZbGaaGykamaaDa aajuaibaGaamiEaiabgIGiolaaiUfacaaIWaGaaGilaiaadohacaaI DbaabaGaaGjcVlaadohacaWG1bGaamiCaiaayIW7aaqcfa4aaqWaae aaceWG2bGbaebadaWgaaqcfasaaiaaigdaaKqbagqaaiaaiIcacaWG 4bGaaGykaiabgkHiTiqadAhagaqeamaaBaaajuaibaGaaGOmaaqcfa yabaGaaGikaiaadIhacaaIPaaacaGLhWUaayjcSdGaamizaiaadoha aaa@8B6C@

+ i=0 k1 ρ 1ω Γ(ω) t i t i+1 ( t i+1 ρ s ρ ) ω1 s ρ1 α (s) x[0,s] sup | v ¯ 1 (x) v ¯ 2 (x) |ds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadMgacaaI9aGaaGimaaqaaiaadUga cqGHsislcaaIXaaajuaGcqGHris5amaalaaabaGaeqyWdi3aaWbaae qajuaibaGaaGymaiabgkHiTiabeM8a3baaaKqbagaacqqHtoWrcaaI OaGaeqyYdCNaaGykaaaadaWdXaqabeaacaWG0bWaaSbaaKqbGeaaca WGPbaabeaaaKqbagaacaWG0bWaaSbaaKqbGeaacaWGPbGaey4kaSIa aGymaaqcfayabaaacqGHRiI8aiaaiIcacaWG0bWaa0baaKqbGeaaca WGPbGaey4kaSIaaGymaaqaaiabeg8aYbaajuaGcqGHsislcaWGZbWa aWbaaeqajuaibaGaeqyWdihaaKqbakaaiMcadaahaaqcfasabeaacq aHjpWDcqGHsislcaaIXaaaaKqbakaadohadaahaaqcfasabeaacqaH bpGCcqGHsislcaaIXaaaaKqbakabeg7aHjaaiIcacaWGZbGaaGykam aaDaaajuaibaGaamiEaiabgIGiolaaiUfacaaIWaGaaGilaiaadoha caaIDbaabaGaaGjcVlaadohacaWG1bGaamiCaiaayIW7aaqcfa4aaq WaaeaaceWG2bGbaebadaWgaaqcfasaaiaaigdaaeqaaKqbakaaiIca caWG4bGaaGykaiabgkHiTiqadAhagaqeamaaBaaajuaibaGaaGOmaa qcfayabaGaaGikaiaadIhacaaIPaaacaGLhWUaayjcSdGaamizaiaa dohaaaa@8C14@

+ j=1 k I j | v ¯ 1 ( t j ) v ¯ 2 ( t j ) | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGzbVl abgUcaRmaaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaadUga aKqbakabggHiLdGaamysamaaBaaajuaibaGaamOAaaqcfayabaWaaq WaaeaaceWG2bGbaebadaWgaaqcfasaaiaaigdaaeqaaKqbakaaiIca caWG0bWaaSbaaKqbGeaacaWGQbaabeaajuaGcaaIPaGaeyOeI0Iabm ODayaaraWaaSbaaKqbGeaacaaIYaaajuaGbeaacaaIOaGaamiDamaa BaaajuaibaGaamOAaaqabaqcfaOaaGykaaGaay5bSlaawIa7aaaa@5390@

( i=1 p+1 α i T ωρ ρ ω Γ(ω+1) + j=1 p L j ) v 1 v 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaeWaaeaadaaeWbqabKqbGeaacaWGPbGaaGypaiaaigdaaeaacaWG WbGaey4kaSIaaGymaaqcfaOaeyyeIuoadaWcaaqaaiabeg7aHnaaBa aajuaibaGaamyAaaqabaqcfaOaamivamaaCaaabeqcfasaaiabeM8a 3jabeg8aYbaaaKqbagaacqaHbpGCdaahaaqabKqbGeaacqaHjpWDaa qcfaOaeu4KdCKaaGikaiabeM8a3jabgUcaRiaaigdacaaIPaaaaiab gUcaRmaaqahabeqcfasaaiaadQgacaaI9aGaaGymaaqaaiaadchaaK qbakabggHiLdGaamitamaaBaaajuaibaGaamOAaaqcfayabaaacaGL OaGaayzkaaWaauWaaeaacaWG2bWaaSbaaKqbGeaacaaIXaaabeaaju aGcqGHsislcaWG2bWaaSbaaKqbGeaacaaIYaaajuaGbeaaaiaawMa7 caGLkWoacaaIUaaaaa@68CA@

  According to the conditions ( A 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadgeadaWgaaqcfasaaiaaiodaaeqaaKqbakaaiMcaaaa@3A49@ , the uniqueness of the problem (1) follows immediately, which completes the proof.

An illustrative example

 Consider the following Katugampola-type fractional impulsive differential equation with delay of the form

( c ρ D 0 + ω (t)= e t | t | (9+ e t )(1+| t ) | ,t[0,1],t 1 2 ,0<ω<1; Δ( 1 2 )= | ( 1 2 ) | 3+| ( 1 2 ) | ; (t)=ψ(t)= e t 1 2 ,μt0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeqaae aafaqabeWabaaabaWaa0baaeaacaWGJbaabaGaeqyWdihaaiaadsea daqhaaqcfasaaiaaicdajuaGdaahaaqcfasabeaacqGHRaWkaaaaba GaeqyYdChaamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jha iuaajuaGcqWFOeIwcaaIOaGaamiDaiaaiMcacaaI9aWaaSaaaeaaca WGLbWaaWbaaKqbGeqabaGaeyOeI0IaamiDaaaajuaGdaabdaqaaiab =HsiAnaaBaaajuaibaGaamiDaaqcfayabaaacaGLhWUaayjcSdaaba GaaGikaiaaiMdacqGHRaWkcaWGLbWaaWbaaKqbGeqabaGaamiDaaaa juaGcaaIPaGaaGikaiaaigdacqGHRaWkdaabdaqaaiab=HsiAnaaBa aajuaibaGaamiDaaqcfayabaGaaGykaaGaay5bSlaawIa7aaaacaaI SaGaaGjbVlaadshacqGHiiIZcaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaiaaiYcacaaMe8UaamiDaiabgcMi5oaalaaabaGaaGymaaqaaiaa ikdaaaGaaGilaiaaysW7caaIWaGaaGipaiabeM8a3jaaiYdacaaIXa GaaG4oaaqaaiabfs5aejab=HsiAnaabmaabaWaaSaaaeaacaaIXaaa baGaaGOmaaaaaiaawIcacaGLPaaacaaI9aWaaSaaaeaadaabdaqaaK qbGiab=HsiALqbaoaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaa daahaaqabKqbGeaacqGHsislaaaajuaGcaGLOaGaayzkaaaacaGLhW UaayjcSdaabaGaaG4maiabgUcaRmaaemaabaGae8hkHO1aaeWaaeaa daWcaaqaaiaaigdaaeaacaaIYaaaamaaCaaabeqcfasaaiabgkHiTa aaaKqbakaawIcacaGLPaaaaiaawEa7caGLiWoaaaGaaG4oaaqaaiab =HsiAjaaiIcacaWG0bGaaGykaiaai2dacqaHipqEcaaIOaGaamiDai aaiMcacaaI9aWaaSaaaeaacaWGLbWaaWbaaKqbGeqabaGaeyOeI0Ia amiDaaaajuaGcqGHsislcaaIXaaabaGaaGOmaaaacaaISaGaaGjbVl abgkHiTiabeY7aTjabgsMiJkaadshacqGHKjYOcaaIWaGaaGOlaaaa aiaawUhaaaaa@B550@ (20)

Let us take, ω= 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC NaaGypamaalaaabaGaaGymaaqaaiaaikdaaaGaaGPaVlaacYcaaaa@3CDA@ ρ=1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyWdi NaaGypaiaaigdacaGGSaaaaa@3A76@ Γ(ω+1)> 4 10 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4KdC KaaGikaiabeM8a3jabgUcaRiaaigdacaaIPaGaaGOpamaalaaabaGa aGinaaqaaiaaigdacaaIWaaaaiaaykW7caGGSaaaaa@4201@ μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiVd0 gaaa@383A@  is a non-negative constant. t (θ)=(t+θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=HsiAnaaBaaa juaibaGaamiDaaqabaqcfaOaaGikaiabeI7aXjaaiMcacaaI9aGae8 hkHOLaaGikaiaadshacqGHRaWkcqaH4oqCcaaIPaaaaa@4E43@  for μθ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaeqiVd0MaeyizImQaeqiUdeNaeyizImQaaGimaaaa@3F01@  and 0t1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGimai abgsMiJkaadshacqGHKjYOcaaIXaGaaGPaVlaac6caaaa@3E99@ Set (t,)= e t (9+ e t )(1+) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaKqbakab=XqiijaaiIca caWG0bGaaGilaiab=HsiAjaaiMcacaaI9aWaaSaaaeaacaWGLbWaaW baaKqbGeqabaGaeyOeI0IaamiDaaaajuaGcqWFOeIwaeaacaaIOaGa aGyoaiabgUcaRiaadwgadaahaaqcfasabeaacaWG0baaaKqbakaaiM cacaaIOaGaaGymaiabgUcaRiab=HsiAjaaiMcaaaGaaGPaVlaacYca aaa@5858@ I()= 3+ , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamysai aaiIcatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGa e8hkHOLaaGykaiaai2dadaWcaaqaaiab=HsiAbqaaiaaiodacqGHRa WkcqWFOeIwaaGaaGPaVlaacYcaaaa@4BA1@ for (t,)[0,1]×[0,+). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadshacaaISaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNC aGqbaiab=HsiAjaaiMcacqGHiiIZcaaIBbGaaGimaiaaiYcacaaIXa GaaGyxaiabgEna0kaaiUfacaaIWaGaaGilaiabgUcaRiabg6HiLkaa iMcacaaMc8UaaiOlaaaa@54AB@ Now, we can see that

| (t, p t )(t, q t ) |= e t (9+ e t ) | p t q t | (1+| p t |)(1+| q t |) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hd HGKaaGikaiaadshacaaISaGaamiCamaaBaaabaGaamiDaaqabaGaaG ykaiabgkHiTiab=XqiijaaiIcacaWG0bGaaGilaiaadghadaWgaaqa aiaadshaaeqaaiaaiMcaaiaawEa7caGLiWoacaaI9aWaaSaaaeaaca WGLbWaaWbaaKqbGeqabaGaeyOeI0IaamiDaaaaaKqbagaacaaIOaGa aGyoaiabgUcaRiaadwgadaahaaqcfasabeaacaWG0baaaKqbakaaiM caaaWaaSaaaeaadaabdaqaaiaadchadaWgaaqcfasaaiaadshaaeqa aKqbakabgkHiTiaadghadaWgaaqcfasaaiaadshaaKqbagqaaaGaay 5bSlaawIa7aaqaaiaaiIcacaaIXaGaey4kaSYaaqWaaeaacaWGWbWa aSbaaKqbGeaacaWG0baabeaaaKqbakaawEa7caGLiWoacaaIPaGaaG ikaiaaigdacqGHRaWkdaabdaqaaiaadghadaWgaaqcfasaaiaadsha aeqaaaqcfaOaay5bSlaawIa7aiaaiMcaaaaaaa@7774@

e t (9+ e t ) | p t q t | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm 6aaSaaaeaacaWGLbWaaWbaaeqajuaibaGaeyOeI0IaamiDaaaaaKqb agaacaaIOaGaaGyoaiabgUcaRiaadwgadaahaaqcfasabeaacaWG0b aaaKqbakaaiMcaaaWaaqWaaeaacaWGWbWaaSbaaKqbGeaacaWG0baa beaajuaGcqGHsislcaWGXbWaaSbaaKqbGeaacaWG0baabeaaaKqbak aawEa7caGLiWoaaaa@4B68@

α (t) s[0,t] sup | p(s)q(s) |, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyizIm QaeqySdeMaaGikaiaadshacaaIPaWaa0baaKqbGeaacaWGZbGaeyic I4SaaG4waiaaicdacaaISaGaamiDaiaai2faaeaacaaMi8Uaam4Cai aadwhacaWGWbGaaGjcVdaajuaGdaabdaqaaiaadchacaaIOaGaam4C aiaaiMcacqGHsislcaWGXbGaaGikaiaadohacaaIPaaacaGLhWUaay jcSdGaaGilaaaa@5538@ where α(t)= e t (9+ e t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGikaiaadshacaaIPaGaaGypamaalaaabaGaamyzamaaCaaabeqc fasaaiabgkHiTiaadshaaaaajuaGbaGaaGikaiaaiMdacqGHRaWkca WGLbWaaWbaaeqajuaibaGaamiDaaaajuaGcaaIPaaaaaaa@44D1@  and α = t[0,1] sup α(t)= 1 10 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde MaaGypamaaDaaajuaibaGaamiDaiabgIGiolaaiUfacaaIWaGaaGil aiaaigdacaaIDbaabaGaaGjcVlaadohacaWG1bGaamiCaiaayIW7aa qcfaOaeqySdeMaaGikaiaadshacaaIPaGaaGypamaalaaabaGaaGym aaqaaiaaigdacaaIWaaaaiaaykW7caGGSaaaaa@4F84@  so the condition ( A 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadgeadaWgaaqcfasaaiaaigdaaKqbagqaaiaaiMcaaaa@3A47@  is satisfied. On the other hand, we get that

| I(p)I(q) |= 3| pq | (3+p)(3+q) 1 3 | pq |,p,q>0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aacaWGjbGaaGikaiaadchacaaIPaGaeyOeI0IaamysaiaaiIcacaWG XbGaaGykaaGaay5bSlaawIa7aiaai2dadaWcaaqaaiaaiodadaabda qaaiaadchacqGHsislcaWGXbaacaGLhWUaayjcSdaabaGaaGikaiaa iodacqGHRaWkcaWGWbGaaGykaiaaiIcacaaIZaGaey4kaSIaamyCai aaiMcaaaGaeyizIm6aaSaaaeaacaaIXaaabaGaaG4maaaadaabdaqa aiaadchacqGHsislcaWGXbaacaGLhWUaayjcSdGaaGilaiaaywW7ca WGWbGaaGilaiaadghacaaI+aGaaGimaiaaiYcaaaa@60B9@

which satisfies the condition ( A 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGikai aadgeadaWgaaqcfasaaiaaigdaaeqaaKqbakaaiMcaaaa@3A47@  of Theorem 3.1 with L= 1 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitai aai2dadaWcaaqaaiaaigdaaeaacaaIZaaaaiaaykW7caGGUaaaaa@3BE1@ By a direct computation, we obtain that i=1 m+1 α i T ρω ρ ω Γ(ω+1) + j=1 m L j = 2 10 1 Γ(ω+1) + 1 3 <1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCae qajuaibaGaamyAaiaai2dacaaIXaaabaGaamyBaiabgUcaRiaaigda aKqbakabggHiLdWaaSaaaeaacqaHXoqydaWgaaqcfasaaiaadMgaae qaaKqbakaadsfadaahaaqabKqbGeaacqaHbpGCcqaHjpWDaaaajuaG baGaeqyWdi3aaWbaaeqajuaibaGaeqyYdChaaKqbakabfo5ahjaaiI cacqaHjpWDcqGHRaWkcaaIXaGaaGykaaaacqGHRaWkdaaeWbqabKqb GeaacaWGQbGaaGypaiaaigdaaeaacaWGTbaajuaGcqGHris5aiaadY eadaWgaaqcfasaaiaadQgaaKqbagqaaiaai2dadaWcaaqaaiaaikda aeaacaaIXaGaaGimaaaadaWcaaqaaiaaigdaaeaacqqHtoWrcaaIOa GaeqyYdCNaey4kaSIaaGymaiaaiMcaaaGaey4kaSYaaSaaaeaacaaI XaaabaGaaG4maaaacaaI8aGaaGymaiaaiYcaaaa@6A3E@ and

| (t, t ) |= e t (9+ e t ) | t | (1+| t |) e t 9+ e t 1 10 ,t[0,1]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaae aatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hd HGKaaGikaiaadshacaaISaGae8hkHO1aaSbaaKqbGeaacaWG0baabe aajuaGcaaIPaaacaGLhWUaayjcSdGaaGypamaalaaabaGaamyzamaa CaaajuaibeqaaiabgkHiTiaadshaaaaajuaGbaGaaGikaiaaiMdacq GHRaWkcaWGLbWaaWbaaKqbGeqabaGaamiDaaaajuaGcaaIPaaaamaa laaabaWaaqWaaeaacqWFOeIwdaWgaaqcfasaaiaadshaaKqbagqaaa Gaay5bSlaawIa7aaqaaiaaiIcacaaIXaGaey4kaSYaaqWaaeaacqWF OeIwdaWgaaqcfasaaiaadshaaeqaaaqcfaOaay5bSlaawIa7aiaaiM caaaGaeyizIm6aaSaaaeaacaWGLbWaaWbaaeqajuaibaGaeyOeI0Ia amiDaaaaaKqbagaacaaI5aGaey4kaSIaamyzamaaCaaajuaibeqaai aadshaaaaaaKqbakabgsMiJoaalaaabaGaaGymaaqaaiaaigdacaaI WaaaaiaaiYcacaaMe8UaamiDaiabgIGiolaaiUfacaaIWaGaaGilai aaigdacaaIDbGaaGOlaaaa@7C52@

As a result, the equations in (20) satisfy all the hypotheses in Theorem 3.1 which guarantees that (20) has a unique solution.

Conclusion

In this note, the existences of solutions of a Katugampola-type fractional impulsive differential equation with delay were investigated. The successive approximation method was employed to show the existence of solutions. The example reflects the applicability of the proposed method.

Acknowledgements

None

Conflict of interest

Author declares that there is no conflict of interest.

References

  1. Agarwal RP, Benchohra M, Slimani BA. Existence results for differential equations with fractional order and impulses. Mem Differential Equations Math Phys. 2008;44:1‒21.
  2. Glockle WG, Nonnenmacher TF. A fractional calculus approach to self-similar protein dynamics. Biophysical Journal. 1995;68(1):46‒53.
  3. Hilfer R. Applications of Fractional Calculus in Physics. World Scientific. 2000.
  4. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. 2006;24:1‒523.
  5. Miller KS, Ross B. An Introduction to the Fractional Calculus and Differential Equations. New York: Wiley; 1993. p. 384.
  6. Podlubny I. Fractional Differential Equations. Academic Press, San Diego; 1999. p. 340.
  7. Sabatier J, Agrawal OP, Machado JAT. Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering. Springer. 2007.
  8. Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives: theory and applications. USA: Gordon and Breach; 1993.
  9. Krasnoselskii MA. Positive Solutions of Operator Equations. The Netherlands: Noordhoff, Groningen; 1964. p. 381.
  10. Lakshmikantham V, Bainov DD, Simeonov PS. Theory of Impulsive Differential Equations. Worlds Scientific. 1989;6:288.
  11. Samoilenko AM, Perestyuk NA. Impulsive Differential Equations. World Scientific: Singapore; 1995. p. 462.
  12. Sun JX. Nonlinear Functional Analysis and its Application. Beijing: Science Press; 2008.
  13. Benchohra M, Henderson J, Ntouyas SK, et al. Existence results for fractional order functional differential equations with infinite delay. J Math Anal Appl. 2008;338(2):1340‒1350.
  14. Deng J, Qu H. New uniqueness results of solutions for fractional differential equations with infinite delay. Comput Math Appl. 2010;60(8):2253‒2259.
  15. Lin AH, Ren Y, Xia NM. On neutral impulsive stochastic integro-differential equations with infinite delays via fractional operators. Math Comput Model. 2010;51(6):413‒424.
  16. Monch H, Von Harten GF. On the Cauchy problem for ordinary differential equations in Banach spaces, Archiv Math Basel. 1982;39(2):153‒160.
  17. Benchohra M, Slimani BA. Existence and uniqueness of solutions to impulsive fractional differential equations. Electronic J Differential Equations. 2009;10:1‒11.
  18. Benchohra M, Djamila Seba. Impulsive fractional differential equations in Banach Spaces. Electronic Journal of Qualitative Theory of Differential Equations. 2009;8:1‒14.
  19. Benchohra M, Soufyane Bouriah. Memoirs on Differential Equations and Mathematical Physics. 2016;69:15‒31.
  20. Henderson J, Ouahab A. Impulsive differential inclusions with fractional order. Comput Math Appl. 2010;59(3):1191‒1226.
  21. Tian YS, Bai ZB. Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Comput Math Appl. 2010;59(8):2601‒2609.
  22. Wang GT, Ahmad B, Zhang LH. Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions. Comput Math Appl. 2011;62(3):1389‒1397.
  23. Xiaozhi Zhang, Chuanxi Zhu, Zhaoqi Wu, The Cauchy problem for a class of fractional impulsive differential equations with delay. Electronic Journal of Qualitative Theory of Differential Equations. 2012;37:1‒13.
  24. Zhang XM, Huang XY, Liu ZH. The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay. Nonlinear Anal Hybrid Syst. 2010;4(4):775‒781.
  25. Vivek D, Kanagarajan K, Harikrishnan S. Theory and analysis of impulsive type pantograph equations with Katugampola fractional derivative. Journal of Vibration Testing and System Dynamics. 2018;2(1):9‒20.
  26. Xiaozhi Zhang, Chuanxi Zhu, Zhaoqi Wu, The Cauchy problem for a class of fractional impulsive differential equations with delay. Electronic Journal of Qualitative Theory of Differential Equations. 2012;37:1‒13.
  27. Katugampola UN. A new approach to generalized fractional derivatives. Bull Math Anal App. 2014;6(4):1‒15.
  28. Katugampola UN. New approach to a generalized fractional integral. Appl Math Comput. 2011;218(3):860‒865.
  29. Katugampola UN. Existence and uniqueness results for a class of generalized fractional differential equations. Bull Math Anal App. 2016.
  30. Vivek D, Kanagarajan K, Harikrishnan S. Existence and uniqueness results for pantograph equations with generalized fractional derivative. Jour Nonlinear Anal App. 2017;2:105‒112.
Creative Commons Attribution License

©2018 Janaki, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.